KR101214422B1 - Oxide sintered compact for producing transparent conductive film - Google Patents

Oxide sintered compact for producing transparent conductive film Download PDF

Info

Publication number
KR101214422B1
KR101214422B1 KR1020117021302A KR20117021302A KR101214422B1 KR 101214422 B1 KR101214422 B1 KR 101214422B1 KR 1020117021302 A KR1020117021302 A KR 1020117021302A KR 20117021302 A KR20117021302 A KR 20117021302A KR 101214422 B1 KR101214422 B1 KR 101214422B1
Authority
KR
South Korea
Prior art keywords
film
oxide
transparent conductive
resistivity
tin
Prior art date
Application number
KR1020117021302A
Other languages
Korean (ko)
Other versions
KR20110111541A (en
Inventor
마사카츠 이키사와
마사타카 야하기
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20110111541A publication Critical patent/KR20110111541A/en
Application granted granted Critical
Publication of KR101214422B1 publication Critical patent/KR101214422B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

플랫 패널 디스플레이용 표시 전극 등에 사용되는 ITO 계 비정질 투명 도전막으로서, 기판 무가열로 스퍼터 시에 수첨하지 않고 제조할 수 있어, 높은 에칭성과 저저항률화의 쌍방을 높은 차원으로 만족하는 투명 도전막을 제공한다. 산화인듐을 주성분으로 하고, 제 1 첨가 원소로서 니켈, 망간, 알루미늄 및 게르마늄에서 선택되는 1 종 이상을 함유하고, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소의 합계량에 대하여 2 ~ 12 원자% 인 것을 특징으로 하는 산화물 소결체.As an ITO-based amorphous transparent conductive film used for display electrodes for flat panel displays, etc., it can be manufactured without substrate heating without hydrogenation in sputtering, thereby providing a transparent conductive film that satisfies both high etching resistance and low resistivity in a high dimension. do. It contains indium oxide as a main component and contains 1 or more types chosen from nickel, manganese, aluminum, and germanium as a 1st addition element, and the sum total of content of a 1st addition element is 2-with respect to the total amount of indium and a 1st addition element. It is 12 atomic%, The oxide sintered compact.

Description

투명 도전막 제조용의 산화물 소결체{OXIDE SINTERED COMPACT FOR PRODUCING TRANSPARENT CONDUCTIVE FILM} Oxide sintered compact for transparent conductive film production {OXIDE SINTERED COMPACT FOR PRODUCING TRANSPARENT CONDUCTIVE FILM}

본 발명은, 플랫 패널 디스플레이 등에 있어서, 전극으로서 형성되는 투명 도전막 제조용 산화물 소결체에 관한 것이다. 또 본 발명은, 당해 산화물 소결체를 스퍼터링 타깃으로서 사용하여 얻어지는 투명 도전막 및 그 제조 방법에 관한 것이다.The present invention relates to an oxide sinter for producing a transparent conductive film, which is formed as an electrode in a flat panel display or the like. Moreover, this invention relates to the transparent conductive film obtained using this oxide sintered compact as a sputtering target, and its manufacturing method.

ITO (Indium Tin Oxide) 막은, 저저항률, 고투과율, 미세 가공 용이성 등의 특징이 다른 투명 도전막보다 우수하기 때문에, 플랫 패널 디스플레이용 표시 전극을 비롯하여, 광범위한 분야에 걸쳐서 사용되고 있다. 현재, 산업상의 생산 공정에 있어서의 ITO 막의 성막 방법의 대부분은, 대면적에 균일성 및 생산성이 양호하게 제작할 수 있기 때문에, ITO 소결체를 타깃으로서 스퍼터하는, 이른바 스퍼터 성막법이다.Indium Tin Oxide (ITO) films are used in a wide range of fields, including display electrodes for flat panel displays, because they have superior characteristics such as low resistivity, high transmittance, and easy micromachining. At present, most of the ITO film-forming methods in industrial production processes are so-called sputter film-forming methods in which the ITO sintered body is sputtered as a target because uniformity and productivity can be produced well in a large area.

ITO 투명 도전막을 이용하는 플랫 패널 디스플레이 제조 프로세스에 있어서는, 스퍼터 직후의 ITO 막 결정성은 비정질이고, 비정질 상태에서 에칭 등의 미세 가공을 실시하고, 그 후의 열어닐링 처리로, ITO 막을 결정화시키고 있는 경우가 많다. 이 이유는, ITO 비정질막은 결정실막과 비교하여, 에칭 레이트가 현격한 차이로 크기 때문에 생산상 유리하고, 또한 ITO 결정막은 저저항률이라는 양방의 이점을 누릴 수 있기 때문이다.In a flat panel display manufacturing process using an ITO transparent conductive film, the ITO film crystallinity immediately after sputtering is amorphous, and microprocessing such as etching is often performed in an amorphous state, and the ITO film is often crystallized by subsequent open annealing treatment. . This is because the ITO amorphous film is advantageous in production because the etching rate is significantly larger than the crystal chamber film, and the ITO crystal film can enjoy both advantages of low resistivity.

ITO 타깃을 스퍼터하여 얻어지는 막의 거의 대부분은 비정질이지만, 일부가 결정화하는 경우가 많다. 그 이유는, ITO 막의 결정화 온도는 약 150 ℃ 이고, 막의 거의 대부분은, 이 이하의 온도밖에 되지 않기 때문에 비정질이지만, 스퍼터에서 기판으로 날아 오는 입자 중에는, 상당히 높은 에너지를 갖는 것이 있고, 기판 도달 후의 에너지의 수수에 의해, 막의 온도가 결정화 온도 이상의 고온이 되어, 막이 결정화하는 부분이 발생하기 때문이다. 이와 같이 ITO 막의 일부에 결정화한 부분이 발생하면, 그 부분은 에칭 속도가 비정질 부분보다 약 2 자리수 정도 작기 때문에, 그 후의 에칭 시에, 이른바 에칭 잔류물로서 남아 배선 쇼트 등의 문제를 일으킨다.Almost all of the films obtained by sputtering an ITO target are amorphous, but some of them are crystallized in many cases. The reason is that the crystallization temperature of the ITO film is about 150 ° C., and since most of the film is amorphous because it is only a temperature below this, some of the particles flying from the sputter to the substrate have a considerably high energy. It is because the temperature of a film | membrane becomes high temperature more than a crystallization temperature by the transfer of energy, and the part which a film crystallizes occurs. In this way, when a portion crystallized in a part of the ITO film occurs, the portion has an etching rate of about two orders of magnitude smaller than that of the amorphous portion, so that during subsequent etching, it remains as a so-called etching residue and causes problems such as wiring short.

그래서, 스퍼터 막의 결정화를 막고, 스퍼터 막 전부를 비정질로 하는 방법으로서, 스퍼터 시에 챔버 내에 아르곤 등의 스퍼터 가스에 추가하여, 물 (H2O) 을 첨가하는 것이 유효함이 알려져 있다 (예를 들어, 비특허문헌 1 참조).Therefore, it is known that it is effective to add water (H 2 O) in addition to a sputter gas such as argon in the chamber during sputtering as a method of preventing crystallization of the sputter film and making all of the sputter films amorphous (for example, For example, see Nonpatent Literature 1).

그러나, 물을 첨가하는 것에서의 스퍼터에 의한 비정질의 막을 얻고자 하는 방법에는, 수많은 문제점이 있다. 먼저, 스퍼터 막에 파티클이 발생하는 경우가 많다. 파티클은 스퍼터 막의 평탄성이나 결정성에 악영향을 미친다. 또, 물을 첨가하지 않으면 파티클은 발생하지 않기 때문에, 파티클 발생의 문제는 수첨가가 원인이다.However, there are a number of problems with the method of obtaining an amorphous film by sputtering in adding water. First, particles are often generated in the sputter film. Particles adversely affect the flatness and crystallinity of the sputter film. Since no particles are generated unless water is added, the problem of particle generation is caused by the addition of water.

또한, 스퍼터 챔버 내의 수분 농도는, 스퍼터 시간의 경과에 수반하여, 점차 저하되기 때문에, 당초에는 적절한 수분 농도였다고 해도, 점차 적절한 농도에 못 미치는 농도가 되어, 스퍼터 막의 일부가 결정화한다.In addition, since the water concentration in the sputter chamber gradually decreases with the passage of the sputtering time, even if the water concentration is initially appropriate, the water concentration gradually falls short of the proper concentration, and a part of the sputter film crystallizes.

그러나, 한편으로, 확실하게 비정질의 스퍼터 막을 얻기 위해서, 첨가하는 수분 농도를 높게 하면, 그 후의 어닐링에서 막이 결정화할 때의 결정화 온도가 매우 높아져, 얻어지는 막의 저항률이 매우 높아진다는 문제가 발생한다. On the other hand, on the other hand, in order to reliably obtain an amorphous sputtered film, when the water concentration to be added is made high, the crystallization temperature at the time of the film crystallization in subsequent annealing becomes very high, and the problem that the resistivity of the film obtained becomes very high arises.

요컨대, 스퍼터막 전부를 비정질로 하기 위해서, 물을 첨가하는 것에서의 스퍼터에 의하면, 항상, 챔버 내의 물 농도를 파악, 제어할 필요가 있지만, 그것은 매우 곤란함과 함께, 대단한 수고와 노력을 필요로 하는 것이다.In short, in order to make all the sputter films amorphous, according to the sputter by adding water, it is always necessary to grasp and control the water concentration in a chamber, but it is very difficult and requires great effort and effort. It is.

이와 같은 문제를 해결하는 시도로서, 결정성 막이 제작되기 쉬운 ITO 막이 아니고 비정질의 안정한 투명 도전재가 일부에서는 사용되고 있다. 예를 들어, 산화인듐에 아연을 첨가한 조성의 소결체를 타깃으로서, 당해 타깃을 스퍼터하여 비정질막이 얻어짐은 알려져 있지만, 막의 저항률이 약 0.5 mΩ㎝ 로 결정화한 ITO 막보다 높은 값이다. 또한 당해 막은 가시광 평균 투과율이 약 85 % 정도이고 ITO 막보다 떨어져 있다. 또, 막의 내습성이 나쁘다는 결점도 있다.As an attempt to solve such a problem, an amorphous stable transparent conductive material is used in some, not an ITO film in which a crystalline film is easily produced. For example, it is known that an amorphous film is obtained by sputtering the target with a sintered compact having a composition in which zinc is added to indium oxide, but the resistivity of the film is higher than that of the ITO film crystallized at about 0.5 m? Cm. In addition, the film has an average visible light transmittance of about 85% and is separated from the ITO film. In addition, there is a disadvantage that the moisture resistance of the membrane is bad.

물이나 아연을 첨가하지 않고 비정질막을 얻는 것을 개시한 선행 기술로서는 이하를 들 수 있다.As a prior art which started obtaining an amorphous film without adding water or zinc, the following is mentioned.

특허문헌 1 에는, 산화인듐과 산화주석을 주성분으로 하여, 마그네슘 및 니켈로 이루어지는 군에서 선택되는 적어도 1 종의 금속의 산화물을 함유하는 것을 특징으로 하는 투명 도전막이 기재되어 있다. 이로써, 막이 치밀해져, 전자 이동도가 1.5 × 10 ㎠?s-1?V-1 정도로 커진다고 되어있다. 또, 마그네슘 또는 니켈의 첨가 비율을 적절히 함으로써, 내습성 및 내자외선성을 개선할 수 있는 것도 기재되어 있다. 인듐 화합물에 대한 마그네슘 화합물 또는 니켈 화합물의 배합 비율이, 인듐과 마그네슘 또 니켈 M 으로 환산하고, 또한 식 M/(M + In) 으로 나타낼 때 0.05 이하인 것이 바람직하다고 기재되어 있다.PTL 1 describes a transparent conductive film comprising indium oxide and tin oxide as main components and containing at least one metal oxide selected from the group consisting of magnesium and nickel. As a result, the film becomes dense, and the electron mobility becomes large about 1.5 × 10 cm 2 s −1 −V −1 . Moreover, it is also described that moisture resistance and ultraviolet resistance can be improved by adjusting the addition ratio of magnesium or nickel suitably. It is described that it is preferable that the compounding ratio of the magnesium compound or the nickel compound to the indium compound is 0.05 or less when converted to indium, magnesium or nickel M and represented by the formula M / (M + In).

특허문헌 2 에는, 산화인듐에 산화니켈을 첨가함으로써, 투명 도전막의 저항률이 저하되는 것이 개시되어 있다. 산화니켈의 첨가량을 2 ~ 25 mol% 로 함으로써, 비저항이 2 × 10-4 Ω㎝ 이하가 되어 바람직하다고 되어있다.Patent Document 2 discloses that the resistivity of a transparent conductive film is lowered by adding nickel oxide to indium oxide. By setting the addition amount of nickel oxide to 2 to 25 mol%, the specific resistance becomes 2 x 10 < -4 >

특허문헌 3 에는, 저항률이 0.8 ~ 10 × 10-3 Ω㎝ 정도의 고저항 투명 도전막용 산화인듐계 스퍼터링 타깃을 제공하는 것을 과제로 하여, 산화인듐 혹은 주석 도프 산화인듐에 절연성 산화물을 함유하는 타깃이 기재되어 있고, 절연성 산화물의 일례로서 산화망간을 들 수 있다. 그러나, 특허문헌 3 에는 저저항 도전막을 얻기 위한 스퍼터링 타깃은 기재되지 않았다.PTL 3 provides a target for providing an indium oxide-based sputtering target for a high resistance transparent conductive film having a resistivity of about 0.8 to 10 × 10 -3 Ωcm, and a target containing an insulating oxide in indium oxide or tin-doped indium oxide. This is described and manganese oxide is mentioned as an example of an insulating oxide. However, Patent Document 3 does not describe a sputtering target for obtaining a low resistance conductive film.

특허문헌 4 에는, 산화인듐 및 산화주석으로 이루어지는 소결체에 있어서, 망간을 함유하는 소결체가 매우 높은 소결 밀도를 달성할 수 있다고 하여, 산화인듐 혹은 주석 도프 산화인듐에 망간을 첨가하는 타깃이 기재되어 있다. 망간은, 최종적으로 얻어지는 ITO 소결체 중의 함유량이 5 ~ 5000 ppm 으로 되도록 조정하는 것이 기재되어 있다. 망간의 함유량은, 바람직하게는 10 ~ 500 ppm 이고, 구체예에서도 최대로 500 ppm 까지 밖에 첨가되어 있지 않다.Patent Document 4 discloses a target in which manganese is added to indium oxide or tin-doped indium oxide because the sintered compact including manganese can achieve a very high sintered density in a sintered compact made of indium oxide and tin oxide. . It is described that manganese is adjusted so that content in the finally obtained ITO sintered compact may be 5-5000 ppm. The content of manganese is preferably 10 to 500 ppm, and only a maximum of 500 ppm is added even in the specific examples.

특허문헌 5 에는, 산화인듐에 산화망간을 첨가함으로써, 투명 도전막의 저항률이 저하하는 것이 개시되어 있다. 산화망간의 첨가량을 2 ~ 15 mol % 로 함으로써, 비저항이 2 × 10-4 Ω㎝ 이하가 되어 바람직하다고 되어있다.Patent Document 5 discloses that the resistivity of a transparent conductive film is decreased by adding manganese oxide to indium oxide. By setting the addition amount of manganese oxide to 2 to 15 mol%, the specific resistance becomes 2 x 10 -4 Ωcm or less, which is considered to be preferable.

특허문헌 6 에는, 산화인듐에 3 가 양이온을 포함하는 막이 나타내어져 있고, 그 일례로서 알루미늄을 들 수 있다. 이렇게 함으로써, 보다 저저항에서, 에칭 특성이 개선된 투명 도전막이 얻어지는 것이 기재되어 있다. 그러나, 특허문헌 6 의 목적은, 이온화 불순물 산란에 의한 이동도의 저하를 방지하여, 저저항률과 가공성을 얻기 위한 것이고, 또한, 실시예에서는, 이트륨의 예가 있을 뿐이다. 따라서, 알루미늄이 당해 특허 출원이 주장하는 바와 같은 효과를 갖는지 여부는 완전히 불분명하다.In patent document 6, the film | membrane which contains a trivalent cation in indium oxide is shown, and aluminum is mentioned as an example. By doing so, it is described that a transparent conductive film having improved etching characteristics can be obtained at a lower resistance. However, the purpose of patent document 6 is to prevent the fall of mobility by ionization impurity scattering, and to obtain low resistivity and workability. Moreover, in the Example, there is only an example of yttrium. Thus, it is completely unclear whether aluminum has the effect as claimed in this patent application.

특허문헌 7 에는, 「In 의 산화물을 주성분으로 하는 투명 도전막으로서, Ge 를 함유하는 것, 혹은, Ge 및 Sn 를 함유하는 것은 비정질막이 되고, 그 때문에 에칭이 용이하여 가공성이 우수하다」(단락 0015) 라고 기재되어 있다. 이것은, 「어느 일정한 성막 조건하에서는, Ge 의 첨가가 In2O3 막의 비정질화에 유효하고, 또한 막의 전기 저항률 및 투과율을 해치지 않는다」(단락 0021) 고 되어 있고, 그와 같은 성막 조건이란 「성막 온도를 100 ~ 300 ℃ 로 하여, Ge 의 첨가량을 Ge 량과 In 량의 합계에 대하여 2 ~ 12 원자 % 로 하고, 산소 분압을 0.02 mTorr 이상으로 하여 성막한다」(단락 0029) 는 것이다. 「이 때, 성막 온도를 100 ℃ 미만, Ge 첨가량을 2 원자% 미만으로 하면, Ge 에 의한 캐리어 전자 방출에 의한 전기 저항률의 저하가 충분하지 않고, 전기 저항률이 0.01 Ω㎝ 초과로 된다.」 (단락 0030) 는 것도 기재되어 있다.Patent Document 7 describes, "As a transparent conductive film containing an oxide of In as a main component, one containing Ge, or one containing Ge and Sn, becomes an amorphous film, which is easy to etch and excellent in workability. 0015). This is because "under certain constant film formation conditions, the addition of Ge is In 2 O 3 It is effective for the amorphousization of the film and does not impair the electrical resistivity and the transmittance of the film ”(paragraph 0021). Such film formation conditions are“ the film formation temperature is 100 to 300 ° C., and the amount of Ge is added to the amount of Ge and In. It is set to 2 to 12 atomic% with respect to the sum of the amounts, and the film is formed with an oxygen partial pressure of 0.02 mTorr or more '' (paragraph 0029). "At this time, when film-forming temperature is less than 100 degreeC and Ge addition amount is less than 2 atomic%, the fall of the electrical resistivity by carrier electron emission by Ge will not be enough, and an electrical resistivity will exceed 0.01 ohm-cm." Paragraph 0030 is also described.

일본 공개특허공보 평07-161235Japanese Patent Application Laid-Open No. 07-161235 일본 공개특허공보 평03-71510Japanese Patent Application Laid-Open No. 03-71510 일본 공개특허공보 2003-105532Japanese Laid-Open Patent Publication 2003-105532 특허 제 3496239호Patent number 3496239 일본 공개특허공보 평03-78907Japanese Patent Application Laid-Open No. 03-78907 일본 공개특허공보 평08-199343Japanese Patent Application Laid-Open No. 08-199343 특허 제 3780100호Patent No. 3780100

Thin Solid Films 445 (2003) p 235 ~ 240 Thin Solid Films 445 (2003) p 235 ~ 240

이상에서 설명한 바와 같이 선행 기술로서, 산화인듐에 아연을 첨가한 조성의 소결체를 타깃으로서 사용하는 것은, 막 저항률이 높거나 하는 결점을 갖고 있기 때문에, 해결책으로는 충분하지 않다.As described above, as a prior art, using a sintered compact having a composition in which zinc is added to indium oxide as a target has a drawback that the film resistivity is high, and therefore, the solution is not sufficient.

또, 특허문헌 1 ~ 7 의 어느 것에 있어서도, 높은 에칭성과 저저항률화의 쌍방을 충분히 만족하는 투명 도전막은 얻어지지 않아, 여전히 개선의 여지가 있다.Moreover, in any of patent documents 1-7, the transparent conductive film which fully satisfies both high etching property and low resistivity is not obtained, and there exists still room for improvement.

그래서, 본 발명의 과제는, 플랫 패널 디스플레이용 표시 전극 등에 사용되는 ITO 계 비정질 투명 도전막으로서, 기판 무가열로 스퍼터 시에 수첨가하는 경우 없이 제조할 수 있어 높은 에칭성과 저저항률화의 쌍방을 높은 차원으로 만족하는 투명 도전막을 제공하는 것이다. 또, 본 발명의 다른 과제는 그러한 투명 도전막을 제조할 수 있는 스퍼터링 타깃을 제공하는 것이다.Then, the subject of this invention is an ITO-type amorphous transparent conductive film used for the display electrode for flat panel displays, etc., and can manufacture it, without the addition of a hydrogenation at the time of sputter | spatter by heating a board | substrate, and both high etching property and low resistivity improvement are attained. It is to provide a transparent conductive film which satisfies in a high dimension. Moreover, another subject of this invention is providing the sputtering target which can manufacture such a transparent conductive film.

본 발명자들은, 산화인듐 혹은 주석 도프 산화인듐에 각종 원소를 첨가한 산화물 타깃에 대하여, 예의 검토를 거듭한 결과, 적절한 도펀트의 적절한 농도 첨가에 의한 막의 에칭 레이트의 증가와 막의 저저항률화라는 기술적 사상에 이르러, 산화인듐 혹은 주석 도프 산화인듐에 니켈 등을, 적절 농도 첨가한 소결체를 소정의 조건에서 스퍼터함으로써, 상기 과제를 해결할 수 있는 투명 도전막이 얻어짐을 알아내어, 본 발명을 완성하였다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining about the oxide target which added various elements to indium oxide or indium dope indium oxide, the present inventors found that the technical idea of the increase of the etching rate of a film by the addition of appropriate concentration of an appropriate dopant, and the low resistivity of a film is made. As a result, by sputtering a sintered body in which nickel or the like is appropriately added to indium oxide or tin-doped indium oxide under predetermined conditions, it was found that a transparent conductive film capable of solving the above problems was obtained, and completed the present invention.

이러한 지견 (知見) 을 기초로 하여 완성한 본 발명은 이하와 같이 특정할 수 있다.The present invention completed on the basis of such knowledge can be specified as follows.

1) 산화인듐을 주성분으로 하고, 제 1 첨가 원소로서 니켈, 망간, 알루미늄 및 게르마늄에서 선택되는 1 종 이상을 함유하고, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소의 합계량에 대하여 2 ~ 12 원자% 인 것을 특징으로 하는 산화물 소결체.1) It contains indium oxide as a main component and contains 1 or more types chosen from nickel, manganese, aluminum, and germanium as a 1st addition element, and the sum total of content of a 1st addition element is with respect to the total amount of indium and a 1st addition element. It is 2 to 12 atomic%, The oxide sintered compact characterized by the above-mentioned.

2) 산화인듐을 주성분으로 하고, 제 1 첨가 원소로서 니켈, 망간, 알루미늄 및 게르마늄에서 선택되는 1 종 이상을 함유하고, 제 2 첨가 원소로서 주석을 함유하고, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소와 주석의 합계량에 대하여 2 ~ 12 원자% 이고, 주석의 함유량이 인듐과 주석의 합계량에 대하여 2 ~ 15 원자% 인 것을 특징으로 하는 산화물 소결체.2) It contains indium oxide as a main component, contains at least one selected from nickel, manganese, aluminum and germanium as the first additional element, contains tin as the second additional element, and the sum of the contents of the first additional element It is 2-12 atomic% with respect to the total amount of indium, a 1st addition element, and tin, and content of tin is 2-15 atomic% with respect to the total amount of indium and tin.

3) 상기 1) 또는 2) 에 기재된 산화물 소결체를 스퍼터링 타깃으로서 사용하여 스퍼터하는 것을 특징으로 하는 비정질막의 제조 방법.3) A method for producing an amorphous film, wherein the oxide sintered body according to 1) or 2) is used as a sputtering target.

4) 상기 1) 또는 2) 에 기재된 산화물 소결체와 동일한 조성을 갖는 비정질막.4) An amorphous film having the same composition as the oxide sintered body according to 1) or 2) above.

본 발명의 제 1 의 특징은, 첨가된 니켈 등이, 산화인듐 등의 네트워크 구조 결합을 절단하는 효과에 의해, 결정화를 방지하는 면에 있다. 또, 본 발명의 제 2 의 특징은, 이와 같은 비정질화를 촉진하는 도펀트가 동시에 막의 저저항률화에 기여함과 함께 에칭 특성을 향상시키는 면에 있다. 또, 본 발명의 제 3 의 특징은, 추가로 주석을 첨가함으로써, 막의 저저항률화를 더욱 촉진시킬 수 있는 면에 있다.The 1st characteristic of this invention is the surface which prevents crystallization by the effect that the added nickel etc. cut | disconnect network structure bonds, such as indium oxide. Moreover, the 2nd characteristic of this invention is the aspect which improves the etching characteristic while contributing to the low resistivity of a film | membrane simultaneously when such a dopant which promotes such amorphousization is carried out. Moreover, the 3rd characteristic of this invention is the aspect which can further promote the low resistivity of a film | membrane by adding tin further.

본 발명에 의하면, 산화인듐 등에 니켈 등을 적절한 농도로 첨가한 스퍼터링 타깃을 사용하여, 성막시에 물을 첨가하는 경우 없이 기판 무가열 상태에서, 소정의 조건에서 스퍼터 성막함으로써, 막 전체가 비정질인 막을 얻을 수 있다. 또, 얻어진 막은 전체가 비정질이고, 에칭 속도가 빠르기 때문에 생산성이 우수하고 또한 막의 저항률이 낮기 때문에 투명 도전막으로서 적절하다.According to the present invention, a sputtering target in which nickel or the like is added at an appropriate concentration, such as indium oxide, is used to sputter film formation under predetermined conditions in a substrate-free state without adding water at the time of film formation. You can get a film. Moreover, since the obtained film | membrane is amorphous all and has a fast etching rate, since it is excellent in productivity and low resistivity of a film, it is suitable as a transparent conductive film.

산화물 소결체 및 투명 Oxide sintered and transparent 도전막의Of the conductive film 조성 Furtherance

제 1 첨가 원소로서의 니켈, 망간, 알루미늄 및 게르마늄은, 산화인듐, 또는 주석 도프 산화인듐에 첨가되면, 막의 결정화를 방해하여, 막을 비정질화하는 효과가 있다. 이들은 단독으로 첨가해도 되고, 2 종 이상을 첨가해도 된다. 단, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소의 합계량 (주석을 도프하고 있는 경우에는 인듐과, 제 1 첨가 원소와 주석의 합계량) 에 대하여 지나치게 적으면, 막을 비정질화시키는 효과가 거의 없고, 스퍼터한 막이 일부 결정화한다. 그 때문에, 에칭 레이트가 작아져 에칭 잔류물이 발생한다. 반대로, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소와 (주석과) 의 합계량에 대하여 지나치게 많으면, 비정질막의 저항률이 높아진다.Nickel, manganese, aluminum, and germanium as the first addition elements, when added to indium oxide or indium-doped indium oxide, have the effect of preventing the film from crystallization and making the film amorphous. These may be added independently and may add 2 or more types. However, if the sum total of content of a 1st addition element is too small with respect to the total amount of indium and a 1st addition element (total amount of indium, a 1st addition element, and tin, when doping tin), the effect which will amorphousize a film | membrane Almost no, the sputtered film partially crystallizes. Therefore, the etching rate becomes small and etching residues generate. On the contrary, if the sum total of content of a 1st addition element is too large with respect to the total amount of indium, a 1st addition element, and (tin), the resistivity of an amorphous film will become high.

그래서, 제 1 첨가 원소의 함유량의 합계는 인듐과 제 1 첨가 원소와 (주석과) 의 합계량에 대하여 2 ~ 12 원자% 로 하고, 낮은 막 저항률을 얻는 관점에서는 4 ~ 8 원자% 로 하는 것이 바람직하고, 5 ~ 7 원자% 로 하는 것이 보다 바람직하다.Therefore, the sum total of content of a 1st addition element shall be 2-12 atomic% with respect to the total amount of indium, a 1st addition element, and (tin), and it is preferable to set it as 4-8 atomic% from a viewpoint of obtaining a low film resistivity. It is more preferable to set it as 5 to 7 atomic%.

제 1 첨가 원소 중에서도 니켈이 바람직하다. 니켈은 다른 제 1 첨가 원소와 비교하여 비정질막의 저항률을 낮추는 효과가 높고, 또, 에칭 레이트를 높이는 기능도 크기 때문이다.Nickel is preferable among the first addition elements. This is because nickel has a higher effect of lowering the resistivity of the amorphous film compared with other first additive elements, and also has a large function of increasing the etching rate.

주석은 산화인듐에 첨가되면, n 형 도너로서 작용하여, 저항률을 저하시키는 효과가 있어, 시판되는 ITO 타깃 등은 통상적으로 주석 농도 Sn 이 인듐과 주석의 합계량에 대하여 약 10 원자%이다. 주석 농도가 지나치게 낮으면, 전자 공급량이 적게 되고, 또, 반대로 지나치게 많으면 전자 산란 불순물이 되어, 어느 경우에도 스퍼터에 의해 얻어지는 막의 저항률이 높아진다. 따라서, ITO 로서 적절한 주석의 농도 범위는, 주석 농도 Sn 이 인듐과 주석의 합계량에 대하여 2 ~ 15 원자% 이고, 바람직하게는 8 ~ 12 원자% 이다.When tin is added to indium oxide, it acts as an n-type donor and has an effect of lowering the resistivity. Commercially available ITO targets and the like usually have tin concentration Sn of about 10 atomic% with respect to the total amount of indium and tin. If the tin concentration is too low, the electron supply amount is small. On the contrary, if the tin concentration is too high, electron scattering impurities are caused, and in any case, the resistivity of the film obtained by the sputtering is increased. Therefore, tin concentration Sn suitable as ITO is 2-15 atomic% with respect to the total amount of tin indium and tin, Preferably it is 8-12 atomic%.

산화물 소결체의 제조 방법Manufacturing Method of Oxide Sintered Body

이하에 산화물 소결체의 제조 방법에 대하여 설명한다.The manufacturing method of an oxide sintered compact is demonstrated below.

본 발명의 산화물 소결체를 제조하기 위해서는, 먼저, 원료인 산화인듐 분말, 제 1 첨가 원소의 산화물 분말 및 필요에 따라 산화주석 분말을 소정의 비율로 칭량하여, 혼합한다. 혼합이 불충분하면, 제조한 타깃에 제 1 첨가 원소의 편석에 의해 고저항률 영역과 저저항률 영역이 존재하여, 스퍼터 성막시에 고저항률 영역에서의 대전에 의한 아킹 등의 이상 방전이 일어나기 쉽게 된다. 원료로서 산화물의 형태 이외의 것을 사용해도 되지만, 취급의 관점에서는 산화물이 바람직하다.In order to manufacture the oxide sintered compact of this invention, the indium oxide powder which is a raw material, the oxide powder of a 1st addition element, and a tin oxide powder are weighed and mixed as needed at a predetermined ratio as needed. If the mixing is insufficient, high-resistance regions and low-resistance regions exist due to segregation of the first additive element in the produced target, and abnormal discharge such as arcing due to charging in the high resistivity region is likely to occur during sputter film formation. Although a thing other than the form of an oxide may be used as a raw material, An oxide is preferable from a viewpoint of handling.

그래서, 혼합에는 슈퍼 믹서를 사용하여, 매분마다 2000 ~ 4000 회전 정도의 고속 회전으로, 약 2 ~ 5 분 정도의 충분한 혼합을 실시하는 것이 바람직하다. 또한, 원료분은 산화물이기 때문에 분위기 가스는, 특히 원료의 산화를 방지하는 등의 고려가 필요하지 않기 때문에 대기여도 상관없다.Therefore, it is preferable to perform a sufficient mixing of about 2 to 5 minutes at a high speed rotation of about 2000 to 4000 rotations every minute using a super mixer for mixing. In addition, since the raw material powder is an oxide, the atmospheric gas may be in the air since the consideration of preventing oxidation of the raw material is not particularly necessary.

또한, 이 단계에서 대기 분위기 중에 있어서, 1250 ~ 1350 ℃, 4 ~ 6 시간 유지의 가소 (假燒) 공정을 넣어, 원료 간의 고용을 촉진시켜 두는 것도 유효하다. 또, 산화인듐과 제 1 첨가 원소의 산화물을 혼합분으로 하여 가소해 두어도 된다.Moreover, it is also effective to put in 1250-1350 degreeC the calcination process of 4-6 hours hold | maintain in this atmosphere, and to promote the solid solution between raw materials at this stage. Moreover, you may calcinate indium oxide and the oxide of a 1st addition element as a mixed powder.

다음으로, 혼합분의 미분쇄를 실시한다. 이것은 원료분의 타깃 중에서의 균일 분산화를 위한 것으로, 입경이 큰 원료분이 존재한다는 것은, 장소에 따라 조성 불균일이 생기게 된다.Next, the finely divided powder is mixed. This is for uniform dispersion in the target of the raw material powder, and the presence of the raw material powder having a large particle diameter causes composition unevenness depending on the place.

따라서, 미분쇄는 원료분의 입경이 평균 입경 (D50) 이, 1 ㎛ 이하, 바람직하게는 0.6 ㎛ 이하로 될 때까지 실시하는 것이 바람직하다. 실제로는, 혼합분에 물을 첨가하여, 고형분 40 ~ 60 중량% 의 슬러리로 하고 직경 1 ㎜ 의 지르코니아 비즈로 1.5 ~ 3.0 시간 정도의 미분쇄를 실시한다.Therefore, it is preferable to perform grinding | pulverization until the particle size of a raw material powder becomes an average particle diameter (D50) 1 micrometer or less, Preferably it is 0.6 micrometer or less. In reality, water is added to the mixed powder to form a slurry having a solid content of 40 to 60% by weight, and fine grinding is performed for about 1.5 to 3.0 hours with zirconia beads having a diameter of 1 mm.

다음으로, 혼합분의 조립을 실시한다. 이것은, 원료분의 유동성을 좋게 하여, 프레스 성형시의 충전 상황을 충분히 양호한 것으로 하기 위해서이다. 바인더의 역할을 하는 PVA (폴리비닐알코올) 를 슬러리 1 kg 당 100 ~ 200 cc 의 비율로 혼합하여, 조립(造粒)기 입구 온도 200 ~ 250 ℃, 출구 온도 100 ~ 150 ℃, 디스크 회전수 8000 ~ 10000 rpm 의 조건에서 조립한다.Next, the mixed powder is granulated. This is for making the fluidity | liquidity of a raw material powder good, and making the filling situation at the time of press molding good enough. PVA (polyvinyl alcohol), which acts as a binder, was mixed at a ratio of 100 to 200 cc per kg of slurry, and the inlet temperature of the granulator was 200 to 250 ° C, the outlet temperature was 100 to 150 ° C, and the disk rotation speed was 8000. Assemble at a condition of ~ 10000 rpm.

다음으로, 프레스 성형을 실시한다. 소정 사이즈의 형태에 조립분을 충전하고, 면압력 700 ~ 900 kgf/㎠ 에서 성형체를 얻는다. 면압력 700 kgf/㎠ 이하이면, 충분한 밀도의 성형체를 얻을 수 없고, 면압력 900 kgf/㎠ 이상으로 할 필요도 없으며, 쓸데없는 비용이나 에너지를 필요로 하므로 생산상 바람직하지 않다.Next, press molding is performed. The granulated powder is filled into the form of predetermined size, and a molded object is obtained by surface pressure 700-900 kgf / cm <2>. If the surface pressure is 700 kgf / cm 2 or less, a molded article having a sufficient density cannot be obtained, the surface pressure is not required to be 900 kgf / cm 2 or more, and unnecessary cost and energy are required.

마지막으로 소결을 실시한다. 소결 온도는 1450 ~ 1600 ℃ 에서, 유지 시간은 4 ~ 10 시간, 승온 속도는 4 ~ 6 ℃/분, 강온은 노냉에서 실시한다. 소결 온도가 1450 ℃ 보다 낮으면, 소결체의 밀도가 충분히 커지지 않고, 1600 ℃ 를 초과하면, 노(爐)히터 수명이 저하한다. 유지 시간이 4 시간보다 짧으면, 원료분 간의 반응이 충분히 진행되지 않아, 소결체의 밀도가 충분히 커지지 않고, 소결 시간이 10 시간을 넘기면, 반응은 충분히 일어나고 있기 때문에, 불필요한 에너지와 시간을 필요로 하는 낭비가 발생하여 생산상 바람직하지 않다. Finally, sintering is performed. The sintering temperature is carried out at 1450 to 1600 ° C, the holding time is 4 to 10 hours, the temperature raising rate is 4 to 6 ° C / minute, and the temperature is performed in a furnace. If the sintering temperature is lower than 1450 ° C, the density of the sintered compact does not become sufficiently large. If the sintering temperature is higher than 1600 ° C, the furnace heater life is lowered. If the holding time is shorter than 4 hours, the reaction between the raw materials does not proceed sufficiently, the density of the sintered compact does not increase sufficiently, and if the sintering time exceeds 10 hours, the reaction is sufficiently occurring, and thus waste of unnecessary energy and time is required. Occurs and is undesirable in production.

승온 속도가 4 ℃/분보다 작으면, 소정 온도로 되기까지 불필요하게 시간을 필요로 하고, 승온 속도가 6 ℃/분보다 크면, 노내의 온도 분포가 균일하게 상승하지 않아 불균일이 발생한다. 이렇게 하여 얻어진 소결체의 밀도는, 상대 밀도로 98 ~ 100 %, 예를 들어 약 99.9 %, 벌크 저항은 0.1 ~ 3.0 mΩ㎝, 예를 들어 약 0.13 mΩ㎝ 정도로 된다.If the temperature increase rate is less than 4 ° C./minute, time is unnecessarily required until the temperature reaches a predetermined temperature. If the temperature increase rate is greater than 6 ° C./minute, the temperature distribution in the furnace does not rise uniformly and nonuniformity occurs. The sintered compact thus obtained has a relative density of 98 to 100%, for example about 99.9%, and a bulk resistance of about 0.1 to 3.0 mΩcm, for example about 0.13 mΩcm.

스퍼터링Sputtering 타깃의 제조 방법 Manufacturing method of target

이하에 스퍼터링 타깃의 제조 방법에 대하여 설명한다. The manufacturing method of a sputtering target is demonstrated below.

상기와 같은 제조 조건에 의해 얻어진 산화물 소결체의 외주의 원통 연삭, 면측의 평면 연삭을 함으로써 두께 4 ~ 6 ㎜ 정도, 직경은 스퍼터 장치에 대응한 사이즈로 가공하여, 구리제의 배킹 플레이트에 인듐계 합금 등을 본딩 메탈로서 첩합 (貼合) 시킴으로써 스퍼터링 타깃으로 할 수 있다.Cylindrical grinding of the outer periphery of the oxide sintered body obtained by the above manufacturing conditions and the surface grinding of the surface side are processed to a size corresponding to a thickness of 4 to 6 mm and a diameter corresponding to the sputtering device, and the indium-based alloy is formed on the copper backing plate. It can be set as a sputtering target by bonding together etc. as a bonding metal.

이하에 스퍼터링 성막 방법에 대하여 설명한다.The sputtering film formation method will be described below.

본 발명의 투명 도전막은, 본 발명의 스퍼터링 타깃을 사용하여, 아르곤 가스압을 0.4 ~ 0.8 ㎩, 타깃과 기판 간격을 50 ~ 110 ㎜, 유리 등을 기판으로 하여 무가열로, 스퍼터 파워를, 예를 들어, 타깃 사이즈가 8 인치인 경우에는, 200 ~ 900 W 에서 스퍼터 성막함으로써 얻을 수 있다. 스퍼터 방식은 직류 마그네트론 스퍼터로 하는 것이 바람직하다.Using the sputtering target of this invention, the transparent conductive film of this invention is 0.4-0.8 kPa of argon gas pressures, 50-110 mm of targets and a board | substrate space | interval, glass, etc. make a sputter | spatter power non-heating, for example, For example, when target size is 8 inches, it can obtain by sputter film-forming at 200-900W. The sputtering system is preferably a direct current magnetron sputter.

기판 간격이 50 ㎜ 보다 짧으면, 기판에 도달하는 타깃 구성 원소의 입자의 운동 에너지가 지나치게 커져 기판에 대한 데미지가 크고, 막 저항률이 증가하는 것과 함께, 막의 일부가 결정화될 가능성이 있다. 한편, 타깃과 기판 간격이 110 ㎜ 보다 길면, 기판에 도달하는 타깃 구성 원소의 입자의 운동 에너지가 지나치게 작아져, 치밀한 막이 형성되지 않고, 저항률이 높아진다. 아르곤 가스압이나 스퍼터 파워에 대한 적절 범위도, 동일한 이유에서 상기와 같이 되어 있다. 또, 기판 온도도 가열하면 막이 결정화하기 쉬워진다. 따라서, 이들 스퍼터 조건을 적절히 선택함으로써, 얻어지는 막을 비정질로 할 수 있다.If the substrate spacing is shorter than 50 mm, the kinetic energy of the particles of the target constituent element that reaches the substrate becomes too large, the damage to the substrate is large, the film resistivity increases, and there is a possibility that a part of the film is crystallized. On the other hand, when the distance between a target and a board | substrate is longer than 110 mm, the kinetic energy of the particle | grains of the target structural element which reaches | attains a board | substrate becomes too small, a dense film is not formed and a resistivity becomes high. The appropriate range for argon gas pressure and sputter power is also described above for the same reason. Moreover, when a substrate temperature is also heated, a film | membrane will become easy to crystallize. Therefore, by appropriately selecting these sputter conditions, the film obtained can be made amorphous.

막의 특성 평가 방법How to evaluate the properties of the membrane

이하에 막의 특성 평가 방법에 대하여 설명한다.The method for evaluating the properties of the film will be described below.

상기와 같이 하여 얻어진 투명 도전막 결정성의 판정은, 막의 X 선 회절 측정 (XRD 측정) 에서 결정성의 막이 나타내는 바와 같은 피크의 유무, 옥살산에 의한 막의 에칭으로 결정성의 막이 나타내는 바와 같은 에칭 잔류물이 발생하는지 여부로부터 확인할 수 있다. 요컨대, X 선 회절 측정에서 산화인듐 또는 ITO 결정에서 기인되는 특유의 피크가 없고, 에칭 잔류물이 없는 경우에 그 막은 비정질인 것으로 판정할 수 있다.Determination of the crystallinity of the transparent conductive film obtained as described above includes the presence or absence of a peak as indicated by the crystalline film in the X-ray diffraction measurement (XRD measurement) of the film, and the etching residue as shown by the crystalline film due to the etching of the film by oxalic acid. You can check whether or not. In short, in the X-ray diffraction measurement, when there is no peculiar peak resulting from indium oxide or ITO crystals, and there is no etching residue, the film can be determined to be amorphous.

옥살산에 의한 막의 에칭 방법은, 예를 들어, 옥살산 이수화물 (COOH)2?2H2O 를 순수와, 옥살산 : 순수 = 5 : 95 의 중량 비율로 혼합한 액을, 에천트로 하여 액온을 40 ℃ 로 유지하도록 항온조에 넣고, 막이 형성된 기판을 교반하여 실시할 수 있다.Film etching method according to the oxalic acid may, for example, with an oxalic acid dihydrate (COOH) 2 2H 2 O pure oxalic acid: pure water = 5: a liquid mixture in a weight ratio of 95, the etchant Trojan a liquid temperature 40 ℃ It can be put into a thermostat so that it may hold | maintain, and the board | substrate with a film | membrane can be stirred and performed.

또, 막의 저항률은 홀 측정에 의해 구할 수 있다. 본 발명에 관련된 비정질막은, 1.8 mΩ㎝ 이하의 저항률을 가질 수 있고, 바람직하게는 1.0 mΩ㎝ 이하의 저항률을 가질 수 있고, 보다 바람직하게는 0.6 mΩ㎝ 이하의 저항률을 가질 수 있고, 예를 들어 0.1 ~ 0.6 mΩ㎝ 의 저항률을 갖는다.In addition, the resistivity of a film can be calculated | required by hole measurement. The amorphous film according to the present invention may have a resistivity of 1.8 mΩcm or less, preferably a resistivity of 1.0 mΩcm or less, more preferably of 0.6 mΩcm or less, for example, It has a resistivity of 0.1 to 0.6 mΩcm.

실시예Example

이하에 본 발명을 실시예로 더욱 더 상세하게 설명하지만, 본 발명은 이들에 한정되는 것은 아니다. 즉, 본원 발명의 기술적 사상의 범위에서의, 변경, 기타 실시 양태는, 모두 본원 발명에 포함되는 것이다.Although an Example demonstrates this invention further in detail below, this invention is not limited to these. That is, all changes and other embodiments within the scope of the technical idea of the present invention are included in the present invention.

(실시예 1)(Example 1)

원료인 산화인듐 (In2O3) 분말 및 산화니켈 (NiO) 분말을, 원자수비로 In : Ni = 98 : 2 가 되도록 칭량하여, 대기 분위기 중에서 슈퍼 믹서에 의해, 매분마다 3000 회전, 3 분의 혼합을 실시하였다. Indium oxide (In 2 O 3 ) powders and nickel oxide (NiO) powders as raw materials were weighed in an atomic ratio such that In: Ni = 98: 2, and 3000 revolutions every minute by a super mixer in an air atmosphere for 3 minutes. Was mixed.

다음으로, 혼합분에 물을 첨가하여, 고형분 50 % 의 슬러리로서, 직경 1 ㎜ 의 지르코니아 비즈로 2 시간의 미쇄 분쇄를 실시하여, 혼합분의 평균 입경 (D50) 을 0.6 ㎛ 이하로 하였다. 그 후, PVA (폴리비닐알코올) 를 슬러리 1 kg 당 125 cc 의 비율로 혼합하고, 조립기 입구 온도 220 ℃, 출구 온도 120 ℃, 디스크 회전수 9000 rpm 의 조건에서 조립하였다.Next, water was added to the mixed powder, and the fine powder was pulverized for 2 hours with zirconia beads having a diameter of 1 mm as a slurry having a solid content of 50%, so that the average particle diameter (D50) of the mixed powder was 0.6 µm or less. Thereafter, PVA (polyvinyl alcohol) was mixed at a ratio of 125 cc per kg of slurry, and granulated under conditions of a granulator inlet temperature of 220 ° C, an outlet temperature of 120 ° C, and a disk rotation speed of 9000 rpm.

또한, 8 인치 타깃 직경으로 되는 소정 사이즈의 형에 조립분을 충전하고, 면압력 780 kgf/㎠ 에서 프레스하여 성형체를 얻었다. 그리고, 성형체를 승온 속도 5 ℃/분에서 1540 ℃ 까지 승온시켜, 1540 ℃ 에서 5 시간 유지 후, 강온은 노냉으로 하는 소결을 실시하였다. Furthermore, the granulated powder was filled into the mold of the predetermined | prescribed size used as an 8 inch target diameter, and it pressed at the surface pressure of 780 kgf / cm <2>, and obtained the molded object. And the molded object was heated up to 1540 degreeC at the temperature increase rate of 5 degree-C / min, and after hold | maintaining at 1540 degreeC for 5 hours, sintering was performed by making furnace temperature cold.

상기 조건에서 얻어진 산화물 소결체의 외주의 원통 연삭, 면측의 평면 연삭을 하고, 두께 5 ㎜ 정도, 직경 8 인치로 하여, 구리제의 배킹 플레이트에 인듐을 본딩 메탈로서 부착함으로써 스퍼터링 타깃으로 하였다.Cylindrical grinding of the outer circumference of the oxide sintered body obtained under the above conditions and the surface grinding of the surface side were made, and the thickness was about 5 mm and the diameter was 8 inches, and indium was attached to the copper backing plate as a bonding metal to make a sputtering target.

상기 스퍼터링 타깃을 캐논아네르바사 제조 형식 SPF-313 H 의 스퍼터 장치에 장착, 아르곤 가스압을 0.5 ㎩, 타깃과 기판 간격을 80 ㎜, 무알칼리 유리를 기판으로 하여, 기판 무가열 상태에서, 스퍼터 파워를 785 W, 성막 시간 22 초로 직류 마그네트론 스퍼터 성막함으로써, 막두께 약 550 Å 의 투명한 막을 얻었다. 상기 막의 XRD 측정을 실시한 결과, 결정성을 나타내는 피크는 관찰되지 않고, 막은 비정질이었다. 또, 막을 옥살산 : 순수 = 5 : 95 의 중량 비율로 혼합한 액을 에천트로 하여 에칭을 실시했지만, 에칭 잔류물은 관찰되지 않았다.The sputtering target was mounted on a sputtering apparatus manufactured by Canon Anerva Co., Ltd. SPF-313H, argon gas pressure was 0.5 kPa, target and substrate spacing was 80 mm, and an alkali-free glass was used as a substrate. Was obtained by direct current magnetron sputter deposition at 785 W and deposition time of 22 seconds to obtain a transparent film having a thickness of about 550 GPa. As a result of performing the XRD measurement of the film, no peak showing crystallinity was observed, and the film was amorphous. Moreover, although etching was performed using the liquid which mixed the film in the weight ratio of oxalic acid: pure water = 5: 95, the etching residue was not observed.

당해 막의 저항률은 1.2 mΩ㎝, 에칭 레이트 15 Å/sec 였다. 이 결과를 표 1 에 나타낸다. 또, 파장 550 ㎚ 에서의 투과율은 90 % 였다.The resistivity of this film was 1.2 mΩcm, and the etching rate was 15 Pa / sec. The results are shown in Table 1. Moreover, the transmittance | permeability in wavelength 550nm was 90%.

(실시예 2 ~ 30)(Examples 2 to 30)

실시예 1 의 소결체 조성을 각각 표 1 과 같이 변화시키고, 그 밖의 조건은 실시예 1 과 동일한 조건에서 실시한 것이 실시예 2 ~ 30 이다. 이 모든 경우에 대하여, 성막 후의 막은 비정질이고 투명하며, 에칭 잔류물은 없었다. 단, Mn 공급원은 산화망간 (Mn2O3), Al 공급원은 산화알루미늄 (Al2O3), 게르마늄 공급원은 산화게르마늄 (GeO2) 을 각각 사용하였다.The sintered compact composition of Example 1 was changed as Table 1, respectively, and what was implemented on the same conditions as Example 1 is Examples 2-30. In all these cases, the film after film formation was amorphous and transparent, and there was no etching residue. The Mn source was manganese oxide (Mn 2 O 3 ), the Al source was aluminum oxide (Al 2 O 3 ), and the germanium source was germanium oxide (GeO 2 ), respectively.

이상의 결과에서, 이들의 실시예에서는 성막 후의 막은 모두 비정질이고, 막 저항률은 니켈, 망간, 알루미늄, 게르마늄 및 니켈과 망간의 동시 첨가시의 각종 도펀트 농도 또는 합계 도펀트 농도의 증가에 수반하여, 일단 저하한 후에 증가하였다. 최저 저항률을 공급하는 도펀트 농도는, 약 6 at % 의 경우였다. 그리고, 이들 막의 저항률은 충분히 낮고, ITO 막의 저항률에도 필적할 정도로 낮으며 투명 도전막으로서 적절한 것이었다.In the above results, in these examples, the films after film formation are all amorphous, and the film resistivity decreases once with the increase of the various dopant concentrations or the total dopant concentrations when simultaneous addition of nickel, manganese, aluminum, germanium, and nickel and manganese. Increased after one hour. The dopant concentration which supplies the lowest resistivity was the case of about 6 at%. The resistivity of these films was sufficiently low, low enough to match the resistivity of the ITO film, and was suitable as a transparent conductive film.

한편, 막의 에칭 레이트는, 각종 도펀트의 첨가량의 증가에 따라, 단조롭게 증가하였다.On the other hand, the etching rate of the film monotonously increased with the increase in the addition amount of various dopants.

Figure 112011070910407-pat00001
Figure 112011070910407-pat00001

(실시예 31 ~ 60)(Examples 31 to 60)

실시예 1 의 소결체 조성을, 각각 표 2 와 같이 변화시키고, 그 밖의 조건은, 실시예 1 과 동일한 조건에서 실시한 것이 실시예 31 ~ 60 이다. 실시예 1 ~ 30 은, 산화인듐에 각종 도펀트를 첨가한 경우였지만, 실시예 31 ~ 60 은 주석 도프 산화인듐에 각종 도펀트를 첨가한 경우의 실시예이다. Sn 공급원으로서는 산화주석 (SnO2) 을 사용하였다.The sintered compact composition of Example 1 was changed as Table 2, respectively, and the other conditions were Examples 31-60 implemented on the same conditions as Example 1. FIG. Although Examples 1-30 were the case where various dopants were added to indium oxide, Examples 31-60 are the Example at the time of adding various dopants to tin dope indium oxide. Tin oxide (SnO 2 ) was used as the Sn source.

이상의 결과에서, 이들 실시예에서는, 성막 후의 막의 결정성은 모두 비정질이고, 막 저항률은 니켈, 망간, 알루미늄, 게르마늄 및 니켈과 망간의 동시 첨가시의 각종 도펀트 농도 또는 합계 도펀트 농도의 증가에 수반하여, 일단 저하한 후에 증가하였다. 최저 저항률을 공급하는 도펀트 농도는 약 6 at % 의 경우였다.In the above results, in these examples, the crystallinity of the film after film formation is all amorphous, and the film resistivity is accompanied by an increase in various dopant concentrations or total dopant concentrations when simultaneous addition of nickel, manganese, aluminum, germanium, and nickel and manganese, Once decreased, it increased. The dopant concentration supplying the lowest resistivity was about 6 at%.

또한, 주석을 첨가한 경우에는, 첨가하지 않는 경우와 비교하여, 막의 저항률이 더욱 저하되었다. 그리고, 이들 막의 저항률은 충분히 낮고, ITO 막의 저항률에도 필적할 정도로 낮고 투명한 도전막으로서 적절한 것이었다. 한편, 막의 에칭 레이트는 각종 도펀트의 첨가량의 증가에 따라서 단조롭게 증가하였다.Moreover, when tin was added, the resistivity of the film | membrane further fell compared with the case where it is not added. The resistivity of these films was sufficiently low and suitable as a transparent conductive film that was low enough to match the resistivity of the ITO film. On the other hand, the etching rate of the film monotonously increased as the amount of the various dopants added increased.

Figure 112011070910407-pat00002
Figure 112011070910407-pat00002

(비교예 1 ~ 12)(Comparative Examples 1 to 12)

실시예 1 의 소결체 조성을 각각 표 3 과 같이 변화시키고, 그 밖의 조건은 실시예 1 과 동일한 조건에서 실시한 것이 비교예 1 ~ 12 이다.The sintered compact composition of Example 1 was changed as Table 3, respectively, and the other conditions were the comparative examples 1-12 implemented on the same conditions as Example 1. FIG.

비교예 1 ~ 5 에서는, 제 1 첨가 원소의 농도가 지나치게 낮기 때문에, 스퍼터 성막 후의 막의 일부가 결정화하여, 에칭 시에 에칭 잔류물이 발생하였다.In Comparative Examples 1-5, since the density | concentration of a 1st addition element was too low, a part of film | membrane after sputter film deposition crystallized and the etching residue generate | occur | produced at the time of etching.

비교예 6 ~ 9 에서는, 제 1 첨가 원소의 농도가 지나치게 높기 때문에, 스퍼터 성막 후의 막의 저항률이 지나치게 높아, 투명 도전막으로서는 적절하지 않다.In Comparative Examples 6-9, since the density | concentration of a 1st addition element is too high, the resistivity of the film | membrane after sputter film formation is too high and it is not suitable as a transparent conductive film.

비교예 10 에서는, 주석의 농도가 지나치게 낮기 때문에, 막의 일부가 결정화하여, 에칭 시에 에칭 잔류물이 발생하였다.In Comparative Example 10, because the concentration of tin was too low, part of the film crystallized, and etching residues were generated during etching.

비교예 11 에서는, 주석 농도는 적절하기 때문에, 막 저항률은 낮고 양호했지만, 제 1 첨가 원소가 포함되어 있지 않기 때문에, 스퍼터 성막 후의 막의 일부가 결정화하여, 에칭 시에 에칭 잔류물이 발생하였다.In Comparative Example 11, since the tin concentration was appropriate, the film resistivity was low and good. However, since the first additive element was not contained, a part of the film after sputtering film crystallized, and an etching residue occurred during etching.

비교예 12 에서는, 주석의 농도가 지나치게 높기 때문에, 그리고, 제 1 첨가 원소를 함유하지 않기 때문에, 에칭 레이트가 매우 작아졌다. 주석의 농도가 높기 때문에 저항률도 높았다.In Comparative Example 12, since the concentration of tin was too high, and because it did not contain the first additive element, the etching rate was very small. Due to the high concentration of tin, the resistivity was also high.

Figure 112011070910407-pat00003
Figure 112011070910407-pat00003

Claims (2)

산화인듐을 함유하고, 제 1 첨가 원소로서 망간 및 알루미늄에서 선택되는 1 종 이상을 함유하고, 제 2 첨가 원소로서 주석을 함유하고, 제 1 첨가 원소의 함유량의 합계가 인듐과 제 1 첨가 원소와 주석의 합계량에 대하여 2 ~ 12 원자% 이고, 주석의 함유량이 인듐과 주석의 합계량에 대하여 2 ~ 15 원자% 인 것을 특징으로 하는 비정질막.It contains indium oxide, contains one or more selected from manganese and aluminum as the first addition element, contains tin as the second addition element, and the sum of the contents of the first addition element is indium and the first addition element; It is 2-12 atomic% with respect to the total amount of tin, and content of tin is 2-15 atomic% with respect to the total amount of indium and tin, The amorphous film characterized by the above-mentioned. 제 1 항에 기재된 비정질막과 동일한 조성을 갖는 산화물 소결체를 스퍼터링 타깃으로서 사용하여, 기판을 무가열로 스퍼터하는 것을 특징으로 하는 비정질막의 제조 방법. A substrate is sputtered by heating without using an oxide sintered body having the same composition as the amorphous film according to claim 1 as a sputtering target.
KR1020117021302A 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film KR101214422B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008246504 2008-09-25
JPJP-P-2008-246504 2008-09-25
PCT/JP2009/066394 WO2010035716A1 (en) 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020117008983A Division KR101099414B1 (en) 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film

Publications (2)

Publication Number Publication Date
KR20110111541A KR20110111541A (en) 2011-10-11
KR101214422B1 true KR101214422B1 (en) 2012-12-21

Family

ID=42059715

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020117008983A KR101099414B1 (en) 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film
KR1020117021302A KR101214422B1 (en) 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020117008983A KR101099414B1 (en) 2008-09-25 2009-09-18 Oxide sintered compact for producing transparent conductive film

Country Status (7)

Country Link
US (1) US20110163277A1 (en)
EP (1) EP2327673A4 (en)
JP (1) JP4823386B2 (en)
KR (2) KR101099414B1 (en)
CN (1) CN102171159A (en)
TW (1) TWI387574B (en)
WO (1) WO2010035716A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337016B2 (en) * 2009-12-25 2013-11-06 Jx日鉱日石金属株式会社 Sintered sputtering target, method for producing thin film for optical recording medium, and thin film for optical recording medium
WO2011138922A1 (en) * 2010-05-06 2011-11-10 東洋紡績株式会社 Transparent conductive film and method for producing same
US9768316B2 (en) 2013-07-16 2017-09-19 Sumitomo Metal Mining Co., Ltd. Oxide semiconductor thin film and thin film transistor
JP7409872B2 (en) * 2018-11-13 2024-01-09 日東電工株式会社 Light-transparent laminates, touch sensors and image display devices
TWI740216B (en) * 2019-09-24 2021-09-21 光洋應用材料科技股份有限公司 Nickel doped indium tin oxide target and manufacturing mtehod thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239063A (en) 2002-02-14 2003-08-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP2004006221A (en) 2002-03-27 2004-01-08 Sumitomo Metal Mining Co Ltd Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
JP2006188392A (en) 2005-01-06 2006-07-20 Sumitomo Metal Mining Co Ltd Oxide sintered compact, transparent electroconductive thin film, and element packaged with the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202415A (en) * 1984-12-06 1987-09-07 三井金属鉱業株式会社 Indium oxide system light transmitting conductive film
JPS61136954A (en) * 1984-12-06 1986-06-24 三井金属鉱業株式会社 Indium oxide sintered body
JPH0371510A (en) 1989-08-10 1991-03-27 Showa Denko Kk Transparent conductive film
JPH0378907A (en) 1989-08-21 1991-04-04 Showa Denko Kk Transparent conductive film
JPH0598436A (en) * 1991-10-08 1993-04-20 Nikko Kyodo Co Ltd Ito sputtering target and its manufacture
FR2683219A1 (en) * 1991-10-30 1993-05-07 Saint Gobain Vitrage Int Glass substrate provided with a thin conductive layer
JP3496239B2 (en) 1993-08-06 2004-02-09 東ソー株式会社 ITO sintered body and sputtering target
JPH07161235A (en) 1993-12-13 1995-06-23 Matsushita Electric Ind Co Ltd Transparent conductive film and its manufacture
JPH08199343A (en) 1995-01-23 1996-08-06 Hitachi Ltd Transparent conductive film
JPH08249929A (en) * 1995-03-10 1996-09-27 Idemitsu Kosan Co Ltd Transparent electrode film for input panel of coordinate data input apparatus
JP3589519B2 (en) * 1995-11-30 2004-11-17 出光興産株式会社 Touch panel
JP3780100B2 (en) 1998-05-15 2006-05-31 株式会社神戸製鋼所 Transparent conductive film with excellent processability
JP2000169220A (en) * 1998-12-09 2000-06-20 Jiomatetsuku Kk Metal oxide sintered compact and its use
JP2002053952A (en) * 2000-08-04 2002-02-19 Tosoh Corp Sputtering target and manufacturing method thereof
JP2002050231A (en) * 2000-08-04 2002-02-15 Geomatec Co Ltd Transparent conductive film, its manufacturing method and its application
JP4424889B2 (en) 2001-06-26 2010-03-03 三井金属鉱業株式会社 Sputtering target for high resistance transparent conductive film and method for producing high resistance transparent conductive film
JP3775344B2 (en) * 2002-05-27 2006-05-17 住友金属鉱山株式会社 Oxide sintered body
JP2008115024A (en) * 2006-11-01 2008-05-22 Idemitsu Kosan Co Ltd Conductive oxide powder and method of manufacturing conductive oxide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239063A (en) 2002-02-14 2003-08-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP2004006221A (en) 2002-03-27 2004-01-08 Sumitomo Metal Mining Co Ltd Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
JP2006188392A (en) 2005-01-06 2006-07-20 Sumitomo Metal Mining Co Ltd Oxide sintered compact, transparent electroconductive thin film, and element packaged with the same

Also Published As

Publication number Publication date
KR20110053388A (en) 2011-05-20
US20110163277A1 (en) 2011-07-07
CN102171159A (en) 2011-08-31
JP4823386B2 (en) 2011-11-24
KR20110111541A (en) 2011-10-11
EP2327673A1 (en) 2011-06-01
KR101099414B1 (en) 2011-12-27
TWI387574B (en) 2013-03-01
EP2327673A4 (en) 2012-05-23
WO2010035716A1 (en) 2010-04-01
JPWO2010035716A1 (en) 2012-02-23
TW201020226A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
KR101155358B1 (en) Composite oxide sinter, process for producing amorphous composite oxide film, amorphous composite oxide film, process for producing crystalline composite oxide film, and crystalline composite oxide film
KR101243403B1 (en) Oxide sintered compact for producing transparent conductive film
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JP5269501B2 (en) Oxide sintered body and sputtering target comprising the same
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
KR101214422B1 (en) Oxide sintered compact for producing transparent conductive film
JP5416991B2 (en) Oxide sintered body target, method for producing the target, transparent conductive film, and method for producing the transparent conductive film
JP5562000B2 (en) Oxide sintered body and manufacturing method thereof
TW201522689A (en) Sputtering target and method for producing same
JP2013067538A (en) Oxide sintered body and oxide transparent conductive film
WO2013140838A1 (en) SINTERED In-Ga-Zn-O-BASED OXIDE COMPACT AND METHOD FOR PRODUCING SAME, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR FILM
JP2017141155A (en) Oxide sintered body and manufacturing method therefor

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171117

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 7