KR101280547B1 - Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same - Google Patents

Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same Download PDF

Info

Publication number
KR101280547B1
KR101280547B1 KR1020120067535A KR20120067535A KR101280547B1 KR 101280547 B1 KR101280547 B1 KR 101280547B1 KR 1020120067535 A KR1020120067535 A KR 1020120067535A KR 20120067535 A KR20120067535 A KR 20120067535A KR 101280547 B1 KR101280547 B1 KR 101280547B1
Authority
KR
South Korea
Prior art keywords
weight
steel
heat treatment
high frequency
frequency heat
Prior art date
Application number
KR1020120067535A
Other languages
Korean (ko)
Inventor
김동윤
신정호
백지숙
류영주
Original Assignee
주식회사 세아베스틸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세아베스틸 filed Critical 주식회사 세아베스틸
Priority to KR1020120067535A priority Critical patent/KR101280547B1/en
Application granted granted Critical
Publication of KR101280547B1 publication Critical patent/KR101280547B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE: Mechanical structure part steel capable of having ultrafine grains after high frequency heat treatment and a manufacturing method thereof are provided to improve torsion fatigue lifetime and electrodynamic fatigue compared with existing steel, thereby manufacturing high strength parts. CONSTITUTION: Mechanical structure part steel has a hardened layer which is formed by high frequency heat treatment on at least a part of the surface, and the hardened layer contains austenite. The austenite has 5 ㎛ or less of the average grain size. The high frequency heat treatment is performed at 900-920°C, and then tempered at 100-150°C. The mechanical structure part steel is composed of, in wt%: C: 0.50-0.55: Si: 0.30-0.50; Mn: 0.35-0.55; Mo: 0.20-0.50; Cr: 0.10-0.30; V: 0.015-0.035; Al: 0.025-0.045; B: 0.0010-0.0050; Ti: 0.010- 0.050; and the remainder Fe and inevitable impurities. [Reference numerals] (AA) Example A; (BB) Example B; (CC) Example C; (DD) Comparative example

Description

고주파 열처리 후 초세립을 갖는 기계구조용 부품강 및 그 제조방법 {Steel for Mechanical and Structural Parts having Ultra Fine Grain Size after Induction Hardening and Method of Manufacturing the Same}Steel for Mechanical and Structural Parts having Ultra Fine Grain Size after Induction Hardening and Method of Manufacturing the Same

본 발명은 초세립을 갖는 기계구조용 부품강 및 그의 제조방법에 관한 것이다.The present invention relates to a mechanical structural part steel having ultrafine grains and a method of manufacturing the same.

일반적으로, 자동차 부품은 부품 특성상 고강도와 고인성이 요구되며, 이러한 이유로 통상 중탄소 합금강을 고주파 열처리를 통해 표면을 경화하여 높은 내마모성을 가지면서 내부는 인성을 가지는 부품을 제조한다. 특히 고주파 열처리시의 높은 가열온도와 사용되는 재질의 한계성으로 인해 표면의 오스테나이트 결정입도는 통상 15~30㎛의 결정입도를 나타내어 피로강도가 우수한 편이 아니다. 최근 개발된 고주파 열처리의 변수인 가열온도, 시간을 조정하여 급가열하여 미세한 결정입도를 얻는 방법이 연구되고 있으나 이는 미세한 결정입도를 얻는데 한계점이 있고 JP 2004-8252, JP 204-210476, JP 2006-519625에서 밝힌 비교발명 역시 비틀림강도를 향상시키기 위해서 고주파 열처리 전 조직을 냉간가공을 도입하여 미세 베이나이트 또는 마르텐사이트로 하여 고주파 열처리시 급속가열로 가열온도를 낮게 하고 가열시간을 짧게 하여 결정입도를 7㎛로 하는 강을 발명하였으나 이는 제한적인 방법이다.In general, automotive parts require high strength and high toughness due to the characteristics of the parts, and for this reason, parts are usually hardened in the middle carbon alloy steel through high frequency heat treatment to have high abrasion resistance, and internally tough parts. Particularly, due to the high heating temperature during high frequency heat treatment and the limitation of the material used, the austenite grain size of the surface usually shows a grain size of 15 to 30 μm, which is not excellent in fatigue strength. Recently, a method of obtaining a fine grain size by rapid heating by adjusting heating temperature and time, which is a variable of high frequency heat treatment, has a limitation in obtaining a fine grain size, JP 2004-8252, JP 204-210476, JP 2006- The comparative invention disclosed in 519625 also introduces cold processing to the structure of fine bainite or martensite before the high frequency heat treatment to improve the torsional strength. In high frequency heat treatment, the heating temperature is lowered and the heating time is shortened. Although steels with a thickness of µm were invented, this is a limited method.

JP 2004-8252, JP 204-210476, JP 2006-519625JP 2004-8252, JP 204-210476, JP 2006-519625

본 발명의 목적은 기존의 자동차 부품용으로 사용되는 중탄소계 합금강이나 탄소강을 대체할 수 있는, 고강도와 고인성을 겸비한 새로운 중탄소계 초미세립강 및 그의 제조방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a new medium carbon-based ultrafine steel having a high strength and high toughness and a method for manufacturing the same, which can replace the medium carbon-based alloy steel or carbon steel used for existing automobile parts.

상기와 같은 목적은 표면의 적어도 일부에 고주파 열처리에 의해 형성된 경화층을 가지고, 상기 경화층은 오스테나이트를 함유하며, 상기 오스테나이트의 평균 오스테나이트 입경이 5㎛이하인 기계구조용 부품강에 의해 달성된다.The above object is achieved by a mechanical structural part steel having a hardened layer formed by high frequency heat treatment on at least a part of the surface, the hardened layer containing austenite, and having an average austenite particle diameter of the austenite of 5 µm or less. .

상기와 같은 또 하나의 목적은 C : 0.50~0.55중량%, Si : 0.30~0.50중량%, Mn : 0.35~0.55중량%, Mo : 0.20~0.50중량%, Cr : 0.10~0.30중량%, V : 0.015~0.035중량%, Al : 0.025~0.045중량%, B : 0.0010~0.0050중량%, Ti: 0.010중량% ~ 0.050중량% 및 나머지가 Fe와 불가피한 불순물로 이루어지고, 상기의 성분을 만족하면서 하기의 수식 (1) 내지 (3)식중에서 적어도 하나의 식을 만족시키고, C, Si, Mo의 합이 0.89중량% 이상을 함유하는 것을 특징으로 하는 기계구조용 부품강에 의해 달성된다.Another purpose as described above is C: 0.50 to 0.55% by weight, Si: 0.30 to 0.50% by weight, Mn: 0.35 to 0.55% by weight, Mo: 0.20 to 0.50% by weight, Cr: 0.10 to 0.30% by weight, V: 0.015 to 0.035% by weight, Al: 0.025 to 0.045% by weight, B: 0.0010 to 0.0050% by weight, Ti: 0.010% to 0.050% by weight, and the rest are composed of Fe and unavoidable impurities, while satisfying the above components At least one of the formulas (1) to (3) is satisfied, and the sum of C, Si, and Mo is achieved by the mechanical structural part steel characterized by containing 0.89% by weight or more.

C > 0.52중량% -----(1)C> 0.52% by weight ----- (1)

V > 0.020중량% ----(2)V> 0.020% by weight ---- (2)

Mo > 0.35중량% ----(3)Mo> 0.35 wt% ---- (3)

상기와 같은 다른 하나의 목적은 C : 0.50~0.55중량%, Si : 0.30~0.50중량%, Mn : 0.20~0.50중량%, Mo : 0.20~0.50중량%, Cr : 0.10~0.30중량%, V : 0.015~0.035중량%, Al : 0.025~0.045중량%, B : 0.0010~0.0050중량%, Ti: 0.010중량% ~ 0.050중량% 및 나머지가 Fe와 불가피한 불순물의 조성으로 된 소재를 연속주조하고, 이어서 소정의 크기로 압연을 실시하는 단계, 1200℃∼1250℃ 의 온도에서 열간단조하는 단계, 열간단조후에 1℃/s의 냉각속도로 800~850℃의 온도영역으로 냉각하는 단계, 냉각중 800℃이상 850℃ 미만에서, 또는 냉각후에, 또는 냉각후 Ar1 변태점이하의 온도에서 제 2 가공을 행하는 단계, 및 900℃∼920℃ 의 온도에서 고주파 열처리를 행한 후에 100℃∼150℃ 의 온도에서 소려하는 단계를 포함하는 기계구조용 부품강의 제조방법에 의하여 달성된다.Another purpose as described above is C: 0.50 to 0.55% by weight, Si: 0.30 to 0.50% by weight, Mn: 0.20 to 0.50% by weight, Mo: 0.20 to 0.50% by weight, Cr: 0.10 to 0.30% by weight, V: 0.015 to 0.035% by weight, Al: 0.025 to 0.045% by weight, B: 0.0010 to 0.0050% by weight, Ti: 0.010% to 0.050% by weight, and the remainder is continuously cast a material having a composition of Fe and unavoidable impurities. Performing rolling to a size of 1, hot forging at a temperature of 1200 ℃ to 1250 ℃, cooling to a temperature range of 800 to 850 ℃ at a cooling rate of 1 ℃ / s after hot forging, 800 ℃ or more during cooling Performing a second process at a temperature below Ar1 transformation point after cooling, or after cooling, or after cooling, and considering at a temperature of 100 ° C to 150 ° C after performing a high frequency heat treatment at a temperature of 900 ° C to 920 ° C. It is achieved by a method of manufacturing a structural steel part including a.

상기와 같은 다른 또 하나의 목적은 C : 0.50~0.55중량%, Si : 0.30~0.50중량%, Mn : 0.35~0.55중량%, Mo : 0.20~0.50중량%, Cr : 0.10~0.30중량%, V : 0.015~0.035중량%, Al : 0.025~0.045중량%, B : 0.0010~0.0050중량%, Ti: 0.010중량% ~ 0.050중량% 및 나머지가 Fe와 불가피한 불순물의 조성으로 된 소재를 연속주조하고, 이어서 소정의 크기로 압연을 실시하는 단계, 1200℃∼1250℃ 의 온도에서 열간단조하는 단계, 830∼860℃에서 소입하고 630∼660℃에서 소려를 실시 하는 단계, 및 900℃∼920℃ 의 온도에서 고주파 열처리를 행한 후에 100℃∼150℃ 의 온도에서 소려하는 단계를 포함하는 기계구조용 부품강의 제조방법에 의하여 달성된다.Another purpose as described above is C: 0.50 to 0.55% by weight, Si: 0.30 to 0.50% by weight, Mn: 0.35 to 0.55% by weight, Mo: 0.20 to 0.50% by weight, Cr: 0.10 to 0.30% by weight, V : 0.015 to 0.035% by weight, Al: 0.025 to 0.045% by weight, B: 0.0010 to 0.0050% by weight, Ti: 0.010% to 0.050% by weight, and the remainder is continuously cast a material composed of Fe and inevitable impurities Rolling to a predetermined size, hot forging at a temperature of 1200 to 1250 ° C., quenching at 830 to 860 ° C. and boiling at 630 to 660 ° C., and at a temperature of 900 to 920 ° C. After the high frequency heat treatment is achieved by a method for producing a mechanical structural part steel comprising the step of considering at a temperature of 100 ℃ to 150 ℃.

이상에서 상세 설명한 바와 같이, 본 발명강은 기존강에 비해 C 함량을 높여서, 고주파 열처리를 통해 표면강도를 높이고, 고 Mo, V, Ti을 첨가하여 석출물, 탄화물을 이용하여 고주파열처리후 5㎛이하의 초세립을 얻어 비틀림피로수명이 향상되었으며 전동피로도 기존강에 비해 향상되어 고강도의 부품을 제조할 수 있게 되었다. As described in detail above, the steel of the present invention increases the C content in comparison with the existing steel, increases the surface strength through high-frequency heat treatment, and adds high Mo, V, and Ti to the high-temperature heat treatment using the precipitates and carbides of 5 μm or less. The torsional fatigue life was improved by obtaining ultra fine grain of, and the electric fatigue was also improved compared to the existing steel to manufacture high strength parts.

도 1은 발명강의 합금성분에 따른 고주파 열처리 후 결정입도를 보여주는 현미경 사진이다.
도 2는 Mo 함량에 따른 발명강의 입도를 보여주는 현미경사진 및 TEM 분석자료이다.
도 3은 종래강과 발명강 제조공정을 보여주는 개략도이다.
도 4는 종래강과 발명강의 조직 및 결정입도를 보여주는 현미경사진이다.
도 5는 종래강과 발명강의 비틀림 피로강도를 보여주는 그래프이다.
도 6은 종래강과 발명강의 전동 피로강도를 보여주는 그래프이다.
도 7은 종래강과 발명강의 고주파 열처리 전 조직과 고주파 열처리 후 입도를 보여주는 현미경사진이다.
1 is a micrograph showing the grain size after high frequency heat treatment according to the alloying composition of the invention steel.
Figure 2 is a micrograph and TEM data showing the particle size of the invention steel according to Mo content.
3 is a schematic view showing a conventional steel and the invention steel manufacturing process.
4 is a micrograph showing the structure and grain size of the conventional steel and the invention steel.
5 is a graph showing the torsion fatigue strength of the conventional steel and the invention steel.
6 is a graph showing the electric fatigue strength of the conventional steel and the invention steel.
Figure 7 is a micrograph showing the grain size before the high-frequency heat treatment and the high-frequency heat treatment of the conventional steel and the invention steel.

이하, 상기와 같은 함량 범위를 갖는 본 발명의 합금 성분의 설정 및 성분범위의 한정 이유를 설명한다.Hereinafter, the setting of the alloy component of the present invention having the above content range and the reason for limitation of the component range will be described.

C : 0.50중량% ~ 0.55중량%C: 0.50 wt% ~ 0.55 wt%

C는 특수강에서 강도, 경도를 결정하는 주 원소 중 하나로 강도를 확보하기 위하여 0.50중량% 이상 함유시킬 필요가 있다. 또한 고주파 열처리 표면경도를 700HV 이상 확보하기 위하여 0.50중량% 첨가되어야 한다. 그러나 0.55중량%를 넘으면 단조 가공성, 피삭성이 저하된다. 따라서, 이러한 특성을 고려하여 C함량 범위를 0.50~0.55중량%로 설정한다.C is one of the main elements determining strength and hardness in special steels, and it is necessary to contain C at least 0.50% by weight in order to secure strength. In addition, in order to secure a high frequency heat treatment surface hardness of more than 700HV 0.50% by weight should be added. However, when it exceeds 0.55 weight%, forging workability and machinability will fall. Therefore, in consideration of these characteristics, the C content range is set to 0.50 to 0.55% by weight.

Si : 0.30중량% ~ 0.50중량%Si: 0.30 wt% ~ 0.50 wt%

Si는 기지에 고용되어 입계강화를 통해 피로강도를 증가시키는 원소로, 그 함량을 0.30중량% 보다 낮게 하면 피로강도가 부족하게 되고, 0.50중량% 보다 높게 하면 페라이트 생성을 촉진하고 취화시키기도 하며 단조성을 저하시킨다. 따라서 Si의 함량을 0.30~0.50중량%로 설정한다.Si is an element that is dissolved in the base and increases the fatigue strength through grain boundary strengthening. If the content is lower than 0.30% by weight, the fatigue strength is insufficient. If the content is higher than 0.50% by weight, Si promotes and embrittles the ferrite formation. Lowers. Therefore, the content of Si is set to 0.30 to 0.50% by weight.

Mn : 0.35중량% ~ 0.55중량%Mn: 0.35 wt%-0.55 wt%

Mn은 펄라이트(Pearlite)를 미세하게 하고 페라이트(Ferrite)를 고용강화시킴으로써 항복강도를 향상시킨다. 또한 강의 담금질성과 강도를 향상시키며, 고온에서는 소성을 증가시켜 주조성을 좋게 한다. 특히 유해 성분인 S와 결합하여 MnS를 형성함으로써 적열 취성을 방지하고 절삭 가공성을 향상시킨다. 따라서 Mn의 함량을 0.35~0.55중량%로 설정한다.Mn improves yield strength by making pearlite fine and solidifying ferrite. It also improves the hardenability and strength of the steel, and increases the plasticity at high temperatures to improve castability. In particular, MnS is formed by combining with S, which is a harmful component, to prevent red brittleness and improve cutting processability. Therefore, the content of Mn is set to 0.35 to 0.55% by weight.

Mo : 0.20중량% ~ 0.50중량%Mo: 0.20 wt% ~ 0.50 wt%

Mo은 열간단조 후 냉각시 베이나이트 조직형성을 촉진하는 원소이면서 Mo탄화물에 의한 고주파 열처리시 입도를 미세화시키는 중요한 원소이다. 0.20중량% 이하로 하면 Mo 석출물의 양이 부족하여 입도미세화가 잘 이루어지지 않고 0.50중량% 이상 첨가시 경도를 향상시켜 가공성을 떨어뜨린다. 또한 Mo는 고가의 원소로 첨가 함량을 적절히 조정할 필요성이 있다. 따라서 Mo의 함량을 0.20~0.50중량%로 설정한다.Mo is an element that promotes the formation of bainite structure upon cooling after hot forging and is an important element that refines the particle size during high frequency heat treatment by Mo carbide. If the content is 0.20% by weight or less, the amount of Mo precipitates is insufficient, so that the fineness of particles is not easily achieved, and when 0.50% by weight or more is added, the hardness is improved to reduce workability. In addition, Mo is an expensive element and it is necessary to appropriately adjust the content of addition. Therefore, the content of Mo is set to 0.20 to 0.50% by weight.

Cr : 0.10중량% ~ 0.30중량%Cr: 0.10 wt% ~ 0.30 wt%

Cr은 소입성을 증가시키고 탄화물을 만들어 내충격성을 증대시키는 원소로써 Mn함량의 저감에 의한 소입성을 보상하고 Mo, V 등과 복합 화합물을 형성에 의한 템퍼저항성을 증대시키기 위해서 하한을 0.10중량%로 하였으며 0.30중량% 이상 첨가시 경도를 상승시키고 가공성을 저하시킨다. 따라서 Cr의 함량을 0.10~0.30중량%로 설정한다.Cr is an element that increases the hardenability and makes carbides to increase the impact resistance. To lower the hardenability by reducing Mn content and to increase the temper resistance by forming complex compounds with Mo, V, the lower limit is 0.10% by weight. Addition of 0.30% by weight or more raises the hardness and decreases the workability. Therefore, the content of Cr is set to 0.10 to 0.30% by weight.

V : 0.015중량% ~ 0.035중량%V: 0.015% to 0.035% by weight

V은 미세 탄질화물 형성에 의한 결정립을 미세화시켜 강도 및 인성을 향상시킨다. 첨가량이 0.015중량% 이하이면 강도증가 효과가 적고, 0.035중량% 보다 많이 첨가하면 강도는 증가하나 인성이 저하될 뿐만 아니라 제조원가 상승에 의한 경제적인 효과가 없기 때문에 바람직하지 않다. 따라서 V 함량을 0.015중량% ~ 0.035중량%로 한정한다.
V refines grains by fine carbonitride formation to improve strength and toughness. If the added amount is 0.015% by weight or less, the effect of increasing strength is small, and when it is added more than 0.035% by weight, the strength is increased, but toughness is lowered, and since it is not economical effect due to the increase in manufacturing cost, it is not preferable. Therefore, the V content is limited to 0.015% by weight to 0.035% by weight.

B : 0.0010중량% ~ 0.0050중량%B: 0.0010% by weight to 0.0050% by weight

B는 베이나이트 조직의 형성을 촉진하기 위해 사용되는 원소로, 피커링(Pickering) 등에 의하면 B를 첨가할 때 TTT(Time-temperature transformation diagram)에서 초석 페라이트 석출이 현저히 지연되어, 초석 페라이트의 C곡선을 오른쪽으로 이동시킨다고 보고한 바 있다. 이것은 강에 첨가된 B가 원자상태로서 오스테나이트 결정입계에 편석되어 결정입계 자유에너지를 낮춤으로서 초석 페라이트의 형성을 억제하기 때문인 것으로 알려져 왔다. 그러나 B는 질소 및 산소와 친화도가 커서 용해작업시 산화물 및 질화물을 형성하며, 이러한 조성의 강을 열처리할 경우 M23(CB)6, Fe2B 등의 보로카바이드(Borocarbide)가 형성되어 초석페라이트 형성억제에 기여하지 못한다. 따라서, 본 발명에서는 B의 함량은 0.0010~0.0050중량%로 설정한다.B is an element used to promote the formation of bainite structure. According to Pickering, B is significantly delayed in the formation of cornerstone ferrite in the time-temperature transformation diagram (TTT) when B is added. It has been reported to move to the right. This is known because B added to steel segregates at the austenite grain boundary as an atomic state, thereby lowering the grain boundary free energy, thereby suppressing the formation of the cornerstone ferrite. However, B has high affinity with nitrogen and oxygen to form oxides and nitrides when dissolving, and when heat-treating steels of such composition, borocarbide such as M 23 (CB) 6 and Fe 2 B is formed It does not contribute to the inhibition of ferrite formation. Therefore, in the present invention, the content of B is set to 0.0010 to 0.0050% by weight.

Al : 0.025중량% ~ 0.045중량%Al: 0.025 wt% ~ 0.045 wt%

Al은 강력한 탈산제로서 작용하는 것과 동시에 N와 결합하여 결정립을 미세화시키나 0.025중량% 이하에서는 탈산이나 결정립 미세화 작용이 작아지기 때문에 바람직하지 않고, 과잉으로 첨가하게 되면 오히려 Al2O3와 같은 비금속 개재물의 증가로 오히려 해로운 영향을 미칠 수 있다. 따라서 Al의 적정 함량 범위를 0.025~0.045중량%로 한정한다.Al acts as a strong deoxidizer and combines with N to refine the grains, but at 0.025% by weight or less, deoxidation or grain refining becomes less desirable, and when excessively added, rather than nonmetallic inclusions such as Al 2 O 3 The increase can have a rather detrimental effect. Therefore, the appropriate content range of Al is limited to 0.025 ~ 0.045% by weight.

Ti : 0.010중량% ~ 0.050중량%Ti: 0.010 wt% ~ 0.050 wt%

Ti는 제강시 N과의 강력한 친화력으로 TiN을 형성한다. 베이나이트 형성을 위해 첨가된 B가 N과 결합하여 보로카바이드를 형성하면, 초석페라이트 형성억제에 기여하지 못하기 때문에 이의 문제를 해결하기 위하여, Ti을 첨가하여 N과 결합시킨다. Ti의 함량은 0.010~0.050중량%로 설정한다.Ti forms TiN with strong affinity with N during steelmaking. When B added for bainite formation combines with N to form borocarb, the Ti is added to N to solve the problem because it does not contribute to suppressing the formation of the cornerstone ferrite. The content of Ti is set to 0.010 to 0.050% by weight.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

표 1은 본 발명의 조성을 갖는 발명강과 비교강의 화학성분을 나타낸다. 발명강 A, B는 개발을 위해 설정된 여러 가지 합금설계안으로 VIM(Vacuum Induction Melting)을 이용하여 제조된 강종에 대한 화학성분을 나타낸다. 발명강 C는 합금설계안으로 제작된 VIM재 A, B의 평가를 통해 최적 조건으로 합금 설계된 양산품의 화학성분을 나타낸 것이다. Table 1 shows the chemical components of the inventive steel and the comparative steel having the composition of the present invention. Inventive steels A and B represent chemical compositions for steel grades manufactured using VIM (Vacuum Induction Melting) in various alloy designs set for development. Inventive steel C shows the chemical composition of mass-produced products designed under optimum conditions through the evaluation of VIM materials A and B manufactured in the alloy design.

이하, 제조공정을 설명하면, 우선 100 톤 전기로에서 용해한 다음 정련 및 진공탈가스 공정을 거쳐 연속주조 공정을 거쳐(1200℃∼1250℃에서 가열하고 1200℃∼1250℃에서 재가열함) 최종 Φ60mm의 환봉을 제조하였다. In the following description, the manufacturing process is first melted in a 100 ton electric furnace, followed by refining and vacuum degassing, followed by a continuous casting process (heated at 1200 ° C to 1250 ° C, and reheated at 1200 ° C to 1250 ° C). Was prepared.

a) 이 환봉강을 1200℃∼1250℃에서 열간단조를 실시한다.a) Hot-forging this round bar steel at 1200 degreeC-1250 degreeC.

b) 열간단조후에 1℃/s의 냉각속도로 800~850℃의 온도영역으로 냉각한다.b) After hot forging, cool to a temperature range of 800 ~ 850 ℃ at a cooling rate of 1 ℃ / s.

c) 냉각중 800℃이상 850℃ 미만에서, 또는 냉각후에, 또는 냉각후 Ar1 변태점이하의 온도에서, 제 2 가공을 실시한다. 여기서 제 2 가공을 행하게 되면, 베이나이트 조직이나 마르텐사이트 조직을 미세화시킬 수 있어, 차후에 고주파 열처리의 가열시 오스테나이트 입자를 더욱 미세화시킬 수 있다. 제 2 가공에는 압연, 단조, 전조(rolling) 등이 해당될 수 있다.c) The second processing is carried out at 800 ° C. or higher and below 850 ° C. during cooling, or after cooling, or at a temperature below the Ar1 transformation point after cooling. When the second processing is performed here, the bainite structure and martensite structure can be refined, and the austenite particles can be further refined during the heating of the high frequency heat treatment later. The second machining may correspond to rolling, forging, rolling, or the like.

d) 이 소재를 100℃/s 이상의 가열속도로 고주파 열처리 온도 900℃∼950℃ 까지 가열하여 고주파 열처리를 행한다. 고주파 열처리시의 가열 온도를 900℃ 미만으로 하면, 오스테나이트 입자의 생성이 불충분하게 되어, 경화층이 형성되지 않게 되고, 그 가열온도가 950℃ 이상이 되면 오스테나이트 입자의 성장이 촉진될 뿐만 아니라 오스테나이트 입경의 편차가 커지게 되어, 피로강도의 저하를 초래한다. d) This material is heated to a high frequency heat treatment temperature of 900 ° C to 950 ° C at a heating rate of 100 ° C / s or more to perform high frequency heat treatment. When the heating temperature during the high frequency heat treatment is less than 900 ° C, the formation of austenite particles is insufficient, and a hardened layer is not formed. When the heating temperature is 950 ° C or higher, the growth of the austenite particles is not only promoted. The deviation of the austenite particle diameter becomes large, resulting in a drop in fatigue strength.

e) 가열로에서 150 ℃로 90분의 소려 열처리를 행하였다.  e) The heat treatment for 90 minutes was performed at 150 degreeC by the heating furnace.

Figure 112012050013174-pat00001
Figure 112012050013174-pat00001

- 각 성분 함량은 wt%로 표시.Each component content is expressed in wt%.

표 1에 따른 발명강과 비교강을 각각 시편가공을 하여 고주파 열처리 후 입도를 평가한 자료를 도1에 나타내었다. 비교강의 14~25㎛의 결정입도에 비해 VIM을 이용한 발명강 A, B와 양산 전기로를 이용한 발명강 C는 5㎛이하의 결정입도를 가짐으로서 발명의 목적을 달성하고 있다. Fig. 1 shows the data obtained by evaluating the particle size after the high frequency heat treatment using the inventive steel and the comparative steel according to Table 1, respectively. Invention steels A and B using VIM and inventive steel C using mass production electric furnaces have a grain size of 5 µm or less, compared to 14 to 25 µm of grain size of comparative steel, thereby achieving the object of the invention.

도 2는 발명강 C와 비교강의 고주파 열처리 후 현저한 차이를 나타내는 결정입도를 TEM을 이용하여 초세립의 기구를 분석한 것으로 비교강은 입계피닝의 역할을 하는 Mo 석출물이 관찰되지 않는 반면 발명강 C는 Mo 석출물에 의한 입계피닝에 의해 5㎛이하의 초세립을 나타내고 있다. FIG. 2 is an analysis of the mechanism of ultrafine grains using TEM for grain size showing significant difference after high frequency heat treatment of Inventive Steel C and Comparative Steel. In Comparative Steel, Invented Steel did not observe Mo precipitate which acts as grain boundary pinning. C shows the ultrafine grain of 5 micrometers or less by grain boundary peening by Mo precipitate.

도 3은 종래 비교강을 이용하여 고주파열처리공정을 통해 제조하던 샤프트를 개발강C를 이용하여 고주파열처리를 통해 초세립 결정입도를 얻는 공정을 나타낸 그림이다. 3 is a diagram illustrating a process of obtaining ultrafine grain size through high frequency heat treatment using a developed steel C for a shaft manufactured using a high frequency heat treatment process using a conventional comparative steel.

도 4는 종래 비교강과 발명강의 공정단계별 조직과 결정입도를 보여주는 사진이다.Figure 4 is a photograph showing the structure and grain size according to the process step of the conventional comparative steel and the inventive steel.

종래 비교강은 고주파열처리전 냉간가공을 통하여 고주파열처리후 미세한 결정립도를 얻는데 이는 냉간가공시 베이나이트조직이 균질하지 않을 경우 도4에 나타낸 것처럼 결정립이 성장한 것을 확인할 수 있다. 이를 해결하기 위해서는 별도의 열처리가 수반되어야 하는데 비해 발명강은 열간단조후 냉간성형이 필요치 않으며 강도의 향상이 필요할 경우 830 ∼ 860℃에서 소입과 630~660℃에서 소려를 실시 후 고주파열처리를 실시하면 되고 이러한 열처리를 통해서도 5㎛이하의 결정입도를 얻을 수 있다. Conventional comparative steel obtains fine grain size after high frequency heat treatment through cold working before high frequency heat treatment, which shows that the grains grow as shown in FIG. 4 when the bainite structure is not homogeneous during cold working. In order to solve this problem, a separate heat treatment should be involved. However, invented steel does not require cold forming after hot forging, and if the strength needs to be improved, it can be hardened at 830 ~ 860 ℃ and then soaked at 630 ~ 660 ℃. Also, through such heat treatment, grain size of 5 µm or less can be obtained.

도 5는 종래 비교강과 발명강의 비틀림 피로강도를 보여준다. 도 5에서 보는 바와 같이, 종래 비교강의 피로강도는 50 KN이지만, 소입 및 소려 처리를 하지 않은 발명강은 약 60 KN이고 소입 및 소려 처리를 한 발명강은 약 70 KN인 것을 알 수 있다. 5 shows the torsion fatigue strength of the conventional comparative steel and the inventive steel. As shown in FIG. 5, the fatigue strength of the conventional comparative steel is 50 KN, but the invention steel without quenching and soaking is about 60 KN and the invention steel after quenching and soaking is about 70 KN.

도 6은 허브베어링으로 사용되는 비교강과 발명강 C를 전동피로시험으로 비교평가한 것이다. 종래 비교강에 비해 파손될 확률이 10%인 와이불(Weibull)분포에서 발명강 C는 8.14백만의 수명을 나타내어 비교강의 1.02백만에 비해 월등한 피로수명을 나타내고 있다. 도 7에 전동피로시편 고주파열처리전 조직과 고주파열처리후 결정입도를 나타내었다. 도 7에서 알 수 있듯이, 발명강 D가 종래 비교강 B에 비하여 고주파 열처리 전후 모두 결정입도가 미세함을 나타낸다. 6 is a comparative evaluation of the comparative steel and the invention steel C used as a hub bearing by the electric fatigue test. In the Weibull distribution, which has a 10% probability of failure compared to conventional steel, invention steel C has a life span of 8.14 million, which is superior to 1.02 million of comparative steel. 7 shows the grain size before the high frequency heat treatment and the structure before the high frequency heat treatment of the electric fatigue specimen. As can be seen in Figure 7, the invention steel D shows a finer grain size before and after the high frequency heat treatment as compared with the conventional comparative steel B.

본 발명에 의한 초세립을 갖는 기계구조용 부품강은 자동차 부품으로 이용될 수 있으며, 기계구조용 부품강의 제조방법은 자동차 부품을 제조하는 데 이용될 수 있다. The mechanical structural part steel having the ultrafine grain according to the present invention can be used as an automotive part, and the manufacturing method of the mechanical structural part steel can be used to manufacture an automotive part.

B: 베이나이트
TM: 템퍼드 마르텐사이트
M: 마르텐사이트
B: bainite
TM: Temper Martensite
M: Martensite

Claims (2)

기계구조용 부품강으로서,
표면의 적어도 일부에 고주파 열처리에 의해 형성된 경화층을 가지고, 상기 경화층은 오스테나이트를 함유하며, 상기 오스테나이트의 평균 오스테나이트 입경이 5㎛이하이고,
상기 고주파 열처리는 900~920℃의 온도에서 고주파 열처리를 실시한 후 100~150℃의 온도에서 소려하는 단계를 포함하고,
상기 부품강은
C : 0.50~0.55중량%, Si : 0.30~0.50중량%, Mn : 0.35~0.55중량%, Mo : 0.20~0.50중량%, Cr : 0.10~0.30중량%, V : 0.015~0.035중량%, Al : 0.025~0.045중량%, B : 0.0010~0.0050중량%, Ti: 0.010중량% ~ 0.050중량% 및 나머지가 Fe와 불가피한 불순물로 이루어지고, 상기의 성분을 만족하면서 하기의 수식 (1) 내지 (3)식 중에서 적어도 하나의 식을 만족시키고, C, Si, Mo의 합이 0.89중량% 이상을 함유하고,
비틀림피로강도가 70KN 이상인 것을 특징으로 하는 기계구조용 부품강.
C > 0.52중량% -----(1)
V > 0.020중량% ----(2)
Mo > 0.35중량% ----(3)
Machine structural parts steel
At least part of the surface has a cured layer formed by high frequency heat treatment, the cured layer contains austenite, and the austenite has an average austenite particle diameter of 5 µm or less,
The high frequency heat treatment includes a step of considering at a temperature of 100 ~ 150 ℃ after performing a high frequency heat treatment at a temperature of 900 ~ 920 ℃,
The part steel
C: 0.50 to 0.55% by weight, Si: 0.30 to 0.50% by weight, Mn: 0.35 to 0.55% by weight, Mo: 0.20 to 0.50% by weight, Cr: 0.10 to 0.30% by weight, V: 0.015 to 0.035% by weight, Al: 0.025 to 0.045% by weight, B: 0.0010 to 0.0050% by weight, Ti: 0.010% to 0.050% by weight and the rest are composed of Fe and unavoidable impurities, and satisfying the above components, the following formulas (1) to (3) Satisfy at least one of the formulas, and the sum of C, Si, and Mo contains 0.89% by weight or more,
Mechanical structural component steel, characterized by a torsional fatigue strength of 70 KN or more.
C> 0.52% by weight ----- (1)
V> 0.020% by weight ---- (2)
Mo> 0.35 wt% ---- (3)
삭제delete
KR1020120067535A 2012-06-22 2012-06-22 Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same KR101280547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120067535A KR101280547B1 (en) 2012-06-22 2012-06-22 Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120067535A KR101280547B1 (en) 2012-06-22 2012-06-22 Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120018083A Division KR101184987B1 (en) 2012-02-22 2012-02-22 Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR101280547B1 true KR101280547B1 (en) 2013-07-02

Family

ID=48996251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120067535A KR101280547B1 (en) 2012-06-22 2012-06-22 Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101280547B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802424B1 (en) 2016-07-01 2017-12-28 주식회사 일진글로벌 Bearing steel and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802424B1 (en) 2016-07-01 2017-12-28 주식회사 일진글로벌 Bearing steel and manufacturing method of the same
CN109415792A (en) * 2016-07-01 2019-03-01 日进全球株式会社 Bearing steel and its manufacturing method
US11136639B2 (en) 2016-07-01 2021-10-05 Iljin Global Co., Ltd Bearing steel and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR101425737B1 (en) Steel for induction hardening, induction-hardened steel parts, and process for production of same
WO2018182480A1 (en) Hot work tool steel
WO2010074017A1 (en) Steel tempering method
KR101654684B1 (en) Mooring chain steels with high strength and high impact toughness at low temperature and method for manufacturing the same
JP6620490B2 (en) Age-hardening steel
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
KR101184987B1 (en) Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same
JP6390685B2 (en) Non-tempered steel and method for producing the same
KR101280547B1 (en) Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
KR100940038B1 (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JPH0853735A (en) Steel for bearing
JP7223997B2 (en) Steel with high hardness and excellent toughness
KR101140911B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered alloy steel
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
KR101655181B1 (en) High strength steel and method for manufacturing gear
KR101246389B1 (en) Non-heat treated steel
KR101254782B1 (en) Air hardening high strength machine structural steel without oil quenching and tempering after carburizing heat treatment and method producing the same
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP2018178228A (en) Raw material for high frequency induction hardening component
KR102166600B1 (en) Manufacturing method for low carbon spherodial alloy steel and low carbon spherodial alloy steel thereof
JP3833379B2 (en) Cold work tool steel with excellent machinability
KR101721587B1 (en) Bainitic Steel For Automotive Hub With High Strength And High Toughness And Method For Manufacturing the Same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 6