KR101226824B1 - A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease - Google Patents

A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease Download PDF

Info

Publication number
KR101226824B1
KR101226824B1 KR1020100073323A KR20100073323A KR101226824B1 KR 101226824 B1 KR101226824 B1 KR 101226824B1 KR 1020100073323 A KR1020100073323 A KR 1020100073323A KR 20100073323 A KR20100073323 A KR 20100073323A KR 101226824 B1 KR101226824 B1 KR 101226824B1
Authority
KR
South Korea
Prior art keywords
sorghum
extract
inhibitory activity
amylase
glucosidase
Prior art date
Application number
KR1020100073323A
Other languages
Korean (ko)
Other versions
KR20120021389A (en
Inventor
김영호
오인택
이동규
전도연
서명철
남민희
오병근
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020100073323A priority Critical patent/KR101226824B1/en
Publication of KR20120021389A publication Critical patent/KR20120021389A/en
Application granted granted Critical
Publication of KR101226824B1 publication Critical patent/KR101226824B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 수수 추출물을 유효성분으로 함유하는 조성물에 관한 것으로, 상세하게는 본 발명의 수수 추출물의 탄수화물 소화효소인 α-아밀라아제 및 α-글루코시다제에 대한 탁월한 저해활성 및 식후 혈당 증가 완화 효과를 확인함으로써 당뇨병의 예방 및 치료용 약학조성물 및 건강기능식품의 제공으로 유용하게 이용할 수 있다.The present invention relates to a composition containing a sorghum extract as an active ingredient, and specifically, an excellent inhibitory activity against a-amylase and α-glucosidase, which are carbohydrate digestive enzymes of the sorghum extract of the present invention, and a post-prandial blood sugar increase alleviating effect. By confirming, it can be usefully used for the provision of a pharmaceutical composition for preventing and treating diabetes and a dietary supplement.

Description

수수 추출물을 유효성분으로 함유하는 당뇨병 예방 및 치료용 약학조성물 {A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease}A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease}

본 발명은 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 치료용 약학조성물 또는 건강기능식품에 관한 것이다.
The present invention relates to a pharmaceutical composition or health functional food for preventing and treating diabetes containing sorghum extract as an active ingredient.

[문헌 1] Brands K, Colvin E, Williams LJ., Wang R, Lock RB, Tuch BE. (2008) Reduced immunogenicity of first-trimester human fetal pancreas. Diabetes 57:627-634References 1 Brands K, Colvin E, Williams LJ., Wang R, Lock RB, Tuch BE. (2008) Reduced immunogenicity of first-trimester human fetal pancreas. Diabetes 57: 627-634

[문헌 2] Brunmair B, Gras F, Neschen S, Roden M, Wagner L, Waldhausl W, Furnsinn C. (2001) Direct thiazolidinedione action on isolated rat skeletal muscle fuel handling is independent of peroxisome proliferator-activated receptorγ-mediated changes in gene expression. Diabetes 50:2309-2315Brunmair B, Gras F, Neschen S, Roden M, Wagner L, Waldhausl W, Furnsinn C. (2001) Direct thiazolidinedione action on isolated rat skeletal muscle fuel handling is independent of peroxisome proliferator-activated receptorγ-mediated changes in gene expression. Diabetes 50: 2309-2315

[문헌 3] Chen X, Zheng Y, Shen Y. (2006) Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr Med Chem. 13:109-116Chen X, Zheng Y, Shen Y. (2006) Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr Med Chem. 13: 109-116

[문헌 4] Cryer DR, Nicholas SP, Henry DH, Mills DJ, Stadel BV. (2005) Comparative outcomes study of metformin intervention versus conventional approach the COSMIC Approach Study. Diabetes Care 28:539-5434 Cryer DR, Nicholas SP, Henry DH, Mills DJ, Stadel BV. (2005) Comparative outcomes study of metformin intervention versus conventional approach the COSMIC Approach Study. Diabetes Care 28: 539-543

[문헌 5] Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. (2003) Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26:2370-2377[5] Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. (2003) Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and / or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26: 2370-2377

[문헌 6] Folin O, Denis W. (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem. 12:239-243 Folin O, Denis W. (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem. 12: 239-243

[문헌 7] Jeong IK, Chung JH, Min YK, Lee MS, Lee MK, Kim KW, Chung YE, Park JY, Hong SK, Lee KU. (2002) Comparative study about the effects of acarbose and voglibose in type 2 diabetic patients. Korean Diabetes J. 26;134-146[Reference 7] Jeong IK, Chung JH, Min YK, Lee MS, Lee MK, Kim KW, Chung YE, Park JY, Hong SK, Lee KU. (2002) Comparative study about the effects of acarbose and voglibose in type 2 diabetic patients. Korean Diabetes J. 26; 134-146

[문헌 8] Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. (2005) Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 21:756-761[Reference 8] Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. (2005) Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 21: 756-761

[문헌 9] Large V, Beylot M. (1999) Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes 48:1251-1257Large V, Beylot M. (1999) Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes 48: 1251-1257

[문헌 10] Laube H. (2002) Acarbose: an update of its therapeutic use in diabetes treatment. Clin Drug Invest. 22:141-156Laube H. (2002) Acarbose: an update of its therapeutic use in diabetes treatment. Clin Drug Invest. 22: 141-156

[문헌 11] Lee BB, Park SR, Han CS, Han DY, Park E, Park HY, Lee SC. (2008) Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Viola mandshurica extracts. J Korean Soc Food Sci Nutr 37:405-409[Document 11] Lee BB, Park SR, Han CS, Han DY, Park E, Park HY, Lee SC. (2008) Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Viola mandshurica extracts. J Korean Soc Food Sci Nutr 37: 405-409

[문헌 12] Moller DE. (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821-82712. Moller DE. (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821-827

[문헌 13] Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ. (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074-208113; Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ. (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51: 2074-2081

[문헌 14] Park H, Hwang KY, Kim YH, Oh KH, Lee JY, Kim K. (2008) Discovery and biological evaluation of novel alpha-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg Med Chem Lett. 18:3711-3715Park H, Hwang KY, Kim YH, Oh KH, Lee JY, Kim K. (2008) Discovery and biological evaluation of novel alpha-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg Med Chem Lett. 18: 3711-3715

[문헌 15] Soh H, Lee S, Ha Y. (2002) Total lipid content and fatty acid composition in Setaria italica, Panicum miliaceum and Sorghum bicolor. J. East Asian Soc. Dietary Life 12:123-12815 Soh H, Lee S, Ha Y. (2002) Total lipid content and fatty acid composition in Setaria italica , Panicum miliaceum and Sorghum bicolor . J. East Asian Soc. Dietary Life 12: 123-128

[문헌 16] Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Gori M, Coppini A, Moghetti P. (2003) Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism 52:862-867[16] Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Gori M, Coppini A, Moghetti P. (2003) Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus : a randomized, double-blind, comparative study. Metabolism 52: 862-867

[문헌 17] United Kingdom Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in subjects with type 2 diabetes (UKPDS 33). Lancet 352:837-85317 United Kingdom Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in subjects with type 2 diabetes (UKPDS 33). Lancet 352: 837-853

[문헌 18] Vidal-Puig A, O'Rahilly S. (2001) Metabolism. Controlling the glucose factory. Nature 413:125-12618 Vidal-Puig A, O'Rahilly S. (2001) Metabolism. Controlling the glucose factory. Nature 413: 125-126

[문헌 19] Wilson JJ, Ingledew WM. (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl Environ Microbiol. 44:301-307 19 J Wilson, Ingledew WM. (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl Environ Microbiol. 44: 301-307

[문헌 20] 농촌진흥청 국립식량과학원 작물정보센터
[Document 20] Crop Information Center, National Institute of Crop Science, Rural Development Administration

당뇨병은 혈중 포도당 수준이 높은 것으로 특징지어지는 대사질환이다. 전 세계적으로 당뇨병은 1억 8천만 명의 사람들이 앓고 있으며, 2030년에는 두 배 이상으로 환자수가 증가할 것으로 예측되고 있다. 최근에는 당뇨병 환자수가 빠른 속도로 증가하고 있을 뿐만 아니라 그 발병 연령이 점차 낮아지고 있는 추세이다. 당뇨병은 2가지로 분류되고 있는데, 제 1형 당뇨병은 췌장에서 인슐린의 생성과 분비를 담당하는 β세포가 자가면역질환에 의하여 손상을 입어 인슐린이 분비되지 않는 것이 그 원인이다. 따라서 혈중 포도당이 세포내로 흡수가 일어나지 않아 당뇨병으로 연결된다 (Brands et al., 2008). 반면에, 전체 당뇨병의 약 90%를 차지하고 있는 제 2형 당뇨병은 췌장의 β세포에 의해 인슐린의 분비는 정상적으로 일어나지만, 인슐린의 활성 또는 간이나 근육세포에 대한 인슐린의 작용력이 떨어져서 혈당 강하작용이 제대로 일어나지 못하기 때문에 발생하는 질환이다. 제 1형 당뇨병을 인슐린 의존성 당뇨병, 제 2형 당뇨병을 인슐린 비의존성 당뇨병이라고 한다 (Moller, 2001; Vidal-Puig et al., 2001).Diabetes is a metabolic disease characterized by high blood glucose levels. Diabetes affects 180 million people worldwide, and the number of patients is expected to more than double in 2030. Recently, the number of diabetic patients is increasing rapidly, and the age of onset is gradually decreasing. Diabetes is classified into two types, and type 1 diabetes is caused by the fact that β cells, which are responsible for the production and secretion of insulin in the pancreas, are damaged by autoimmune diseases and thus do not secrete insulin. Therefore, blood glucose is not absorbed into cells and leads to diabetes (Brands et al., 2008). On the other hand, type 2 diabetes, which accounts for about 90% of all diabetes, normally secretes insulin by the β-cells of the pancreas, but the action of insulin or the ability of insulin to lower liver or muscle cells lowers blood glucose. It is a disease that occurs because it does not happen properly. Type 1 diabetes is called insulin dependent diabetes and type 2 diabetes is insulin independent diabetes (Moller, 2001; Vidal-Puig et al., 2001).

현재 임상에서 당뇨병의 치료제로는 설포닐우레아 (sulfonylurea)계통, 비구아니드 (biguanide)계통, 치아졸리딘다이온 (thiazolidinedione)계통, 그리고 α-아밀라아제 (amylase) 저해제 및 α-글루코시다제 (glucosidase) 저해제 계통의 약제들이 사용되고 있다. 그 작용기전으로서, 설포닐우레아 (Sulfonylurea) 계통의 약제는 췌장의 β세포의 수용체와 결합하여 세포내에 Ca2 +를 증가시키고 그 결과 사이토스켈레톤 (cytoskeleton)에 영향을 미쳐 세포 밖으로의 인슐린 과립의 유출을 자극하여 인슐린 분비를 증가시킨다 (UKPDS group, 1998; Fineman et al., 2003). 비구아니드 (Biguanide)계통의 약제는 간에서의 포도당신생 (gluconeogenesis)을 감소시키고 근육세포에서의 AMP 키나아제(kinase) (AMPK) 활성을 증대시켜 글루코오스 (glucose)의 소비를 촉진하는 역할을 한다 (Large et al., 1999; Cryer et al., 2005; Musi et al., 2002). 치아졸리딘다이온 (Thiazolidinedione)계통의 약제는 인슐린 표적세포의 핵내에 존재하는 전사인자인 PPAR-γ와 결합하여 인슐린에 반응하는 여러 종류의 단백질 합성을 촉진시켜 인슐린의 작용을 증진시키는 작용을 한다 (Brunmair et al., 2001; Moller, 2001). 이를 통해 제2형 당뇨병의 주된 원인인 인슐린 저항성을 개선해 준다. 또한, α-아밀라아제 (amylase) 저해제 및 α-글루코시다제 (glucosidase) 저해제 계통의 약제는 탄수화물이 소화효소에 의해 단당류로 가수분해되는 것을 억제하는 작용을 하므로 식후 혈당 상승을 완만하게 한다 (Chen et al., 2006; Moller, 2001). 대부분 당뇨병 치료과정에 있어서는 이러한 약제들을 두 가지 이상 동시에 조합하여 사용하여, 그 결과 약제 서로간의 상승효과에 의해 혈당이 효과적으로 저하되도록 한다 (Tosi et al., 2003). Current clinical treatments for diabetes include sulfonylurea, biguanide, thiazolidinedione, and α-amylase inhibitors and α-glucosidase. Inhibitors are being used. As the mechanism of action, sulfonylurea (Sulfonylurea) The agent of the system is increased the Ca 2 + in the cell in combination with a receptor of the β cells of the pancreas and as a result leakage of insulin granules out affects the Saito skeleton (cytoskeleton) cells Stimulate insulin secretion to increase insulin secretion (UKPDS group, 1998; Fineman et al., 2003). Biguanide-based drugs play a role in promoting glucose consumption by reducing gluconeogenesis in the liver and enhancing AMP kinase (AMPK) activity in muscle cells ( Large et al., 1999; Cryer et al., 2005; Musi et al., 2002). Thiazolidinedione-based drugs bind to PPAR-γ, a transcription factor present in the nucleus of insulin target cells, and promote the action of insulin by promoting the synthesis of several proteins that respond to insulin ( Brunmair et al., 2001; Moller, 2001). This improves insulin resistance, the leading cause of type 2 diabetes. In addition, drugs of the α-amylase and α-glucosidase inhibitor systems act to inhibit carbohydrates from hydrolyzing into monosaccharides by digestive enzymes, thus slowing blood sugar elevation after meals (Chen et al., 2006; Moller, 2001). In most cases of diabetes treatment, two or more of these drugs are used in combination at the same time, and as a result, the blood sugar is effectively lowered by synergistic effects between the drugs (Tosi et al., 2003).

한편, α-아밀라아제 (amylase) 저해제 및 α-글루코시다제 (glucosidase) 저해제와 같은 탄수화물 소화 억제제는 식후 체내 혈당의 급격한 상승을 완화시키므로 당뇨병 환자의 치료에 유용한 약제로 알려져 있다. 현재 당뇨병 치료를 위해 상용되는 탄수화물 소화 억제제로는 아카보스 (acarbose) (도 1A 참조)와 보글리보스 (voglibose) (도 1B 참조)가 알려져 있다. 아카보스 (acarbose)는 슈도테트라사카라이드 (pseudotetrasaccharide)의 일종으로 올리고사카라이드 (oligosaccharide)와 유사한 구조를 지니고 있어서 탄수화물 분해효소인 α-아밀라아제 (amylase), 글루코아밀라아제 (glucoamylase), 인베르타아제 (invertase), 덱스트라나아제 (dextranase), α-글루코시다제 (glucosidase), 말타아제 (maltase)의 기질에 대한 효소작용을 경쟁적으로 저해하며, 각 효소들과의 친화력은 왼쪽의 α-아밀라아제 (amylase)의 경우가 가장 강하며 오른쪽 α-글루코시다제 (glucosidase) (maltase)의 경우는 가장 약하다. 또한, 아카보스 (acarbose)는 인베르타아제 (invertase)에 대한 친화력이 수크로오스 (sucrose)에 비해 104~105배 정도 강하지만, 아이소말타아제 (isomaltase) 및 β-글루코시다제 (glucosidase)와는 친화력이 매우 낮거나 없어서 아이소말타아제 (isomaltase)와 β-글루코시다제 (glucosidase)에 대한 저해효과는 크지 않다 (Laube, 2002). 한편, 보글리보스 (voglibose)는 발리올아민 (valiolamine) 유도체의 일종으로 모노사카라이드 (monosaccharide)와 유사한 구조이며 α-글루코시다제 (glucosidase)는 효과적으로 저해하지만 α-아밀라아제 (amylase)는 저해하지 못한다 (Chen et al., 2006). On the other hand, carbohydrate digestion inhibitors, such as α-amylase inhibitors and α-glucosidase inhibitors, are known to be useful agents for the treatment of diabetics because they alleviate the rapid rise in blood sugar levels after eating. Carbohydrate digestion inhibitors currently available for the treatment of diabetes are known as acarbose (see FIG. 1A) and boglibose (see FIG. 1B). Acarbose is a kind of pseudotetrasaccharide and has a structure similar to oligosaccharide, so it is a carbolytic enzyme α-amylase, glucoamylase, and invertase. Competitively inhibit enzymatic action on the substrates of dextranase, α-glucosidase and maltase, and their affinity for the enzymes on the left side of α-amylase The case is the strongest and the right α-glucosidase (maltase) is the weakest. In addition, affinity than acarbose (acarbose) is the only kinase Berta affinity for (invertase) is strong to 10 4 to 10 5 times that of sucrose (sucrose), iso maltase (isomaltase) and β- glucosidase (glucosidase) is Very low or no inhibitory effects on isomaltase and β-glucosidase (Laube, 2002). On the other hand, voglibose is a kind of valoliolamine derivative, which is similar in structure to monosaccharides and effectively inhibits α-glucosidase but does not inhibit α-amylase. (Chen et al., 2006).

식후 혈당의 갑작스런 증가를 완화하기 위해 α-아밀라아제 (amylase) 저해제 및 α-글루코시다제 (glucosidase) 저해제를 복용하면 그 영향으로 탄수화물의 소화 및 흡수가 원활하지 못하므로 소화되지 못한 탄수화물을 이용하는 장내 세균의 수가 증가한다. 또한 소화되지 못한 탄수화물과 당류는 결장의 세균 유래 효소에 의해 분해된 뒤 대사되어 아세틱엑시드 (acetic acid), 뷰티릭엑시드 (butyric acid), 락틱엑시드 (lactic acid)와 같은 유기산 생성에 관여하게 된다. 생성된 유기산들은 장내의 pH를 저하시키며 삼투압을 증가시켜 설사와 복통을 유발할 수 있으며, 또 다른 대사부산물인 이산화탄소, 메탄 등의 기체는 복부 팽만감 등의 부작용을 일으킬 수 있다 (Jeong et al., 2002). Ingestion of α-amylase inhibitors and α-glucosidase inhibitors to alleviate the sudden increase in blood sugar after meals results in poor digestion and absorption of carbohydrates, resulting in intestinal bacteria that use undigested carbohydrates. The number of is increased. Indigestible carbohydrates and sugars are also broken down by colon-derived enzymes and metabolized to produce organic acids such as acetic acid, butyric acid, and lactic acid. . The organic acids produced may lower the pH of the intestine and increase the osmotic pressure to cause diarrhea and abdominal pain, and other metabolic products such as carbon dioxide and methane may cause side effects such as bloating (Jeong et al., 2002). ).

수수 (Sorghum bicolor L. Moench)는 일년생 혹은 다년생 화본과작물로 종실은 영과 (穎果)이며 단단하고 광택 있는 받침껍질에 싸여 있다. 종근은 1본이며, 제4엽이 신장할 때부터 최하절에서 관근이 발생하고 심근성이며 흡비력, 내건성이 강하다. 줄기와 잎은 단간인 것은 간장이 1m 내외이고, 장간인 것은 2∼3m에 달한다. 절수는 8∼13마디로서 보통 10마디 내외이고, 줄기의 내부에는 속이 차있다. 줄기의 표면은 지압이 현저하고, 충해나 상처를 입은 곳에는 적갈색의 색소가 형성된다. 잎이 크며 길이가 1m, 나비는 5㎝정도이며, 중륵이 희고 뚜렷하다. 엽이는 없고 엽설은 흑갈색의 환장막편이며, 립모가 있다. 이삭은 수경은 굵은 것이 많으며, 약 10마디가 있는데, 각 마디에서 5∼6개의 지경이 윤생하고, 다시 2∼3차의 지경이 착생하여 소수를 단다. 일수립수는 1,462∼3,985립이고 평균 2,747립 정도라고 한다.Sorghum ( Sorghum bicolor L. Moench) is an annual or perennial herbaceous plant, the seed of which is young and enclosed in a hard, glossy base. One root is one and the root is generated from the bottom of the fourth lobe elongated, myocardial, absorbent, dry resistance is strong. Stems and leaves are short stems of about 1m of soy sauce, and long stems of 2-3m. Saving water is 8 ~ 13 nodes, usually about 10 nodes, and inside of stem is cold. The surface of the stem has a significant acupressure, and reddish-brown pigment is formed at the place where it is damaged or damaged. The leaf is large, 1m long, the butterfly is about 5cm, the middle is white and distinct. There is no leaf, and lobe is dark brown rim membrane piece with lip hair. Isaac has a large number of hydroponic, about 10 nodes, 5 to 6 diameters in each node, and 2 to 3 diameters grow again. The daily number is 1,462 ~ 3,985 grains and the average number is 2,747 grains.

품종은 정리되어 있지 않으며 재래종이 재배되고 있다. 비교적 키가 크며, 이삭은 개산형인 것부터 밀수형인 것까지 있고, 찰수수와 메수수가 있다. 황금찰수수 (黃金)는 재래종으로부터 순계 분리된 품종으로 2004년 육성 되었다. 찰수수로 조생종에 속하며, 키는 160cm정도며, 이색의 형태는 밀수형이고, 종실의 색은 붉은색이다. 대풍수수 (大豊)는 재래종으로부터 순계 분리된 품종으로 2007년 육성되었다. 메수수로 형태적 특성은 황금찰수수와 비슷하나 키가 20cm 정도 더 크다 (농촌진흥청 국립식량과학원 작물정보센터 http://www.nics.go.kr/). The varieties are not arranged and the native species are grown. It is relatively tall, and it is from Isaac's estimate to smuggling. Golden Sorghum (黄 金) was bred in 2004 as a breed separated from the native species. It is a brackish water, belonging to the early spring species, and its height is about 160cm, the bicolor is smuggled, and the color of the seed is red. Dafeng Shui was cultivated in 2007 as a cultivar isolated from the native species. Its shape is similar to that of golden wax sorghum but it is about 20cm tall (National Institute of Crop Science, RDA, http://www.nics.go.kr/).

우리나라는 현재 논농사 위주의 농업형태를 취하고 있으므로 전통 잡곡류의 재배 및 수확은 미약하며, 잡곡류는 별식이나 주식의 혼반용으로 이용되고 있는 실정이다 (Soh et al., 2002). 최근 들어 건강기능성 웰빙식품에 대한 관심이 증가하면서, 잡곡류의 기능성에 대한 관심, 잡곡의 재배 및 소비도 증가 추세에 있다. 그러나 잡곡류의 생리활성에 대한 체계적인 연구가 매우 부족하며, 특히 비만 및 당뇨병과 관련된 잡곡류의 효능에 대한 연구는 거의 이루어지지 않은 실정이다. Since Korea is currently farming mainly on paddy fields, the cultivation and harvesting of traditional grains is weak, and grains are used for mixing meals and stocks (Soh et al., 2002). Recently, as interest in health functional well-being foods has increased, there has been an increasing interest in the functionality of grains, cultivation and consumption of grains. However, systematic studies on the biological activity of cereal grains are very lacking, and in particular, studies on the efficacy of cereal grains related to obesity and diabetes have been rarely performed.

이에 본 발명자들은 생체에 부작용이 없으면서 식후 급격한 혈당 상승을 억제하는 작용이 우수한 물질을 찾고자, 수수 추출물의 약리학적 효과를 실험한 결과, 수수 추출물의 탁월한 α-아밀라아제 (amylase)와 α-글루코시다제 (glucosidase) 저해 활성 및 식후 혈당 상승 억제 효과를 확인함으로써 본 발명을 완성하였다.
Accordingly, the present inventors have tried to find a substance excellent in inhibiting the rapid blood sugar rise after eating without side effects in the living body, and tested the pharmacological effect of sorghum extract, the excellent α-amylase (amylase) and α-glucosidase of sorghum extract (glucosidase) inhibitory activity and post-prandial blood sugar elevation inhibitory effect was confirmed by completing the present invention.

상기 목적을 달성하기 위하여, 본 발명은 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 치료용 약학조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for the prevention and treatment of diabetes mellitus containing sorghum extract as an active ingredient.

또한, 본 발명은 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 개선용 건강기능식품을 제공한다.In addition, the present invention provides a dietary supplement for the prevention and improvement of diabetes mellitus containing sorghum extract as an active ingredient.

본원에서 정의되는 수수(Sorghum bicolor L. Moench)는 찰수수 (Sorghum bicolor L. Moench var. Chal), 황금찰수수 (Sorghum bicolor L. Moench var. Hwanggeumchal) 및 흰찰수수 (Sorghum bicolor L. Moench var. Huinchal)을 포함하는 수수의 조추출물, 극성용매 가용 추출물 또는 비극성용매 가용 추출물임을 특징으로 한다. Sorghum as defined herein bicolor L. Moench) is chalsusu (Sorghum bicolor L. Moench var. Chal), Golden Swordsman ( Sorghum) bicolor L. Moench var. Hwanggeumchal and White-tailed Sorghum ( Sorghum) bicolor L. Moench var. Huinchal) is characterized in that the crude extract of sorghum, polar solvent soluble extract or non-polar solvent soluble extract.

본원에서 정의되는 “조추출물”은 정제수를 포함한 물, 메탄올, 에탄올, 부탄올 등의 탄소수 1 내지 4의 저급알코올 또는 이들의 혼합용매로부터 선택된 용매, 바람직하게는 물 및 에탄올 혼합용매, 보다 바람직하게는 60~90% 에탄올에 가용한 추출물을 포함한다.A "crude extract" as defined herein is a solvent selected from water containing purified water, lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol, butanol or the like, or a mixed solvent thereof, preferably a water and ethanol mixed solvent, more preferably Contains extracts available in 60-90% ethanol.

본원에서 정의되는 “극성용매 가용 추출물”은 물, 메탄올, 부탄올 또는 이들의 혼합용매로부터 선택되어진 용매, 바람직하게는 물 또는 부탄올, 보다 바람직하게는 부탄올에 가용한 추출물을 포함한다."Polar solvent soluble extract" as defined herein includes extracts soluble in water, methanol, butanol or a mixed solvent thereof, preferably water or butanol, more preferably butanol.

본원에서 정의되는 “비극성용매 가용 추출물”은 헥산, 메틸렌 클로라이드, 클로로포름, 또는 에틸아세테이트, 바람직하게는 헥산, 메틸렌 클로라이드 또는 에틸아세테이트, 보다 바람직하게는, 헥산 또는 메틸렌 클로라이드 용매에 가용한 추출물을 포함한다."Non-polar solvent soluble extract" as defined herein includes extracts soluble in hexane, methylene chloride, chloroform, or ethyl acetate, preferably hexane, methylene chloride or ethyl acetate, more preferably in hexane or methylene chloride solvent. .

본원에서 정의되는 당뇨병은 제1형 또는 제2형 당뇨병, 바람직하게는 제2형 당뇨병을 포함한다.Diabetes as defined herein includes type 1 or type 2 diabetes, preferably type 2 diabetes.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 수수 추출물은 하기와 같이 제조될 수 있다. 수수를 세척 및 세절 후 1분 내지 30분, 바람직하게는 5분 내지 20분간 마쇄하여 60% 내지 90% 에탄올을 수회 섞은 다음에 30℃ 내지 150℃, 바람직하게는 50℃ 내지 100℃의 온도에서 환류추출하여 얻은 상기 추출액을 1,000rpm 내지 20,000rpm, 바람직하게는 5,000rpm 내지 15,000rpm의 속도로 5분 내지 30분, 바람직하게는 10분 내지 25분간 원심분리하여 상등액만을 따로 모아 감압 농축, 건조하여 본 발명의 수수 조추출물을 얻을 수 있다.Sorghum extract of the present invention may be prepared as follows. After washing and sintering the millet, it is ground for 1 minute to 30 minutes, preferably 5 minutes to 20 minutes, and mixed with 60% to 90% ethanol several times, and then at a temperature of 30 ° C to 150 ° C, preferably 50 ° C to 100 ° C. The extract obtained by reflux extraction was centrifuged for 5 minutes to 30 minutes, preferably 10 minutes to 25 minutes at a speed of 1,000rpm to 20,000rpm, preferably 5,000rpm to 15,000rpm to collect only the supernatant, and concentrated under reduced pressure and dried. The sorghum crude extract of the present invention can be obtained.

또한, 본 발명의 극성용매 또는 비극성용매 가용 추출물은 상기에서 얻은 조추출물, 바람직하게는 60 내지 90% 에탄올 조추출물 중량의 약 0.0005 내지 0.005배, 바람직하게는 0.05 내지 0.5배 부피 (v/w%)의 물을 가한 후, n-헥산, 메틸렌 클로라이드, 에틸 아세테이트 및 부탄올을 이용한 통상적인 분획과정을 수행하여 n-헥산, 메틸렌 클로라이드, 에틸 아세테이트 등의 비극성 용매에 가용한 비극성 용매 가용 추출 분획물; 및 부탄올, 물 등의 극성용매에 가용한 극성용매 가용 추출 분획물을 수득할 수 있다.In addition, the polar solvent or non-polar solvent soluble extract of the present invention is about 0.0005 to 0.005 times the weight of the crude extract, preferably 60 to 90% ethanol crude extract, preferably 0.05 to 0.5 times the volume (v / w% Non-polar solvent soluble extract fractions which are available in non-polar solvents such as n-hexane, methylene chloride, ethyl acetate by carrying out a conventional fractionation process using n-hexane, methylene chloride, ethyl acetate and butanol after addition of water; And polar solvent soluble extract fractions soluble in polar solvents such as butanol, water and the like.

본 발명자들은 상기 제조방법으로 수득되는 수수 추출물을 대상으로 한 α-아밀라아제 (amylase) 및 α-글루코시다제 (glucosidase)의 탁월한 저해활성 효과 확인 및 식후 혈당 상승 억제효과를 확인함으로써 당뇨병의 예방 및 치료에 유용한 약학조성물 및 건강기능식품의 제공에 유용함을 확인하였다.The inventors of the present invention confirmed the excellent inhibitory activity of α-amylase and α-glucosidase of sorghum extract obtained by the preparation method and the effect of inhibiting post-prandial blood sugar elevation prevention and treatment of diabetes. It has been found to be useful for the provision of pharmaceutical compositions and dietary supplements useful for the study.

따라서 본 발명은 상기의 제조방법으로 얻어진 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 치료용 약학조성물을 제공한다.Therefore, the present invention provides a pharmaceutical composition for the prevention and treatment of diabetes mellitus containing the sorghum extract obtained by the above method as an active ingredient.

또한, 본 발명은 상기의 제조방법으로 얻어진 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 개선용 건강기능식품을 제공한다. The present invention also provides a health functional food for the prevention and improvement of diabetes containing the sorghum extract obtained by the above method as an active ingredient.

본 발명의 수수 추출물을 함유하는 당뇨병의 예방 및 치료를 위한 약학조성물은, 조성물 총 중량에 대하여 상기 추출물을 0.1 내지 50중량%로 포함한다.The pharmaceutical composition for the prevention and treatment of diabetes mellitus containing sorghum extract of the present invention comprises 0.1 to 50% by weight of the extract relative to the total weight of the composition.

본 발명의 수수 추출물을 함유하는 약학조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다.Pharmaceutical compositions containing sorghum extract of the present invention may further comprise suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceutical compositions.

본 발명에 따른 수수 추출물을 함유하는 약학조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있으며, 분획물을 포함하는 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 분획물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트 (calcium carbonate), 수크로스 (sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Pharmaceutical compositions containing sorghum extract according to the present invention may be in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols and the like, oral preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods. Carriers, excipients and diluents which may be used in the formulation comprising fractions, may include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate , Gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In the case of formulation, a diluent or excipient such as a filler, an extender, a binder, a wetting agent, a disintegrant, or a surfactant is usually used. Solid form preparations for oral administration include tablets, pills, powders, granules, capsules and the like, and such solid form preparations contain at least one excipient such as starch, calcium carbonate and sucrose in the fraction. Or lactose, gelatin and the like. In addition to simple excipients, lubricants such as magnesium stearate talc are also used. Examples of the liquid preparation for oral use include suspensions, solutions, emulsions, and syrups. In addition to water and liquid paraffin, simple diluents commonly used, various excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included . Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Examples of the suspending agent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like. As the base of the suppository, witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.

본 발명의 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 본 발명의 조성물은 1일 0.5 g/kg 내지 5 g/kg으로, 바람직하게는 1 g/kg 내지 3 g/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수 있다. 따라서 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The preferred dosage of the composition of the present invention varies depending on the condition and the weight of the patient, the degree of disease, the type of drug, the route of administration and the period of time, but can be appropriately selected by those skilled in the art. However, for the desired effect, the composition of the present invention is preferably administered at 0.5 g / kg to 5 g / kg, preferably 1 g / kg to 3 g / kg per day. The administration may be carried out once a day or divided into several doses. Accordingly, the dosage is not limited in any way to the scope of the present invention.

본 발명의 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내 (intracerebroventricular) 주사에 의해 투여될 수 있다.The composition of the present invention may be administered to mammals such as rats, mice, livestock, humans, and the like in various routes. All modes of administration may be expected, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intra-uterine or intracerebroventricular injections.

본 발명은 수수 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 개선용 건강기능식품을 제공한다.The present invention provides a dietary supplement for the prevention and improvement of diabetes mellitus containing sorghum extract as an active ingredient.

본 발명의 추출물을 포함하는 조성물은 당뇨의 예방 및 개선을 위한 약제, 식품 및 음료 등에 다양하게 이용될 수 있다. The composition comprising the extract of the present invention can be used in various ways, such as drugs, foods and drinks for the prevention and improvement of diabetes.

본 발명의 추출물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있고, 분말, 과립, 정제, 캡슐 또는 음료인 형태로 사용할 수 있다.Examples of the foods to which the extract of the present invention can be added include various foods, beverages, gums, tea, vitamin complexes, health supplements and the like, and they can be used as powders, granules, tablets, capsules or beverages have.

본 발명의 식품 또는 음료 중의 상기 추출물의 양은 일반적으로 본 발명의 건강식품 조성물은 전체 식품 중량의 1 내지 5 중량%로 가할 수 있으며, 건강 음료 조성물은 100 ㎖를 기준으로 0.02 내지 10 g, 바람직하게는 0.3 내지 1 g의 비율로 가할 수 있다. The amount of the extract in the food or beverage of the present invention may generally be added to 1 to 5% by weight of the total food weight of the health food composition of the present invention, the health beverage composition is 0.02 to 10 g, preferably based on 100 ml Can be added in a ratio of 0.3 to 1 g.

본 발명의 건강 음료 조성물은 지시된 비율로 필수 성분으로서 상기 수수 추출물을 함유하는 것 외에 액체성분에는 특별한 제한점은 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등의 디사카라이드, 예를 들어 말토스, 슈크로스 등의 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제 (타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 mL당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g이다.In addition to containing the sorghum extract as an essential ingredient in the indicated ratio, the health beverage composition of the present invention has no particular limitation on the liquid component and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks. . Examples of the above-mentioned natural carbohydrates include monosaccharides such as disaccharides such as glucose and fructose such as maltose, sucrose and the like and polysaccharides such as dextrin, cyclodextrin and the like Sugar, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (tauumatin, stevia extract (for example rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used. The proportion of said natural carbohydrates is generally about 1-20 g, preferably about 5-12 g per 100 mL of the composition of the present invention.

상기 외에 본 발명의 조성물은 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 조성물들은 천연 과일 쥬스 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.
In addition to the above, the composition of the present invention includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, coloring and neutralizing agents (such as cheese, chocolate), pectic acid and salts thereof, alginic acid and its Salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like. In addition, the compositions of the present invention may contain flesh for the production of natural fruit juices and vegetable beverages. These components may be used independently or in combination. The proportion of such additives is not so critical, but is generally selected in the range of 0 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.

상기에서 설명한 바와 같이, 본 발명의 수수 추출물은 탄수화물의 소화효소인 α-아밀라아제 (amylase) 및 α-글루코시다제 (glucosidase)의 효소작용을 탁월하게 억제하는 효과 및 식후 혈당 증가를 완화하는 효과를 보여 당뇨병의 치료 및 예방의 유용한 약학조성물 또는 건강기능식품으로서 사용할 수 있다.
As described above, the sorghum extract of the present invention has an excellent effect of inhibiting the enzymatic action of α-amylase and α-glucosidase, which are digestive enzymes of carbohydrates, and relieving postprandial blood sugar increase. It can be used as a useful pharmaceutical composition or health functional food for the treatment and prevention of diabetes.

도 1은 아카보스 (acarbose) 와 보글리보스 (voglibose)의 구조를 나타내는 도이고,
도 2는 다양한 용매를 이용한 80% 에탄올 추출물의 분류 도식을 나타내는 도이고,
도 3은 α-아밀라아제 (amylase)에 대한 다양한 잡곡의 80% 에탄올 추출물의 저해활성을 나타내는 도이고,
도 4는 0.125 ~ 1 mg/ml 농도에서 α-아밀라아제 (amylase)에 대한 (A) 찰수수와 기장 (B) 흰찰수수와 메조의 80% 에탄올 추출물의 저해활성을 나타내는 도이고,
도 5는 α-아밀라아제 (amylase)에 대한 (A) 찰수수와 기장 (B) 흰찰수수와 메조의 유기 용매 분획물의 저해활성을 나타내는 도이고,
도 6은 찰수수의 메틸렌 클로라이드 (methylene chloride) 분획물의 열에 대한 안정성 조사를 나타내는 도이고,
도 7은 찰수수의 메틸렌 클로라이드 (methylene chloride) 분획물의 산에 대한 안정성 조사를 나타내는 도이고,
도 8은 α-글루코시다제 (glucosidase)에 대한 수수 및 다양한 잡곡의 에탄올 추출물의 저해활성을 나타내는 도이고,
도 9는 다양한 농도에서 α-글루코시다제 (glucosidase)에 대한 황금찰수수의 에탄올 추출물의 저해활성을 나타내는 도이고,
도 10은 α-글루코시다제 (glucosidase)에 대한 황금찰수수의 유기 용매 분획물의 저해활성을 나타내는 도이고,
도 11은 α-글루코시다제 (glucosidase)에 대한 찰수수와 식용피의 유기 용매 분획물의 저해활성을 나타내는 도이고,
도 12는 (A) 다양한 곡물의 80% 에탄올 추출물 (B) 찰수수, 황금찰수수, 식용피, 메조의 유기 용매 분획물에서 총 페놀화합물의 정량을 나타내는 도이고,
도 13은 황금찰수수의 80% 에탄올 추출물의 식후 혈당 수준을 나타내는 도이다.
1 is a view showing the structure of acarbose (acarbose) and boglibose (voglibose),
2 is a diagram showing a classification scheme of 80% ethanol extract using various solvents,
3 is a diagram showing the inhibitory activity of 80% ethanol extract of various grains against α-amylase,
Figure 4 is a diagram showing the inhibitory activity of the 80% ethanol extract of (A) Chaksu and millet (B) Whitestalk and meso against α-amylase at a concentration of 0.125 ~ 1 mg / ml,
5 is a diagram showing the inhibitory activity of the organic solvent fractions of (A) waxy water and millet (B) white waxy water and meso against α-amylase,
6 is a diagram showing the stability of the heat of the methylene chloride (methylene chloride) fraction of the brine water,
7 is a diagram showing the stability of the methylene chloride (methylene chloride) fraction of the water in the acid,
8 is a diagram showing the inhibitory activity of ethanol extracts of sorghum and various grains against α-glucosidase,
9 is a diagram showing the inhibitory activity of the ethanol extract of golden wax sorghum against glucosidase at various concentrations,
10 is a diagram showing the inhibitory activity of the organic solvent fraction of golden wax sorghum against α-glucosidase,
FIG. 11 is a diagram showing the inhibitory activity of the organic solvent fractions of water and edible blood on α-glucosidase,
12 is a diagram showing the quantification of total phenolic compounds in (A) 80% ethanol extracts of various grains (B) organic solvent fractions of waxy water, golden waxy water, edible blood, meso,
Figure 13 is a diagram showing the post-prandial blood sugar level of 80% ethanol extract of golden wax water.

이하, 본 발명을 상세히 설명한다. 단, 하기 실시예, 참고예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail. However, the following Examples, Reference Examples and Experimental Examples are merely illustrative of the present invention, but the content of the present invention is not limited thereto.

참고예 1. 시약 및 기기Reference Example 1. Reagents and Instruments

1-1. 수수 조추출물 추출 시 사용한 시약 및 기기1-1. Reagents and Instruments Used to Extract Sorghum Crude Extracts

수수의 추출과 분획에 사용한 용매는 (95% ethanol (Duksan), 99.5% methylene chloride, 99.5% ethyl acetate, 96.0% n-hexane, 99.0% n-butanol (동양제철화학))을 사용하였으며, 사용한 기기는 회전 감압농축기(Rotary vacuum evaporator; Heidolph LR 4000, Germany), aspirator (Eyela A-3S, Japan)를 사용하였다.
The solvent used for extraction and fractionation of sorghum was (95% ethanol (Duksan), 99.5% methylene chloride, 99.5% ethyl acetate, 96.0% n-hexane, 99.0% n-butanol (Dongyang Steel Chemical)). Rotary vacuum evaporator (Heidolph LR 4000, Germany), aspirator (Eyela A-3S, Japan) was used.

1-2. 실험에 사용한 작물의 획득1-2. Obtaining Crops Used in Experiments

실험에 사용한 수수는 국립식량과학원 기능성작물부 (경남 밀양)로부터 제공받았다. 수수는 종자와 피가 있는 조곡의 형태와 피를 벗기고 종자만 남은 정곡의 형태로 분류하였다. 찰수수 (정곡), 황금찰수수 (조곡), 흰찰수수 (조곡)를 각각 1 kg씩 제공받았다(표 1 참조). The sorghum used for the experiment was provided by the Department of Functional Crop (Kyongnam Miryang). Sorghum was classified into the form of grains with seeds and blood, and the form of grains with only the seeds peeled off the blood. 1 kg of rice flour (junggok), golden rice flour (gongsu), and white rice flour (gongsu) were each provided (see Table 1).

NoNo 작물명Crop name 시료형태Sample type 시료량(kg)Sample amount (kg) 1One 기장millet 정곡Jeonggok 1One 22 노랑찰기장Yellow Seal Field 조곡Gorge 1One 33 찰수수Chimney 정곡Jeonggok 1One 44 황금찰수수Golden Swordsman 조곡Gorge 1One 55 흰찰수수White horse 조곡Gorge 1One 66 노란차조Yellow tea 정곡Jeonggok 0.40.4 77 메조Mezzo 정곡Jeonggok 1One 88 청차조Green tea 정곡Jeonggok 1One 99 청차조Green tea 조곡Gorge 1One 1010 황금조Golden tone 조곡Gorge 1One 1111 식용피Edible Blood 조곡Gorge 0.10.1 1212 율무Yulmu 정곡Jeonggok 1One 1313 red bean 정곡Jeonggok 1One

실시예Example 1. 수수의 추출 및 분획  1. Extraction and fractionation of sorghum

1-1. 수수 1-1. Sorghum 조추출물의Crude extract 분리 detach

국립식량과학원 기능성작물부 (경남 밀양)로부터 제공받은 수수의 종자 250~500g을 세척 후 Blender 7012 (Dynamics Corporation, USA)로 10분간 마쇄하여 80% 에탄올 1000ml를 3회 (1회에 3시간씩) 섞은 다음에 80℃의 온도에서 환류냉각장치 (Corning 2560-400, USA)를 이용한 환류추출법을 수행하여 얻은 상기 추출액을 10,000 rpm의 속도로 20분간 원심분리하여 상등액만 따로 모아 회전식 감압농축기 (rotary vacuum evaporator, Heidolph LR 4000, Germany)로 감압 농축, 건조하여 80% 에탄올 수수 추출물(이하 “SS-2” 라 명명 함) 23g(수율 5.75%)을 수득하였다 (도 2 ; 표 2 참조).
Wash 250 ~ 500g of sorghum seed provided by National Institute of Crop Science (Myongyang Milyang) and wash it with Blender 7012 (Dynamics Corporation, USA) for 10 minutes, and then use 1000ml of 80% ethanol 3 times (3 times each time). After mixing, the extract obtained by reflux extraction using a reflux condenser at a temperature of 80 ° C. (Corning 2560-400, USA) was centrifuged at a speed of 10,000 rpm for 20 minutes to collect only the supernatant and a rotary vacuum concentrator. evaporator, Heidolph LR 4000, Germany) was concentrated under reduced pressure and dried to obtain 23g (yield 5.75%) of 80% ethanol sorghum extract (hereinafter referred to as "SS-2") (Fig. 2; Table 2).

1-2. 극성 용매 및 1-2. Polar solvents and 비극성용매Nonpolar Solvent 가용 추출물의 분획 Fraction of soluble extract

실시예 1-1에서 얻은 80% 에탄올 추출물의 소량을 남기고 나머지를 물 500 ml에 녹여서 (녹지 않는 부분을 n-헥산에 녹여 수층에 넣고 계속 분획하였다.) n-헥산 (500 ml × 3 회)을 붓고, 분별이 이루어진 후에 n-헥산층을 농축하여 n-헥산 분획 (이하 “SS-2HE” 라 명명 함)을 얻었다. 이어서 상기 수층을 메틸렌 클로라이드 (500 ml × 3 회)로 추출하였으며, 메틸렌 클로라이드 층을 농축하여 메틸렌 클로라이드 분획 (이하 “SS-2MC” 라 명명 함)을 얻었다. 이어서 수층을 에틸 아세테이트 (500 ml × 3 회)로 추출하고 추출액을 농축하여 에틸 아세테이트 분획 (이하 “SS-2EA” 라 명명 함)을 각각 얻었다. 이어서 상기 수층을 n-부탄올 (500 ml × 3 회)로 추출하여 농축하여 n-부탄올 분획(이하 “SS-2BU” 라 명명 함)을 얻었다. 최종적으로 남은 상기 수층 또한 농축하여 수층분획 (이하 “SS-2WA” 라 명명 함)을 얻었다 (도 2 ; 표 2 참조).
Leave a small amount of the 80% ethanol extract obtained in Example 1-1 and dissolve the remainder in 500 ml of water (the undissolved portion was dissolved in n-hexane, placed in an aqueous layer and fractionated). N-hexane (500 ml × 3 times) After pouring, the n-hexane layer was concentrated after fractionation to obtain an n-hexane fraction (hereinafter referred to as “SS-2HE”). The aqueous layer was then extracted with methylene chloride (500 ml × 3 times) and the methylene chloride layer was concentrated to give a methylene chloride fraction (hereinafter referred to as “SS-2MC”). The aqueous layer was then extracted with ethyl acetate (500 ml × 3 times) and the extract was concentrated to give ethyl acetate fractions (hereinafter referred to as “SS-2EA”), respectively. The aqueous layer was then extracted with n-butanol (500 ml × 3 times) and concentrated to give an n-butanol fraction (hereinafter referred to as “SS-2BU”). Finally, the remaining aqueous layer was also concentrated to obtain an aqueous layer fraction (hereinafter referred to as “SS-2WA”) (FIG. 2; see Table 2).

** Dry weight of ethanol extracts and various organic solvent fractions** Dry weight of ethanol extracts and various organic solvent fractions (gram)(gram) NoNo 잡 곡 Grain 추출량Extraction amount EthanolEthanol HexaneHexane Methylene chlorideMethylene chloride Ethyl acetateEthyl acetate n-Butanoln-Butanol d'Hd'H 22 OO 1One 기장 정곡Millet 500500 28.328.3 -- 3.813.81 0.050.05 0.480.48 0.620.62 22 노랑찰기장 조곡Yellow Valley 500500 26.4826.48 3.083.08 0.750.75 0.970.97 0.800.80 1.101.10 33 찰수수 정곡Waxu Jeongok 400400 23.3123.31 1.821.82 1.251.25 0.180.18 0.830.83 0.660.66 44 황금찰수수 조곡Golden Blind Shooter 400400 23.2423.24 2.282.28 0.340.34 0.770.77 1.521.52 4.494.49 55 흰찰수수 조곡Whitewater gorge 500500 22.1722.17 2.452.45 1.751.75 0.270.27 1.401.40 2.712.71 66 노란차조 정곡Yellow Chajo Jeongok 250250 15.0115.01 1.231.23 0.790.79 0.670.67 2.612.61 1.28 1.28 77 메조 정곡Mezzo Jeonggok 500500 34.334.3 2.862.86 7.187.18 1.691.69 1.991.99 1.091.09 88 청차조 정곡Cheongchajo Jeongok 500500 40.3440.34 3.043.04 3.683.68 0.600.60 9.329.32 5.935.93 99 청차조 조곡Green tea 500500 17.6317.63 2.292.29 0.850.85 0.330.33 3.193.19 3.16 3.16 1010 황금조 조곡Golden tones 500500 29.0129.01 1.471.47 0.510.51 0.310.31 1.371.37 1.79 1.79 1111 식용피 조곡Edible blood grain 6363 2.242.24 0.580.58 0.270.27 0.130.13 0.540.54 0.77 0.77 1212 율무 정곡Yulmu Jeongok 500500 37.9637.96 0.890.89 1.651.65 0.720.72 0.680.68 2.322.32 1313 팥 정곡Red beans 500500 24.7524.75 0.150.15 6.346.34 0.190.19 1.571.57 10.210.2

참고예Reference Example 2. 시약 및 기기 2. Reagents and Instruments

2-1. 탄수화물 소화효소 실험에 사용한 물질 및 기기2-1. Materials and Devices Used in Carbohydrate Digestive Enzyme Testing

α-Amylase (from human salivary, A1031), α-glucosidase (from Brewer's yeast, G4634), 기질로 사용한 soluble starch, p-nitrophenyl-a-D-glucopyranoside와 이 두 효소의 저해제로 알려진 표준물질인 아카보스 (acarbose, A8980)는 Sigma (St, Louis, MO, USA)에서 구입하여 사용하였다. 수수의 추출물에 함유된 폴리페놀화합물의 정량에 사용한 Folin-Ciocalteu's phenol reagent는 Fluka (Sigma-Aldrich, Schweiz, Switzerland)에서 구입하였고, 폴리페놀화합물 표준물질로 사용한 tannic acid는 Avondale Laboratories (Oxon, England)로부터 구입하였다.
α-Amylase (from human salivary, A1031), α-glucosidase (from Brewer's yeast, G4634), a soluble starch used as a substrate, p-nitrophenyl-aD-glucopyranoside, and acarbose, a standard known as an inhibitor of both enzymes. A8980) was purchased from Sigma (St, Louis, MO, USA). Folin-Ciocalteu's phenol reagent was used for the quantification of polyphenol compounds in sorghum extracts from Fluka (Sigma-Aldrich, Schweiz, Switzerland), and tannic acid used as the polyphenol compound standard was Avondale Laboratories (Oxon, England). Purchased from

2-2. 식후 혈당 상승 억제 효과 실험에 사용한 실험동물의 준비2-2. Preparation of Experimental Animals for Experiments on Inhibitory Effect on Elevated Blood Glucose Levels

6 주령의 웅성 ICR 마우스는 효창바이오사이언스에서 구입하여 사용하였다. 실험에 사용된 동물은 공복 혈당 측정 전에 16시간 동안 절식시켰다. 음수공급은 절식하는 동안에도 자유롭게 섭취할 수 있도록 하였다. 실험에 사용된 동물은 아래와 같이 3개의 실험군으로 나누었으며, 각 실험군은 group 당 5마리의 마우스로 구성되었다.Male 6-week-old ICR mice were purchased from Hyochang Bioscience. Animals used in the experiment were fasted for 16 hours before fasting blood glucose measurement. Drinking water was freely available during fasting. The animals used in the experiment were divided into three experimental groups as follows. Each experimental group consisted of 5 mice per group.

- Group 1: 대조군 (가용성 전분: 2 g/kg)Group 1: control group (soluble starch: 2 g / kg)

- Group 2: 가용성 전분 (2 g/kg)과 황금찰수수 (조곡)의 에탄올 추출물 Group 2: Ethanol Extracts of Soluble Starch (2 g / kg) and Golden Sorghum (Grain)

(100 mg/kg) 투여군            (100 mg / kg) administration group

- Group 3: 가용성 전분 (2 g/kg)과 아카보스 (100 mg/kg) 투여군.
Group 3: soluble starch (2 g / kg) and acarbose (100 mg / kg).

실험예Experimental Example 1. α- 1. α- 아밀라아제Amylase 저해활성 측정 Measurement of inhibitory activity

상기 실시예 1에서 수득한 시료들의 α-아밀라아제 저해활성을 측정하기 위하여 하기와 같이 문헌에 개시된 방법을 응용하여 실험을 실시하였다(Wilson et al., 1982).
In order to measure the α-amylase inhibitory activity of the samples obtained in Example 1, the experiment was performed by applying the method disclosed in the literature as follows (Wilson et al., 1982).

1-1. 수수 에탄올 추출물의 α-1-1. Α- of sorghum ethanol extract 아밀라아제Amylase 저해활성 Inhibitory activity

인체 타액 유래의 α-아밀라아제는 PBS (Gibco 21600-010, USA)에 40 unit/ml로 용해시키고, α-아밀라아제의 기질로써 가용성 전분을 PBS에 1% 농도로 녹여서 사용하였으며, 또한 α-아밀라아제에 대한 저해제로써 수수의 에탄올 추출물과 각 유기용매 분획물을 1 mg/ml 농도로 디메틸설폭사이드 (Dimethylsulfoxide; DMSO, Kanto chemical 10378-73, Japan)에 녹여 사용하였다. α-아밀라아제에 대한 저해활성을 측정하기 위해, 290 μl PBS, 10 μl α-아밀라아제 용액 (40 unit/ml) 및 50 μl 수수 추출물 (1 mg/ml)을 혼합한 후 37℃에서 10분간 전배양 (preincubation)을 실시하였다. 이후 기질인 1% 가용성 전분 용액을 350 μl를 첨가하고, 37℃의 온도에서 30분간 반응시켰다. 반응 후 잔존하는 가용성 전분의 양을 측정하기 위해, 반응액 (700 μl)에 5% 요오드화 칼륨 (potassium iodide)용액에 요오드 (I2)를 0.5%가 되도록 용해시킨 후, 0.05 N HCl 용액에 50배로 희석한 요오드 용액 (0.1% KI + 0.01% I2/0.05N HCl) 300 μl을 가하여 발색시키고 분광광도계 (Shimadzu UV-1650PC, Japan)를 이용하여 620 nm에서 흡광도 (optical density)를 측정하여 α-아밀라아제 저해활성을 조사하였다 (표 3 참조). 대조군 (control)은 기질인 가용성 전분과 효소인 α-아밀라아제, 그리고 수수 유래 에탄올 추출물 및 각 유기용매 분획 대신에 추출물을 녹이는데 사용한 용매인 DMSO를 가하였고, 시료군 (sample)에는 기질인 가용성 전분과 효소인 α-아밀라아제, 그리고 수수 유래 에탄올 추출물 및 각 유기용매 분획을 가하였다. 또한 블랭크 1 (blank 1)에는 기질인 가용성 전분과 수수 유래 80% EtOH 추출물 및 각 유기용매 분획 대신에 추출물을 녹이는데 사용한 용매인 DMSO를 가하였고, 블랭크 2 (blank 2)에는 기질인 가용성 전분과 수수 유래 에탄올 추출물 및 각 유기용매 분획을 가하였다. 한편, α-아밀라아제 저해제의 표준물질로서 아카보스도 50, 100 및 200 μg/ml의 농도로 DMSO에 녹여서 수수 유래 시료 대신에 가하여 α-아밀라아제 저해활성을 시료들과 비교 조사하였다. 그 결과, α-아밀라아제 저해활성은은 하기 수학식 1과 같이 대조군 (control)의 흡광도와 블랭크 1 (blank 1)의 흡광도 차이에 대한 시료군 (sample)의 흡광도와 블랭크 2 (blank 2)의 흡광도의 차이의 비율을 먼저 계산한 다음, 그 값을 1에서 감한 후 100을 곱하여 백분율로 나타내었다.
Human saliva-derived α-amylase was dissolved in PBS (Gibco 21600-010, USA) at 40 unit / ml, and soluble starch was dissolved in PBS at a concentration of 1% as a substrate of α-amylase. As an inhibitor, ethanol extract and each organic solvent fraction of sorghum were dissolved in dimethylsulfoxide (Dimethylsulfoxide; DMSO, Kanto chemical 10378-73, Japan) at a concentration of 1 mg / ml. To measure the inhibitory activity against α-amylase, 290 μl PBS, 10 μl α-amylase solution (40 unit / ml) and 50 μl sorghum extract (1 mg / ml) were mixed and pre-incubated at 37 ° C. for 10 minutes. (preincubation) was performed. Thereafter, 350 μl of a 1% soluble starch solution, which is a substrate, was added, and reacted at a temperature of 37 ° C. for 30 minutes. In order to measure the amount of soluble starch remaining after the reaction, iodine (I 2 ) was dissolved in a 5% potassium iodide solution in a reaction solution (700 μl) to 0.5%, and then 50 in 0.05 N HCl solution. 300 μl of iodine solution (0.1% KI + 0.01% I2 / 0.05N HCl) diluted in pears was added and developed, and the optical density was measured at 620 nm using a spectrophotometer (Shimadzu UV-1650PC, Japan). Amylase inhibitory activity was investigated (see Table 3). In the control group, soluble starch as a substrate, α-amylase as an enzyme, and ethanol extract derived from sorghum and DMSO, a solvent used to dissolve the extract instead of each organic solvent fraction, were added, and soluble starch as a substrate was added to the sample group. And an enzyme, α-amylase, sorghum-derived ethanol extract and each organic solvent fraction were added. In addition, blank 1 was added with 80% EtOH extract derived from sorghum and sorghum as a substrate, and DMSO, a solvent used to dissolve the extract, in place of each organic solvent fraction, and blank 2 was added with soluble starch as a substrate. A sorghum-derived ethanol extract and each organic solvent fraction were added. On the other hand, acarbose was dissolved in DMSO at the concentrations of 50, 100 and 200 μg / ml as a standard of the α-amylase inhibitor, and added instead of the sorghum-derived sample, and the α-amylase inhibitory activity was compared with the samples. As a result, α-amylase inhibitory activity was calculated by the absorbance of the sample (blank) and the absorbance of the blank (blank 2) for the difference between the absorbance of the control (control) and the absorbance of blank 1 (blank 1) The ratio of the difference is calculated first, then the value is subtracted from 1 and multiplied by 100 to express it as a percentage.

ControlControl SampleSample Blank 1Blank 1 Blank 2Blank 2 α-Amylase solutionα-Amylase solution 10 μl10 μl 10 μl10 μl -- -- PBSPBS 290 μl290 μl 290 μl290 μl 300 μl300 μl 300 μl300 μl Inhibitor (Cereal extract)Inhibitor (Cereal extract) -- 50 μl50 μl -- 50 μl50 μl DMSODMSO 50 μl50 μl -- 50 μl50 μl -- Preincubate at 37℃ for 10 minPreincubate at 37 ℃ for 10 min 1% Soluble starch solution1% Soluble starch solution 350 μl350 μl 350 μl350 μl 350 μl350 μl 350 μl350 μl Incubate at 37℃ for 30 minIncubate at 37 ℃ for 30 min I2 solution
(0.1% KI + 0.01% I2/0.05N HCl)
I 2 solution
(0.1% KI + 0.01% I 2 /0.05N HCl)
300 μl300 μl 300 μl300 μl 300 μl300 μl 300 μl300 μl
Read OD at 620 nmRead OD at 620 nm

Figure 112010049119986-pat00001
Figure 112010049119986-pat00001

상기 실험 결과, DMSO만을 첨가한 control 군에 비하여 찰수수의 에탄올 추출물 (1 mg/ml)은 α-아밀라아제에 대해 71.4%의 저해활성을 보여 가장 높은 저해활성을 나타내었다 (도 3 참조).As a result of the experiment, the ethanol extract (1 mg / ml) of the brine water showed the highest inhibitory activity against α-amylase compared to the control group added only DMSO (7 mg%) (see FIG. 3).

이 중 찰수수 (정곡), 흰찰수수 (조곡)의 추출물을 각각 0.125 mg/ml ~ 1 mg/ml의 농도로 처리하여 농도별로 α-아밀라아제의 저해활성을 알아보았다. 찰수수 (정곡)의 에탄올 추출물의 경우 0.125 mg/ml에서 3.9%, 0.25 mg/ml에서 11.7%, 0.5 mg/ml은 29.6%, 1 mg/ml에서 53.0%의 저해활성을 보였으며, 흰찰수수 (조곡)의 에탄올 추출물도 농도별로 실험하였을 때 흰찰수수 (조곡)는 각각 0.125 mg/ml, 0.25 mg/ml, 0.5 mg/ml, 1 mg/ml에서의 저해활성이 4.3%, 8.6%, 19.7%, 42.3%로 나타났음을 확인하였다 (도 4B 참조).
Among them, the extracts of Chaksu (Jeonggok) and White Chaksu (Geok) were treated at concentrations of 0.125 mg / ml to 1 mg / ml, respectively, and the inhibitory activity of α-amylase was examined. In the case of ethanol extract of Chaksu (Junggok), the inhibitory activity of 3.9% at 0.125 mg / ml, 11.7% at 0.25 mg / ml, 29.6% at 0.5 mg / ml and 53.0% at 1 mg / ml When the ethanol extract of the grains) was also tested by concentration, the white waxy water (grain) had 4.3%, 8.6% and 19.7% of inhibitory activity at 0.125 mg / ml, 0.25 mg / ml, 0.5 mg / ml and 1 mg / ml, respectively. , 42.3% (see FIG. 4B).

1-2. 수수의 유기용매 1-2. Sorghum Organic Solvents 분획물의Fraction α- α- 아밀라아제Amylase 저해활성 Inhibitory activity

에탄올 추출물을 이용한 실험에서 α-아밀라아제 저해율이 가장 높은 찰수수 (정곡)를 유기용매별로 분획한 다음, 그 분획물을 1 mg/ml 농도로 처리하여 실험하였다.In the experiment using the ethanol extract, the water of the highest number of chaksu (jeonggok), which was the highest inhibitory rate of α-amylase, was fractionated by organic solvent, and the fraction was treated at a concentration of 1 mg / ml.

상기 실험 결과, 찰수수 (정곡)의 유기용매별 분획물을 각각 1 mg/ml의 농도로 처리한 실험에서 에탄올 추출물이 61.7%의 저해활성을 나타내었고, n-헥산과 메틸렌 클로라이드 분획물은 97.7%, 99.5%로 이 두 분획물은 α-아밀라아제의 활성을 강하게 저해하였으나 에틸 아세테이트 (EtOAc), n-부탄올 (BuOH) 분획물의 경우에는 각각 25.9%, 5.2%의 활성을 나타내어, n-헥산과 메틸렌 클로라이드 분획물보다 훨씬 낮은 저해활성을 보였고, 수층은 저해활성이 없었다 (도 5 참조).As a result of the experiment, the ethanol extract showed 61.7% inhibitory activity in the experiments of each fraction of the organic solvents of the water of Chamulsu (jeonggok) at a concentration of 1 mg / ml, and the fractions of n-hexane and methylene chloride were 97.7% and 99.5. % Of the two fractions strongly inhibited the activity of α-amylase, but the ethyl acetate (EtOAc) and n-butanol (BuOH) fractions showed 25.9% and 5.2%, respectively, than the n-hexane and methylene chloride fractions. It showed much lower inhibitory activity, and the aqueous layer had no inhibitory activity (see FIG. 5).

또한 흰찰수수 (조곡)도 분획별 1 mg/ml 농도에서 α-아밀라아제 저해 실험을 실시하였다. 흰찰수수 (조곡)는 에탄올, n-헥산, 메틸렌 클로라이드, 에틸 아세테이트, 부탄올 분획물의 저해활성이 각각 46.6%, 93.5%, 95.9%, 63.2%, 13.8%로 나타났으며, 흰찰수수의 수층은 모두 α-아밀라아제에 대한 저해활성이 없었다 (도 5B 참조).
In addition, α-amylase inhibition experiments were also conducted at 1 mg / ml concentration of white waxy water (grain). The inhibitory activity of ethanol, n-hexane, methylene chloride, ethyl acetate, and butanol fractions was 46.6%, 93.5%, 95.9%, 63.2%, and 13.8%, respectively. There was no inhibitory activity against α-amylase (see FIG. 5B).

1-3. 찰수수의 메틸렌 클로라이드 1-3. Methylene chloride 분획물의Fraction 열과 산에 대한 안정성 조사 Investigation of stability against heat and acid

에탄올 추출물과 유기용매별 분획실험에서 가장 높은 저해활성을 보였던 찰수수 (정곡)의 메틸렌 클로라이드 분획물과 아카보스 200 μg/ml을 각각 15~60 분간 열처리하여 열처리하지 않은 대조군과 비교하여 α-아밀라아제 저해율이 어떤 변화를 보이는지 실험하였다. The methylene chloride fraction and the acarbose 200 μg / ml of the waxy water (jeonggok), which showed the highest inhibitory activity in the ethanol extract and the organic solvent fractionation experiments, were heat treated for 15 to 60 minutes and compared with the control group without heat treatment. The change was tested.

상기 실험 결과, 찰수수의 메틸렌 클로라이드 분획물을 열처리한 시간과는 상관없이 높은 저해활성을 나타내어 열처리는 수수 메틸렌 클로라이드 분획물의 α-아밀라아제 저해활성에 영향을 미치지 않는다는 것을 알 수 있었다 (도 6 참조).As a result of the experiment, it was found that the heat treatment did not affect the α-amylase inhibitory activity of the sorghum methylene chloride fraction regardless of the time of heat treatment of the methylene chloride fraction of waxy water (see Fig. 6).

산 처리 (pH 2) 시간별로 찰수수 (정곡)의 메틸렌 클로라이드 분획물의 α-아밀라아제 저해 활성 변화를 알아보기 위하여 메틸렌 클로라이드 분획물과 아카보스 200 μg/ml을 각각 1 시간 또는 2 시간 동안 37℃의 온도에서 산 처리를 한 후 반응을 하였다. 산 처리 시간별로 α-아밀라아제의 저해활성을 측정한 결과, α-아밀라아제의 활성은 산 처리에 의해 감소되지 않는 것으로 확인되었다. 이로써 찰수수의 메틸렌 클로라이드 분획물과 아카보스는 강한 산과 높은 온도에서도 α-아밀라아제에 대한 저해활성을 잃지 않는 것을 알 수 있었다 (도 7 참조).
To determine the changes in α-amylase inhibitory activity of methylene chloride fractions in brine water (pH 2) with acid treatment (pH 2), the methylene chloride fractions and 200 μg / ml of acarbose, respectively, were acidified at 37 ° C. for 1 or 2 hours. The reaction was carried out after the treatment. As a result of measuring the inhibitory activity of α-amylase at each acid treatment time, it was confirmed that the activity of α-amylase was not reduced by acid treatment. As a result, it was found that methylene chloride fraction and acarbose of the brine water did not lose their inhibitory activity against α-amylase even in strong acid and high temperature (see FIG. 7).

실험예Experimental Example 2. α- 2. α- 글루코시다제Glucosidase ( ( glucosidaseglucosidase ) 저해활성 측정) Inhibitory activity measurement

상기 실시예 1에서 수득한 시료들의 α-글루코시다제 저해활성을 측정하기 위하여 하기와 같이 문헌에 개시된 방법을 응용하여 실험을 실시하였다 (Kim et al., 2005; Park et al., 2008; Lee et al., 2008).
In order to determine the α-glucosidase inhibitory activity of the samples obtained in Example 1, the experiment was conducted by applying the method disclosed in the literature as follows (Kim et al., 2005; Park et al., 2008; Lee et al., 2008).

2-1. 수수 에탄올 추출물의 α-2-1. Α- of sorghum ethanol extract 글루코시다제Glucosidase 저해활성 Inhibitory activity

α-글루코시다제는 50 mM sodium phosphate buffer (pH 6.8) (Dawson 외, Data for biochimecal research 참조하여 제조) 에 10 unit/ml의 농도로 stock soltion을 만들고, 처리 시 0.25 unit/ml의 농도로 희석한 다음 20 μl 씩 처리하였다. 기질은 p-니트로페닐 (nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)를 sodium phosphate buffer (50 mM, pH 6.8)에 3 mM의 농도로 녹여서 반응시켰다. 또한 α-글루코시다제에 대한 저해제로써 수수의 에탄올 추출물을 10 mg/ml의 농도로 DMSO에 용해시켜 사용하였다. 먼저, 96-well plate (Corning CLS3595, USA)에서 20 μl α-글루코시다제 희석액과 65 μl sodium phosphate buffer (50 mM, pH 6.8), 15μl 수수 에탄올 추출물을 혼합하고 37℃의 온도에서 10 분간 전 배양을 실시한 후 기질인 3 mM p-니트로페닐(nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)용액 100 μl를 첨가하여 37℃의 온도에서 30분간 반응 하였다 (표4 참조). 반응 후에 microplate leader (Molecular devices Thermo max, USA)를 이용하여 405 nm 파장에서 흡광도를 측정하여 저해율을 비교하였다. 이 때, 대조군(control)은 기질인 p-니트로페닐(nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)와 효소인 α-글루코시다제, 그리고 수수 에탄올 추출물 및 각 유기용매 분획 대신 용매인 DMSO를 가하였고, 시료군 (sample) 에는 기질인 p-니트로페닐(nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)와 효소인 α-글루코시다제, 그리고 수수 에탄올 추출물을 가하였다. 또한 블랭크 1 (blank 1)에는 기질인 p-니트로페닐(nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)와 수수 에탄올 추출물 및 각 유기용매 분획 대신 용매인 DMSO를 가하였고, 블랭크 2 (blank 2)에는 기질인 p-니트로페닐(nitrophenyl)-α-D-글루코피라노사이드 (glucopyranoside)와 수수 에탄올 추출물을 가하였다. 한편, α-글루코시다제 저해제의 표준물질로써 아카보스도 5 mg/ml, 10 mg/ml의 농도로 DMSO에 녹여서 잡곡 유래의 시료 대신에 가하여 α-글루코시다제 저해활성을 시료들과 비교 조사하였다. 이때, 시료의 α-글루코시다제 저해능은 대조군 (control)의 흡광도와 블랭크 1 (blank 1)의 흡광도 차이에 대한 시료군 (sample)의 흡광도 블랭크 2 (blank 2)의 흡광도 차이의 비율을 먼저 계산한 다음, 그 값을 1에서 감한 후 100을 곱하여 하기 수학식 2와 같이 백분율을 계산하여 저해활성을 나타내었다.α-glucosidase was prepared at 10 unit / ml in 50 mM sodium phosphate buffer (pH 6.8) (manufactured by Dawson et al., Data for biochimecal research) and diluted to 0.25 unit / ml at the time of treatment. Then 20 μl each. The substrate was reacted by dissolving p-nitrophenyl-α-D-glucopyranoside in sodium phosphate buffer (50 mM, pH 6.8) at a concentration of 3 mM. In addition, ethanol extract of sorghum was dissolved in DMSO at a concentration of 10 mg / ml as an inhibitor of α-glucosidase. First, mix 20 μl α-glucosidase dilution with 65 μl sodium phosphate buffer (50 mM, pH 6.8) and 15 μl ethanol extract in a 96-well plate (Corning CLS3595, USA). After incubation, 100 μl of 3 mM p-nitrophenyl-α-D-glucopyranoside solution, which was a substrate, was added thereto, and reacted for 30 minutes at a temperature of 37 ° C. (see Table 4). After the reaction, the absorbance was measured by using a microplate leader (Molecular devices Thermo max, USA) at 405 nm wavelength to compare the inhibition rate. At this time, the control (control) is a substrate instead of p-nitrophenyl-α-D-glucopyranoside (enzyme α-glucosidase, and sorghum ethanol extract and each organic solvent fraction) DMSO was added, and sample was added with p-nitrophenyl-α-D-glucopyranoside, an enzyme, α-glucosidase, and sorghum ethanol extract. In addition, blank 1 was added with p-nitrophenyl-α-D-glucopyranoside, sorghum ethanol extract, and solvent DMSO instead of each organic solvent fraction, and blank 2 (blank). 2) p-nitrophenyl-α-D-glucopyranoside and sorghum ethanol extract were added. Meanwhile, as a standard of α-glucosidase inhibitor, acarbose was dissolved in DMSO at concentrations of 5 mg / ml and 10 mg / ml, and added to the sample instead of the grain-derived sample, and the α-glucosidase inhibitory activity was compared with the samples. . In this case, the α-glucosidase inhibitory ability of the sample is calculated first of the ratio of the difference in absorbance of the absorbance blank 2 (blank) of the sample to the difference between the absorbance of the control (blank) and the absorbance of the blank (blank 1). Then, the value was subtracted from 1 and multiplied by 100 to calculate the percentage as shown in Equation 2 below to show the inhibitory activity.

ControlControl SampleSample Blank 1Blank 1 Blank 2Blank 2 α-Glucosidase solutionα-Glucosidase solution 20 μl20 μl 20 μl20 μl -- -- Phosphate buffer (pH 6.8)Phosphate buffer (pH 6.8) 65 μl65 μl 65 μl65 μl 85 μl85 μl 85 μl85 μl Inhibitor (Cereal extract)Inhibitor (Cereal extract) -- 15 μl15 μl -- 15 μl15 μl DMSODMSO 15 μl15 μl -- 15 μl15 μl -- Preincubate at 37℃ for 10 minPreincubate at 37 ℃ for 10 min 3 mM p-Nitrophenyl-a-
D-glucopyranoside
3 mM p-Nitrophenyl-a-
D-glucopyranoside
100 μl100 μl 100 μl100 μl 100 μl100 μl 100 μl100 μl
Incubate at 37℃ for 30 minIncubate at 37 ℃ for 30 min Read OD at 405 nmRead OD at 405 nm

Figure 112010049119986-pat00002
Figure 112010049119986-pat00002

상기 실험 결과, 수수 80% 에탄올 추출물을 10 mg/ml로 처리하여 α-글루코시다제 저해활성을 비교해 본 결과 황금찰수수 (조곡)의 에탄올 추출물의 α-글루코시다제 저해활성이 90.8%의 저해활성을 보였으며 같은 양의 표준물질인 아카보스 (10 mg/ml)의 저해율인 51.6%보다 약 1.75 배 높은 저해활성을 보였다. 황금찰수수 (조곡)의 에탄올 추출물을 5 mg/ml의 농도로 처리하여 저해율을 확인한 결과 아카보스 5 mg/ml의 저해율 44.1%와 비슷한 47.0%의 저해율을 나타내었다 (도 8 참조).As a result of the experiment, the 80% ethanol extract was treated with 10 mg / ml to compare the α-glucosidase inhibitory activity. As a result, the α-glucosidase inhibitory activity of the ethanol extract of golden wax sorghum (grain) was 90.8%. It showed about 1.75 times higher inhibitory activity than the 51.6% inhibition rate of the same amount of acarbose (10 mg / ml). Inhibition rate was determined by treating the ethanol extract of golden wax sorghum (grain) at a concentration of 5 mg / ml and showed an inhibition rate of 47.0%, similar to that of 44.1% of acarbose 5 mg / ml (see FIG. 8).

에탄올 추출물 실험에서 가장 활성이 높았던 황금찰수수 (조곡)의 에탄올 추출물을 1.25, 2.5, 5, 10 mg/ml의 농도로 각각 처리하여 α-글루코시다제 저해활성을 알아보았다. 표준물질인 아카보스도 각각 5 mg/ml과 10 mg/ml의 농도로 처리하여 같이 반응을 시켰다. 그 결과 1.25 mg/ml의 농도에서는 9.4%, 2.5 mg/ml은 30.4%, 5 mg/ml은 39.0%, 10 mg/ml은 76.0%의 저해율을 보였으며, 이때 아카보스는 5 mg/ml에서 36.2%, 10 mg/ml은 51.1%의 저해율을 보였다. 황금찰수수 (조곡)의 에탄올 추출물은 10 mg/ml 농도에서 같은 농도의 아카보스에 비해 α-글루코시다제에 대한 저해활성이 약 1.5배 더 높았으며, 그리고 5 mg/ml에서는 아카보스 5 mg/ml 농도와 거의 유사한 저해활성을 보였다(도 9 참조).
The ethanol extract of golden wax sorghum (grain), which was the most active in the ethanol extract experiment, was treated at concentrations of 1.25, 2.5, 5, and 10 mg / ml, respectively, to examine α-glucosidase inhibitory activity. Acarbose, a standard, was also treated at a concentration of 5 mg / ml and 10 mg / ml, respectively. As a result, the inhibition rate of 9.4%, 2.5 mg / ml was 30.4%, 5 mg / ml was 39.0%, and 10 mg / ml was 76.0% at 1.25 mg / ml concentration. % And 10 mg / ml showed an inhibition rate of 51.1%. Ethanol extract of golden wax sorghum (grain) had about 1.5 times higher inhibitory activity on α-glucosidase than 10 mg / ml of acarbose, and 5 mg / ml of acarbose at 5 mg / ml It showed almost similar inhibitory activity (see FIG. 9).

2-2. 수수 유기용매 2-2. Sorghum Organic Solvent 분획물의Fraction α- α- 글루코시다제Glucosidase 저해활성 Inhibitory activity

황금찰수수 (조곡)의 에탄올 추출물과 각 유기용매별 분획물을 120, 60, 30, 15 ㎍/㎖로 처리하여 각 분획별 저해활성을 확인하였다. 120 ㎍/㎖에서는 모든 분획물에서 α-글루코시다제 저해활성이 모두 60%이상 나타나 어느 분획의 활성이 가장 뛰어난지 명확하게 확인하기 위하여 60, 30 15 ㎍/㎖의 농도로 순차적으로 희석하여 활성을 비교하였다.Ethanol extract of golden wax sorghum (grain) and fractions of each organic solvent were treated with 120, 60, 30, and 15 ㎍ / ml to confirm the inhibitory activity of each fraction. At 120 ㎍ / mL, all fractions showed more than 60% of all α-glucosidase inhibitory activity, so that the fractions were sequentially diluted to 60, 30 15 ㎍ / mL to confirm which fraction was the most active. Compared.

상기 실험 결과, 30 ㎍/㎖으로 처리하여 활성을 비교해 본 결과, n-헥산 분획물이 86.8%, 메틸렌 클로라이드 분획물이 82.1%의 높은 저해활성을 나타내었으며, 이는 약 170배 더 진한 농도의 아카보스 5 mg/ml의 저해활성 24.3%보다도 약 3배 강한 활성을 나타내었다. 각 유기용매 분획물을 15 mg/ml로 희석하여 처리한 실험에서 n-헥산과 메틸렌 클로라이드 분획물의 저해활성은 각각 31.9%, 30.8%로 약 340배 높은 농도의 아카보스 5 mg/ml의 저해활성 28.4%와 비슷한 저해활성을 나타내었다. 이로써, 황금찰수수의 유기용매 분획물은 여러 가지 물질들이 혼합된 혼합물임에도 단일물질인 아카보스 보다 약 340배 더 강력한 α-글루코시다제 저해활성을 나타냄을 보여주었다 (도 10 참조).
As a result of the experiment, the activity was compared with 30 ㎍ / mL, and the inhibitory activity of the n-hexane fraction was 86.8% and the methylene chloride fraction was 82.1%, which was about 170 times higher than 5 mg of acarbose. It showed about 3 times stronger activity than 24.3% of inhibitory activity of / ml. In the experiments in which each organic solvent fraction was diluted to 15 mg / ml, the inhibitory activity of n-hexane and methylene chloride fractions was 31.9% and 30.8%, respectively. It showed similar inhibitory activity. As a result, the organic solvent fraction of the golden wax sorghum showed that it is about 340 times more potent α-glucosidase inhibitory activity than a single substance, acarbose, even though the mixture of various substances (see FIG. 10).

2-3. 찰수수의 유기용매 분획의 α-2-3. Α- of the organic solvent fraction of brine water 글루코시다제Glucosidase 저해활성 Inhibitory activity

α-아밀라아제 저해활성 실험에서 가장 높은 저해활성을 보인 찰수수 (정곡)의 유기용매 분획을 10, 5, 2.5 mg/ml로 각각 처리하여 실험을 수행하였다. Experiments were carried out by treating the organic solvent fraction of the waxy water (jeonggok) with 10, 5 and 2.5 mg / ml, respectively, which showed the highest inhibitory activity in the α-amylase inhibitory activity experiment.

상기 실험 결과, 찰수수 (정곡)의 80% 에탄올 추출물은 10 mg/ml에서 18.3%의 저해활성을 나타낸 반면, 같은 농도의 n-헥산, 메틸렌 클로라이드, 에틸 아세테이트 분획은 각각 89.3%, 81.4%, 91.2%으로 같은 농도의 단일물질인 아카보스 10 mg/ml의 저해활성 58.9%에 비하여 약 1.5배 강한 활성을 보여주었다. 부탄올과 수층 분획물은 각각 14.7%, 24.5%의 저해활성을 나타내어 낮은 저해활성을 보였다 (도 11 참조).
As a result of the experiment, 80% ethanol extract of Chaksu (jeonggok) showed 18.3% of inhibitory activity at 10 mg / ml, whereas the same concentrations of n-hexane, methylene chloride, and ethyl acetate fractions were 89.3%, 81.4%, and 91.2, respectively. As a%, it showed about 1.5 times stronger activity than 58.9% of the inhibitory activity of 10 mg / ml of acarbose, the same substance. Butanol and aqueous fractions showed 14.7% and 24.5% of inhibitory activity, respectively, showing low inhibitory activity (see FIG. 11).

실험예Experimental Example 3. 수수 추출물의 페놀화합물 정량 3. Determination of Phenolic Compounds in Sorghum Extracts

상기 실시예 1에서 얻은 시료들의 80% 에탄올 추출물에 함유된 페놀화합물의 양을 확인하기 위하여 하기와 같이 문헌에 개시된 방법을 응용하여 실험을 실시하였다 (Folin and Denis, 1912).In order to confirm the amount of the phenolic compound contained in the 80% ethanol extract of the samples obtained in Example 1, the experiment was conducted by applying the method disclosed in the literature as follows (Folin and Denis, 1912).

수수의 80% 에탄올 추출물 및 각 유기용매 분획물을 100 μl씩 분주한 후, Folin-Ciocalteu's phenol reagent (Sigma-Aldrich, Schweiz, Switzerland)를 500 μl씩 첨가하였다. 이 혼합액을 상온에서 5분간 반응시킨 후 7.5%의 Na2CO3 (Hanawa 190-01825, Japan)용액을 400 μl씩 첨가하였다. 이 혼합액을 50℃에서 5 분간 반응시킨 후 13,200 rpm에서 2분간 원심분리기 (Eppendorf 5415R, Germany)로 원심분리하여 생성된 불용성 침전물을 제거하였다. 침전물이 제거된 용액을 분광광도계 (Shimadzu UV-1650PC, Japan)로 760nm 파장에서 흡광도를 측정하였다. 이때 탄닌산 (tannic acid)을 표준물질로 이용하여 표준곡선 (standard curve)을 작성한 후, 수수 추출물의 흡광도를 공식에 대입하여 페놀화합물 (phenolic compounds)을 정량하였다.100 μl of 80% ethanol extract and each organic solvent fraction of sorghum were dispensed, and then 500 μl of Folin-Ciocalteu's phenol reagent (Sigma-Aldrich, Schweiz, Switzerland) was added. After the mixture was reacted for 5 minutes at room temperature, 7.5% Na 2 CO 3 (Hanawa 190-01825, Japan) The solution was added 400 μl each. The mixed solution was reacted at 50 ° C. for 5 minutes, and then centrifuged at 13,200 rpm for 2 minutes using an centrifuge (Eppendorf 5415R, Germany) to remove the insoluble precipitate. The solution from which the precipitate was removed was measured for absorbance at 760 nm with a spectrophotometer (Shimadzu UV-1650PC, Japan). At this time, after preparing a standard curve using tannic acid as a standard material, phenolic compounds were quantified by substituting absorbance of sorghum extract into the formula.

상기 실험 결과, 황금찰수수 (조곡)의 페놀화합물의 양이 121.1 μg/mg으로 가장 높은 페놀화합물이 함유된 것으로 나타났으며, 찰수수 (정곡)에는 42.7 μg/mg의 페놀화합물 함유된 것으로 나타났다(도 12A 참조). 황금찰수수 (조곡)와 찰수수 (정곡)의 유기용매 분획별 페놀화합물의 함량은 에틸 아세테이트와 부탄올 분획에서 높은 함량을 나타내었다. α-글루코시다제 저해활성 실험에서 높은 활성을 나타내었던 황금찰수수 (조곡)의 n-헥산, 메틸렌 클로라이드 분획물의 페놀화합물의 함량은 각각 56.2 μg/mg, 60.1 μg/mg로 상대적으로 α-글루코시다제 저해활성이 낮았던 에틸 아세테이트, 부탄올 분획의 255.2 μg/mg, 244.1 μg/mg에 비하여 4~5배 낮은 함량을 나타내었다(도 12B 참조). α-아밀라아제 저해활성이 높았던 찰수수의 n-헥산, 메틸 클로라이드 분획물의 페놀화합물의 함량은 각각 7.6 μg/mg, 14.6 μg/mg으로 상대적으로 저해활성이 낮았던 에틸 아세테이트, 부탄올 분획의 248.4 mg/mg, 159.5 mg/mg에 비하여 약 10배~30배 정도 적은 페놀화합물 함량을 나타내었다. 페놀화합물 정량결과와 α-아밀라아제 및 α-글루코시다제 저해활성을 비교해 보았을 때, 페놀화합물 함량이 높은 분획과 α-아밀라아제 및 α-글루코시다제 저해활성이 높은 분획이 일치하지 않았다. 이러한 결과는 수수 추출물에 함유된 성분으로서 α-아밀라아제 및 α-글루코시다제의 저해활성을 가지는 물질은 페놀화합물의 일종이 아님을 시사한다.As a result of the experiment, it was found that the amount of phenolic compound of golden wax corn (grain) was 121.1 μg / mg, and the highest amount of phenolic compound was contained. 12A). The contents of phenolic compounds by fractions of organic solvents of golden waxy water (grain) and waxy water (corn) were high in ethyl acetate and butanol fractions. The content of phenolic compounds in the n-hexane and methylene chloride fractions of Golden Waxy Corn (Grain), which showed high activity in α-glucosidase inhibitory activity, was 56.2 μg / mg and 60.1 μg / mg, respectively. Ethyl acetate, butanol fraction of low inhibitory activity was 25-5 μg / mg, 244.1 μg / mg compared to 4 to 5 times lower content (see Figure 12B). The contents of phenolic compounds in the n-hexane and methyl chloride fractions of the waxy water with high α-amylase inhibitory activity were 7.6 μg / mg and 14.6 μg / mg, respectively, and 248.4 mg / mg of the ethyl acetate and butanol fractions, which had relatively low inhibitory activity. The phenolic compound content was about 10 to 30 times lower than 159.5 mg / mg. When quantitative results of phenol compounds were compared with α-amylase and α-glucosidase inhibitory activity, the fractions with high phenolic compound content and the fractions with high α-amylase and α-glucosidase inhibitory activity were inconsistent. These results suggest that the substance contained in the sorghum extract as an ingredient having inhibitory activity of α-amylase and α-glucosidase is not a kind of phenolic compound.

실험예Experimental Example 4.  4. 황금찰수수의Golden bristle 80% 에탄올 추출물의 식후 혈당 상승 억제효과 측정 Effect of 80% Ethanol Extract on Postprandial Blood Glucose Inhibition

상기 실시예 1에서 수득한 시료들의 식후 혈당 상승 억제효과를 확인하기 위하여 하기와 같이 문헌에 개시된 방법을 응용하여 실험을 실시하였다 (Heo et al., 2009; Bagri et al., 2009; Kim et al., 2005). In order to confirm the effect of suppressing postprandial blood sugar elevation of the samples obtained in Example 1, experiments were conducted by applying the method disclosed in the literature (Heo et al., 2009; Bagri et al., 2009; Kim et al. , 2005).

황금찰수수 (조곡)의 80% 에탄올 추출물 (100 mg/kg body weight) 및 아카보스 (100 mg/kg body weight)는 가용성 전분 (2 g/kg body weight)과 함께 경구 투여하였다. 경구투여 후 0, 30, 60, 120 분에 마우스의 꼬리정맥에서 혈액을 채취하여 식후혈당의 변화량을 측정하였다. 혈당 측정은 간이혈당계 (Accu Chek active Roche, Germany)를 이용하여 측정하였다 .80% ethanol extract (100 mg / kg body weight) and acarbose (100 mg / kg body weight) of golden wax sorghum (grain) were orally administered with soluble starch (2 g / kg body weight). Blood was collected from the tail vein of mice at 0, 30, 60, and 120 minutes after oral administration, and the change in postprandial blood glucose was measured. Blood glucose measurements were measured using a blood glucose meter (Accu Chek active Roche, Germany).

상기 실험 결과, 가용성 전분만을 투여한 대조군의 혈당은 30분 후에 190.6 mg/dl, 60분 후에는 236.0 mg/dl까지 상승하였으며, 120분 후에 143.8 mg/dl로 감소하였다. 반면에 황금찰수수 (조곡)의 에탄올 추출물을 가용성 전분과 함께 투여한 실험군의 혈당은 30분 후에는 139.3 mg/dl이었고, 60분 후에는 183.0 mg/dl까지 상승하였으며, 120분 후에는 125.8 mg/dl까지 감소하여 가용성 전분만을 경구투여한 대조군과 현저한 차이를 보였다. 아카보스를 100 mg/kg body weight의 용량으로 가용성 전분과 함께 투여한 실험군은 30분 후의 혈당이 121.0 mg/dl, 60분 후에는 130.3 mg/dl 120분 후에는 118.8 mg/dl로 나타나 아카보스는 식후혈당강하효과가 강한 것을 확인하였다 (도 13 참조).
As a result of the experiment, the blood glucose level of the control group administered with only soluble starch rose to 190.6 mg / dl after 30 minutes, to 236.0 mg / dl after 60 minutes, and decreased to 143.8 mg / dl after 120 minutes. On the other hand, the blood glucose of the experimental group administered with ethanol extract of golden wax water (grain) was 139.3 mg / dl after 30 minutes, and rose to 183.0 mg / dl after 60 minutes, and 125.8 mg / day after 120 minutes Reduction to dl was significantly different from the control group orally administered only soluble starch. In the experimental group administered acarbose with soluble starch at a dose of 100 mg / kg body weight, the blood sugar level was 121.0 mg / dl after 30 minutes, and 130.3 mg / dl after 60 minutes, and 118.8 mg / dl after 120 minutes. It was confirmed that the hypoglycemic effect is strong (see FIG. 13).

하기에 본 발명의 추출물을 포함하는 조성물의 제제예를 설명하나, 본 발명은 이를 한정하고자 함이 아닌 단지 구체적으로 설명하고자 함이다.
Hereinafter, the preparation examples of the composition including the extract of the present invention, but the present invention is not intended to limit it, but is intended to explain in detail only.

제제예Formulation example 1.  One. 산제의Sanje 제조 Produce

SS-2 20 mgSS-2 20 mg

유당 100 mgLactose 100 mg

탈크 10 mgTalc 10 mg

상기의 성분들을 혼합하고 기밀포에 충진하여 산제를 제조한다.
The above components are mixed and filled in airtight bags to prepare powders.

제제예Formulation example 2. 정제의 제조 2. Preparation of tablets

SS-2HE 10 mgSS-2HE 10 mg

옥수수전분 100 mgCorn starch 100 mg

유당 100 mgLactose 100 mg

스테아린산 마그네슘 2 mgMagnesium stearate 2 mg

상기의 성분들을 혼합한 후 통상의 정제 제조방법에 따라서 타정하여 정제를 제조한다.
After mixing the above components and tableting according to the conventional tablet manufacturing method to prepare a tablet.

제제예Formulation example 3. 캅셀제의 제조  3. Preparation of capsules

SS-2EA 10 mgSS-2EA 10 mg

결정성 셀룰로오스 3 mg3 mg of crystalline cellulose

락토오스 14.8 mgLactose 14.8 mg

마그네슘 스테아레이트 0.2 mgMagnesium Stearate 0.2 mg

통상의 캡슐제 제조방법에 따라 상기의 성분을 혼합하고 젤라틴 캡슐에 충전하여 캡슐제를 제조한다.
The above components are mixed according to a conventional capsule preparation method and filled in gelatin capsules to prepare capsules.

제제예Formulation example 4. 주사제의 제조 4. Preparation of injections

SS-2MC 10 mgSS-2MC 10 mg

만니톨 180 mg180 mg mannitol

주사용 멸균 증류수 2974 mgSterile sterilized water for injection 2974 mg

Na2HPO4,12H2O 26 mgNa 2 HPO 4 , 12H 2 O 26 mg

통상의 주사제의 제조방법에 따라 1 앰플당 (2㎖) 상기의 성분 함량으로 제조한다.
(2 ml) per 1 ampoule according to the usual injection preparation method.

제제예Formulation example 5.  5. 액제의Liquid 제조 Produce

SS-2WA 20 mgSS-2WA 20 mg

이성화당 10 g10 g of isomerized sugar

만니톨 5 g5 g of mannitol

정제수 적량Purified water

통상의 액제의 제조방법에 따라 정제수에 각각의 성분을 가하여 용해시키고 레몬향을 적량 가한 다음 상기의 성분을 혼합한 다음 정제수를 가하여 전체를 정제수를 가하여 전체 100㎖로 조절한 후 갈색병에 충진하여 멸균시켜 액제를 제조한다.
Each component was added to purified water in accordance with the usual liquid preparation method and dissolved, and the lemon flavor was added in an appropriate amount. Then, the above components were mixed, and purified water was added thereto. The whole was adjusted to 100 ml with purified water, And sterilized to prepare a liquid preparation.

제제예Formulation example 6. 건강 식품의 제조 6. Manufacture of health food

SS-2 1000 ㎎SS-2 1000 mg

비타민 혼합물 적량Vitamin mixture quantity

비타민 A 아세테이트 70 ㎍70 [mu] g of vitamin A acetate

비타민 E 1.0 ㎎Vitamin E 1.0 mg

비타민 B1 0.13 ㎎0.13 mg vitamin B1

비타민 B2 0.15 ㎎0.15 mg of vitamin B2

비타민 B6 0.5 ㎎0.5 mg vitamin B6

비타민 B12 0.2 ㎍0.2 [mu] g vitamin B12

비타민 C 10 ㎎10 mg vitamin C

비오틴 10 ㎍Biotin 10 μg

니코틴산아미드 1.7 ㎎Nicotinic acid amide 1.7 mg

엽산 50 ㎍50 ㎍ of folic acid

판토텐산 칼슘 0.5 ㎎Calcium pantothenate 0.5 mg

무기질 혼합물 적량Mineral mixture quantity

황산제1철 1.75 ㎎1.75 mg of ferrous sulfate

산화아연 0.82 ㎎0.82 mg of zinc oxide

탄산마그네슘 25.3 ㎎Magnesium carbonate 25.3 mg

제1인산칼륨 15 ㎎15 mg of potassium phosphate monobasic

제2인산칼슘 55 ㎎Secondary calcium phosphate 55 mg

구연산칼륨 90 ㎎Potassium citrate 90 mg

탄산칼슘 100 ㎎100 mg of calcium carbonate

염화마그네슘 24.8 ㎎Magnesium chloride 24.8 mg

상기의 비타민 및 미네랄 혼합물의 조성비는 비교적 건강식품에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 그 배합비를 임의로 변형 실시하여도 무방하며, 통상의 건강식품 제조방법에 따라 상기의 성분을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강식품 조성물 제조에 사용할 수 있다.
Although the composition ratio of the above-mentioned vitamin and mineral mixture is comparatively mixed with a composition suitable for health food as a preferred embodiment, the compounding ratio may be arbitrarily modified, and the above ingredients are mixed according to a conventional method for producing healthy foods , Granules can be prepared and used in the manufacture of health food compositions according to conventional methods.

제제예Formulation example 7. 건강 음료의 제조 7. Manufacture of health drinks

SS-2HE 1000 ㎎SS-2HE 1000 mg

구연산 1000 ㎎Citric acid 1000 mg

올리고당 100 g100 g of oligosaccharide

매실농축액 2 gPlum concentrate 2 g

타우린 1 gTaurine 1 g

정제수를 가하여 전체 900 ㎖Purified water was added to a total of 900 ml

통상의 건강음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간동안 85℃에서 교반 가열한 후, 만들어진 용액을 여과하여 멸균된 2ℓ용기에 취득하여 밀봉 멸균한 뒤 냉장 보관한 다음 본 발명의 건강음료 조성물 제조에 사용한다. After mixing the above components according to a conventional healthy beverage production method, and then stirred and heated at 85 ℃ for about 1 hour, the resulting solution is filtered and obtained by sterilization in a sterilized 2 L container, sealed sterilized and then stored in the present invention For the preparation of healthy beverage compositions.

상기 조성비는 비교적 기호음료에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 수요계층, 수요국가, 사용용도 등 지역적, 민족적 기호도에 따라서 그 배합비를 임의로 변형 실시하여도 무방하다.
Although the composition ratio is a composition that is relatively suitable for the preferred beverage in a preferred embodiment, the compounding ratio may be arbitrarily modified according to regional and ethnic preferences such as demand hierarchy, demand country, and usage.

Claims (8)

찰수수(Sorghum bicolr L. Moench var. Chal), 황금찰수수(Sorghum bicolr L. Moench var. Hwanggeumchal) 또는 흰찰수수(Sorghum bicolor L. Moench var. Huinchal)의 헥산, 메틸렌 클로라이드 또는 에틸아세테이트에 가용한 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 치료용 약학조성물.Extracts available in hexane, methylene chloride or ethyl acetate of Sorghum bicolr L. Moench var. Chal, Sorghum bicolr L. Moench var. Hwanggeumchal or Sorghum bicolor L. Moench var. Huinchal Pharmaceutical composition for the prevention and treatment of diabetes mellitus containing as an active ingredient. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 찰수수(Sorghum bicolr L. Moench var. Chal), 황금찰수수(Sorghum bicolr L. Moench var. Hwanggeumchal) 또는 흰찰수수(Sorghum bicolor L. Moench var. Huinchal)의 헥산, 메틸렌 클로라이드 또는 에틸아세테이트에 가용한 추출물을 유효성분으로 함유하는 당뇨병의 예방 및 개선용 건강기능식품.Extracts available in hexane, methylene chloride or ethyl acetate of Sorghum bicolr L. Moench var. Chal, Sorghum bicolr L. Moench var. Hwanggeumchal or Sorghum bicolor L. Moench var. Huinchal Health functional food for the prevention and improvement of diabetes containing as an active ingredient. 삭제delete
KR1020100073323A 2010-07-29 2010-07-29 A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease KR101226824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100073323A KR101226824B1 (en) 2010-07-29 2010-07-29 A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100073323A KR101226824B1 (en) 2010-07-29 2010-07-29 A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease

Publications (2)

Publication Number Publication Date
KR20120021389A KR20120021389A (en) 2012-03-09
KR101226824B1 true KR101226824B1 (en) 2013-01-25

Family

ID=46129688

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100073323A KR101226824B1 (en) 2010-07-29 2010-07-29 A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease

Country Status (1)

Country Link
KR (1) KR101226824B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492798B1 (en) * 2013-03-19 2015-02-13 한경대학교 산학협력단 Peptide marker for Sorghum of dropping blood sugar and detecting method thereof
KR101543296B1 (en) * 2013-06-13 2015-08-11 건국대학교 산학협력단 A composition for promoting bone formation and bone growth comprising Hwanggeumchal sorghum extract
KR20190053731A (en) 2017-11-10 2019-05-20 대한민국(농촌진흥청장) Cosmetic composition containing extracts of Sorghum bicolor for whitening the skin
KR102474858B1 (en) * 2021-10-25 2022-12-08 대한민국(농촌진흥청장) Composition for anti-diabetes comprising a mixture of grains

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188443A1 (en) * 2003-08-13 2006-08-24 Ceapro Inc. Diagnostic composition for diabetes type-2 and impaired glucose tolerance, and methods of use
US20080241282A1 (en) * 2006-06-21 2008-10-02 Rutgers, The State University Sorghum Extract Compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188443A1 (en) * 2003-08-13 2006-08-24 Ceapro Inc. Diagnostic composition for diabetes type-2 and impaired glucose tolerance, and methods of use
US20080241282A1 (en) * 2006-06-21 2008-10-02 Rutgers, The State University Sorghum Extract Compositions

Also Published As

Publication number Publication date
KR20120021389A (en) 2012-03-09

Similar Documents

Publication Publication Date Title
US20230082624A1 (en) Composition, containing quisqualis indica extract, for preventing or treating prostatic hyperplasia
KR101226824B1 (en) A composition comprising the extract of Sorghum bicolor L. Moench as an active ingredient for preventing and treating inflammatory disease
KR20160141027A (en) Phamaceutical composition or healthy food comprising water extracts from Pleurotus eryngii var. ferulea (Pf.). for treating or preventing metabolic disorder
KR101446528B1 (en) Vinegar Composition Fermented with Black Garlic and Preparation Method Thereof
KR101070476B1 (en) Composition containing extract of black onion for prevention and treatment of Gout or Hyperuricemia
KR101222779B1 (en) A composition comprising the extract of Barnyardgrass as an active ingredient for preventing and treating inflammatory disease
KR101226881B1 (en) A composition comprising the extract of Proso millet as an active ingredient for preventing and treating inflammatory disease
KR20070097868A (en) Composition comprising an allium cepa l. skin extract for preventing and treating diabetes mellitus
KR102184812B1 (en) A composition for prevention and treatment of osteoporosis comprising extracts of Saechalssalbori
KR101399398B1 (en) Method for manufacturing submerged-state fermented Allium victorialis and Composition for preventing or treating anti-diabetes or anti-diabetic complication containing fermented Allium victorialis
KR101808808B1 (en) Compositions for preventing and treating diabetes or diabetic complications comprising extracts of Acer tegmentosum Maximowoca and Magnolia officinalis Rehd. et Wils.
KR101134781B1 (en) Composition comprising an the extract of Allium fistulosum L. for preventing and treating diabetes mellitus
KR20050003665A (en) Composition comprising an extract of Peucedanum japonicum for preventing and treating diabetes
KR102474858B1 (en) Composition for anti-diabetes comprising a mixture of grains
KR20200101114A (en) Food composition comprising Chrysanthemum zawadskii var extract
KR20130082249A (en) Composition for preventing or improving the metabolic syndrome containing parthenocissus tricuspidata extract
KR102302047B1 (en) Composition for hepatoprotective and ameliorating hangover
KR101370679B1 (en) Method for manufacturing solid-state fermented Allium victorialis and Composition for preventing or treating anti-diabetes or anti-diabetic complication containing fermented Allium victorialis
KR101290264B1 (en) A pharmaceutical composition and a health functional food composition for preventing, treating or improving diabetes mellitus
KR102025572B1 (en) Composition for preventing, ameliorating or treating metabolic diseases comprising mixture of Diospyros lotus leaf and grape fruit stem extract as effective component
US20200157031A1 (en) Novel compound hexadecaphlorethol isolated from ishige okamurae and use thereof
KR100847355B1 (en) Composition comprising an extract of camellia sinensis var. assamica for preventing and treating diabetes mellitus
KR20220084641A (en) Composition for preventing or treating diabetes containing Agastache rugosa fraction as an active ingredient
KR20230045344A (en) A composition for lowering blood glucose level or for use of antioxidant comprising fermented thistle and a composition for improving of diabetes mellitus containing fermented thistle
KR20100128668A (en) An composition for preventing or improving diabete comprising an extract of rhus chinensis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 8