KR101215564B1 - 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법 - Google Patents

수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법 Download PDF

Info

Publication number
KR101215564B1
KR101215564B1 KR1020110077792A KR20110077792A KR101215564B1 KR 101215564 B1 KR101215564 B1 KR 101215564B1 KR 1020110077792 A KR1020110077792 A KR 1020110077792A KR 20110077792 A KR20110077792 A KR 20110077792A KR 101215564 B1 KR101215564 B1 KR 101215564B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
catalyst
substrate
hydrogen plasma
layer
Prior art date
Application number
KR1020110077792A
Other languages
English (en)
Inventor
차승일
황규현
욱 방
신윤지
강인호
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110077792A priority Critical patent/KR101215564B1/ko
Application granted granted Critical
Publication of KR101215564B1 publication Critical patent/KR101215564B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

본 발명은 수직 배향 탄소나노튜브막 전자 방출자의 제조방법에 관한 것으로, 기판상에 금속촉매인 철(Fe)를 도포시켜 촉매층을 형성시키는 촉매도포단계와; 금속촉매가 도포된 기판에 플라즈마 화학기상증착법을 이용하여 탄소나노튜브층을 성장시키되, 챔버의 온도를 600℃~800℃로 유지하고, 원료가스인 수소, 메탄, 산소를 각각 120~200 sccm, 20~60 sccm, 1~10sccm 유랑으로 공급하여 탄소나노튜브층을 증착 및 성장시키는 탄소나노튜브층 형성단계와; 상기 나노튜브층이 형성된 기판을 수소플라즈마 처리시키는 수소플라즈마 에칭단계; 그리고, 상기 수소플라즈마 처리단계를 마친 기판을 1몰의 염산수용액에 침지시켜 에칭시키는 촉매습식에칭단계;를 포함하여 구성되는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법을 기술적 요지로 한다. 이에 따라, 수직배향된 탄소나노튜브막에 수소플라즈마 에칭 및 촉매 습식 에칭을 행함에 의해 전자 방출자의 성능이 향상된 전계방출 표시소자에 이용되는 수직 배향 탄소나노튜브막 전자 방출자가 제조된다는 이점이 있다.

Description

수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법{manufacturing method for field emission cold cathode prepared by hydrogen plasma etching of vertically aligned carbon nanotube films}
본 발명은 수직 배향 탄소나노튜브 전자 방출자에 관한 것으로, 더욱 상세하게는, 수직배향된 탄소나노튜브막에 수소플라즈마 에칭 및 촉매 습식 에칭을 행함에 의해 전자 방출자의 성능이 향상된 전계방출 표시소자에 이용되는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법에 관한 것이다.
일반적으로 탄소나노튜브(carbon nanotube)는 한 개의 탄소원자에 3개의 다른 탄소원자가 결합되어 육각형 벌집무늬 모양의 실린더 형태로 형성된 물질을 말하며, 직경이 보통 수 내지 수백 나노미터(nanometer)이고 길이가 10 ㎛정도인 것으로 알려져 있다. 이러한 탄소나노튜브는 외벽이 육방정 구조의 탄소가 결합된 흑연으로 구성되는데, 이 한 개의 흑연(C) 층이 한 겹이냐 또는 여러 겹이냐에 따라 단일벽 탄소 나노튜브(single-walled carbon nanotube; SWCNT) 또는 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT)로 구분되며, 특히 상기 단일벽 탄소나노튜브가 다발(bundle) 형태로 형성된 경우에는 다발형 단일벽 탄소나노튜브로 구분된다. 이와 같은 흑연층의 형성구조에 따라 상기 탄소나노튜브는 전기적 도체 또는 반도체의 특성을 가질 수 있다.
또한 상기 탄소나노튜브는 넓은 비표면적, 높은 전기 전도성, 균일한 기공 분포, 높은 기계적 강도 및 화학적으로 안정한 특성을 갖고 있는 물질로 알려져 있어, 전자, 에너지, 정보산업 등에서 그 응용이 다양한 각도로 적용될 가능성이 있으나, 제조상 어려움 및 높은 제조 비용으로 인해 산업분야에서 실질적인 응용은 아직 미흡한 편이다.
이러한 적용분야 중에서, 전계방출형 표시소자(field emission display)의 전계방출자(field emitter)로서 상기 탄소나노튜브를 적용하는 연구가 지속되고 있는 가운데, 상기 탄소나노튜브의 합성에 관한 방법 및 이를 실현시키기 위한 여러 장치들, 예를 들면 플라즈마 화학 기상증착장치, 아크방전장치, 레이저 증착장치, 열화학 기상증착장치 등이 제안되고 있다. 상기 플라즈마에 의한 화학기상증착법을 이용한 탄소나노튜브의 합성방법으로서, 문헌[김(K. S. Kim) 외, field emission characteristics of CNTs synthesized by ICPHFCVD and ICPCVD techniques, Journal of materials science, 13 , p589, 2002]에 전이금속인 니켈 촉매를 유리기판 위에 얇게 덮고 탄화수소계열 가스와의 혼합가스로서 암모니아, 수소 등을 주입함에 따라 상기 유리기판 위에 탄소나노튜브를 수직으로 성장시키는 기술이 개시되어 있다.
그러나, 상기한 방법들을 이용하여 탄소나노튜브를 합성할 경우에, 탄소질 나노입자 또는 비정질 탄소와 같은 불순물이 함께 생성되는 문제점이 있다. 이러한 불순물들은 육방정 구조의 탄소가 결합된 흑연층으로 구성된 상기 탄소나노튜브의 외벽에 다량 존재하는데, 이들 불순물로 인해 탄소나노튜브의 합성중 원료가스 와 촉매가스들과의 불안정한 반응이 일어남에 따라 결함이 발생하고, 또한 탄소나노튜브 끝단(end)에 금속 팁이 존재함에 따라, 상부의 팁 부분에서 형태적 결함(topological defects)이 발생한다.
다른 종래기술로는 대한민국 특허청 공개특허공보 공개번호 10-2001-49452호에 수직 배향된 탄소 나노튜브를 이용한 전계방출 표시소자 및 그 제조 방법이 소개되어 있다. 상기 종래기술은 제1 금속막 상에 수직 배향된 에미터 팁용 탄소 나노튜브가 형성되는 내용으로, 도 1에 도시된 바와 같이, 제1 금속막(32) 상에 탄소 나노튜브(34)를 수직배향시켜 성장시킨다. 상기 탄소나노튜브(34)를 수직배향으로 성장시키는 방법은 상기 제1 금속막(32) 상에 촉매 금속막을 형성한 후, 상기 촉매 금속막의 표면을 건식 또는 습식 방법으로 식각하여 분리된 나노 크기의 촉매금속입자들(independently isolated nano-sized catalytic metal particles)을 형성한 후, 촉매금속입자들 상에 열 화학기상증착법 또는 플라즈마 화학기상증착법으로 탄소 나노튜브(34)를 수직방향으로 복수개 성장시킨다. 상기 탄소나노튜브(34)는 에미터 팁으로 이용된다. 그러나 상기 종래기술은 탄소나노튜브에 금속 촉매 잔류물이 존재하며, 고밀도의 탄소나노튜브에 의해 외부 전계가 팁에 전달되지 못한다는 문제점이 있다.
따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 수직배향된 탄소나노튜브막에 수소플라즈마 에칭 및 촉매 습식 에칭을 행함에 의해 전자 방출자의 성능이 향상된 전계방출 표시소자에 이용되는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법을 제공하는 것을 목적으로 한다.
기판상에 금속촉매인 철(Fe)를 도포시켜 촉매층을 형성시키는 촉매도포단계와; 금속촉매가 도포된 기판에 플라즈마 화학기상증착법을 이용하여 탄소나노튜브층을 성장시키되, 챔버의 온도를 600℃~800℃로 유지하고, 원료가스인 수소, 메탄, 산소를 각각 120~200 sccm, 20~60 sccm, 1~10sccm 유랑으로 공급하여 탄소나노튜브층을 증착 및 성장시키는 탄소나노튜브층 형성단계와; 상기 나노튜브층이 형성된 기판을 수소플라즈마 처리시키는 수소플라즈마 에칭단계; 그리고, 상기 수소플라즈마 처리단계를 마친 기판을 1몰의 염산수용액에 침지시켜 에칭시키는 촉매습식에칭단계;를 포함하여 구성되는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법을 기술적 요지로 한다.
상기 촉매는 1㎚ ~ 30㎚ 두께로 도포되는 것이 바람직하다.
상기 탄소나노튜브층 형성단계에서 챔버의 압력은 5 torr~20 torr가 되는 것이 바람직하다.
상기 탄소나노튜브층은 10㎛ ~ 100㎛ 두께로 형성되는 것이 바람직하다.
상기 수소플라즈마 에칭단계에서 에칭은 5 ~ 20분 진행되는 것이 바람직하다.
상기 촉매습식 에칭은 1 ~ 10분 진행되는 것이 바람직하다.
상기 기판 상면에는 철로 형성된 촉매층과 기판 사이에 알루미늄(Al) 촉매층이 더 형성되는 것이 바람직하다.
이에 따라, 수직배향된 탄소나노튜브막에 수소플라즈마 에칭 및 촉매 습식 에칭을 행함에 의해 전자 방출자의 성능이 향상된다는 이점이 있다.
상기의 구성에 의한 본 발명은, 수직배향된 탄소나노튜브막에 수소플라즈마 에칭 및 촉매 습식 에칭을 행함에 의해 전자 방출자의 성능이 향상된 전계방출 표시소자에 이용되는 수직 배향 탄소나노튜브막 전자 방출자가 형성된다는 효과가 있다.
도 1은 종래 기술에 따른 제1 금속막 상에 수직 배향된 에미터 팁용 탄소 나노튜브가 형성된 형태를 나타낸 도이고,
도 2는 본 발명에 따른 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법을 나타낸 공정도이고,
도 3은 수소플라즈마 에칭 및 촉매습식 에칭을 거치기 전의 탄소나노튜브층을 나타낸 SEM 사진이고,
도 4는 수소플라즈마 에칭을 거친 후의 탄소나노튜브층을 나타낸 SEM 사진(a) 및 이의 확대 사진(b) 이고,
도 5는 수소플라즈마 에칭 및 촉매습식 에칭 전 과정을 거친 탄소나노튜브층을 나타낸 SEM 사진(a) 및 이의 확대 사진(b)이다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명한다.
도시된 바와 같이, 본 발명에 따른 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법은 크게 촉매도포단계(S100)와, 탄소나노튜브층 형성단계(S200)와, 수소플라즈마 에칭단계(S300) 및 촉매습식 에칭단계(S400)로 구성된다.
먼저 촉매도포단계(S100)에 대해 설명한다.
상기 촉매도포단계는 실리콘 등의 기판 상면에 촉매를 도포하여 촉매층을 형성시키는 단계로 실리콘 기판 위에 전계 방출자를 성장시키기 위한 촉매금속을 증착한다. 상기 촉매층은 기판 위에 알루미늄을 10~30 ㎚ 증착하고 그 위에 Fe 를 1~30nm 정도로 증착한다. 증착방법은 스퍼터링 등의 방법을 이용한다.
다음은 탄소나노튜브층 형성단계(S200)가 진행되는바, 금속촉매가 증착된 기판 상면에 마이크로웨이브 플라즈마 화학기상증착법(microwave plasma CVD)을 이용하여 탄소나노튜브층을 형성시킨다.
즉, 마이크로 웨이브 파워는 800 W로 하고, 챔버의 온도를 600℃~800℃로 유지하고, 챔버의 압력은 5 torr ~ 20 torr로 유지한 상태에서 원료가스인 수소는 120~200 sccm(standard cubic centimeter per minute)의 유량으로 공급하고, 메탄은 20~60 sccm의 유량으로 공급하고, 산소는 1~10sccm 유랑으로 공급하여 탄소나노튜브층을 증착하여 성장시킨다. 이때 성장과정은 약 0.5초 내지 3분 정도 진행된다. 상기의 과정에 의해 기판 상면에 수직배향된 탄소나노튜브층이 형성된다. 상기의 탄소나노튜브층은 고밀도로 집적되어 있어 기둥형태의 필라(pillar) 형성이 불완전하다. 따라서 후술하는 수소플라즈마 에칭단계를 통하여 상기 수직 배향된 탄소나노튜브층의 표면 부분을 필라 형태로 변화시키고자 하는 것이다.
상기 수소플라즈마 에칭단계(S300)는 수소가스를 탄소나노튜브층이 형성된 기판측으로 약 5 ~ 20분 정도 흘려 주는 것으로 수소 플라즈마 에칭단계가 수행된다.
상기의 수소플라즈마 에칭에 의해 탄소나노튜브층의 표면 부분이 필라 형태로 변화된다.
다음은 촉매습식 에칭단계(S400)가 진행되는바, 상기 촉매습식 에칭단계(S400)는 상기 수소플라즈마 처리단계를 마친 기판을 1몰의 염산수용액에 침지시켜 약 1 ~ 10분 에칭시키는 방법으로 진행된다.
상기 촉매습식 에칭단계(S400)를 거침에 의해 상기 탄소나노튜브층에 남아있는 금속촉매 잔류물을 제거시킴과 동시에 염산수용액이 탄소나노튜브층에 함침되었다가 건조되는 과정에서 모세관력(capillary force)에 의해 탄소나노튜브 번들(bundle)을 형성시켜 탄소나노튜브 기둥(pillar) 사이의 간격을 확장시키는 역할을 하게 된다.
상기의 과정에 의해 수직 배향 탄소나노튜브막 전자 방출자가 제조되는바, 이하 이의 구체적인 실시예를 상세히 설명한다.
< 제1실시예 >
실리콘 기판위에 알루미늄층을 10 ㎚ 두께로 도포하고 그 상면에 철(Fe)층을 10 ㎚ 두께로 도포시킨다.
그리고 챔버내부의 압력을 15 torr로 유지하고 챔버의 온도를 800℃로 유지한 상태에서 수소, 메탄, 산소 가스를 각각 160, 40, 4 sccm의 유량으로 1분 동안 공급하여 약 20㎛ 두께의 탄소나노튜브층을 형성시킨다.
그런 다음 수소플라즈마 처리를 15분 동안 시행하고 연이어 1몰의 염산수용액에 침지시켜 약 3분 동안 에칭시켜 탄소나노튜브막 전자 방출자를 제조하였다.
< 제2실시예 >
실리콘 기판위에 알루미늄층을 10 ㎚ 두께로 도포하고 그 상면에 철(Fe)층을 5 ㎚ 두께로 도포시킨다.
그리고 챔버내부의 압력을 15 torr로 유지하고 챔버의 온도를 800℃로 유지한 상태에서 수소, 메탄, 산소 가스를 각각 160, 40, 4 sccm의 유량으로 1분 이상 공급하여 약 50㎛ 두께의 탄소나노튜브층을 형성시킨다.
그런 다음 수소플라즈마 처리를 15분 동안 시행하고 연이어 1몰의 염산수용액에 침지시켜 약 3분 동안 에칭시켜 탄소나노튜브막 전자 방출자를 제조하였다.
< 제3실시예 >
실리콘 기판위에 알루미늄층을 10 ㎚ 두께로 도포하고 그 상면에 철(Fe)층을 5 ㎚ 두께로 도포시킨다.
그리고 챔버내부의 압력을 15 torr로 유지하고 챔버의 온도를 800℃로 유지한 상태에서 수소, 메탄, 산소 가스를 각각 160, 40, 4 sccm의 유량으로 1분 동안 공급하여 약 20㎛ 두께의 탄소나노튜브층을 형성시킨다.
그런 다음 수소플라즈마 처리를 15분 동안 시행하고 연이어 1몰의 염산수용액에 침지시켜 약 3분 동안 에칭시켜 탄소나노튜브막 전자 방출자를 제조하였다.
상기 각각의 실시예에 대해 수소플라즈마 에칭 및 촉매습식 에칭을 하기 전의 탄소나노튜브층에서의 최대전류밀도를 측정한 결과 각각의 실시예에 대해 약 3.5㎃/㎠으로 나타났으며 각각의 실시예에 대한 최대전류밀도 값은 오차 범위 내에 존재한다.
그리고 수소플라즈마 에칭 및 촉매습식 에칭 전 과정을 거친 탄소나노튜브층에서의 최대전류밀도를 측정한 결과 각각의 실시예에 대해 약 19㎃/㎠으로 나타났으며 각각의 실시예에 대한 최대전류밀도 값은 오차 범위 내에 존재한다.
상기에서 본 바와 같이, 본원발명의 전자방출자에 대하여 수소플라즈마 에칭 및 촉매습식 에칭을 거침에 의해 최대전류밀도 값이 증가한바, 이는 전자방출자의 성능이 향상됨을 의미한다.
상기의 실시예 중 제2실시예에 대하여 SEM 사진 분석을 하였다.
도 3은 수소플라즈마 에칭 및 촉매습식 에칭을 거치기 전의 탄소나노튜브층을 나타낸 SEM 사진이고, 도 4는 수소플라즈마 에칭을 거친 후의 탄소나노튜브층을 나타낸 SEM 사진(a) 및 이의 확대 사진(b) 이고, 도 5는 수소플라즈마 에칭 및 촉매습식 에칭 전 과정을 거친 탄소나노튜브층을 나타낸 SEM 사진(a) 및 이의 확대 사진(b)이다.
도 3에서 본 바와 같이, 수소플라즈마 에칭 및 촉매습식 에칭을 거치기 전의탄소나노튜브층은 탄소나노튜브층이 고밀도로 직접되어 있음을 알 수 있으며, 이로 인해 외부전계가 탄소나노튜부의 팁에 제대로 전달되지 못하게 되어 상기에서 본 바와 같이 최대전류밀도가 적게 나오게 되는 것이다.
도 4에서는 수소플라즈마 에칭에 의해 상기 탄소나노튜브 수직배향막의 표면부분이 기둥형태로 변화되었음을 알 수 있다.
도 5에서는 촉매습식에칭에 의해 탄소나노튜브 수직배향막이 번들을 형성하고 탄소나노튜브 기둥 사이의 간격이 확장됨을 알 수 있다.
이상에서와 같이 본원발명의 전자방출자에 대하여 수소플라즈마 에칭 및 촉매습식 에칭을 거침에 의해 최대전류밀도 값이 증가한바, 성능이 향상된 전자방출자가 형성된다.
S100 : 촉매도포단계 200 : 탄소나노튜브층 형성단계
S300 : 수소플라즈마 에칭단계 400 : 촉매습식 에칭단계

Claims (7)

  1. 기판상에 금속촉매인 철(Fe)를 도포시켜 촉매층을 형성시키는 촉매도포단계와;
    금속촉매가 도포된 기판에 플라즈마 화학기상증착법을 이용하여 탄소나노튜브층을 성장시키되, 챔버의 온도를 600℃~800℃로 유지하고, 원료가스인 수소, 메탄, 산소를 각각 120~200 sccm, 20~60 sccm, 1~10sccm 유랑으로 공급하여 탄소나노튜브층을 증착 및 성장시키는 탄소나노튜브층 형성단계와;
    상기 나노튜브층이 형성된 기판을 수소플라즈마 처리시키는 수소플라즈마 에칭단계; 그리고,
    상기 수소플라즈마 처리단계를 마친 기판을 1몰의 염산수용액에 침지시켜 에칭시키는 촉매습식에칭단계;를 포함하여 구성됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  2. 제 1항에 있어서, 상기 촉매는 1㎚ ~ 30㎚ 두께로 도포됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  3. 제2항에 있어서, 상기 탄소나노튜브층 형성단계에서 챔버의 압력은 5 torr ~ 20 torr가 됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  4. 제3항에 있어서, 상기 탄소나노튜브층은 10㎛ ~ 100㎛ 두께로 형성됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  5. 제4항에 있어서, 상기 수소플라즈마 에칭단계에서 에칭은 5 ~ 20분 진행됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  6. 제5항에 있어서, 상기 촉매습식 에칭은 1 ~ 10분 진행됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
  7. 제 1항 내지 제 6항 중 어느 하나의 항에 있어서, 상기 기판 상면에는 철로 형성된 촉매층과 기판 사이에 알루미늄(Al) 촉매층이 더 형성됨을 특징으로 하는 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법.
KR1020110077792A 2011-08-04 2011-08-04 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법 KR101215564B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110077792A KR101215564B1 (ko) 2011-08-04 2011-08-04 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110077792A KR101215564B1 (ko) 2011-08-04 2011-08-04 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법

Publications (1)

Publication Number Publication Date
KR101215564B1 true KR101215564B1 (ko) 2012-12-26

Family

ID=47908275

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110077792A KR101215564B1 (ko) 2011-08-04 2011-08-04 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법

Country Status (1)

Country Link
KR (1) KR101215564B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645153C1 (ru) * 2017-06-07 2018-02-16 Федеральное государственное бюджетное учреждение науки Институт нанотехнологий микроэлектроники Российской академии наук Способ формирования эмитирующей поверхности автоэмиссионных катодов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645153C1 (ru) * 2017-06-07 2018-02-16 Федеральное государственное бюджетное учреждение науки Институт нанотехнологий микроэлектроники Российской академии наук Способ формирования эмитирующей поверхности автоэмиссионных катодов

Similar Documents

Publication Publication Date Title
US20080098805A1 (en) Nanotube-Based Nanoprobe Structure and Method for Making the Same
JP2005075725A (ja) カーボンナノチューブ構造体及びその製造方法とそれを応用した電界放出素子及び表示装置
WO2009107603A1 (ja) カーボンナノチューブ及びカーボンナノチューブファイバー等の製造方法及び製造装置
Liu et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review
Yang et al. Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays
Lim et al. Enhanced field emission properties of carbon nanotube films using densification technique
Uh et al. Enhanced field emission properties from titanium-coated carbon nanotubes
Li et al. Floral-clustered few-layer graphene nanosheet array as high performance field emitter
Chang et al. Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates
KR100801192B1 (ko) 나노크기 이하의 기공을 가지는 카본나이트라이드나노튜브, 이의 제조방법 및 카본나이트라이드 나노튜브의기공 크기와 양을 조절하는 방법
Yu et al. Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template
Tsakadze et al. Effect of gas pressure on electron field emission from carbon nanotube forests
KR101313753B1 (ko) 탄소나노플레이크의 성장 방법 및 이에 의해 형성된 탄소나노플레이크 구조물
JP2003277029A (ja) カーボンナノチューブ及びその製造方法
Jiang et al. Carbon nanofibers synthesized by decomposition of alcohol at atmospheric pressure
KR101215564B1 (ko) 수소 플라즈마 에칭을 이용한 수직 배향 탄소나노튜브막 전자 방출소자의 제조방법
Phokharatkul et al. 3D hollow carbon nanotetrapods synthesized by three-step vapor phase transport
KR100741762B1 (ko) 그라파이트 박판 위에 탄소나노튜브를 합성하는 방법
Mittal et al. Carbon nanotube based 3-dimensional hierarchical field emitter structure
Srivastava et al. Effect of substrate morphology on growth and field emission properties of carbon nanotube films
Srivastava et al. Carbon Nanowalls: A potential 2-Dimensional material for field emission and energy-related applications
Mohamed Saheed et al. Optimization of the production of aligned CNTs array as the gas sensing element
JP4948939B2 (ja) カーボンナノチューブの合成方法、シリコン基板、電子源および電界放出型ディスプレイ
KR100503123B1 (ko) 플라즈마 화학기상증착법을 이용한 열린 구조탄소나노튜브 전계방출자의 제조방법
Chhoker et al. Electron field emission from graphitic nanoflakes grown over vertically aligned carbon nanotubes

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee