KR101218228B1 - 균일 비율에서의 물질 기화 방법 - Google Patents
균일 비율에서의 물질 기화 방법 Download PDFInfo
- Publication number
- KR101218228B1 KR101218228B1 KR1020087002085A KR20087002085A KR101218228B1 KR 101218228 B1 KR101218228 B1 KR 101218228B1 KR 1020087002085 A KR1020087002085 A KR 1020087002085A KR 20087002085 A KR20087002085 A KR 20087002085A KR 101218228 B1 KR101218228 B1 KR 101218228B1
- Authority
- KR
- South Korea
- Prior art keywords
- vaporization
- heating element
- column
- organic material
- rate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/246—Replenishment of source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/548—Controlling the composition
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
기판 상에 층을 형성하기 위하여 균일한 비율로 물질을 기화시키는 방법은, 기화성 물질의 유효 기화 온도 이하로 유지된 온도 제어된 영역으로부터 기화 에너지의 소스로 일 컬럼의 기화성 물질을 공급하는 단계로서, 상기 컬럼의 부피는 기화 동안 변화할 수 있는 상기의 단계; 및, 공급률에 관계없이, 상기 기판 상에 층을 형성하기 위하여 기화성 물질의 단위시간당 균일한 부피가 기화되도록 상기 컬럼의 표면에 대해 일정한 열 플럭스를 전달하는 기화 에너지의 소스를 제공하는 단계를 포함한다.
물질의 균일한 기화 제공 장치, 가열 소자, 냉각 싱크, 균일한 전류원, 기화성 물질
Description
본 발명은, 물질이 공급되는 공급 속도가 변화할 때 챔버 내의 물질을 균일한 속도로 기화시키는 방법 및 장치에 관한 것이다.
진공 환경에서 물리적 증착은, 소형 분자 유기 발광 다이오드(OLED) 장치에 사용되는 유기 물질의 박막 등과 같은, 물질의 박막을 증착하는 주요 수단이다. 물리적 증착 방법은, 예를 들면, Barr에 의한 미국 특허 제 2,447,789호에 그리고 Tanabe 등에 의한 유럽 특허 제 0,982,411호에, 잘 공지되어 있다. OLECD 장치의 제조시에 사용된 유기 물질은, 연장된 기간 동안 원하는 속도에 의존한 기화 온도에서 또는 그 근처에서 유지될 때 종종 열화되기 쉽다. 고온에 대한 민감성 유기 물질의 노출은 물질 구조의 변화 및 분자 특성에서의 원치 않는 변화를 발생시키는 원인이 된다.
소스들은, 소스 내에 많은 양의 기화성 물질을 배치함으로써 그리고 매우 잘 제어된 일정한 온도로 이를 가열함으로써 달성된다. 온도 안정성은 증착률 안정성 에 직접 영향을 미치므로, 일정한 소스 온도를 유지하는 것은 매우 중요하다. 두 유기 물질에 대하여, 증기압, 그에 따른 증착률 대 물질 온도 사이의 관계는 도 1의 그래프에 도시된다. 도 1로부터, 값들의 범위에 걸쳐, 소스 온도에서의 작은 섭동은 증기압에서 상당한 크기의 섭동을 발생시킬 수 있다는 것이 명백하다. 이 증폭은 더 높은 온도에서 특히 뚜렷하다.
이러한 온도-대-압력 관계에 비추어, 통상의 증착 소스는 온도 변동을 최소화하는 데 유용한 비교적 큰 열 용량을 가진다. 그러나, 그 결과 이 통상의 접근을 이용할 때 평형 온도 및 안정된 증착률을 달성하는 데 많은 시간을 필요로 할 수 있다. 유기 물질의 상대적 열 감도로 인하여, 통상의 접근은, 한번에 소스 내로 적은 양의 유기 물질만을 로드해야 했고, 가능한 한 적은 열을 가해야 했다. 이 통상적인 공정의 단점으로는, 그것이 온도 노출 스레시홀드에 도달하기 전에 물질의 일정 부분의 손실, 히터 온도 상의 한계로 인한 매우 낮은 기화율, 및 소스에 존재하는 작의 양의 물질로 인한 소스의 제한된 동작 시간을 포함한다. 이 종래의 기술을 사용하면, 소스를 재충전할 때, 증착 챔버를 배기하고, 증기 소스를 해체 및 클리닝하고, 소스를 재충전하고, 증착 챔버 내 진공을 재형성하고, 재시작 동작 전에 수 시간 동안 바로-도입된 유기 물질을 배기할 필요가 있었다. 소스 재충전과 관련된 빈번하고 시간 소비적 공정 및 낮은 증착률은 OLED 제조 설비의 작업 처리량에 사실상의 제한을 가하였다.
통상적인 증착 방법에 대한 하나의 대안은, 기화성 물질을 그 물질이 급속히 기화되는 가열 소자로 전달하기 위한 공급 메커니즘을 활용하는, 순간 기화 시스템 의 이용이다. 도 3의 사시도를 참조하면, 공급 장치(20)는 표면(26) 상에 층을 형성하기 위하여 증착 챔버(24) 내로 기화성 물질(22)의 계속적 공급을 제공한다. 가열 소자(30)는 기화성 물질(22)에 필요한 기화 에너지를 제공한다. 공급 장치(20)는, 상기 기화성 물질(22)이 가열소자(30)에 도달하기 전에 기화성 물질(22)의 질 저하 또는 파괴를 방지하기 위하여 상기 기화성 물질(22)을 기화 온도 이하에서 유지시키는 온도 제어 영역을 효과적으로 제공한다. 공급 장치(20)는 기화성 물질(22)의 일정한 공급을 제공하기 위하여 오거 또는 다른 메커니즘을 이용할 수 있다. 기화성 물질이 액체 형태가 아닌, 종래의 순간 기화 시스템의 엄격한 한계는, 전달률에서의 작은 변화조차도 기화율을 방해하기 때문에 안정적인 기화율을 유지할 수 없다는 것이다. 이 기화율 안정성 문제로 인하여, 기화성 물질이 가열 소자로 연속적으로 측량되는 곳에서조차도, 통상의 접근은 순간 기화 시스템과는 거리가 멀다는 것을 보여준다. 순간 기화에 대한 바이어스의 단 하나의 예로서, 미합중국 특허 제 6,296,711호에서 Loan은, 항상 증가하는 표면적을 가지는 콘형 가열 소자 상부에 그 분배된 기화성 물질을 분포시키는 것을 대신 선호하면서, 특히 순간 기화 시스템의 이용과는 거리가 멀다는 것을 보여준다.
최근에, 물질을 기화시키기 위하여 매우 낮은 열 용량의 가열 소자를 구비한 순간 기화 PVD 소스가 개발되어 왔다. 유익하게는, 이것은 측량될 물질이 그 물질의 유효 기화 온도 이하의 적당한 온도로 유지될 수 있도록 한다. 그러나, 순간 기화 기술에는 상당한 어려움이 있다. 그러한 시스템을 사용할 때, 그 기화율은 일정한 가열 소자 온도에 대한 물질 공급률에 직접 관련된다. 가열 소자를 일정한 온도 로 유지하면서, 그 순간 기화 가열 소자에 대한 물질 공급률에서의 섭동은 결과의 증착률에서의 섭동으로서 직접 보여진다. 섭동 주파수의 주기가 다기관 내의 증기의 체류 시간 보다 더 큰 한, 다기관이 길이 또는 면적에 걸쳐 증기를 분포시키도록 사용되는 곳에서의, 더 높은 주파수의 섭동들은 감소될 수 있다. 그러나 공급률에서 더 낮은 주파수의 섭동은, 더욱 심각해질 수 있고, 스캐닝 형태 소스들 내에서 증착막들의 두께 불균일성을 유도할 수 있다.
물질 측량 기술에서의 숙련가들은 미세한 양의 물질에 대해 일정한 공급률을 획득하는데 어려움을 잘 인식할 수 있다. OLED 기판장치의 제조시 사용되는 많은 종래 기술의 증착 소스들은 대략 100㎍/s 또는 그 이하의 자리에서의 속도로 유기 박막을 증착한다. OLED 기판이 소스를 통과하여 주사되거나 또는 그 역으로 주사되는 증착 시스템에서, 그 증착된 막의 막 두께 균일성을 달성하기 위하여 일정한 증착률을 유지하는 것이 필요하다. 통상적으로, OLED 제조를 위한 막 두께 균일성은 +/-5%보다 더 우수해야 한다. 이 증착률로 순간 기화 시스템과 협력하여 공급 메커니즘을 사용하는 것은 +/-5㎍/s의 공급 균일성을 필요로 할 것이다. 균일성의 이 정밀도 레벨은, 액체 형태가 아닌 임의의 물질에 대한 오늘날의 공지된 임의의 측량 기술을 이용하여 달성하기는 극히 어려울 것이다.
상기 공급률에서 낮은 주파수 섭동의 효과를 최소화하기 위한 하나의 접근법은 종래의 폐 루프 피이드백 구성을 적용하는 것이다. 여러 가지 압력 센서 또는 증착률 센서가, 일정한 증착률을 얻기 위하여 가열 소자 온도 및 공급 모터 속도를 조절하기 위한, 폐 루프 제어 시스템에 대한 피이드백 소자로서 사용될 수 있다. 공급 순방향 제어 구성은 유익하게는 물질 공급률로 공지된 예측가능한 주기성이 있는 피이드백 구성과 결합하여 사용될 수 있다. 이 경우, 모터 속도 프로파일은 장치 실행 측량에서의 할당가능한 변화를 보상하도록 미리 프로그램될 수 있다. 그러나, 물질 공급률 만을 조절하는 것은, 공급 모터로의 제어 신호 및 증착율에서의 결과의 변화 사이에 수초의 시간 지연이 있을 수 있기 때문에 제한된 증착율 제어만을 제공한다. 추가로, 물질 공급률은 2-방향 제어 변수가 아니다. 가열 소자로의 이미 측량된 물질은, 증착률이 원하는 제어 한계 이상으로 상승한다면 통상적으로 회수될 수 없다.
폐 루프 시스템에서 제어될 수 있는 다른 인자는 가열 소자 온도이다. 공급률에 비하여, 가열 소자 온도로의 변화는 증착률에서의 거의 즉각적인 변화를 생성하고 2-방향이다. 그러나, 온도 변화의 영향은 짧은 시간 구간에 걸쳐 적용될 수 있을 뿐이다. 히터 온도가 연장된 시간 구간 동안 너무 높거나 너무 낮게 작동되면, 가열소자에서 물질-부족 또는 물질-과다 상태일 수 있다.
이들을 고려하면, 폐 루프 제어는 일정한 증착률을 생성하기 위하여 가열 소자 온도 뿐만 아니라 가열 소자로의 물질 공급률 양자를 제어할 필요가 있다는 것이 명백하다. 그러한 폐 루프, 다-변수 제어 방법은, 물질 공급률 및 가열 소자 온도 사이의 관계가 유지될 필요가 있고, 그리고 그것은 많은 게인 설정을 최적화하기 위하여 동조를 필요로 하고, 재료 공급, 가열 소자 온도, 및 증착율의 감지를 필요로 하기 때문에, 비교적 복잡하다.
OLED 제조, 조합약 제조, 및 다수의 다른 적용을 위하여, 복잡하고 고비용의 감지 및 제어 구성성분을 필요로 하지 않으면서 계속적인 동작 및 매우 균일한 결과를 제공하는 증착 장치 및 방법이 필요하다.
본 발명의 목적은, 기판상에 한 층을 형성하기 위하여 다양한 비율로 챔버 내로 공급된 물질을 균일하게 증착시키는, 개선된 방법을 제공하고자 하는 것이다.
이 목적은, 기판 상에 층을 형성하기 위하여 균일한 비율로 물질을 기화시키는 방법에 있어서,
a) 기화성 물질의 유효 기화 온도 이하로 유지되는 온도 제어된 영역으로부터 기화 에너지의 소스로 일 컬럼의 기화성 물질을 공급하는 단계로서, 상기 컬럼의 부피는 기화 동안 변화할 수 있는 상기의 단계; 및
b) a)단계에서의 공급률에 관계없이, 상기 기판 상에 층을 형성하기 위하여 기화성 물질의 단위시간당 균일한 부피가 기화되도록 상기 컬럼의 표면에 대해 일정한 열 플럭스를 전달하는 기화 에너지의 소스를 제공하는 단계를 포함하는 균일 비율에서의 물질 기화 방법에 의해 달성된다.
순간 기화 소스와 보통 연관되는 증착률 불안정 문제를 극복하는, 순간 기화 PVD 소스들을 동작시키는 장치 및 방법이 논증되었다. 본 발명은 물질 공급률에서의 사실상의 변화에도 불구하고 폐 루프 제어 시스템 없이 안정된 증착률을 획득할 수 있다. 폐 루프 제어는 장기간의 증착률 편차를 수정하기 위하여만 필요하다. 이 개 루프 제어 방법은 기화 전에 액체 형태로 용융된 것들 뿐만 아니라 직접 기화한 물질들과 함께 논증되었다.
본 발명의 장치 및 방법은 공급률에서의 약간의 변동성에도 불구하고 안정된 비율로 물질을 기화 및 증착시키기 위한 자기-보상 기화 시스템을 제공한다.
본 발명의 장치 및 방법은 종래의 물질 측량 메커니즘을 사용하여 매우 균일하게 물질을 계속적으로 증착할 수 있도록 한다. 기화성 물질은, 상승된 온도에 대한 노출로 인한 물질의 질 저하를 최소화하면서, 가열 소자에 매우 가까운 위치로 연장될 때까지, 공급 동안 낮은 온도로 유지된다.
도 1은 2가지 기화성 물질에 대한 증기압 대 온도를 도시한 그래프;
도 2는 주어진 온도에서 서로 매우 다른 증기압을 가지는 3가지 기화성 물질에 대한 증기압 대 온도를 도시한 그래프;
도 3은 일 실시예에 따른 증착 장치의 구성 성분을 도시한 사시도;
도 4는 증착 장치의 구성성분을 도시한 클로즈-업 사시도;
도 5는 가열 소자 및 물질 공급 통로 사이의 기본 상호작용을 도시한 기능상의 블록도; 및
도 6은 기화물질과 가열 소자의 상호작용을 도시한 기능상의 블록도이다.
<도면의 주요부분에 대한 부호의 설명>
10 증착 장치 12 증기
18 와이어 20 공급 장치
22 물질 24 증착 챔버
26 표면 28 오거 나사
30 가열 소자 32 다기관
34 개구 36 모터
38 교반기 나사선 40 냉각 싱크
이하의 본 발명의 설명을 위하여 다수의 용어가 정의되어야 한다. 표면 상의 증착을 위한 "균일한 비율"이란 적어도 +/-4% 이내, 바람직하게는 +/-2% 이내로 균일한 타겟 층 두께를 나타낼 것이다. 기화된 물질의 "균일한 부피"는, 균일한 비율이 이 허용 범위 내에 유지될 때 제공될 것이다. 일정한 열 플럭스, 또는 일정한 열 플럭스를 제공하기 위해 가해진 일정한 (DC) 전류는 평균값으로부터 +/-4% 이하 만큼, 바람직하게는 2% 이하 만큼에 의하여 변화될 것이다. "저압 상태"란 적어도 어떤 형태의 진공을 가지는 것, 즉 대기압 상태보다 낮은 것으로서 정의된다.
도 3 및 4를 참조하면, 본 발명의 일 실시예에 따른 증착 장치(10)의 물질 공급 및 기화 구성성분들의 단면 사시도들이 도시되어 있다. 공급장치(20)는 가열 소자(30)를 향하여 전방으로 기화성 물질(22)을 몰도록 하기 위해 오거 나사(28)를 활용한다. 그 다음 기화된 물질(22)은 다기관(32) 내로 제공되고, 그 다음, 개구(34)를 통하여 증착 챔버(24) 내로 전달되며, 그것은 통상적으로 저압 조건 하에 있다. 오거 나사(28)는 모터(36)에 의해 구동되고 교반기 나사선(38) 등과 같은 지 지 교반 장치를 포함할 수 있다. 교반기 나사선(38)은, 작은 직경 오거 나사(28)로 이용될 수 있고, 상기 물질이 유체화되는 것을 돕기 위하여 그리고 그럼으로써 오거 나사(28) 내로 유입될 수 있도록 하기 위하여, 특별한 물질로 된 용기를 통하여 회전한다. 오거 나사(28)는, 오거 나사 및 오거 배럴의 끝에 대해 밀접한 간격 형성된 관계에 있는 가열 소자로 배럴의 내부를 따라 물질을 이송하기 위하여, 정지한 오거 배럴의 내부에서 회전한다. 상기 특별한 물질은 오거 나사 구동 모터(36)의 회전 속도에 의해 결정된 비율로 가열 소자(30)를 향하여 계량된다. 상기 계량된 물질은 오거 나사의 가열 소자(30)에 접촉하게 될 때 또는 가까운 근처에 오게 될 때 기화되고, 증기로서 다기관(32) 내로 제공된다.
일정한 회전 속도에 대하여, 단일의 리드 오거 나사(28)는 일반적으로 사인 곡선으로 변화하는 분말 공급률을 형성하고 그 공급률 진동의 주기는 오거 나사(28)의 일 회전에 대응한다는 것이 관찰되었다. 이 공급률 진동은 대응하는 증착률 변화를 생성하고 그 진폭은 비교적 미세한 나사의 나사산 피치에서도 +/-20% 정도로 많을 수 있다.
통상의 실행은 일정한 기화율은 가열소자를 일정한 온도에 유지시킴으로써 달성된다는 것을 가르쳐준다. 이 실행에 따르면, 가열소자(30)를 일정한 온도에 유지시키는 데 필요한 전류는 물질 공급률에서의 임의의 진동과 함께 변화해야 하며 동일한 주기성을 나타내야 한다. 그러나, 롤-대-롤 코팅시 등과 같이, 정지된 증착 소스를 통과할 때 기판상에 균일한 막 두께가 증착되어야 하는 적용시에, 증착률에서의 이 변화는 비-균일 증착된 막 두께로서 그 자체를 나타낸다.
예상 및 공지의 기술이 가르치는 바와 반대로, 일정한 전류가 공급될 때 낮은 열적 관성 가열 소자를 구비한, 순간 기화 PVD 소스로부터 폐 루프 제어 없이, 개선된 증착률 균일성이 획득될 수 있다는 것을 알게 되었다. 즉, 예상과는 반대로, 폐 루프 제어 없이, 순간 기화 가열 소자의 온도를 변화시킴으로써, 매우 균일한 기화율이 획득될 수 있다. 기화성 물질(22)이 가열 소자에 공급될 때, 상기 가열 소자에 전달된 구동 전류는, 물질 전달률에서의 공지된 변동성에도 불구하고 그리고 가열 소자의 온도가 물질 전달에서의 변화로 인하여 변화하고 있는 것으로 보여질 수 있다는 사실에도 불구하고, 일정한 레벨로 유지된다. 경험적 데이터는, 일정한 전류가 가열 소자(30)에 제공될 때, 상기 가열 소자의 온도는 심지어 +/-30도C 만큼 많이 변화할 수 있으나, 2% 이상의 우수한 증착 균일성을 낳는다는 것을 보여준다. 도 1을 다시 참조하면, 그것은 몇 도C의 온도에서의 매우 작은 변화가 2가지 전형적인 유기 물질에 대한 증기압의 상당한 변화를 낳는다는 것을 보여주며, 가열 소자에 단순히 일정한 전류를 유지시키는 것만으로 증착 균일성을 달성함에 있어서 그러한 높은 실행을 제공한다는 것은 놀라운 일이다. 히터 온도에서의 +/-8.5% 변화에 대한 평형 증기압에서의 현저히 큰 변화는, 당업자가 일정한 가열 소자 온도를 유지시키는 기화 시스템을 고안하도록 직관적으로 동기 부여할 것이다. 그러나, 일정한 가열 소자 온도를 적용하는 기술은 통상 약 +/-20% 증착률 변화 이상 달성할 수는 없다. 한편, 가열 소자에 일정한 전류를 가하는 것, 및 물질 공급이 변화할 때 가열 소자의 온도를 변화시키도록 하는 것은, +/-2% 이하의 증착률 변화를 산출한다.
2가지 유기물질이, 다소 유사한 포화 증기압 대 온도 특성을 가질 때 뿐만 아니라 서로 다른 물질이 온도에 대한 매우 다른 압력 응답을 가지는 곳에서도, 가열 소자(30)에 대해 일정한 전류를 유지시키는 것이 예외적 균일성을 제공한다는 것은, 더욱 더 예상치 못한 것이다. 예를 들면, 도 1의 선형-대-선형 그래프는 2가지 유기 물질에 대한 합당하게 가까운 특성 포화 증기압 대 온도 곡선을 도시한다. 다른 한편, 도 2는, 로그-대-선형 그래프에서, 약 3자리 크기 만큼, 서로 상당히 변화하고, 그리고 중요한 유기 물질의 범위의 대부분을 나타내는, 3가지 유기 물질에 대한 포화 증기압 대 온도 곡선을 도시한다. 그러나, 물질들 사이에 그러한 뚜렷한 차이가 있는 곳에서도, 본 발명의 상기 일정한-전류 접근법은 가변 비율에서의 전달에도 불구하고 균일성을 제공한다. 더욱이, 경험상의 데이터는 또한 이 효과가, 이들 행동들 둘 다를 나타내는 물질들의 혼합 뿐만 아니라 고체로부터 직접 기화하는 유기물질 및 기화하기 전에 액체 상태로 용융되는 물질들에 대해서도 획득되는 것을 보여준다. 명백히, 도 3 및 도 4에 도시된 히터 아키텍처 및 물질 계량 메커니즘과 함께 순간 기화를 이용하여, 통상의 실행에서 알 수 없는 비율 제어 메커니즘이 동작가능하다.
도 5를 참조하면, 일 실시예에서 가열 소자(30)의 측면도가, 매우 과장된 형태로 도시되어 있다. 일 컬럼의 기화성 물질(22)이 냉각 싱크(40)를 지나 가열 소자(30) 쪽으로 공급된다(도 5의 방향으로 위쪽으로). 증기(12)는, 도 3 및 4를 참조로 하여 도시된 바와 같이, 기화성 물질(22)의 열 및 가열 소자(30)의 계면 근처에 형성되고, 다기관(32)으로 유입된다. 도 5의 실시예에서, 가열 소자(30)는 열을 가하고 증기를 다기관(32)으로 보내기 위한 적절한 메시의 스크린이다.
도 6은, 매우 과장된 형태의, 가열 소자(30)의 클로즈-업 단면도를 도시한다. 가열 소자(30)의 와이어(18)는 도 5의 실시예에서 스크린의 메시를 형성하는 저항성의 가열 와이어이다. 도 5 및 6의 실시예에서, 가열 소자(30)의 스크린은 접혀지고 와이어(18)가 삽입되어 그것이 통과할 때 골고루 가열된 증기(12)를 제공하게 된다. 다른 실시예들도 가능하다. 예를 들면, 접혀지지 않은 스크린 또는 다른 구성이 적당한 가열 소자(30)로서 역할할 수 있다.
또 다른 실시예에서, 가열 소자(30)는 90 메시 한 쌍의, 1mm 간격 떨어지고, 40퍼센트보다 크고 바람직하게는 70퍼센트보다 큰 비차폐 개방 면적 퍼센티지를 가지는, 직조된 스테인리스 강 스크린들을 가진다. 상기 스크린들은 직렬로 연결될 수 있고 스크린을 포함하는 와이어를 통하여 전류를 통과시킴으로써 가열될 수 있다. 제1 스크린은 기화성 물질(22) 컬럼의 노출면의 아주 근처에서 동작하고, 결과로서, 스크린 와이어들(18) 사이에 놓인 기화성 물질(22)의 영역이 더욱 똑바른 직선 시야를 가지는 기화성 물질(22)의 영역보다 더 적은 복사 에너지를 수용한다. 제2의 스크린은 제1 스크린으로부터 1mm 간격 떨어져 있고 제1 스크린의 소자에 의해 빗금쳐져 있지 않은 영역으로 복사 에너지를 전달할 수 있다. 이리하여, 기화 물질(22)의 열은, 단일의 접히지 않은 스크린이 가열 소자(30)로서 적용되는 것 보다 더욱 더 균일한 복사열 분포를 수용한다. 양 스크린들은 증기 흐름에 대한 비교적 우수한 컨덕턴스를 가지며, 그리고 매우 낮은 열 용량, 진공에서 60Hz 교류 전류로 구동될 때 8ms 기간을 가지는 10℃ 사인파 온도 변화를 나타낼 정도로 그렇게 낮은 열 용량을 가진다. 이 소자들은 단지 미세한 양의 열 에너지를 저장할 수 있고, 그 결과 물질을 가열하고 기화하기에 유용한 에너지는 가열 소자(30)에 순간적으로 전달된 열 에너지에 매우 가깝게 대응한다.
가열 소자(30)의 스크린 또는 스크린들이 일정한 온도를 유지하도록 구동될 때, 전달된 순간적인 파워는 물질 전달률에서의 변화에 따라 변화하고 그 기화율이 동시에 변화하는 것으로 나타내어진다. 대신에, 스크린이 본 발명의 방법에서 처럼 일정한 전류 또는 파워로 구동될 때, 제1 스크린의 온도는 변화하나, 그 물질을 가열 및 기화하기에 유용한 파워는 일정하고 결과적으로 기화율은 일정하게 된다.
순간 기화 메커니즘의 한 이점은 그 작은 열 용량에 관련한다. 가열 소자의 열 용량이 크고, 그렇기 때문에 더욱 통상적인 구성에서처럼 열 에너지를 저장하게 할 수 있다는 것이 명백하다면, 그 시스템은, 공급된 가열 전류가 일정하다 할지라도마치 일정한 온도에서 구동되는 것처럼 응답할 것이다. 그 기화율은 그 다음에 물질 공급률에서의 변화와 동기로 변화할 것이고, 결과적으로 증착 막 두께에서의 변화를 수용할 수 없게 된다.
여기서 기술된 개선책은, 불변 파워 입력으로 가열되는 매우 낮은 열적 관성을 가지는 가열 소자 또는 소자들과 조합하여, 일정한 온도 냉각 싱크 및 가열 소자 사이의 공간에서, 기화성 물질(22)의 단면 영역이, 측량될 때 일정하게 유지되는, 순간 기화 시스템이다. 본 명세서에 따른 기화 시스템은 기화성 물질(22)의 전달률에서의 제한되고 일시적인 변화에도 불구하고 상대적으로 불변인 물질 기화율을 생성할 수 있다. 기화 시스템은 물질을 기화하는데 실제로 유용한 열 에너지가 일정하게 유지되고 외부 제어 메커니즘 필요 없이 그 기화율을 안정화시키는 역할을 하도록 구성된다.
가열 소자(30)로서 사용된 일정한 전류의 순간 기화 소스에 의해 제공된 비율 안정성은 열 이동 메커니즘 집합에 관련한다. 가열 소자(30) 및 냉각 싱크(40) 사이의 열 경로에서 기화성 물질(22)의 고체 및 증기 부분들의 길이는 공급률이 주기적으로 변화하는 동적 상태 하에서 변화하는 것으로 간주된다. 명목상 레벨 이상의 공급률 변화는 가열 소자(30) 및 냉각 싱크(40) 사이의 고체 전도 경로 길이를 증가시키고 동일한 양만큼 증기 경로 길이를 감소시킨다. 만약 고체 열 컨덕턴스가증기의 그것보다 몇 자리수의 크기보다 더 크다면, 냉각 싱크 및 가열 소자 사이 경로의 합성 열 컨덕턴스가 증가할 것이고, 일정 전류 구동된 가열 소자의 온도는 감소할 것이다. 가열 소자(30)의 감소된 온도는 기화성 물질(22)의 열에 전달된 복사 에너지를 감소시키나, 컬럼의 고체 부분은 이제 더 길고 이전보다 더 낮은 열 컨덕턴스를 가진다. 이제, 더 적은 에너지가 물질의 열을 통하여 냉각 싱크로 전달되기 때문에, 전달된 에너지의 더 큰 퍼센티지가 기화성 물질(22)을 기화시키는데 이용될 수 있다. 결과는, 명목상의 조건에서보다 더 긴 고체 열 길이 및 더 낮은 가열 소자(30) 온도에서도, 일정한 기화율이 유지된다는 것이다. 도 5에 관련하여, 가열 소자(30)에 나타나는 기화성 물질(22)의 열 표면의 단면 면적은 공급 동안 사실상 일정하게 유지된다는 것이 관찰된다. 냉각 싱크(40) 및 가열 소자(30) 사이에 연장되는 기화성 물질(22)의 컬럼의 길이는 변화할 수 있다.
공급률이 명목상의 레벨 이하로 변할 때, 고체의 물질 경로 길이는 증기 경 로 길이가 증가하는 양과 동일한 양 만큼 감소된다. 냉각 싱크(40) 및 가열 소자(30) 사이의 복합 열 컨덕턴스는 감소하고, 일정한 전류 구동된 가열 소자(30)의 온도를 증가시킬 수 있도록 한다. 증가된 가열 소자(30) 온도는, 고체의 기화성 물질(22)의 열으로, 더 많은 열을 복사하며, 더 간략히는 이전보다 더 높은 열 컨덕턴스를 가진다. 전달된 열중 더 많은 양이 고체를 통하여 냉각 싱크(40)로 전도되기 때문에, 상기 전달된 에너지의 더 적은 퍼센티지가 기화성 물질(22)을 기화하는데 이용될 수 있다. 그 결과는, 명목상의 조건에서보다 더 짧은 고체 열 길이 및 더 높은 가열 소자(30) 온도에서도, 일정한 기화율이 유지된다는 것이다.
상술된 열적 균형은, 일정한 기화율이, 넓은 범위의 고체 물질 통로 길이 값을 통하여 유지되도록 하고, 넓은 범위의 물질 공급률 및 가열 소자(30)를 위한 전류값을 통하여 안정적인 기화율 제어를 가능하게 한다. 시스템의 분석 모델은, 고체 열 길이가 냉각 싱크(40) 및 가열 소자(30) 사이의 거리의 적어도 반이 되는 한, 일정한 기화율을 예상할 수 있게 한다. 원하는 기화율에서 동작시키기 위하여, 오거 나사(28)의 모터 속도는 기화성 물질의 원하는 물질 부피 흐름률을 전달하도록 선택될 수 있다. 상기 기화성 물질(22) 경로 길이가, 공급률로 인한 임의의 변화를 포함하여, 냉각 싱크(40) 및 가열 소자(30) 사이의 거리의 적어도 반과 같아지도록 하는 레벨에서, 전류가 가열 소자(30)에 가해진다. 이 조건이 만족될 때, 기화율은 안정될 것이고 평균 고체 부피 흐름율과 같아지게 될 것이다. 이 동일한 분석 모델은, 가열 소자(30)가 통상적으로 알려져 있는 바와 같이 일정한 온도로 구동된다면, 고체의 열 길이와 함께 직접적으로 변화할 것이라는 것을 시사한다.
전술한, 가열 소자(30) 온도의 폐 루프 제어, 및 그 대신에 가열소자(30)에 대해 일정한 전류를 제공하는 것에 의하여, 본 발명의 방법 및 장치는, 시간에 따른 공급률 변화에 대한 큰 허용오차를 가지는, 증착 균일성에서의 현저한 개선책을 획득한다. 적당한 전류 레벨이 주어진 범위의 공급률 및 가열 소자(30) 특성에 대하여 결정될 때, 증착 장치(10)의 구성성분들은 주어진 범위에 걸친 공급률에서의 변화에 대하여 효과적으로 자기-보상하고 사실상 일정한 증기압을 유지시킨다.
도 1 및 2를 참조로 하여 상술된 바와 같이, 본 발명의 장치 및 방법은, 종요한, 전부는 아니더라도, 다수의 유기 물질들을 병합하는, 넓은 범위에 걸쳐 포화 증기압 대 온도 응답을 가지는 유기 물질의 기화 증착에 사용될 수 있다.
본 발명은 그의 어떤 바람직한 실시예들을 특히 참조하여 상세히 기술되었으며; 그러나 본 발명의 정신 및 범위 내에서 변화 및 변형들이 유효할 수 있다는 것이 이해될 수 있다. 예를 들면, 가열 소자(30)의 순간 기화 성분들의 특별한 배열이 다수의 형태들 중 어떤 하나를 취할 수 있다. 공급 장치(20)는 다수의 구성들 중의 어느 하나에서 실행될 수 있다. 증착 챔버(24)는, 기화된 물질 및 그 물질이 증착되는 기판을 포함하도록 적용된 넓은 범위의 장치들 중의 임의의 하나일 수 있다.
따라서, 제공되는 것은, 물질이 공급되는 공급률이 변화할 때 균일한 비율에서 챔버 내 물질을 기화시키기 위한 방법 및 장치이다.
Claims (16)
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 기판 상에 유기 층을 형성하기 위해 유기 물질을 균일한 비율로 기화하는 방법에 있어서,a) 저압 상태의 챔버를 제공하는 단계;b) 열을 생성하는 챔버 내에 가열 소자를 제공하는 단계;c) 일 컬럼의 기화성 물질을 형성하기 위하여 챔버 내에 적어도 하나의 유기 물질을 공급하는 단계로서, 상기 컬럼의 단면적은 일정하지만, 상기 컬럼의 부피는 공급률에서의 변화에 따라 변화하는 공급 단계;d) 상기 컬럼의 바닥부를 제어된 온도로 유지시키기 위하여 열과 함께 동작하는 관계의 냉각 싱크를 제공하는 단계; 및e) 기판상에 유기층을 형성하기 위하여, 열 플럭스가 상기 물질이 기화되는 칼럼의 상부 표면에 도달하도록 일정한 전류를 상기 가열 소자에 제공하는 단계;를 포함하고,상기 컬럼의 공급률이 가변될 때, 상기 유기 물질의 시간당 균일한 체적이 기화되도록 상기 가열 소자는 메시를 구비함을 특징으로 하는유기 물질 기화 방법.
- 제 8 항에 있어서,기화된 물질을 수용하기 위하여 챔버와 연통하는 다기관을 제공하는 단계를 추가로 포함하고, 상기 다기관은 상기 기판상에 층을 형성하기 위하여 기화된 물질이 개구를 통과하도록 기판에 관련하여 배치되는 개구를 형성한,유기 물질 기화 방법.
- 제 9 항에 있어서,이동 가능 장치에 의해 챔버 내로 물질을 전달하는 단계를 추가로 포함하는,유기 물질 기화 방법.
- 제 10 항에 있어서,상기 이동 가능 장치는 오거인,유기 물질 기화 방법.
- 삭제
- 제 8 항에 있어서,적어도 하나의 유기 물질을 공급하는 단계는 제1 유기 물질 및 제2 유기 물질을 공급하는 단계를 포함하며, 기화 온도 범위의 일부를 통하여, 제1 물질의 증기압이 제2 물질의 증기압을 한 자리 크기 만큼 초과하는,유기 물질 기화 방법.
- 제 8 항에 있어서,상기 컬럼의 바닥부 및 상기 가열 소자 사이의 컬럼의 길이는 기화 중에 변화하는 반면, 상기 컬럼 표면의 단면적은 일정한,유기 물질 기화 방법.
- 제 8 항에 있어서,상기 가열 소자는 순간 기화 가열 소자임을 특징으로 하는,유기 물질 기화 방법.
- 삭제
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/190,653 | 2005-07-27 | ||
US11/190,653 US7989021B2 (en) | 2005-07-27 | 2005-07-27 | Vaporizing material at a uniform rate |
PCT/US2006/028238 WO2007015948A1 (en) | 2005-07-27 | 2006-07-20 | Method for vaporizing material at a uniform rate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080031028A KR20080031028A (ko) | 2008-04-07 |
KR101218228B1 true KR101218228B1 (ko) | 2013-01-04 |
Family
ID=37432381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087002085A KR101218228B1 (ko) | 2005-07-27 | 2008-01-25 | 균일 비율에서의 물질 기화 방법 |
Country Status (7)
Country | Link |
---|---|
US (2) | US7989021B2 (ko) |
EP (1) | EP1924721B1 (ko) |
JP (1) | JP5139287B2 (ko) |
KR (1) | KR101218228B1 (ko) |
CN (1) | CN100575537C (ko) |
TW (1) | TWI382100B (ko) |
WO (1) | WO2007015948A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8062427B2 (en) | 2008-11-14 | 2011-11-22 | Global Oled Technology Llc | Particulate material metering and vaporization |
US7972443B2 (en) * | 2008-11-14 | 2011-07-05 | Global Oled Technology Llc | Metering of particulate material and vaporization thereof |
BR112012020180A2 (pt) * | 2010-02-16 | 2017-07-04 | Nextteq | "recipientes para fluidos com paredes hábeis de compósito" |
JP2013104127A (ja) * | 2011-11-16 | 2013-05-30 | Mitsubishi Heavy Ind Ltd | 真空蒸着装置 |
KR102073745B1 (ko) * | 2013-04-02 | 2020-02-05 | 주식회사 선익시스템 | 증발원 및 이를 구비한 증착장치 |
CN106947941B (zh) * | 2017-04-13 | 2019-12-06 | 合肥鑫晟光电科技有限公司 | 蒸镀系统 |
CN108060392B (zh) * | 2017-12-14 | 2023-07-18 | 深圳先进技术研究院 | 一种可控线性蒸发装置及镀膜方法 |
DE102020123764A1 (de) * | 2020-09-11 | 2022-03-17 | Apeva Se | Verfahren zum Erzeugen eines zeitlich konstanten Dampfflusses sowie Verfahren zum Einstellen eines Arbeitspunktes einer Vorrichtung zum Erzeugen eines Dampfes |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2447789A (en) | 1945-03-23 | 1948-08-24 | Polaroid Corp | Evaporating crucible for coating apparatus |
JPS59177365A (ja) * | 1983-03-24 | 1984-10-08 | Matsushita Electric Ind Co Ltd | 蒸発方法とその装置 |
US4861989A (en) * | 1983-08-30 | 1989-08-29 | Research Corporation Technologies, Inc. | Ion vapor source for mass spectrometry of liquids |
EP0585848A1 (de) | 1992-09-02 | 1994-03-09 | Hoechst Aktiengesellschaft | Verfahren und Vorrichtung zur chemischen Gasphasenabscheidung dünner Schichten |
US6296711B1 (en) | 1998-04-14 | 2001-10-02 | Cvd Systems, Inc. | Film processing system |
JP2000068055A (ja) | 1998-08-26 | 2000-03-03 | Tdk Corp | 有機el素子用蒸発源、この有機el素子用蒸発源を用いた有機el素子の製造装置および製造方法 |
US6202591B1 (en) * | 1998-11-12 | 2001-03-20 | Flex Products, Inc. | Linear aperture deposition apparatus and coating process |
US6237529B1 (en) * | 2000-03-03 | 2001-05-29 | Eastman Kodak Company | Source for thermal physical vapor deposition of organic electroluminescent layers |
US20020015855A1 (en) * | 2000-06-16 | 2002-02-07 | Talex Sajoto | System and method for depositing high dielectric constant materials and compatible conductive materials |
JP4570232B2 (ja) * | 2000-10-20 | 2010-10-27 | 株式会社アルバック | プラズマディスプレイ保護膜形成装置および保護膜形成方法 |
US6529686B2 (en) * | 2001-06-06 | 2003-03-04 | Fsi International, Inc. | Heating member for combination heating and chilling apparatus, and methods |
US6797314B2 (en) * | 2001-07-03 | 2004-09-28 | Eastman Kodak Company | Method of handling organic material in making an organic light-emitting device |
TW552313B (en) * | 2001-08-13 | 2003-09-11 | Jusung Eng Co Ltd | Method of forming a MOCVD-TiN thin film |
AU2003217530A1 (en) * | 2002-04-01 | 2003-10-13 | Ans Inc | Apparatus and method for depositing organic matter of vapor phase |
JP2003293121A (ja) * | 2002-04-05 | 2003-10-15 | Cluster Ion Beam Technology Kk | 蒸着材料供給手段を備えた蒸着用坩堝 |
US7067170B2 (en) * | 2002-09-23 | 2006-06-27 | Eastman Kodak Company | Depositing layers in OLED devices using viscous flow |
US7339139B2 (en) * | 2003-10-03 | 2008-03-04 | Darly Custom Technology, Inc. | Multi-layered radiant thermal evaporator and method of use |
US7232588B2 (en) * | 2004-02-23 | 2007-06-19 | Eastman Kodak Company | Device and method for vaporizing temperature sensitive materials |
US7501151B2 (en) | 2004-09-21 | 2009-03-10 | Eastman Kodak Company | Delivering particulate material to a vaporization zone |
US20060099344A1 (en) | 2004-11-09 | 2006-05-11 | Eastman Kodak Company | Controlling the vaporization of organic material |
US7465475B2 (en) * | 2004-11-09 | 2008-12-16 | Eastman Kodak Company | Method for controlling the deposition of vaporized organic material |
US7794788B2 (en) * | 2007-03-28 | 2010-09-14 | Tokyo Electron Limited | Method for pre-conditioning a precursor vaporization system for a vapor deposition process |
US8133362B2 (en) * | 2010-02-26 | 2012-03-13 | Fujifilm Corporation | Physical vapor deposition with multi-point clamp |
-
2005
- 2005-07-27 US US11/190,653 patent/US7989021B2/en active Active
-
2006
- 2006-07-20 WO PCT/US2006/028238 patent/WO2007015948A1/en active Application Filing
- 2006-07-20 CN CN200680027360A patent/CN100575537C/zh active Active
- 2006-07-20 JP JP2008523981A patent/JP5139287B2/ja active Active
- 2006-07-20 EP EP06788017.9A patent/EP1924721B1/en active Active
- 2006-07-26 TW TW095127216A patent/TWI382100B/zh active
-
2008
- 2008-01-25 KR KR1020087002085A patent/KR101218228B1/ko active IP Right Grant
-
2011
- 2011-06-21 US US13/165,677 patent/US20110247562A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN101248206A (zh) | 2008-08-20 |
US20110247562A1 (en) | 2011-10-13 |
TWI382100B (zh) | 2013-01-11 |
CN100575537C (zh) | 2009-12-30 |
JP2009503256A (ja) | 2009-01-29 |
US20070026146A1 (en) | 2007-02-01 |
EP1924721A1 (en) | 2008-05-28 |
TW200710240A (en) | 2007-03-16 |
KR20080031028A (ko) | 2008-04-07 |
US7989021B2 (en) | 2011-08-02 |
EP1924721B1 (en) | 2014-07-02 |
JP5139287B2 (ja) | 2013-02-06 |
WO2007015948A1 (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101218228B1 (ko) | 균일 비율에서의 물질 기화 방법 | |
JP5551336B2 (ja) | Oledの製造における有機材料の制御可能な供給 | |
KR100495751B1 (ko) | 진공 상태에서의 기판 도포 방법 및 그 장치 | |
US7625602B2 (en) | Controllably feeding powdered or granular material | |
JP5032466B2 (ja) | 素早い気化を促進するための材料の計量供給 | |
EP2278044B1 (en) | Controlling the application of vaporized organic material | |
US8012537B2 (en) | Controlling the vaporization of organic material | |
KR101334158B1 (ko) | 소스가스 공급장치 및 방법 | |
KR20200045392A (ko) | 하지막 형성 장치, 성막 장치, 하지막 형성 방법 및 성막 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151201 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161129 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181213 Year of fee payment: 7 |