KR101243612B1 - 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법 - Google Patents

신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법 Download PDF

Info

Publication number
KR101243612B1
KR101243612B1 KR1020120069974A KR20120069974A KR101243612B1 KR 101243612 B1 KR101243612 B1 KR 101243612B1 KR 1020120069974 A KR1020120069974 A KR 1020120069974A KR 20120069974 A KR20120069974 A KR 20120069974A KR 101243612 B1 KR101243612 B1 KR 101243612B1
Authority
KR
South Korea
Prior art keywords
alkoxy
formula
alkoxycarbonyl
aryl
derivative
Prior art date
Application number
KR1020120069974A
Other languages
English (en)
Inventor
이필호
박상준
강동진
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020120069974A priority Critical patent/KR101243612B1/ko
Application granted granted Critical
Publication of KR101243612B1 publication Critical patent/KR101243612B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/84Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 다야한 유기 합성에 사용되는 신규한 하이드로퓨란 유도체, 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법에 관한 것이다.

Description

신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법{novel hydrofuran derivatives, its preparation and its application to novel hydroisobenzofuran derivatives and its preparation method}
본 발명은 신규한 하이드로퓨란 유도체, 이의 제조방법 및 이로부터 유도되는 하이드로아이소벤조퓨란(hydroisobenzofuran) 유도체와 이의 제조방법에 관한 것이다.
2,5-다이하이드로퓨란 유도체는 유기합성의 유용한 중간체로써 헤테로고리 화합물의 중요한 부분이며, 천연물에 포함된 일반적인 구조로써 생리활성을 갖는다.
하이드퓨란 유도체의 제조방법에 대한 연구는 많이 이루어져 있고, 유기화학자들에 의해 합성법이 개발되어 많은 문헌에 보고되었으며, 한국등록특허공보 1029091를 그 예로 들 수 있다. 특히 전이금속, 예를 들면 팔라듐(Pd), 루세륨(Ru), 구리(Cu), 금(Au) 등을 촉매로 이용한 2,5-다이하이드로퓨란 유도체의 합성법은 자리선택성이 뛰어난 장점이 있는 것으로 잘 알려져 있다. 불포화 화합물과 친핵체와의 반응을 통한 유기화합물의 합성에 있어, 구리 촉매가 작용하여 불포화 탄소의 파이-결합을 활성화시켜 친핵체와 반응성을 향상시키는 것에 대해서는 문헌에 공지되어 있다. (Angew . Chem . Int . Ed . 1995, 34, 1581; Synthesis 2006, 3711; J. Org. Chem. 1999, 64, 9314; Tetrahedron Lett. 2001, 42, 4075; Chem. Commun. 2001, 441; Org. Lett. 2000, 2, 3801; J. Org. Chem. 2009, 74, 1130; J. Org . Chem . 1985 , 50, 4774; J. Chem . Soc . , Chem . Commun . 191992, 934; J. O rg. Chem. 2009, 74, 1130; J. Org . Chem . 1985 , 50, 4774; J. Chem . Soc ., Chem . Commun. 1992, 934; J. Org .C hem . 1993, 58,7180; J. Org . Chem . 1994, 59,324; Synlett 1995,427; J. Chem . Soc . , Perkin , Trans . Ⅰ 1997, 1095; Synthesis 1997,1415; Organometallics 1997, 16, 3987; J. Org . Chem . 1997, 62, 7210; J. Org. Chem . 1973, 38, 1853; J. Am . Chem . Soc. 1980, 102, 7505 Chem . Commun. 1998, 2249; Tetrahedron Lett . 2007 , 48, 7853; Chem . Eur . J. 2007, 13, 8029; J. Org . Chem. 2008, 73, 259; Organometallics , 2009, 28, 2848; J. Org . Chem. 2002, 67, 6104; Tetrahedron Lett. 2000, 41, 8933; Org . Lett . 2001, 3, 2537; Adv . Synth . Catal. 2009, 351, 117; Org . Lett. 2006, 8, 1957; J. Am . Chem . Soc. 2006, 128, 16054; Eur . J. Org . Chem . 2011, 1351).
그러나 다양한 친다이엔체를 이용하여 딜스-알더(Diels-Alder) 반응에 이용될 수 있는 분자내 다이엔 구조를 가지는 바이닐 알렌올 유도체와 이를 이용한 딜스-알더 반응과 이에 따라 생성된 물질은 거의 알려져 있지 않아 연구가 요구되는 실정이다.
한국등록특허공보 1029091
Angew. Chem. Int. Ed. 1995, 34, 1581 Synthesis 2006, 3711 J. Org. Chem. 1999, 64, 9314 Tetrahedron Lett. 2001, 42, 4075 Chem. Commun. 2001, 441 Org. Lett. 2000, 2, 3801 J. Org. Chem. 2009, 74, 1130 J. Org. Chem. 1985, 50, 4774 J. Chem. Soc., Chem. Commun. 1992, 934 J. Org.C hem. 1993, 58,7180 J. Org. Chem. 1994, 59,324 Synlett 1995,427 J. Chem. Soc. ,Perkin, Trans. Ⅰ 1997, 1095 Synthesis 1997,1415 Organometallics 1997, 16, 3987 J. Org. Chem. 1997, 62, 7210 J. Org. Chem. 1973, 38, 1853 J. Am. Chem. Soc. 1980, 102, 7505 Chem. Commun. 1998, 2249 Tetrahedron Lett. 2007, 48, 7853 Chem. Eur. J. 2007, 13, 8029 J. Org. Chem. 2008, 73, 259 Organometallics, 2009, 28, 2848 J. Org. Chem. 2002, 67, 6104 Tetrahedron Lett. 2000, 41, 8933 Org. Lett. 2001, 3, 2537 Adv. Synth. Catal. 2009, 351, 117 Org. Lett. 2006, 8, 1957 J. Am. Chem. Soc. 2006, 128, 16054 Eur. J. Org. Chem. 2011, 1351
본 발명의 목적은 신규한 하이드로퓨란 유도체와 이로부터 유도되는 하이드로아이소벤조퓨란 유도체를 제공한다.
또한, 본 발명은 상기 신규한 하이드로퓨란 유도체의 제조 방법과 하이드로아이소벤조퓨란 유도체의 제조 방법을 제공한다.
본 발명은 하기 화학식 1로 표시되는 하이드로아이소벤조퓨란 (hydroisobenzo-furan) 유도체를 제공한다.
[화학식 1]
Figure 112012051785980-pat00001
(상기 화학식 1에서,
R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며;
Figure 112012051785980-pat00002
는 단일결합이거나 이중결합을 나타내며;
E1 또는 E2는 서로 독립적으로 나이트릴, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C1-C6)아마이드기, (C6-C20)아릴카보닐, 및 N-(C1-C6)알킬로 치환되거나 치환되지 않은 아마이드이며, E1과 E2는 인접한 치환체와 연결되어 고리를 형성할 수 있으며, 상기 고리의 탄소원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 치환될 수 있고;
상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
본 발명의 하이드로아이소벤조퓨란 유도체는 헤테로 원자가 함유된 다중고리 화합물로서 생리활성을 가져, 다양한 분야의 원료물질 또는 중간체로 사용할 수 있다.
본 발명에 기재된 「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다. 또한 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. 본 발명에 기재된 「헤테로아릴」은 방향족 고리 골격 원자로서 B, N, O, S, P(=O), Si 및 P로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠환과 축합된 다환식 헤테로아릴이며, 부분적으로 포화될 수도 있다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된 형태도 포함한다.
구체적으로 상기 화학식 1에서 R1은 수소, (C1-C6)알킬기, (C6-C20)아릴기이며, R2는 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴일 수 있다.
보다 구체적으로 상기 화학식 1의 하이드로아이소벤조퓨란 유도체는 하기 화합물로부터 선택되는 것일 수 있으나, 이에 한정이 있는 것은 아니다.
Figure 112012051785980-pat00003
Figure 112012051785980-pat00004
Figure 112012051785980-pat00005
또한 본 발명은 하기 화학식 2의 하이드로퓨란 유도체로부터 선택되는 하나의 화합물과 친다이엔체를 반응시켜 상기 화학식 1의 하이드로아이소벤조퓨란 유도체를 제조하는 방법을 제공한다.
[화학식 2]
Figure 112012051785980-pat00006
(상기 화학식 2에서,
R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며, 상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
본 발명의 하이드로아이소벤조퓨란 유도체의 제조방법은 분자내 다이엔 구조를 함유하는 하이드로퓨란 유도체와 친다이엔체를 딜즈-알더반응을 통해 높은 수율과 간단한 공정으로 용이하게 제조할 수 있다.
구체적으로 상기 화학식 2에서 R1은 수소, (C1-C6)알킬기, (C6-C20)아릴기이며, R2는 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴일 수 있다.
보다 구체적으로 상기 화학식 2는 하기 화합물로부터 선택될 수 있으나 이에 한정이 있는 것은 아니다.
Figure 112012051785980-pat00007
Figure 112012051785980-pat00008
Figure 112012051785980-pat00009
Figure 112012051785980-pat00010
Figure 112012051785980-pat00011
본 발명의 일 실시예에 따른 친다이엔체는 한정이 있는 것은 아니나, 말레이미드(maleimide), N-메틸말레이미드(N-methylmaleimide), N-에틸말레이미드(N-ethylmaleimide), N-페닐말레이미드(N-phenylmaleimide), 다이메틸퓨마레이트(dimethyl fumarate), 다이에틸말레이트(diethyl maleate), 말레익 언하이드라이드(maleic anhydride), 테트라시아노에틸렌(tetra(cyano)ethylene), 다이메틸아세틸렌다이카복실레이트(dimethylacetylenedicarboxylate), 메틸 바이닐키톤(methyl vinyl ketone), 나프토퀸온(naphthoquinone), 에틸 아크릴레이트(ethyl acrylate)로 이루어진 군에서 선택되는 것인 하나일 수 있으며, 상기 화학식 2의 화합물 1몰을 기준으로 1.5 ~ 3.0몰로 사용될 수 있으며, 반응 효율면에서 보다 바람직하게는 1.5 ~ 2.0몰이 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 화학식 2는 구리 촉매 존재하에 하기 화학식 3의 분자내 고리화 반응을 통해 제조될 수 있다.
[화학식 3]
Figure 112012051785980-pat00012
(화학식 3에서,
R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이다.)
본 발명의 일 실시예에 따른 구리촉매는 한정이 있는 것은 아니나, CuCl, CuBr, CuI, CuO, CuF2, CuCl2, CuCl2·2H2O, CuBr2, CuI2, Cu(NO3)2, Cu(trifluoroacetate)2, Cu2O, Cu(OAc)2·H2O, Cu(OAc)2, Cu(OSO2CF3)2, Cu(acetylacetonate)2, Cu(ClO4)2, Cu(hexa-fluoroacetylacetonate)2로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 생성물의 수율과 경제적인 측면에서 CuCl, CuBr 및 CuI가 보다 바람직하며, 상기 화학식 3, 1몰에 대해 0.01 ~ 0.2몰로 바람직하게는 0.05 ~ 0.15몰 사용되어 수행될 수 있다.
또한 본 발명은 상기 화학식 2로 표시되는 하이드로퓨란 유도체를 제공한다.
[화학식 2]
Figure 112012051785980-pat00013
(상기 화학식 2에서,
R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며, 상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
본 발명의 하이드로퓨란 유도체는 천연물에도 포함된 헤테로고리 화합물로, 특히 분자내 다이엔 구조를 함유하고 있어, 다양한 유기 합성의 중간체로 유용하게 사용될 수 있으며, 친다이엔체와 딜즈-알더반응으로 다중고리 화합물을 용이하게 합성할 수 있다.
구체적으로 상기 화학식 2에서 R1은 수소, (C1-C6)알킬기, (C6-C20)아릴기이며, R2는 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴일 수 있다.
보다 구체적으로 상기 화학식 2의 하이드로퓨란 유도체는 하기 화합물에서 선택될 수 있으나 이에 한정이 있는 것은 아니다.
Figure 112012051785980-pat00014
Figure 112012051785980-pat00015
Figure 112012051785980-pat00016
Figure 112012051785980-pat00017
Figure 112012051785980-pat00018
또한 본 발명은 구리 촉매 존재하에 하기 화학식 3의 분자내 고리화 반응을 통해 상기 화학식 2로 표시되는 하이드로퓨란 유도체를 제조하는 방법을 제공한다.
[화학식 3]
Figure 112012051785980-pat00019
(상기 화학식 3에서,
R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며, 상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
본 발명에 따른 하이드로퓨란 유도체의 제조방법은 전이금속 촉매 중에서도 값이 싼 구리 촉매를 이용하여 제조되므로 경제적으로 유리하며, 분자내 다이엔 구조를 함유하는 하이드로퓨란 유도체를 높은 수율과 간단한 공정으로 합성이 가능하다.
본 발명인 하이드로퓨란 유도체를 제조하는 방법의 일 실시예에 따른 구리촉매는 한정이 있는 것은 아니나, CuCl, CuBr, CuI, CuO, CuF2, CuCl2, CuCl2·2H2O, CuBr2, CuI2, Cu(NO3)2, Cu(trifluoroacetate)2, Cu2O, Cu(OAc)2·H2O, Cu(OAc)2, Cu(OSO2CF3)2, Cu(acetylacetonate)2, Cu(ClO4)2, Cu(hexa-fluoroacetylacetonate)2로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 생성물의 수율과 경제적인 측면에서 CuCl, CuBr 및 CuI가 보다 바람직하며, 상기 화학식 3, 1몰에 대해 0.01 ~ 0.2몰로, 바람직하게는 0.05 ~ 0.15몰 사용되어 수행될 수 있다.
본 발명의 제조방법에서 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸 포름아마이드 (DMF) 및 N,N-다이메틸아세트아마이드(DMA)로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
반응온도는 통상의 유기합성에서 사용되는 온도에서 사용가능하나, 반응시간 반응물질 및 출발물질의 양에 따라 달라질 수 있으며, TLC 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시키도록 한다. 반응이 완결되면 추출과정 후 감압 하에서 용매를 증류시킨 후 관 크로마토그래피 등의 통상적인 방법을 통하여 목적물을 분리 정제할 수도 있다.
본 발명의 하이드로아이소벤조퓨란 유도체는 헤테로원자가 함유된 다중고리 화합물로써 생리활성을 가져 다양한 분야 즉, 의약, 농약등의 원료물질 또는 중간체로 사용가능하며, 본 발명의 하이드로아이소벤조퓨란 유도체의 제조방법은 본 발명의 하이드로퓨란 유도체가 분자내 다이엔 구조를 함유하고 있어 다양한 친다이엔체와 딜스-알더(Diels-Alder) 반응을 통해 높은 수율로 용이하게 제조할 수 있다.
또한 본 발명의 하이드로퓨란 유도체는 유기합성의 유용한 중간체로써헤테로고리 화합물의 중요한 부분일 뿐만 아니라 천연물에도 포함된 일반적인 구조로써 생리활성을 갖는다.
또한 상술한 바와같이 본 발명의 하이드로퓨란 유도체는 분자내 다이엔 구조를 함유하고 있어, 다양한 친다이엔체와 딜스-알더(Diels-Alder) 반응을 통한 새로운 다중고리 화합물의 합성에 이용할 수 있으며, 본 발명의 따른 하이드로퓨란 유도체의 제조방법은 다른 전이금속 촉매에 비해 값이 싼 구리 촉매를 이용하여 높은 수율과 간단한 공정으로 하이드로퓨란 유도체를 제조할 수 있다.
이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한된 것은 아니다.
[ 실시예 1] 2-프로필-3-바이닐-2,5- 다이하이드로퓨란 [2- propyl -3- vinyl -2,5- dihydrofuran ]의 제조
Figure 112012051785980-pat00020
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 3-바이닐-1,2-헵타다이엔-4-올 (69.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-프로필-3-바이닐-2,5-다이하이드로퓨란 (50.4 mg, 73%)을 얻었다.
1H NMR (400 MHz, CDCl3): δ 6.43 (dd, J = 17.6 Hz, 11.1 Hz, 1H), 5.82 (s, 1H), 5.15 (d, J = 11.1 Hz, 1H), 5.14 (d, J = 17.6 Hz, 1H), 5.03-5.00 (m, 1H), 4.71-4.59 (m, 2H), 1.79-1.71 (m, 1H), 1.60-1.35 (m, 3H), 0.93 (t, J = 7.4 Hz, 3H)
[ 실시예 2] 2- 싸이클로헥실 -3-바이닐-2,5- 다이하이드로퓨란 [2- cyclohexyl -3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00021
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-싸이클로헥실-2-바이닐부타-2,3-다이엔-1-올 (89.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-싸이클로헥실-3-바이닐-2,5-다이하이드로퓨란 (67.7 mg, 76%)을 얻었다.
1H NMR (400 MHz, CDCl3): δ 6.40 (dd, J = 17.7 Hz, 11.1 Hz, 1H), 5.85 (d, J = 1.5 Hz, 1H), 5.18 (d, J = 17.7 Hz, 1H), 5.15 (d, J = 11.1 Hz, 1H), 4.87 (s, 1H), 4.63-4.61 (m, 2H), 1.81-1.04 (m, 11H)
[ 실시예 3] 2- 에틸옥시카보닐 -3-바이닐-2,5- 다이하이드로퓨란 [2- ethoxylcarbonyl -3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00022
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 에틸 2-하이드록시-3-바이닐펜타-3,4-다이엔올레이트 (84.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-에틸옥시카보닐-3-바이닐-2,5-다이하이드로퓨란 (69.8 mg, 83%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 6.46 (dd, J = 17.9 Hz, 11.2 Hz, 1H), 6.04 (s, 1H), 5.39 (d, J = 17.9 Hz, 1H), 5.36-5.32 (m, 1H), 5.23 (d, J = 11.2 Hz, 1H), 4.95 (dd, J = 14.1 Hz, 5.5 Hz, 1H), 4.76 (d, J = 14.1 Hz, 1H), 4.21 (qd, J = 7.3 Hz, 2.0 Hz, 2H), 1.27 (t, J = 7.3 Hz, 3H)
[ 실시예 4] 2- 에톡시카보닐 -2- 메틸 -3-바이닐-2,5- 다이하이드로퓨란 [2-ethoxylcarbonyl-2-methyl-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00023
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 에틸 2-하이드록시-2-메틸-3-바이닐펜타-3,4-다이엔올레이트 (91.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-에톡시카보닐-2-메틸-3-바이닐-2,5-다이하이드로퓨란 (82.9 mg, 91%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 6.32 (dd, J = 17.8 Hz, 11.3 Hz, 1H), 5.99 (s, 1H), 5.41 (d, J = 17.8 Hz, 1H), 5.18 (d, J = 11.3 Hz, 1H), 4.82-4.72 (m, 2H), 4.19 (q, J = 7.2 Hz, 2H), 1.62 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H)
[ 실시예 5] 2- 에톡시카보닐 -2- 페닐 -3-바이닐-2,5-다이하이드로퓨란[2-ethoxylcarbonyl-2-phenyl-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00024
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 에틸 2-하이드록시-2-페닐-3-바이닐펜타-3,4-다이엔올레이트 (122.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-에톡시카보닐-2-페닐-3-바이닐-2,5-다이하이드로퓨란 (97.7 mg, 80%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.39-7.31 (m, 5H), 6.35 (dd, J = 17.4 Hz, 11.0 Hz, 1H), 6.25 (s, 1H), 5.42 (d, J = 17.4 Hz, 1H), 5.17 (d, J = 11.0 Hz, 1H), 4.91-4.81 (m, 2H), 4.29 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H)
[ 실시예 6] 2- 페닐 -3-바이닐-2,5- 다이하이드로퓨란 [2- phenyl -3- vinyl -2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00025
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-페닐-2-바이닐부타-2,3-다이엔-1-올 (86.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-페닐-3-바이닐-2,5-다이하이드로퓨란 (71.5 mg, 83%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.37-7.28 (m, 5H), 6.41 (dd, J = 17.9 Hz, 11.0 Hz, 1H), 6.09 (s, 1H), 5.82-5.79 (m, 1H), 5.02, (d, J = 11.0 Hz, 1H), 4.90-4.72 (m, 2H), 4.85, (d, J = 17.9 Hz, 1H)
[ 실시예 7] 2-( p - 톨닐 )-3-바이닐-2,5- 다이하이트로퓨란 [2-( p - tolyl )-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00026
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-p-톨닐-2-바이닐부타-2,3-다이엔-1-올 (93.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(p-톨닐)-3-바이닐-2,5-다이하이트로퓨란 (78.2 mg, 84%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.20 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.41 (dd, J = 17.8 Hz, 11.0 Hz, 1H), 6.08 (s, 1H), 5.79-5.78 (m, 1H), 5.02 (d, J = 11.0 Hz, 1H), 4.88-4.70 (m, 2H), 4.85 (d, J = 17.8 Hz, 1H), 2.33 (s, 3H)
[ 실시예 8] 2-( o - 톨닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-( o - tolyl )-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00027
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-o-톨닐-2-바이닐부타-2,3-다이엔-1-올 (93.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(o-톨닐)-3-바이닐-2,5-다이하이트로퓨란 (74.5 mg, 80%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.21-7.14 (m, 4H), 6.45 (dd, J = 17.8 Hz, 11.1 Hz, 1H), 6.11-6.09 (m, 2H), 5.02 (d, J = 11.1 Hz, 1H), 4.83-4.70 (m, 2H), 4.74 (d, J = 17.8 Hz, 1H), 2.48 (s, 3H)
[ 실시예 9] 2- 메시틸 -3-바이닐-2,5- 다이하이드로퓨란 [2- mesityl -3- vinyl -2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00028
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-메시틸-2-바이닐부타-2,3-다이엔-1-올 (107.2 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 30분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-메시틸-3-바이닐-2,5-다이하이드로퓨란 (100.7 mg, 94%)을 얻었다.
1H NMR (300 MHz, CDCl3):δ 6.82 (s, 1H), 6.77 (s, 1H), 6.36 (dd, J = 17.6 Hz, 11.1 Hz, 1H), 6.28-6.24 (m, 1H), 5.94 (d, J = 1.9 Hz, 1H), 4.92 (d, J = 11.1 Hz, 1H), 4.88-4.75 (m, 2H), 4.75 (d, J = 17.6 Hz, 1H), 2.44 (s, 3H), 2.23 (s, 6H)
[ 실시예 10] 2-(4- 메톡시페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(4-methoxyphenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00029
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(4-메톡시페닐)-2-바이닐부타-2,3-다이엔-1-올 (101.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(4-메톡시페닐)-3-바이닐-2,5-다이하이드로퓨란 (86.0 mg, 85%)을 얻었다.
1H NMR (300 MHz, CDCl3):δ 7.23 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 11.5 Hz, 2H), 6.41 (dd, J = 17.7 Hz, 11.3 Hz, 1H), 6.08 (d, J = 1.6 Hz, 1H), 5.79-5.77 (m, 1H), 5.02 (d, J = 11.3 Hz, 1H), 4.86-4.69 (m, 2H), 4.84 (d, J = 17.7 Hz, 1H), 3.79 (s, 3H)
[ 실시예 11] 2-(3- 메톡시페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(3-methoxyphenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00030
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(3-메톡시페닐)-2-바이닐부타-2,3-다이엔-1-올 (101.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-메톡시페닐)-3-바이닐-2,5-다이하이드로퓨란 (83.9 mg, 83%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.26 (dd, J = 8.4, 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.85(s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.41 (dd, J = 17.8 Hz, 11.0 Hz, 1H), 6.08 (s, 1H), 5.79-5.77 (m, 1H), 5.03 (d, J = 11.0 Hz, 1H), 4.88 (d, J = 17.8 Hz, 1H), 4.89-4.72 (m, 2H), 3.79 (s, 3H)
[ 실시예 12] 2-[3,4-( 메틸렌다이옥실 ) 페닐 ]-3-바이닐-2,5- 다이하이드로퓨란 [2-[3,4-(methylenedioxy)phenyl]-3-vinyl-2,5-dihydro-furan]의 제조
Figure 112012051785980-pat00031
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(벤조[d][1,3]다이옥솔-5-닐)-2-바이닐부타-2,3-다이엔-1-올 (108.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-[3,4-(메틸렌다이옥실)페닐]-3-바이닐-2,5-다이하이드로퓨란 (71.4 mg, 66%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 6.83 (d, J = 7.9 Hz, 1H), 6.78 (s, 1H), 6.76 (d, J = 7.9 Hz, 1H), 6.41 (dd, J = 17.7, 11.2 Hz, 1H), 6.08 (s, 1H), 5.94 (s, 2H), 5.75-5.72 (m, 1H), 5.04 (d, J = 11.2 Hz, 1H), 4.88 (d, J = 17.7 Hz, 1H), 4.85-4.69 (m, 2H)
[ 실시예 13] 2-(3- 하이드록시페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(3-hydroxyphenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00032
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 3-(1-하이드록시-2-바이닐부타-2,3-다이에닐)펜올 (94.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-하이드록시페닐)-3-바이닐-2,5-다이하이드로퓨란 (79.1 mg, 84%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.17 (dd, J = 15.4, 7.7 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 6.73-6.69 (m, 2H). 6.39 (dd, J = 17.8 Hz, 11.1 Hz, 1H), 6.38 (s, 1H), 6.05 (s, 1H), 5.75 (t, J = 2.5 Hz, 1H), 5.03 (d, J = 11.1 Hz, 1H), 4.86 (d, J = 17.8 Hz, 1H), 4.86-4.72 (m, 2H)
[ 실시예 14] 2-(4- 아세토페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(4-acetophenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00033
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(4-(1-하이드록시-2-바이닐-2,3-다이엔닐)페닐)에탄온 (107.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(4-아세토페닐)-3-바이닐-2,5-다이하이드로퓨란 (85.7 mg, 80%)을 얻었다.
1H NMR (300 MHz, CDCl3):δ 7.95 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 6.41 (dd, J = 17.7 Hz, 11.0 Hz, 1H) 6.13 (s, 1H), 5.86-5.84 (m, 1H), 5.03 (d, J = 11.0 Hz, 1H), 4.92-4.76 (m, 2H), 4.83 (d, J = 17.7 Hz, 1H), 2.59 (S, 3H)
[ 실시예 15] 2-(4- 메톡시카보닐페닐 )-3-바이닐-2,5- 다이하이드로 퓨란 [2-(4-methoxycarbonylphenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00034
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 메틸 4-(1-하이드록시-2-바이닐부타-2,3-다이엔닐)벤조에이트 (115.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(4-메톡시카보닐페닐)-3-바이닐-2,5-다이하이드로퓨란 (96.7 mg, 84%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 8.03 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 6.40 (dd, J = 17.8 Hz, 11.1 Hz, 1H), 6.11 (s, 1H), 5.84 (dd, J = 2.6, 2.5 Hz, 1H), 5.02 (d, J = 11.1 Hz, 1H), 4.92-4.75 (m, 2H), 4.82 (d, J = 17.8 Hz, 1H), 3.90 (s, 3H)
[ 실시예 16] 2-(3- 브로머페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(3-bromophenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00035
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(3-브로머페닐)-2-바이닐부타-2,3-다이엔-1-올 (125.6 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 10분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-브로머페닐)-3-바이닐-2,5-다이하이드로퓨란 (104.2 mg, 83%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.44-7.41 (m, 2H), 7.26-7.19 (m, 2H), 6.40 (dd, J = 18.1 Hz, 11.0 Hz, 1H), 6.11 (s, 1H), 5.76-5.75 (m, 1H), 5.05 (d, J = 11.0 Hz, 1H), 4.90-4.73 (m, 2H), 4.84 (d, J = 18.1 Hz 1H)
[ 실시예 17] 2-(2- 아이오도페닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(2-iodophenyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00036
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(2-아이오도페닐)-2-바이닐부타-2,3-다이엔-1-올 (149.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 5분 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-브로머페닐)-3-바이닐-2,5-다이하이드로퓨란 (122.2 mg, 82%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.86 (d, J = 8.0, 1H), 7.31 (dd, J = 8.0 Hz, 9.3 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 6.98 (dd, J = 9.3 Hz, 7.7 Hz, 1H), 6.44 (dd, J = 17.9 Hz, 11.0 Hz, 1H), 6.17-6.15 (m, 2H), 5.07 (d, J = 11.0 Hz, 1H), 4.82-4.72 (m, 2H), 4.78 (d, J = 17.9 Hz, 1H)
[ 실시예 18] 2-(3-바이닐-2,5- 다이하이드로퓨란 -2-닐) 퓨란 [2-(3- vinyl -2,5-dihydrofuran-2-yl)furan]의 제조
Figure 112012051785980-pat00037
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(퓨란-2-닐)-2-바이닐부타-2,3-다이엔-1-올 (81.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 1시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-바이닐-2,5-다이하이드로퓨란-2-닐)퓨란 (53.5 mg, 66%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.39 (d, J = 1.9, 1H), 6.47 (dd, J = 17.9 Hz, 11.1 Hz, 1H), 6.34 (dd, J = 1.9 Hz, 1.7 Hz, 1H), 6.32 (dd, J = 1.7 Hz, 1.5 Hz, 1H), 6.08 (d, J = 1.5 Hz, 1H), 5.89-5.88 (m, 1H), 5.09 (d, J = 11.1 Hz, 1H), 4.96 (d, J = 17.9 Hz, 1H), 4.86-4.68 (m, 2H)
[ 실시예 18] 2-(3- 피리디닐 )-3-바이닐-2,5- 다이하이드로퓨란 [2-(3-pyridinyl)-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00038
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 1-(피리딘-3-닐)-2-바이닐부타-2,3-다이엔-1-올 (86.6 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 1시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-(3-바이닐-2,5-다이하이드로퓨란-2-닐)퓨란 (53.5 mg, 66%)을 얻었다.
1H NMR (400 MHz, CDCl3): δ 8.59 (d, J = 1.9 Hz, 1H), 8.55 (dd, J = 4.8 Hz, 1.5 Hz, 1H), 7.60 (dt, J = 7.6 Hz, 1.9 Hz, 1H), 7.28 (dd, J = 7.6 Hz, 4.8 Hz, 1H), 6.42 (dd J = 17.7 Hz, 11.0 Hz, 1H), 6.14 (d, J = 1.5 Hz, 1H), 5.85 (t, J = 2.6 Hz, 1H), 5.05 (d, J = 11.0 Hz, 1H), 4.90-4.75 (m, 2H), 4.82 (d, J = 17.7 Hz, 1H)
[ 실시예 20] 2- 메틸 -2- 페닐 -3-바이닐-2,5- 다이하이드로퓨란 [2- methyl -2-phenyl-3-vinyl-2,5-dihydrofuran]의 제조
Figure 112012051785980-pat00039
질소 분위기 하에서 테스트튜브에 CuCl (4.95 mg, 0.05mmol)와 2-페닐-3-바이닐펜타-3,4-다이엔-2-올 (93.1 mg, 0.5 mmol)을 CH2Cl2 (2.0 mL) 용매에서 1시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 2-메틸-2-페닐-3-바이닐-2,5-다이하이드로퓨란 (75.4 mg, 81%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.43 (d, J = 7.2 Hz, 2H), 7.33 (dd, J = 8.4 Hz, 7.2 Hz, 2H), 7.28-7.23 (m, 1H), 6.23 (dd J = 17.6 Hz, 11.1 Hz, 1H), 6.00 (s, 1H), 5.08 (d, J = 17.6 Hz, 1H), 5.04 (d, J = 11.1 Hz, 1H), 4.77 (s, 2H), 1.80 (S, 3H)
[ 실시예 21] 1-(4- 메톡시페닐 )-3,3- 다이하이드로아이소벤조퓨란 -4,4,5,5- 테트라카보닐레이트 [1-(4- methoxyphenyl )-3,3- dihydroisobenzo - furan -4,4,5,5-tetracarbonitrile]의 제조
Figure 112012051785980-pat00040
질소 분위기 하에서 테스트튜브에 2-(4-메톡시페닐)-3-바이닐-2,5-다이하이드로퓨란 (101.1 mg, 0.5 mmol)과 테트라시아노에틸렌 (128.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 3 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 1-(4-메톡시페닐)-3,3-다이하이드로아이소벤조퓨란-4,4,5,5-테트라카보닐레 이트 (117.3 mg, 71%)을 입체이성질체 혼합물 (1 : 7.1)의 비율로 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.21 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.73 (s, 1H), 5.40 (s, 1H), 4.71 (t, J = 8.0 Hz, 1H), 3.93 (t, J = 9.6 Hz, 1H), 3.81 (s, 3H), 3.73-3.74 (m, 1H), 3.19-3.33 (m, 2H)
[ 실시예 22] 3-(4- 메톡시페닐 )-7- 메틸 -5,5,8,8- 테트라하이드로 -1 H - 퓨로[3,4]아이소인돌 -6,8- 다이온 [3-(4- methoxyphenyl )-7- methyl -5,5,8,8- tetrahydro -1 H -furo[3,4]isoindole-6,8-dione]의 제조
Figure 112012051785980-pat00041
질소 분위기 하에서 테스트튜브에 2-(4-메톡시페닐)-3-바이닐-2,5-다이하이드로퓨란 (101.1 mg, 0.5 mmol)과 N-메틸말레이미드 (111.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 3 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 3-(4-메톡시페닐)-7-메틸-5,5,8,8-테트라하이드로-1H-퓨로[3,4]아이소인 돌-6,8-다이온 (134.7 mg, 86%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.21 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.52-5.55 (m, 1H), 5.11 (s, 1H), 4.37 (d, J = 8.1 Hz, 2H), 3.79 (s, 3H), 3.35 (t, J = 8.7 Hz, 1H), 3.17 (t, J = 8.5 Hz, 1H), 2.98 (s, 3H), 2.92-2.96 (m, 1H), 2.83-2.89 (m, 1H), 2.13-2.21 (m, 2H)
[ 실시예 23] 메틸 -4-(4,4,5,5- 테트라시아노 -1,3,3a,4,5,6- 헥사하이드로 - 아이소벤조퓨란 -1-닐) 벤조에이트 [ methyl -4-(4,4,5,5- tetracyano -1,3,3a,4,5,6-hexahydroisobenzofuran-1-yl)benzoate]의 제조
Figure 112012051785980-pat00042
질소 분위기 하에서 테스트튜브에 2-(4-메톡시카보닐페닐)-3-바이닐-2,5-다이하이드로 퓨란 (115.1 mg, 0.5 mmol)과 테트라시아노에틸렌 (128.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 3 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 메틸-4-(4,4,5,5-테트라시아노-1,3,3a,4,5,6-헥사하이드로-아이소벤조퓨란-1-닐)벤조에이트 (129.0 mg, 72%)을 입체이성질체 혼합물 (1 : 6.7)의 비율로 얻었다.
1H NMR (600 MHz, CDCl3):δ 8.07 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 5.82 (d, J = 1.7 Hz, 1H), 5.50 (s, 1H), 4.78 (t, J = 8.1 Hz, 1H), 4.00 (t, J = 9.4 Hz, 1H), 3.93 (s, 3H), 3.71-3.72 (m, 1H), 3.24-3.33 (m, 2H)
[ 실시예 24] 메틸 -4-(7- 메틸 -6,8- 다이옥소 -3,5,5a,6,7,8,8a,8b- 옥타하이드로 -1 H -퓨 로[3,4]아이소 인돌-3-닐) 벤조에이트 [ methyl -4-(7- methyl -6,8- dioxo -3,5,5a,6,7,8,8a,8b-octahydro-1 H -furo[3,4]isoindol-3-yl)benzoate]의 제조
Figure 112012051785980-pat00043
질소 분위기 하에서 테스트튜브에 2-(4-메톡시카보닐페닐)-3-바이닐-2,5-다이하이드로 퓨란 (115.1 mg, 0.5 mmol)과 N-메틸 말레이미드 (111.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 3 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 메틸-4-(7-메틸-6,8-다이옥소-3,5,5a,6,7,8,8a,8b-옥타하이드로-1H-퓨로[3,4]아이소인돌-3-닐)벤조에이트 (141.7 mg, 83%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 8.01 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 5.57-5.60 (m, 1H), 5.21 (s, 1H), 4.38-4.47 (m, 2H), 3.91 (s, 3H), 3.36 (t, J = 8.6 Hz, 1H), 3.17 (t, J = 7.3 Hz, 1H), 2.99 (s, 3H), 2.84-2.91 (m, 2H), 2.13-2.17 (m, 1H)
[ 실시예 25] 1- 페닐 -3,3a- 다이하이드로아이소벤조퓨란 -4,4,5,5(1 H ,6 H )- 테트라카보닐나이트닐 [1- phenyl -3,3a- dihydroisobenzo - furan -4,4,5,5(1H,6H)-tetracarbonitrile]의 제조
Figure 112012051785980-pat00044
질소 분위기 하에서 테스트튜브에 2-페닐-3-바이닐-2,5-다이하이드로퓨란 (86.1 mg, 0.5 mmol)과 테트라시아노에틸렌(128.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 2.5 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 1-페닐-3,3a-다이하이드로아이소벤조퓨란-4,4,5,5(1H,6H)-테트라카보닐나이트닐 (108.1 mg, 72%)을 입체이성질체 혼합물 (1 : 7.3)의 비율로 얻었다.
1H NMR (600 MHz, CDCl3):δ 7.35-7.41 (m, 3H), 7.29-7.30 (m, 2H), 5.76-7.78 (m, 1H), 5.45 (s, 1H), 4.74 (t, J = 8.0 Hz, 1H), 3.97 (t, J = 9.6 Hz, 1H), 3.71-3.75 (m, 1H), 3.20-3.32 (m, 2H)
[ 실시예 26] 7- 메틸 -3- 페닐 -5,5a,8a,8b- 테트라하이드로 -1 H - 퓨로[3,4]아이소인돌 -6,8(3 H ,7 H )- 다이온 [7- methyl -3- phenyl -5,5a,8a,8b- tetrahydro -1H-furo[3,4]isoindole-6,8(3H,7H)-dione]의 제조
Figure 112012051785980-pat00045
질소 분위기 하에서 테스트튜브에 2-페닐-3-바이닐-2,5-다이하이드로퓨란 (86.1 mg, 0.5 mmol)과 N-메틸 말레이미드 (111.1 mg, 1.0 mmol)을 CH2Cl2 (2.0 mL) 용매에서 16 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 7-메틸-3-페닐-5,5a,8a,8b-테트라하이드로-1H-퓨로[3,4]아이소인돌-6,8(3H,7H)-다이온 (99.2 mg, 70%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.26-7.36 (m, 5H), 5.56-5.59 (m, 1H), 5.17 (d, J = 2.3 Hz, 1H), 4.36-4.43 (m, 2H), 3.36 (t, J = 8.7 Hz, 1H), 3.17 (td, J = 8.6 Hz, J = 1.3 Hz ,1H), 2.99 (s, 3H), 2.92-2.97 (m, 1H), 2.83-2.89 (m, 1H), 2.13-2.19 (m, 2H)
[ 실시예 27] 6- 페닐 -3a,4,8,8a- 테트라하이드로아이소벤조퓨로[5,4-c]퓨란 -1,3(6H,8bH)-다이온 [6- phenyl -3a,4,8,8a- tetrahydroisobenzo - furo [5,4-c]furan-1,3(6H,8bH)-dione]의 제조
Figure 112012051785980-pat00046
질소 분위기 하에서 테스트튜브에 2-페닐-3-바이닐-2,5-다이하이드로퓨란 (86.1 mg, 0.5 mmol)과 말레익 언하이드라이드(98.1 mg, 1.0 mmol)을 톨루엔 (2.0 mL) 용매에서 11 시간 동안 교반시킨 후 여과하였다. 용매를 제거한 후 관크로마토그래피로 분리하여 표제화합물인 6-페닐-3a,4,8,8a-테트라하이드로아이소벤조퓨로[5,4-c]퓨란-1,3(6H,8bH)-다이온 (54.1 mg, 40%)을 얻었다.
1H NMR (400 MHz, CDCl3):δ 7.28-7.37 (m, 5H), 5.67-5.71 (m, 1H), 5.25 (d, J = 2.1 Hz, 1H), 4.44 (t, J = 9.2 Hz, 1H), 4.31 (t, J = 8.2 Hz, 1H), 3.64 (t, J = 8.6 Hz, 1H), 3.48-3.52 (m, 1H), 2.93-3.00 (m, 1H), 2.87 (Qd, J = 8.2 Hz, J = 1.4 Hz, 1H), 2.20-2.28 (m, 1H)

Claims (16)

  1. 하기 화학식 1로 표시되는 하이드로아이소벤조퓨란 (hydroisobenzo-furan) 유도체:
    [화학식 1]
    Figure 112012051785980-pat00047

    (상기 화학식 1에서,
    R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며;
    Figure 112012051785980-pat00048
    는 단일결합이거나 이중결합을 나타내며;
    E1 또는 E2는 서로 독립적으로 나이트릴, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C1-C6)아마이드기, (C6-C20)아릴카보닐, 및 N-(C1-C6)알킬로 치환되거나 치환되지 않은 아마이드이며, E1과 E2는 인접한 치환체와 연결되어 고리를 형성할 수 있으며, 상기 고리의 탄소원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 치환될 수 있고;
    상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
  2. 제 1항에 있어서,
    R1은 수소, (C1-C6)알킬기, (C6-C20)아릴기이며;
    R2는 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴인 하이드로아이소벤조퓨란 유도체.
  3. 제 1항에 있어서,
    상기 화학식 1의 하이드로아이소벤조퓨란 유도체는 하기 화합물로부터 선택되는 것인 하이드로아이소벤조퓨란 유도체.
    Figure 112012051785980-pat00049
    Figure 112012051785980-pat00050

    Figure 112012051785980-pat00051
  4. 하기 화학식 2의 하이드로퓨란 유도체로부터 선택되는 하나의 화합물과 친다이엔체를 반응시켜 하기 화학식 1의 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
    [화학식 1]
    Figure 112012051785980-pat00052

    [화학식 2]
    Figure 112012051785980-pat00053

    (상기 화학식 1 내지 2에서,
    R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며;
    Figure 112012051785980-pat00054
    는 단일결합이거나 이중결합을 나타내며;
    E1 또는 E2는 서로 독립적으로 나이트릴, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C1-C6)아마이드기, (C6-C20)아릴카보닐, 및 N-(C1-C6)알킬로 치환되거나 치환되지 않은 아마이드며, E1과 E2는 인접한 치환체와 연결되어 고리를 형성할 수 있으며;
    상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
  5. 제 4 항에 있어서,
    R1은 수소, (C1-C6)알킬기, (C6-C20)아릴기이며;
    R2는 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
  6. 제 4 항에 있어서,
    화학식 2는 하기 화합물로부터 선택되는 것인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
    Figure 112012051785980-pat00055

    Figure 112012051785980-pat00056

    Figure 112012051785980-pat00057
    Figure 112012051785980-pat00058

    Figure 112012051785980-pat00059
  7. 제 4 항에 있어서,
    친다이엔체는 말레이미드(maleimide), N-메틸말레이미드(N-methylmaleimide), N-에틸말레이미드(N-ethylmaleimide), N-페닐말레이미드(N-phenylmaleimide), 다이메틸퓨마레이트(dimethyl fumarate), 다이에틸말레이트(diethyl maleate), 말레익 언하이드라이드(maleic anhydride), 테트라시아노에틸렌(tetra(cyano)ethylene), 다이메틸아세틸렌다이카복실레이트(dimethylacetylenedicarboxylate), 메틸 바이닐키톤(methyl vinyl ketone), 나프토퀸온(naphthoquinone), 에틸 아크릴레이트(ethyl acrylate)로 이루어진 군에서 선택되는 것인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
  8. 제 4 항에 있어서,
    상기 친다이엔체는 상기 화학식 2의 화합물 1몰을 기준으로 1.5 ~ 3몰로 사용되는 것인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
  9. 제 4 항에 있어서,
    화학식 2는 구리 촉매 존재하에 화기 화학식 3의 분자내 고리화 반응을 통해 제조되는 것인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
    [화학식 3]
    Figure 112012051785980-pat00060

    (화학식 3에서,
    R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이다.)
  10. 제 9 항에 있어서,
    구리촉매는 CuCl, CuBr, CuI, CuO, CuF2, CuCl2, CuCl2·2H2O, CuBr2, CuI2, Cu(NO3)2, Cu(trifluoroacetate)2, Cu2O, Cu(OAc)2·H2O, Cu(OAc)2, Cu(OSO2CF3)2, Cu(acetylacetonate)2, Cu(ClO4)2, Cu(hexa-fluoroacetylacetonate)2로 이루어진 군에서 선택되는 하나 이상인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
  11. 제 10항에 있어서,
    구리 촉매는 상기 화학식 3, 1몰에 대해 0.01 ~ 0.2몰로 사용되는 것인 하이드로아이소벤조퓨란 유도체를 제조하는 방법.
  12. 삭제
  13. 삭제
  14. 하기 화합물에서 선택되는 하이드로퓨란 유도체.
    Figure 112013001833823-pat00062

    Figure 112013001833823-pat00063

    Figure 112013001833823-pat00064
    Figure 112013001833823-pat00065

    Figure 112013001833823-pat00066
  15. 구리 촉매 존재하에 하기 화학식 3의 분자내 고리화 반응을 통해 하기 화학식 2로 표시되는 하이드로퓨란 유도체를 제조하는 방법.
    [화학식 2]
    Figure 112012051785980-pat00067

    [화학식 3]
    Figure 112012051785980-pat00068

    (상기 화학식 2 또는 3에서,
    R1 또는 R2는 서로 독립적으로 수소, (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알콕시카보닐, (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로아릴이며, 상기 R1 또는 R2의 알킬, 알콕시, 알콕시카보닐, 시클로알킬, 아릴, 헤테로아릴은 (C1-C6)알킬기, (C1-C6)알콕시, (C1-C6)알킬카보닐, (C1-C6)알콕시카보닐, 할로겐 및 하이드록시에서 선택되는 하나 이상으로 더 치환될 수 있다.)
  16. 제 15항에 있어서,
    구리촉매는 CuCl, CuBr, CuI, CuO, CuF2, CuCl2, CuCl2·2H2O, CuBr2, CuI2, Cu(NO3)2, Cu(trifluoroacetate)2, Cu2O, Cu(OAc)2·H2O, Cu(OAc)2, Cu(OSO2CF3)2, Cu(acetylacetonate)2, Cu(ClO4)2, Cu(hexa-fluoroacetylacetonate)2로 이루어진 군에서 선택되는 하나 이상으로, 상기 화학식 3 1몰에 대해 0.01 ~ 0.2몰로 사용되는 것인 하이드로퓨란 유도체를 제조하는 방법.
KR1020120069974A 2012-06-28 2012-06-28 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법 KR101243612B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120069974A KR101243612B1 (ko) 2012-06-28 2012-06-28 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120069974A KR101243612B1 (ko) 2012-06-28 2012-06-28 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법

Publications (1)

Publication Number Publication Date
KR101243612B1 true KR101243612B1 (ko) 2013-03-15

Family

ID=48181879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120069974A KR101243612B1 (ko) 2012-06-28 2012-06-28 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101243612B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466238A (zh) * 2022-10-24 2022-12-13 中国农业大学 一种二氢呋喃-2(3h)-亚胺桥联环衍生物及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060024275A (ko) * 2004-09-13 2006-03-16 한국과학기술연구원 입체선택성이 높은 테트라하이드로퓨란 고리화합물과 이의제조방법
KR101029091B1 (ko) 2010-04-08 2011-04-13 강원대학교산학협력단 다이하이드로퓨란 유도체의 제조방법
WO2011117571A1 (en) * 2010-03-22 2011-09-29 University Court Of The University Of St Andrews Ruthenium complexes for use in olefin metathesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060024275A (ko) * 2004-09-13 2006-03-16 한국과학기술연구원 입체선택성이 높은 테트라하이드로퓨란 고리화합물과 이의제조방법
WO2011117571A1 (en) * 2010-03-22 2011-09-29 University Court Of The University Of St Andrews Ruthenium complexes for use in olefin metathesis
KR101029091B1 (ko) 2010-04-08 2011-04-13 강원대학교산학협력단 다이하이드로퓨란 유도체의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466238A (zh) * 2022-10-24 2022-12-13 中国农业大学 一种二氢呋喃-2(3h)-亚胺桥联环衍生物及其合成方法
CN115466238B (zh) * 2022-10-24 2024-04-16 中国农业大学 一种二氢呋喃-2(3h)-亚胺桥联环衍生物及其合成方法

Similar Documents

Publication Publication Date Title
Korotaev et al. Highly diastereoselective 1, 3-dipolar cycloaddition of nonstabilized azomethine ylides to 3-nitro-2-trihalomethyl-2H-chromenes: synthesis of 1-benzopyrano [3, 4-c] pyrrolidines
Kudale et al. Intramolecular Povarov reactions involving 3-aminocoumarins
Tiefenbacher et al. An expeditious asymmetric formal synthesis of the antibiotic platensimycin
Fu et al. Studies toward welwitindolinones: formal syntheses of N-methylwelwitindolinone C isothiocyanate and related natural products
Perreault et al. Enantioselective synthesis of the tricyclic core of FR901483 featuring a Rhodium-catalyzed [2+ 2+ 2] cycloaddition
Harada et al. Synthesis of jiadifenin using Mizoroki–Heck and Tsuji–Trost reactions
JPH11504047A (ja) 2,2´−ビピロリル−ピロメテン(プロジギオシン)誘導体の製造方法
CN108148021B (zh) 2-亚胺(3h)多取代呋喃或噻吩衍生物及其合成
Chen et al. Construction of the tetracyclic core of (±)-cycloclavine and 4-amino Uhle's ketone
Yadav et al. Elemental iodine catalyzed [4+ 2] cycloaddition reactions of o-quinomethanes: an efficient synthesis of trans-fused pyrano [3, 2-c] benzopyrans
KR101565661B1 (ko) 디하이드로나프토[1,2-b]퓨란 유도체 및 이의 합성방법
KR101243612B1 (ko) 신규한 하이드로퓨란 유도체와 이의 제조방법 및 이로부터 유도되는 신규한 하이드로아이소벤조퓨란 유도체와 이의 제조방법
Toyooka et al. Stereodivergent synthesis of the 2, 3, 5, 6-tetrasubstituted piperidine ring system: an application to the synthesis of alkaloids 223A and 205B from poison frogs
Ponpandian et al. Sequential deprotection–Cyclisation reaction: Stereoselective synthesis of azabicyclic β-enamino ester derivatives and (−) indolizidine 209D
Trabanco et al. Synthesis of 2-N, N-dimethylaminomethyl-2, 3, 3a, 12b-tetrahydrodibenzo-[b, f] furo [2, 3-d] oxepin derivatives as potential anxiolytic agents
Lal et al. Synthesis of annulated oxa-triquinanes and oxa-diquinanes via cascade Michael addition-intramolecular alkylation involving α-halodicyclopentadienones
Korotaev et al. Highly diastereoselective synthesis of novel 2, 3, 4-trisubstituted chromanes via the reaction of 3-nitro-2-(trihalomethyl)-and 3-nitro-2-phenyl-2H-chromenes with 1-morpholinocyclopentene
US6313320B1 (en) Process for the preparation of calanolide precursors
Fichtler et al. Practical three-component synthesis of crowded arenes with donor–acceptor substitution
CN108675922B (zh) 一种螺环化合物及其合成方法
Tsai et al. A New Synthesis of Angelicin from 7‐Hydroxycoumarin via C‐Propenation‐O‐Vinylation and Ring‐Closing Metathesis
Witulski et al. Application to the synthesis of natural products
Khan et al. Pd‐Catalyzed Reactions of Donor− Acceptor‐Substituted Cyclopropanes and Their Ring‐Opened Derivatives: Attempted Heck Cyclization and Novel One‐Pot Enolate Arylations
Punganuru et al. Short stereoselective synthesis of (+)-monocerin via a palladium-catalysed intramolecular alkoxycarbonylation
Shestopalov et al. Cross reactions of cyanoacetic acid derivatives with carbonyl compounds 3. One-step synthesis of substituted 2-amino-5-oxo-4, 5-dihydropyrano [3, 2-c] chromenes

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 6