KR101289480B1 - 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지 - Google Patents

염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지 Download PDF

Info

Publication number
KR101289480B1
KR101289480B1 KR1020110052552A KR20110052552A KR101289480B1 KR 101289480 B1 KR101289480 B1 KR 101289480B1 KR 1020110052552 A KR1020110052552 A KR 1020110052552A KR 20110052552 A KR20110052552 A KR 20110052552A KR 101289480 B1 KR101289480 B1 KR 101289480B1
Authority
KR
South Korea
Prior art keywords
dye
sensitized solar
electrolyte
curable
solar cell
Prior art date
Application number
KR1020110052552A
Other languages
English (en)
Other versions
KR20120133739A (ko
Inventor
정재원
김종원
정은진
황철균
노진희
정영미
성지연
Original Assignee
한국이엔에쓰 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국이엔에쓰 주식회사 filed Critical 한국이엔에쓰 주식회사
Priority to KR1020110052552A priority Critical patent/KR101289480B1/ko
Publication of KR20120133739A publication Critical patent/KR20120133739A/ko
Application granted granted Critical
Publication of KR101289480B1 publication Critical patent/KR101289480B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 염료 감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)용 UV 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지에 관한 것이다. 본 발명은, 액체 전해질을 포함하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질에 있어서, (a) 단관능성 아크릴레이트 단량체, 이관능성 아크릴레이트 단량체 및 다관능성 아크릴레이트 단량체로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 자외선 경화형 아크릴레이트 단량체; (b) 에폭시 아크릴레이트, 우레탄 아크릴레이트, 폴리에스테르 아크릴레이트, 실리콘 아크릴레이트 및 아크릴계 아크릴레이트로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 아크릴계 올리고머; (c) 광개시제; 및 (d) 첨가제로서의 산화방지제, 광안정제 또는 이들의 혼합물을 포함하는 UV 경화수지를 포함하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질을 제공한다.

Description

염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지{UV curing gel-typed solid electrolyte for dye-sensitized solar cell}
본 발명은 염료 감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)용 UV 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지에 관한 것이다.
화석 연료의 대체 수단의 하나로 1954년 벨(Bell) 연구소에서 약 6%의 효율을 나타내는 실리콘 계열의 태양전지가 최초로 개발되었다. 이후, 태양전지는 무기 실리콘을 중심으로 개발이 진행되었다.
무기계 태양전지는 실리콘과 같은 무기물 반도체의 p-n 접합으로 이루어진다. 태양전지의 소재로 사용된 실리콘은 크게 단결정 또는 다결정 실리콘과 같은 결정 실리콘 계열과 비정절 실리콘 계열로 구분된다. 결정 실리콘 계열은 태양 에너지를 전기 에너지로 전환하는 에너지 전환 효율이 비정질 실리콘 계열에 비하여 우수하지만 결정을 성장시키기 위하여 소요되는 시간과 에너지로 인하여 생산성이 떨어진다. 비정질 실리콘 계열은 결정 실리콘에 비하여 광흡수성이 양호하고 대면적화가 용이하며 생산성 측면에서 유리하지만 진공화 공정이 요구되어 설비면에서 비효율적이다. 이와 같은 문제점으로 실리콘을 대신하여 유기물질의 광기전 현상을 이용한 태양전지 소자에 대한 연구가 시도되었다.
최근, 높은 광전효율과 값싼 제조비용으로 인해 연료감응 태양전지(dye-sensitized solar cells, DSSC)에 대한 연구가 활발히 진행되고 있다. 염료 감응형 태양전지라 하면 투명 전극과 금속 전극 사이에 염료가 흡착된 산화티타늄과 같은 산화물층에 전해질을 삽입하여 광전기화학 반응을 이용하여 제조되는 태양전지이다. 일반적으로 염료감응형 태양전지는 2가지 전극(광전극과 대향전극), 무기 산화물, 염료 및 전해질로 구성되며, 염료 감응형 태양전지는 환경적으로 무해한 물질을 사용하기 때문에 환경친화적이고, 기존의 무기 태양전지 중 비정질 실리콘 계열의 태양전지에 버금가는 10% 정도의 높은 에너지 전환효율을 가지고 있고, 제조단가가 실리콘 태양전지의 20% 정도에 불과하여 상업화의 가능성이 매우 높은 것으로 보고된 바 있다. 기존의 p-n 접합 방식에서 벗어나 넓은 표면적과 밴드갭(band gap) 특성을 가진 나노산화물 입자, 빛을 흡수하여 전자를 생성할 수 있는 염료(dye), 그리고 산화/환원쌍(I-/I3 -)을 포함하는 전해질로 구성된 염료감응형 태양전지가 고비용의 실리콘 반도체 태양전지에 대한 새로운 대안으로 제시되고 있는 실정이다.
전해질은 광흡수에 의한 전자전이 결과로 산화된 염료 분자(S--->S*)는 전해질 내의 요오드 이온의 산화(3I- --> I3 - + 2e-)로 제공되는 전자를 받아 다시 환원되며 I3 - 이온은 대전극에 도달한 전자에 의해 다시 환원되어 염료 감응형 태양전지가 작동되는데, 광전류는 반도체 산화물 전극으로 주입된 전자의 확산으로 얻어지며 광전압은 반도체 산화물 페르미 에너지와 전해질의 산화-환원 전위 차이에 의해 결정된다. 이러한 원리로 알 수 있듯이 염료 감응형 태양전지의 전해질은 흔히 전도도(conductivity)와 확산계수(diffusion coefficient)로 그 효율성을 평가할 수 있다.
그러나, 이러한 염료 감응형 태양전지는 효율이 높은 액체 전해질에 따른 누수와 증발이 문제가 되고 있는 실정이다. 따라서 태양전지의 수명이 짧고 높은 온도에서 불안정하기 때문에 새로운 형태의 전해질을 필요로 하고 있다.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 누수와 증발의 문제가 거의 없고, 염료 감응형 태양전지의 수명이 연장되게 하고 높은 온도에서도 안정되게 구동하며, 광전환 효율이 우수한 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지를 제공하는 데에 있다.
상기 및 그 밖의 목적을 달성하기 위하여, 본 발명은, 액체 전해질을 포함하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질에 있어서,
(a) 단관능성 아크릴레이트 단량체, 이관능성 아크릴레이트 단량체 및 다관능성 아크릴레이트 단량체로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 자외선 경화형 아크릴레이트 단량체; (b) 에폭시 아크릴레이트, 우레탄 아크릴레이트, 폴리에스테르 아크릴레이트, 실리콘 아크릴레이트 및 아크릴계 아크릴레이트로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 아크릴계 올리고머; (c) 광개시제; 및 (d) 첨가제로서의 산화방지제, 광안정제 또는 이들의 혼합물을 포함하는 UV 경화수지를 포함하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질을 제공한다.
본 발명에 사용되는 액체 전해질은 제한은 없으나, 1,2-디메틸-3-프로필 이미다졸리움 요오드((1,2-dimethyl-3-propyl imidazolium iodide, DMPII), 요오드(I2), 요오드화리튬(LiI), 요오드화 나트륨, 요오드화 칼륨, 브롬화 리튬, 브롬화 나트륨, 브롬화 칼륨, 4급 암모늄염, 이미다졸륨염 및 피리디늄염으로 구성된 군으로부터 1종 또는 2종 이상 선택되는 산화-환원 유도체와 유기 용매를 포함하여 구성되는 것이 바람직하다. 특히, 산화-환원 유도체로서는 1,2-디메틸-3-프로필 이미다졸리움 요오드((1,2-dimethyl-3-propyl imidazolium iodide, DMPII)이 특히 바람직하게 사용될 수 있다.
상기 액체 전해질에서 사용될 수 있는 유기 용매로는 상기 유기 용매는 아세토니트릴, 3-메톡시프로피오니트릴, 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트, 테트라하이드로푸란 및 감마-부티로락톤으로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용매가 언급될 수 있다.
본 발명에서 사용될 수 있는 자외선 경화형 아크릴레이트 단량체와 아크릴계 올리고머는 서로 독립적으로 2-HEMA (2-히드록시에틸 메타크릴레이트), ODA(옥틸/데실 아크릴레이트), IDA(이소데실 아크릴레이트), LA(라우일아크릴레이트), SA(스테아릴 아크릴레이트), GMA (글리시딜 메타크릴레이트), EMA (에틸메타크릴레이트), PEA(페녹시에틸 아크릴레이트), MNPEOA(노닐 페놀 에톡실레이트 모노아크릴레이트), 테트라히드로푸르푸릴 아크릴레이트(Tetrahydrofurfuryl Acrylate), 테트라히드로푸르푸릴 메타크릴레이트(Tetrahydrofurfuryl Methacrylate), 시클로헥실 아크릴레이트, 4-부틸시클로헥실 아크릴레이트, 디시클로펜테닐 아크릴레이트, 디시클로펜테닐 옥시에틸아크릴레이트, 부틸글리시딜에테르 아크릴레이트, 4-HBA (4-히드록시부틸 아크릴레이트), NBMA (N-부틸 메타크릴레이트), 페녹시에틸 아크릴레이트, 이소보르닐 아크릴레이트(Isobornyl acrylate), 스티렌, 비닐 톨루엔, 비닐 아세테이트 및/또는 모노비닐에테르 (ODVE, CHMVE, MVE-2, PEPC); 1,6-헥산디올 디아크릴레이트, 1,6-헥산디올 디메타크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 트리프로필렌 글리콜 디메타크릴레이트, β-카르복실에틸 아크릴레이트, 에틸렌 글리콜 디메타크릴레이트, 디에틸렌 글리콜 디아크릴레이트, 디에틸렌 글리콜 디메타크릴레이트, 폴리에틸렌 글리콜 디아크릴레이트, 폴리에틸렌 글리콜 디메타크릴레이트, 디프로필렌 글리콜 디아크릴레이트, 트리에틸렌 글리콜 디아크릴레이트, 트리에틸렌 글리콜 디메타크릴레이트, 디아놀 디아크릴레이트, 아크릴화된 비스페놀 에톡실레이트(Acrylated Bisphenol Ethoxylate), 알릴 메타크릴레이트(Allyl Methacrylate) 및/또는 WS-2100 (수용성 아크릴레이트); 트리메틸로프로판 트리아크릴레이트, 트리메틸로프로판 트리메타크릴레이트, 펜타에리트리톨 트리아크릴레이트, 에톡실화되고 프로폭실화된 트리메틸로프라판 트리아크릴레이트(Ethoxylated and Propoxylated Trimetylopropane Triacrylate), 글리세릴 프로폭실화된 트리아크릴레이트(Glyceryl Propoxylated Triacrylate), 펜타에리트리톨 테트라-아크릴레이트, 디트리메틸로프로판 테트라-아크릴레이트, 알콕실화된 테트라-아크릴레이트, SU-550 (수분 함유 지방족 우레탄 트리아크릴레이트), SU-560 (지방족 우레탄 트리아크릴레이트) 및/또는 EB9260 (지방족 우레탄 트리아크릴레이트 올리고머)로 구성된 군으로부터 1종 또는 2종 이상 선택될 수 있다.
또한, 본 발명에서 사용될 수 있는 광개시제는 에틸벤조인 에테르, 이소프로필벤조인 에테르, α-메틸벤조인 에틸에테르, 벤조인 페닐에테르, α-아실옥심 에스테르, α,α-디에톡시 아세토페논, 1,1-디클로로아세토페논, 2-하이드록시-2-메틸-1-페닐프로판-1-온, 1-하이드록시 사이클로헥실페닐 케톤, 안트라퀴논, 2-안트라퀴논, 2-클로로안트라퀴논, 티옥산톤, 이소프로필 티옥산톤, 클로로티옥산톤, 벤조페논, ρ-클로로벤조페논, 벤질 벤조에이트, 벤조일 벤조에이트 및 미클러 케톤으로 구성된 군으로부터 1종 또는 2종 이상 선택될 수 있다.
본 발명에 있어, UV 경화수지와 상기 액체 전해질은 바람직하게는 1:1 내지 9:1의 중량비로 포함된다. UV 경화수지가 적게 포함되는 경우에는 겔 형성이 되지 않게 된다.
본 발명에 있어, 상기 UV 경화수지는 UV 경화수지의 총 중량을 기준으로 하여 자외선 경화형 아크레이트 단량체 30~95중량%, 아크릴계 올리고머 1~70중량%, 나머지 1~5중량%의 광개시제와 첨가제를 포함한다. 첨가제로는 통상의 산화방지제 및/또는 자외선 안정제가 사용될 수 있다.
본 발명에 따른 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질은 액체 전해질에서와 같은 누수와 증발의 문제가 거의 없고, 염료 감응형 태양전지의 수명이 연장되게 하며 높은 온도에서도 안정되게 구동하고, 광전환 효율이 우수하다.
도 1은 본 발명에 따른 염료 감응형 태양전지에 적용되는 겔형 고분자 전해질을 이용하여 태양전지를 제조하는 과정을 예시적으로 보여주는 도면이다.
이하, 본 발명은 하기의 실시예로 설명된다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것일 뿐이며, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
실험 기구 및 시약
하기 실시예 및 실험예에서 사용되는 실험 기구 및 시약은 하기와 같다.
* FTO - 8Ω, 2.2T
* TiO2 aqueous solution - 40mM로 묽힌 TiCl4
* TiO2 paste (Dyesol 사, 18NR-T)
* Dye (Dyesol 사, N719) - 0.5mM in Acetonitrile : tert-butanol (1:1 v/v%)
* Pt (KOJIMA chemical Ltd., H2PtCl6ㆍnH2O) - 10.2mM in IPA
* 전해질 - 제조한 액체 전해질(50%) + UV경화 수지(50%)
* Sealing - Surlyn (thickness : 25 μm)
실시예 1-1
0.7M의 1,2-디메틸-3-프로필 이미다졸리움 요오드((1,2-dimethyl-3-propyl imidazolium iodide, DMPII, Sigma Aldrich) 18.6 g, 0.1M의 LiI (Siggma Aldrich) 1.3 g, 40mM의 I2 (DukSan) 1.0 g, 0.125M의 4-3차-부틸피리딘(4-tert-butylpyridine, Sigma Aldrich) 1.7 g, 15.5M의 아세토니트릴(Acetonitrile, Sigma Aldrich) 64 g, 1.79M의 테트라히드로푸란(Tetrahydrofuran, Sigma Aldrich) 16 g 을 혼합하여 액체 전해액을 제조하였다. 여기에 단량체로서의 1,6-헥산디올 디아크릴레이트, 광개시제로서의 α-아미노케톤을 97.5:2.5의 중량비로 혼합한 UV 경화수지를 혼합하여 전해질을 제조하였다. 이때, UV 경화수지와 액체 전해액은 1:1의 중량비로 혼합하였다.
실시예 1-2
UV 경화수지 혼합비율을 97:3를 사용한 것을 제외하고, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해액을 제조하였다.
실시예 1-3
UV 경화수지 혼합비율을 96:4를 사용한 것을 제외하고, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해액을 제조하였다.
실시예 1-4
UV 경화수지 혼합비율을 95:5를 사용한 것을 제외하고, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해액을 제조하였다.
실시예 1-5
UV 경화수지 혼합비율을 94:6를 사용한 것을 제외하고, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해액을 제조하였다.
실시예 2-1~4
올리고머로서 수분 함유 지방족 우레탄 트리아크렐이트(Aliphatic urethane triacrylate with water, SU-550), 단량체로서의 1,6-헥산디올 디아크릴레이트, 광개시제로서의 히드록시시클로헥실-페닐-케톤을 사용하고, UV 경화수지와 액체 전해액을 각각 5:5, 6:4, 7:3, 8:2의 중량비로 혼합한 것을 제외하고는 실시예 1-1의 방법과 동일한 방법으로 각각의 전해질을 제조하였다.
실시예 3-1~4
올리고머로서 수분 함유 지방족 우레탄 트리아크렐이트(Aliphatic urethane triacrylate with water, SU-550), 단량체로서의 1,6-Hexanediol diacrylate, 광개시제로서의 α-아미노케톤을 사용하고, 올리고머와 단량체의 비율을 각각 3:7, 2:8, 1:9, 0:10으로 사용한 것을 제외하고, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해액을 제조하였다.
실시예 4-1~4
광개시제로서 α-히드로케톤, α-아미노케톤, 비스-아실포스핀, 모노아실포스핀을 각각 사용하고, UV 경화수지와 액체 전해액을 1:1의 중량비로 혼합한 것을 제외하고는, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해질을 제조하였다.
실시예 5-1~4
단량체로서 각각 1,6-헥산디올 디아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 디프로필렌 글리콜 디아크릴레이트를 사용하는 것을 제외하고는, 실시예 1-1의 방법과 동일한 방법으로 각각의 전해질을 제조하였다.
비교예 1
상업적으로 구입이 가능한 액체 전해액으로서 Dyesol에서 제조 판매하는 전해질 EL-HSE를 사용하여 본 발명 전해질과 효율을 비교하였다.
비교예 2
액체 전해질 성분으로 CH3I을 사용한 것을 제외하고는 실시예 1-1의 방법과 동일한 방법으로 전해질을 제조하였다.
비교예 3
액체 전해질 성분으로 C2H5I을 사용한 것을 제외하고는 실시예 1-1의 방법과 동일한 방법으로 전해질을 제조하였다.
비교예 4
액체 전해질 성분으로 CH3I 와 C2H5I의 1:1 혼합물(중량)을 사용한 것을 제외하고는 실시예 1-1의 방법과 동일한 방법으로 전해질을 제조하였다.
실험예
불소 함유 산화주석(FTO, 8Ω, 2.2T) 투명 유리 기판 상에 이산화티탄(TiO2) 페이스트(Dyesol 사, 18NR-T)를 30㎛의 두께로 도포한 후, 500℃의 온도로 소성시켰다. 그런 다음, 염료(Dyesol 사, N719, 0.5mM in Acetonitrile : tert-butanol (1:1 v/v%))를 알코올에 용해시킨 용액에 상기 소성 처리한 FTO 유리 기판을 침적시킨 후 80℃의 건조기에서 24시간 건조시켰다. 이어서, 상기 실시예들 및 비교예들을 통해 제조된 전해질을 코팅한 후, 자외선 조사기를 이용하여 2000mJ의 노광량으로 경화시켜 겔형 고분자 전해질 코팅층을 형성하였다. 그런 다음, 통상의 방법에 따라 백금(KOJIMA chemical Ltd., H2PtCl6ㆍnH2O, 10.2mM in IPA) 코팅된 FTO 유리 기판으로 실링하였다. 피막 형성 또는 겔화 여부와 Orion 5-Star Meter (pH/ORP/ISE/DO/Conductivity) Termo Scientific를 사용하여 전도도 등을 측정하여 광전환 효율을 평가하였다. 그 결과는 하기 표 1에 나타내었다.
실시예 번호 피막 및 겔 형성 Voc
(v)
Isc
(mA)
Jsc
(mA/cm2)
Fill Factor
(%)
Imax
(mA)
Vmax
(v)
Pmax
(mW)
광전환 효율
(%)
실시예 1-1 피막 및 겔 형성 0.66 4.98 19.86 62.28 4.33 0.47 2.05 8.21
실시예 1-2 피막 및 겔 형성 0.64 4.55 18.20 66.73 4.09 0.48 1.96 7.83
실시예 1-3 피막 및 겔 형성 0.67 4.85 19.41 63.30 4.30 0.48 2.06 8.24
실시예 1-4 피막 및 겔 형성 0.68 4.83 19.3 64.86 4.18 0.51 2.13 8.51
실시예 1-5 피막 및 겔 형성 0.66 4.73 18.92 65.43 4.09 0.50 2.03 8.14
실시예 2-1 피막 및 겔 형성 0.71 3.99 15.99 63.99 3.49 0.52 1.81 7.245
실시예 2-2 피막 및 겔 형성 0.67 3.05 12.20 63.88 2.77 0.47 1.31 5.24
실시예 2-3 피막 및 겔 형성 0.71 1.58 6.33 55.36 1.32 0.48 0.63 2.515
실시예 2-4 피막 및 겔 형성 0.69 0.74 2.85 47.83 0.53 0.46 0.24 0.97
실시예 3-1 피막 및 겔 형성 0.69 2.50 9.99 59.08 2.05 0.49 1.02 4.09
실시예 3-2 피막 및 겔 형성 0.70 3.07 12.27 52.91 2.45 0.46 1.14 4.57
실시예 3-3 피막 및 겔 형성 0.69 2.95 11.80 54.75 2.30 0.49 1.13 4.51
실시예 3-4 피막 및 겔 형성 0.71 3.16 12.63 57.63 2.61 0.49 1.29 5.17
실시예 4-1 피막 및 겔 형성 0.63 4.50 17.99 65.71 3.94 0.47 1.86 7.43
실시예 4-2 피막 및 겔 형성 0.66 4.98 19.86 62.28 4.33 0.47 2.05 8.21
실시예 4-3 피막 및 겔 형성 0.64 4.07 16.29 62.84 3.49 0.47 1.65 6.59
실시예 4-4 피막 및 겔 형성 0.61 4.74 18.97 65.00 4.21 0.45 1.88 7.50
실시예 5-1 피막 및 겔 형성 0.64 5.13 20.52 58.14 4.14 0.46 1.91 7.68
실시예 5-2 피막 및 겔 형성 0.64 5.72 22.87 57.37 4.56 0.45 2.09 8.36
실시예 5-3 피막 및 겔 형성 0.62 5.22 20.88 58.09 4.20 0.448 1.88 7.52
실시예 5-4 피막 및 겔 형성 0.64 5.23 20.94 58.76 4.27 0.46 1.97 7.88
비교예 1 형성되지 않음 0.67 3.99 15.96 73.82 3.69 0.54 1.99 7.94
비교예 2 형성되지 않음 0.69 4.09 16.36 56.55 3.34 0.48 1.61 6.46
비교예 3 형성되지 않음 0.71 3.87 15.49 55.83 3.28 0.47 1.54 6.18
비교예 4 형성되지 않음 0.73 3.55 14.24 51.84 2.93 0.45 1.34 5.38
이상에서는 본 발명의 바람직한 구체예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. UV 경화수지와 액체 전해질을 포함하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질에 있어서,
    (a) 1,6-헥산디올 디아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트 및 디프로필렌 글리콜 디아크릴레이트에서 선택되는 1종 또는 2종 이상의 자외선 경화형 아크릴레이트 단량체;
    (b) 광개시제; 및
    (c) 산화방지제, 광안정제 또는 이들의 혼합물을 포함하는 첨가제;
    를 포함하는 UV 경화수지로서,
    상기 UV 경화수지는 (a) 95 내지 99 중량%, (b) 와 (c)의 혼합물 1 내지 5 중량%를 포함하며,
    UV 경화수지와 액체 전해질이 1 : 1의 중량비로 포함하는 것을 특징으로 하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질.
  2. 제 1항에 있어서, 상기 액체 전해질은 1,2-디메틸-3-프로필 이미다졸리움 요오드(1,2-dimethyl-3-propyl imidazolium iodide, DMPII), 요오드(I2), 요오드화리튬(LiI), 요오드화 나트륨, 요오드화 칼륨, 브롬화 리튬, 브롬화 나트륨, 브롬화 칼륨, 4급 암모늄염, 이미다졸륨염 및 피리디늄염으로 구성된 군으로부터 1종 또는 2종 이상 선택되는 산화-환원 유도체와 유기 용매를 포함하여 구성되는 것을 특징으로 하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질.
  3. 제 2항에 있어서, 상기 유기 용매는 아세토니트릴, 3-메톡시프로피오니트릴, 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트, 테트라하이드로푸란 및 감마-부티로락톤으로 구성된 군으로부터 선택되는 1종 또는 2종 이상의 혼합 용매인 것을 특징으로 하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질.
  4. 삭제
  5. 제 1항에 있어서, 광개시제는 에틸벤조인 에테르, 이소프로필벤조인 에테르, α-메틸벤조인 에틸에테르, 벤조인 페닐에테르, α-아실옥심 에스테르, α,α-디에톡시 아세토페논, 1,1-디클로로아세토페논, 2-하이드록시-2-메틸-1-페닐프로판-1-온, 1-하이드록시 사이클로헥실페닐 케톤, 안트라퀴논, 2-안트라퀴논, 2-클로로안트라퀴논, 티옥산톤, 이소프로필 티옥산톤, 클로로티옥산톤, 벤조페논, ρ-클로로벤조페논, 벤질 벤조에이트, 벤조일 벤조에이트 및 미클러 케톤으로 구성된 군으로부터 1종 또는 2종 이상 선택되는 것을 특징으로 하는 염료 감응형 태양전지용 UV 경화성 겔형 고분자 전해질.
  6. 삭제
  7. 삭제
  8. 제 1항 내지 제 3항, 제 5항 중의 어느 한 항에 따른 전해질을 포함하는 염료 감응형 태양전지.
KR1020110052552A 2011-06-01 2011-06-01 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지 KR101289480B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110052552A KR101289480B1 (ko) 2011-06-01 2011-06-01 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110052552A KR101289480B1 (ko) 2011-06-01 2011-06-01 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지

Publications (2)

Publication Number Publication Date
KR20120133739A KR20120133739A (ko) 2012-12-11
KR101289480B1 true KR101289480B1 (ko) 2013-07-25

Family

ID=47517048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110052552A KR101289480B1 (ko) 2011-06-01 2011-06-01 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지

Country Status (1)

Country Link
KR (1) KR101289480B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992434B (zh) * 2014-04-23 2016-08-24 宁波祢若电子科技有限公司 一种紫外线固化电解质凝胶及其在电致变色器件中的应用
CN112415826A (zh) * 2020-11-18 2021-02-26 浙江大学 一种简单高效制备多色全固态电致变色器件的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869802B1 (ko) 2006-11-17 2008-11-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR20090062774A (ko) * 2007-12-13 2009-06-17 한국에너지기술연구원 자외선 경화형 우레탄아크릴레이트를 포함하는 염료감응태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응태양전지 및 염료감응 태양전지의 제조방법
KR20100030823A (ko) * 2008-09-11 2010-03-19 한국에너지기술연구원 산란층을 포함하는 염료감응 태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869802B1 (ko) 2006-11-17 2008-11-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR20090062774A (ko) * 2007-12-13 2009-06-17 한국에너지기술연구원 자외선 경화형 우레탄아크릴레이트를 포함하는 염료감응태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응태양전지 및 염료감응 태양전지의 제조방법
KR20100030823A (ko) * 2008-09-11 2010-03-19 한국에너지기술연구원 산란층을 포함하는 염료감응 태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법

Also Published As

Publication number Publication date
KR20120133739A (ko) 2012-12-11

Similar Documents

Publication Publication Date Title
Bella et al. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings
CN101901692B (zh) 一种太阳能电池凝胶电解质及其制备方法和应用
CN1872910B (zh) 聚合物电解质及含有它的染料敏化太阳能电池
CN102341952A (zh) 光电转换元件及其制造方法,光学传感器和太阳能电池
Kubo et al. Quasi-solid-state dye-sensitized solar cell with ionic polymer electrolyte
KR101034618B1 (ko) 자외선 경화형 우레탄아크릴레이트를 포함하는 염료감응태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응태양전지 및 염료감응 태양전지의 제조방법
KR101289480B1 (ko) 염료 감응형 태양전지용 자외선 경화성 겔형 고분자 전해질 및 이를 포함하는 염료 감응형 태양전지
CN103050289A (zh) 聚苯胺透明对电极基双面染料敏化太阳能电池及其制备方法和应用
CN101950675A (zh) 基于离子液体的染料敏化太阳能电池电解质及其制备方法
CN105405667B (zh) 一种基于离子晶体的染料敏化太阳能电池用固态电解质
Chiang et al. Characterization of UV‐curable adhesives containing acrylate monomers and fluorosurfactant and their performance in dye‐sensitized solar cells in long‐term thermal stability tests
KR101339704B1 (ko) 광감응 태양전지용 고분자 전해질, 이를 포함하는 광감응 태양전지 및 그 제조방법
CN105551808A (zh) 一种光响应性凝胶电解质及其制备方法和应用
JP2008041320A (ja) 色素増感太陽電池のための電解質組成物
Abrol et al. Efficiency enhancement of dye-sensitized solar cells using gel polymer electrolytes
KR101417426B1 (ko) 자외선 경화형 실링제 및 이를 이용한 염료감응 태양전지
KR101405588B1 (ko) 다공성 박막 필름 고체 전해질 제조방법 및 이를 이용하여 제조한 염료감응 태양전지
US20130008492A1 (en) Porous film type solid electrolyte, dye-sensitized solar cell using the same, and manufacturing method thereof
KR100990970B1 (ko) 산란층을 포함하는 염료감응 태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법
KR100861117B1 (ko) 하이드록시기와 카르복실기를 포함하는 공중합체 바인더를 사용한 염료감응형 태양전지 및 그 제조방법
Yu et al. Composite electrolytes based on poly (ethylene oxide) and binary ionic liquids for dye-sensitized solar cells
CN105428074B (zh) 紫外光固化电解质的制备方法及其在太阳能电池中的应用
KR20100076925A (ko) 자외선 경화형 우레탄아크릴레이트를 포함하는 염료감응 태양전지용 겔형 고분자 전해질, 이를 포함하는 염료감응 태양전지 및 염료감응 태양전지의 제조방법
KR101132821B1 (ko) 장기안정성이 우수한 고분자 전해질 및 이를 이용한 염료감응형 태양전지
Chiang et al. A study of the use of fluorine-containing UV-curable adhesives to seal dye-sensitized solar cells for long-term thermal stability

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160718

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180718

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190716

Year of fee payment: 7