KR101190287B1 - Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants - Google Patents

Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants Download PDF

Info

Publication number
KR101190287B1
KR101190287B1 KR1020120024108A KR20120024108A KR101190287B1 KR 101190287 B1 KR101190287 B1 KR 101190287B1 KR 1020120024108 A KR1020120024108 A KR 1020120024108A KR 20120024108 A KR20120024108 A KR 20120024108A KR 101190287 B1 KR101190287 B1 KR 101190287B1
Authority
KR
South Korea
Prior art keywords
iron
sulfide
nano
nzvi
solution
Prior art date
Application number
KR1020120024108A
Other languages
Korean (ko)
Inventor
이진욱
김은주
김재환
조성희
장윤석
Original Assignee
포항공과대학교 산학협력단
효림산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 효림산업주식회사 filed Critical 포항공과대학교 산학협력단
Priority to KR1020120024108A priority Critical patent/KR101190287B1/en
Application granted granted Critical
Publication of KR101190287B1 publication Critical patent/KR101190287B1/en
Priority to PCT/KR2012/010505 priority patent/WO2013133509A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A nano-scale zerovalent iron synthesis on which ferrous sulfide precipitate is coated and a filtration method of underground water contaminant and polluted soil using the same are provided to manufacture reactivity improved nano scale zerovalent iron (H-nZVI) by adding hydrogen sulfide ion(HS-) to borohydride solution. CONSTITUTION: A nano-scale zerovalent iron synthesis comprises the following steps: manufacturing Fe3+ solution by dissolving ferric chloride (FeCl3) in water; manufacturing a sodium borohydride solution by dissolving sodium borohydride(NaBH4) into water and manufacturing a NaBH4-NaHS aqueous solution by adding sodium hydrosulfide to the sodium borohydride solution; dropping the NaBH4-NaHS aqueous solution into the Fe3+ solution at 40-50 drops/min and manufacturing the iron sulfide coating nano zerovalent iron (H-nZVI); and giving ultrasonic wave to the iron sulfide coating nano zerovalent iron (H-nZVI) and washing with distilled water which is purged by nitrogen. The addition concentration of the acid sodium sulfide is 0.01-2.0 g/L.

Description

황화수소 이온에 의해 황화철 침전물이 표면에 코팅된 나노영가철 합성 및 이를 이용한 오염토양 및 지하수 환경오염물질의 정화처리방법{omitted}Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants using the same

본 발명은 황화수소 이온에 의해 황화철 침전물이 표면에 코팅된 나노영가철 및 이를 이용한 오염토양 및 지하수 환경오염물질의 정화처리방법에 관한 것으로, 보다 상세하게는 토양/지하수 내 유기오염물질 및 중금속의 정화처리를 위한 경제적이고 반응성이 뛰어난 새로운 나노영가철(Nano-scale Zero Valent Iron; nZVI) 제조를 위하여 종래의 sodium borohydride를 이용한 환원법에 황화수소(HS-) 이온을 첨가하여 황화철 침전물이 표면에 코팅된 나노영가철(Hydrosulfide mediated-nZVI; H-nZVI 라 한다. 이하 같다)의 합성 및 이를 이용한 환경오염물질 정화처리방법에 관한 것이다. 본 발명의 나노영가철(H-nZVI)은 토양과 지하수 내에 존재하는 환경오염물질의 탈할로겐화 및 중금속 고정화 처리에 적용된다.
The present invention relates to nano-ferrous iron coated with iron sulfide precipitates on the surface by hydrogen sulfide ions, and to a method for purifying polluted soil and groundwater environmental pollutants using the same, and more specifically, to clean organic pollutants and heavy metals in soil / groundwater. economical and reactive excellent new nano zero-valent iron (nano-scale Zero Valent iron; nZVI) for the processing of hydrogen sulfide in the reduction method using a conventional sodium borohydride for the preparation (HS -) and the ion adding nano the iron sulfide deposits are coated on the surface The present invention relates to the synthesis of iron hydride (Hydrosulfide mediated-nZVI; referred to as H-nZVI below) and a method for purifying environmental pollutants using the same. Nano-ferrous iron of the present invention (H-nZVI) is applied to the dehalogenation and heavy metal immobilization treatment of environmental pollutants present in the soil and groundwater.

나노크기 철 입자를 이용한 토양/지하수 내 유기오염물질 처리는 친환경적 특징, 높은 표면 반응성과 다양한 응용성 때문에 최근 환경 분야에서 많은 주목을 받고 있다.
Treatment of organic pollutants in soil / groundwater using nano-sized iron particles has attracted much attention recently in the field of environment due to environmentally friendly features, high surface reactivity and various applications.

먼저 영가철에 의한 염화유기물의 제거 메커니즘을 살펴보면, 영가철로 존재하는 철(Fe0)은 다음 반응식과 같이 산화를 일으키며 산화환원쌍(redox couple)을 형성한다. 이는 영가 금속이 전자를 잃으며 양이온 형태로 존재하려는 경향에 의하여 자발적 산화에 의해 발생하는 부식반응과 유사하다.First of all, the mechanism of removing chlorinated organic matter by iron ions is as follows. Iron (Fe 0 ), which is present as iron, is oxidized and forms a redox couple. This is similar to the corrosion reaction caused by spontaneous oxidation due to the tendency of the noble metal to lose electrons and to exist in cation form.

Fe0 ↔ Fe2 + + 2e-
Fe 0 ↔ Fe 2 + + 2e -

즉, 염화유기화합물과 반응 가능한 주요 환원제는 Fe0, Fe2 +이다. 부식반응의 경우로는 Fe0 로부터 표면에 흡착된 염화 알킬로의 직접적인 전자교환에 의한 것이 주종을 이루나, 이외에도 부식반응으로 생성된 Fe2 +의 탈염소화에 의한 탈염소화 작용 등이 있다. 이들 철 환원제에 의한 알킬 할라이드(alkyl halide: RX)의 탈염과정은 다음 식과 같이 나타낼 수 있다.That is, the main reducing agent capable of reacting with the organic chloride compound is Fe 0 , Fe 2 + . In the case of the corrosion reaction and the like dechlorination operation by the dechlorination of the Fe 2 + is a yiruna predominantly, in addition to generating the corrosion reaction by direct electron exchange with the alkyl chloride adsorbed to the surface from Fe 0. The desalination process of alkyl halides (RXs) by these iron reducing agents can be expressed as follows.

Fe0+ RX + H+ ↔ Fe2 + + RH + X- Fe 0 + RX + H + ↔ Fe 2 + + RH + X -

2Fe2 + + RX + H+ ↔ 2Fe3 + + RH + X-
2Fe 2 + + RX + H + ↔ 2Fe 3 + + RH + X -

영가철에 의한 탈염화 환원반응이 일어나기 위해서는 오염물질의 철 표면으로의 흡착과 전자전달반응이 유기적으로 연계되어야 한다. 전자 전달반응은 철 표면의 defects로부터 나온 전자가 직접 전달되거나, 반도체(Semiconductor)의 역할을 하는 산화막 또는 산화막에 존재하는 Fe-H, Fe-OH bond들의 coordination에 의해 간접적으로 전달된다고 알려져 있다. 결국, 영가철 표면을 매개로 하는 오염물질의 환원반응은 영가철 표면 형태와 특성에 영향을 받는다.
In order for dechlorination and reduction reactions to occur due to zero iron, the adsorption of pollutants to the iron surface and the electron transfer reaction must be organically linked. The electron transfer reaction is known to transfer electrons directly from defects on the surface of iron or indirectly by coordination of Fe-H and Fe-OH bonds in the oxide or oxide film serving as a semiconductor. As a result, the reduction reaction of contaminants through the surface of zero iron is affected by the shape and characteristics of the surface of zero iron.

특히, 나노영가철은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE) 등의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs) 등의 할로겐 방향족 물질; 크롬, 납, 비소 등의 중금속; 질산염; 제초제; 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄 등과 같은 환경오염물질의 산화/환원처리에 의한 폭넓은 다양한 변환(Transformation)과 무독화(Detoxification) 반응에 매우 효과적이라고 알려져 있다.
In particular, nano-iron iron is a halogen organic solvent such as Trichloroethylene (TCE), Tetrachloroethylene (PCE); Halogen aromatic substances such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals such as chromium, lead and arsenic; nitrate; Herbicides; Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; It is known to be very effective for a wide variety of transformation and detoxification reactions by oxidation / reduction treatment of environmental pollutants such as chlorinated methane.

이러한 나노영가철은 합성방법이나 조건에 따라 입자 자체의 환원 반응성이 크게 달라질 수 있기 때문에 현재까지, 반응성 향상을 위한 새로운 합성방법에 대한 연구가 지속적으로 이루어지고 있는 실정이다.
Since the reduction reactivity of the particles themselves may vary greatly depending on the synthesis method or conditions, the research on new synthesis methods for improving the reactivity has been continuously conducted.

한편, 철 투수성 반응벽체(Permeable Reactive Barriers: PRBs)나 주입정(Injection well) 주변에서 발견되는 다양한 미네랄 물질 중에서 Iron sulfide(FeSx)는 문헌상에서 철보다 단위면적당 높은 반응성을 가지고 있다고 알려져 있다.(Butler, E. C. et al., Environ . Sci . Technol ., 35:3884-3891, 2001)
Iron sulfide (FeS x ) is known to have higher reactivity per unit area than iron in the various mineral substances found in permeable reactive barriers (PRBs) or injection wells. (Butler, EC et al., Environ . Sci . Technol . , 35: 3884-3891, 2001)

그러므로 철과 황화철 물질이 함께 존재하는 나노입자를 만드는 것은 전체적인 분해 능력을 향상시킬 수 있는 유용한 방법이 될 것이며, 이는 최근 문헌을 통해 그 효율성이 입증되었다.(Kim, E. -J. et al., ACS Appl . Mater . Inter ., 3:1457-1462, 2011).
Therefore, making nanoparticles with coexisting iron and iron sulfide materials would be a useful way to improve the overall degradability, which has recently been demonstrated in the literature (Kim, E. -J. Et al. , ACS Appl . Mater . Inter . , 3: 1457-1462, 2011).

본 발명자들은 나노영가철 합성과정에서 HS-이온을 첨가하는 간편한 합성방법의 개발을 통해 표면에 황화철이 코팅된 나노영가철(H-nZVI)을 합성하였다. 본 발명에서는 용존 이온인 HS-를 이용하여 S2O4 2 -이온에 비해 훨씬 적은 양의 HS-이온 첨가를 통해서 용이하게 황화철 침전을 유도할 수 있다는 장점이 있다.
The present inventors synthesized nano-sulfur iron (H-nZVI) coated with iron sulfide on the surface by developing a simple synthesis method of adding HS - ion in the nano-ferrous iron synthesis process. In the present invention, it is possible to easily induce iron sulfide precipitation through the addition of a much smaller amount of HS ions compared to S 2 O 4 2 - ions using the dissolved ions HS .

이에 대표적인 지하수 내 유기오염물질 중 하나인 TCE에 대한 분해효율을 테스트한 결과, 기존의 나노영가철에 비해서 그 반응성이 크게 향상되었고, 이는 황화철 코팅에 의해 철 표면 특성이 변화된 것 때문으로 판단하고 본 발명을 완성하게 되었다.
As a result of testing the decomposition efficiency of TCE, one of the representative organic pollutants in groundwater, the reactivity was significantly improved compared to the conventional nano-iron iron, which was judged to be due to the change of iron surface properties by iron sulfide coating. The invention was completed.

본 발명은 종래의 나노영가철의 합성과정에서 있어서 borohydride용액에 황화수소이온(HS-)을 첨가하는 합성방법의 개발을 통해 반응성이 향상된, 표면에 황화철이 코팅된 나노영가철(H-nZVI)을 합성하는 것을 해결하려는 과제로 한다.
The invention hydrogen sulphide ions (HS -) to the borohydride solution in the synthesis process of the conventional nano zero-valent iron to the coated nano-zero-valent iron (H-nZVI) iron sulfide enhanced reactivity, surface through the development of a synthetic method for the addition of The task is to solve the synthesis.

상기 과제를 해결하기 위하여 본 발명은 황화수소 이온에 의해 황화철 침전물이 표면 코팅된 나노영가철(H-nZVI)을 과제의 해결수단으로 한다.
In order to solve the above problems, the present invention uses nano-ferrous iron (H-nZVI) coated with iron sulfide precipitates by hydrogen sulfide ions as a means of solving the problem.

또한, 본 발명은 나노영가철 합성 과정에서 황화수소 이온(HS-)을 공급함으로써 표면에 황화철 침전물이 코팅된 나노영가철(H-nZVI) 제조방법을 과제의 해결수단으로 한다.
In addition, the present invention hydrogen sulphide ions (HS -) in the synthesis process to Nano zero-valent iron to the iron sulfide precipitates on the surface of the nano-zero-valent iron (nZVI-H) coating by applying the manufacturing method in solving means of the problem.

또한, 본 발명은 상기 황화철 침전물이 표면 코팅된 나노영가철(H-nZVI)로 환경오염물질을 환원 처리하는 것을 포함하는 토양 및 지하수 환경오염물질의 정화처리방법을 과제의 해결수단으로 한다.
In addition, the present invention provides a method for purifying the soil and groundwater environmental pollutants, including reducing the environmental pollutants with nano-ferrous iron (H-nZVI) coated with the iron sulfide precipitate as a solution to the problem.

또한, 상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE)의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs)의 할로겐 방향족 물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄인 것을 과제의 해결수단으로 한다.
In addition, the environmental pollutants include a trichloroethylene (TCE), a halogen organic solvent of tetrachloroethylene (TCE); Halogen aromatics such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; Chlorinated methane is the solution to the problem.

본 발명에 따르면, 간편한 방법으로 표면에 황화철 침전물이 코팅된 새로운 나노영가철인 H-nZVI을 합성할 수 있으며, 이는 TCE 등과 같은 유기오염물질 뿐만 아니라 중금속 등 환경오염물질의 정화처리에 있어 기존에 문헌상으로 보고된 나노영가철에 비해 획기적으로 최대 8배 이상 처리 효율이 향상되는 효과가 있다.
According to the present invention, it is possible to synthesize H-nZVI, a new nano-ferrous iron coated with iron sulfide deposits on the surface by a simple method, which is conventionally used for the purification of environmental pollutants such as heavy metals as well as organic pollutants such as TCE. Compared to the reported nano-ferrous iron, the treatment efficiency is improved by up to 8 times or more.

도 1은 pH에 따른 H2S/HS-/S2 -의 분포도
도 2는 본 발명에 따른 나노영가철(H-nZVI)의 제조공정도
도 3은 본 발명에 따른 나노영가철(H-nZVI)의 TEM 분석결과
도 4는 본 발명에 따른 나노영가철(H-nZVI)의 SEM 분석결과
도 5는 본 발명에 따른 나노영가철(H-nZVI)의 자기이력곡선
도 6는 TCE 환원분해 비교 그래프
1 is a H 2 S / HS according to the pH - / S 2 - distribution of
2 is a manufacturing process diagram of nano-iron iron (H-nZVI) according to the present invention
Figure 3 TEM analysis of nano-iron iron (H-nZVI) according to the present invention
Figure 4 is a SEM analysis of nano-iron iron (H-nZVI) according to the present invention
5 is a magnetic history curve of nano-iron iron (H-nZVI) according to the present invention
6 is a TCE reduction decomposition graph

본 발명은 황화수소 이온에 의해 황화철 침전물이 표면에 코팅된 나노영가철(H-nZVI)을 기술구성의 특징으로 한다.
The present invention is characterized by a nanostructured iron (H-nZVI) coated with iron sulfide precipitate on the surface by hydrogen sulfide ions.

또한, 본 발명은 나노영가철 합성 과정에서 황화수소 이온(HS-)을 공급함으로써 표면에 황화철 침전물이 표면에 코팅된 나노영가철(H-nZVI) 제조방법을 기술구성의 특징으로 한다.
In addition, the present invention hydrogen sulphide ions (HS -) in the synthesis process to Nano zero-valent iron to the nano zero-valent iron (nZVI-H) coating method on the surface of iron sulfide precipitates on the surface by applying the features of the technology configuration.

또한, 본 발명은 상기 황화철 침전물이 표면에 코팅된 나노영가철(H-nZVI)로 환경오염물질을 환원 처리하는 것을 포함하는 토양 및 지하수 환경오염물질의 정화처리방법을 기술구성의 특징으로 한다.
In addition, the present invention is characterized by a technical configuration of a method for purifying the soil and groundwater environmental pollutants, including reducing the environmental pollutants with nano-ferrous iron (H-nZVI) coated on the surface of the iron sulfide precipitate.

또한, 상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE)의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs)의 할로겐 방향족 물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄인 것을 기술구성의 특징으로 한다.
In addition, the environmental pollutants include a trichloroethylene (TCE), a halogen organic solvent of tetrachloroethylene (TCE); Halogen aromatics such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; Chlorinated methane is characterized by a technical configuration.

본 발명에서 황화수소 이온에 의한 황화철 코팅 나노영가철(H-nZVI)을 제조하는 방법은, 우선, FeCl3 ?6H2O을 증류수에 녹여 Fe3 + 수용액을 제조한 다음, NaBH4을 증류수에 녹여 NaBH4 수용액을 제조하고, 상기 NaBH4 수용액에 sodium hydrosulfide를 첨가하여 sodium hydrosulfide-NaBH4 수용액을 제조한 후, 상기 제조된 Fe3 + 수용액에 sodium hydrosulfide-NaBH4 수용액을 적가하여 황화철 코팅 나노영가철(H-nZVI)을 제조한다.
In the present invention, a method for producing iron sulfide-coated nano-ferrous iron (H-nZVI) with hydrogen sulfide ions is, first, FeCl 3 ? 6H 2 O was dissolved in distilled water to prepare an Fe 3 + aqueous solution, and then NaBH 4 was dissolved in distilled water to give NaBH 4 An aqueous solution was prepared and the NaBH 4 Sodium hydrosulfide was added to the aqueous solution to give sodium hydrosulfide-NaBH 4 After preparing the solution, the prepared Fe 3 + a sodium hydrosulfide-NaBH 4 aqueous solution An aqueous solution is added dropwise to prepare iron sulfide coated nano-iron iron (H-nZVI).

즉, 본 발명에서는 나노영가철 합성 과정에서 황화철 생성을 유도하기 위해서 sodium hydrosulfide를 통해 황화수소(HS-) 이온을 첨가한다. 황화수소 이온은 매우 낮거나 또는 높은 pH에서 황화수소(H2S(g))나 황화이온(S2-)으로 변할 수 있으나, 일반적인 pH 7.0-10.0에서는 황화수소(HS-) 이온 형태로 존재한다.(도 1)
That is, in the present invention, hydrogen sulfide (HS ) ions are added through sodium hydrosulfide in order to induce iron sulfide production during nano-ferrous iron synthesis. Hydrogen sulfide ions may vary to a very low or hydrogen sulfide at high pH (H 2 S (g) ) and sulfide ions (S 2-). However, in the typical pH 7.0-10.0 hydrogen sulfide (HS -) present in ionic form (. 1)

따라서, 본 발명에서는 상기 황화수소나트륨(Sodium hydrosulfide) 수용액을 제조하는 과정에서 증류수의 pH를 7~10, 바람직하게는 8로 조절하여 황화수소(HS-) 이온에 의해 나노영가철 표면에 황화철(FeS; Ferrous sulfide)이 코팅되도록 한다.
Therefore, in the present invention, the sodium hydrosulfide (Sodium hydrosulfide) of distilled water the pH of the process for preparing the aqueous solution of 7-10, preferably hydrogen sulfide (HS -) and adjusted in an 8 iron sulfide nano zero-valent iron surface by an ion (FeS; Allow ferrous sulfide to be coated.

뿐만 아니라, 본 발명에서는 상기 황화수소나트륨(Sodium hydrosulfide) 수용액을 제조하는 과정에서 증류수의 pH를 3 ~ 13으로 조절하여 H2S 또는 HS-이온 또는 S2 -이온에 의해 나노영가철 표면에 황화철(FeS; Ferrous sulfide)이 코팅되도록 할 수도 있다.
In addition, in the present invention, by adjusting the pH of the distilled water in the process of preparing the aqueous solution of sodium hydrosulfide (Sodium hydrosulfide) to 3 to 13 iron sulfide (H 2 S or HS - ion or S 2 - ion on the surface of the nano-ferrous iron ( Ferrous sulfide (FeS) may be coated.

본 발명에서는 HS- 이온의 첨가농도를 0.01 g/L ~ 2.0 g/L로 조정하는 것이 바람직하다.
In this invention, it is preferable to adjust the addition density | concentration of HS <-> ion to 0.01 g / L-2.0 g / L.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실험재료 준비Experimental Material Preparation

환경오염물질로서 TCE(Trichloroethylene, Sigma Aldrich, USA)를 준비하였다. 나노영가철 제조를 위하여 ferric chloride(FeCl36H2O, Sigma Aldrich, USA), sodium borohydride(NaBH4, Sigma Aldrich, USA)와 sodium hydrosulfide(NaHSH2O, Sigma Aldrich, USA)를 준비하였다. 본 발명의 황화철 코팅 나노영가철(H-nZVI)에 대한 대조군으로 기존의 borohydride 환원법에 의해 합성된 나노영가철(nZVI)과 borohydride 환원법에 sodium dithionite(Na2S2O4, Sigma Aldrich, USA)가 첨가된 Dithionite mediated-나노영가철(D-nZVI)을 준비하였다.
TCE (Trichloroethylene, Sigma Aldrich, USA) was prepared as an environmental pollutant. Ferric chloride (FeCl 3 6H 2 O, Sigma Aldrich, USA), sodium borohydride (NaBH 4 , Sigma Aldrich, USA) and sodium hydrosulfide (NaHSH 2 O, Sigma Aldrich, USA) were prepared for the preparation of nano-ferrous iron. Sodium dithionite (Na 2 S 2 O 4 , Sigma Aldrich, USA) in the nano-ferrous iron (nZVI) and borohydride reduction method synthesized by the conventional borohydride reduction method as a control for the iron sulfide-coated nano-iron iron (H-nZVI) of the present invention Added Dithionite mediated-nano Young Iron (D-nZVI) was prepared.

H-H- nZVInZVI 의 제조Manufacturing

2-1. 2-1. FeFe 용액제조 Solution manufacturing

FeCl36H2O 13.5 g을 증류수 100 mL에 녹여 0.5 M Fe3 +용액을 제조하였다. 증류수는 N2로 1시간 퍼징(purging)시킨 3차 증류수를 사용하였으며, 하기 2-2 및 2-3공정은 모두 N2 퍼징상태에서 진행하였다.
An FeCl 3 6H 2 O 13.5 g to prepare a 0.5 M solution of Fe + 3 is dissolved in distilled water to 100 mL. Distilled water was used as the third distilled water purged with N 2 for 1 hour, the following 2-2 and 2-3 are all N 2 The purge was performed.

2-2. 2-2. SodiumSodium hydrosulfidehydrosulfide -- NaBHNaBH 44 수용액 제조 Aqueous solution

NaBH4 3.0 g을 100 mL의 증류수에 녹여 0.8 M의 NaBH4용액을 제조하였다. 사용된 증류수의 pH는 0.1 M HCl과 NaOH를 이용하여 8로 고정하였다. 상기 용액에 0.01 g의 sodium hydrosulfide를 첨가하여 sodium hydrosulfide-NaBH4 수용액을 제조하였다.
3.0 g of NaBH 4 was dissolved in 100 mL of distilled water to prepare a 0.8 M NaBH 4 solution. The pH of the distilled water used was fixed to 8 using 0.1 M HCl and NaOH. Sodium hydrosulfide-NaBH 4 aqueous solution was prepared by adding 0.01 g of sodium hydrosulfide to the solution.

2-3. H-2-3. H- nZVInZVI 의 제조Manufacturing

2-1에서 제조된 Fe3 +용액 3 mL에 2-2에서 제조된 Sodium hydrosulfide-NaBH4 수용액 9 mL을 40-50 drops/min의 속도로 적가하여 0.08g의 황화철 코팅 나노영가철(H-nZVI)을 제조하였다.2-1 is manufactured by Fe 3 + 3 mL for a solution of the Sodium hydrosulfide-NaBH 4 aqueous solution of 9 mL prepared in 2-2 was added dropwise at a rate of 40-50 drops / min iron sulfide nano-coating of zero-valent iron 0.08g (H- nZVI) was prepared.

2-4. 초음파 건조 및 세척2-4. Ultrasonic Drying and Washing

2-3에서 제조된 황화철 코팅 나노영가철(H-nZVI)에 초음파를 10분 동안 가한 후, N2로 purging한 증류수로 3회 세척하여 표면의 불순물을 제거하였다.(도 2).
Ultrasonic waves were added to iron sulfide-coated nano-ferrous iron (H-nZVI) prepared in 2-3 for 10 minutes, and then washed three times with distilled water purged with N 2 to remove impurities from the surface (FIG. 2).

H-H- nZVInZVI 입자특성 분석 Particle Characterization

3-1. H-3-1. H- nZVInZVI 의 크기, 형태 및 표면 원소분포, Shape and surface element distribution

상기 H-nZVI 입자의 크기, 형태 및 표면 원소분포를 분석하기 위해 HR-TEM/EELS(High resolution transmission electron microscopy/electron energy loss spectrometer) (JSM-7401F, JEOL, Japan)를 이용하였다.
HR-TEM / EELS (High resolution transmission electron microscopy / electron energy loss spectrometer) (JSM-7401F, JEOL, Japan) was used to analyze the size, shape and surface element distribution of the H-nZVI particles.

그 결과, 도 3의 (a)에 나타난 바와 같이, H-nZVI 입자는 기존의 nZVI와 마찬가지로 사슬구조를 이루고 있으나, 단일 입자에서 fluffy한 구조와 막대모양의 구조가 관찰된다. 또한, EELS 분석 결과(도 3의 (b)), sulfur는 철 표면에 대체적으로 균질하게 분포하고 있으나, fluffy한 부분에서만 입자 표면에 주로 존재하는 것으로 나타났다.
As a result, as shown in (a) of FIG. 3, the H-nZVI particles form a chain structure like the conventional nZVI, but fluffy structures and rod-like structures are observed in a single particle. In addition, EELS analysis results (Fig. 3 (b)), sulfur is generally homogeneously distributed on the iron surface, it was found to exist mainly on the surface of the particle only in the fluffy portion.

3-2. H-3-2. H- nZVInZVI 의 표면형상Surface shape of

FE-SEM(Field emission scanning electron microscopy) (JSM-7401F, JEOL, Japan)를 이용하여 상기 H-nZVI의 표면형상을 관찰하였다. 그 결과, 도 4에 나타난 바와 같이, 상기 H-nZVI은 기존에 보고된 nZVI과 마찬가지로 구형의 철 입자가 사슬구조로 연결되어 있음을 확인할 수 있다. 그러나, 표면 몇 부분에서 문헌상에서 보고된 황화철 미네랄 물질과 유사한 형상을 가진 구조가 관찰이 되었다 (도 4에 표시된 부분).
The surface shape of the H-nZVI was observed using FE-SEM (Field emission scanning electron microscopy) (JSM-7401F, JEOL, Japan). As a result, as shown in Figure 4, the H-nZVI can be confirmed that the spherical iron particles are connected in a chain structure similar to the previously reported nZVI. However, at some parts of the surface a structure with a shape similar to the iron sulfide mineral material reported in the literature was observed (part shown in FIG. 4).

3-3. H-3-3. H- nZVInZVI 의 자성특성Magnetic properties of

상기 H-nZVI의 자성특성은 magnetic property measurement system (XL-7, Quantum Design, USA)을 이용하여 측정하였다. H-nZVI의 자기이력곡선은 nZVI과 동일하게 강자성체 거동을 보이며, 둘의 포화 자기화 수치도 약 120 emu/g으로 거의 동일하였다.(도 5). 또한, 보자력 역시 큰 차이가 없었는데, 이를 통해 철 표면의 황화철이 철 자체의 자성특성에는 큰 영향을 주지 않음을 알 수 있었다.
Magnetic properties of the H-nZVI were measured using a magnetic property measurement system (XL-7, Quantum Design, USA). The magnetic hysteresis curve of H-nZVI shows the same ferromagnetic behavior as that of nZVI, and the saturation magnetization values of the two are almost equal to about 120 emu / g (FIG. 5). In addition, the coercive force also did not have a big difference, it can be seen that the iron sulfide on the iron surface does not significantly affect the magnetic properties of the iron itself.

대표적인 지하수오염물질 정화처리 실험Representative Groundwater Pollutant Purification Experiment

상기 H-nZVI의 반응성은 대표적인 지하수 오염물질 중 하나인 TCE를 이용하여 측정하였다. TCE 분해실험은 N2로 퍼징한 deionized water를 사용하여 15 ppm의 TCE용액을 제조한 다음, 0.08 g의 각각의 나노영가철(H-nZVI, nZVI, D-nZVI)과 혼합하여 rolling mixer (15 rpm)에서 움직이는 40 mL의 amber vial에서 실시하였다. 동일한 실험 조건에서 철을 포함하지 않는 vial을 대조군으로 하였다.
The reactivity of the H-nZVI was measured using TCE, one of the representative groundwater contaminants. TCE digestion experiments were carried out using a deionized water purged with N 2 to prepare 15 ppm of TCE solution, followed by mixing with 0.08 g of each nano-ferrous iron (H-nZVI, nZVI, D-nZVI) and rolling mill (15). rpm in 40 mL of amber vial. Under the same experimental conditions, a vial containing no iron was used as a control.

그 결과, 도 6의 그래프와 같이 HS-이온 첨가법으로 합성된 상기 H-nZVI은 nZVI은 물론이고, S2O4 2 -이온 첨가법으로 합성된 D-nZVI에 비해서도 반응성이 훨씬 큼을 확인할 수 있었다. 실제로 속도상수(k obs )를 비교했을 때, H-nZVI은 nZVI와 D-nZVI보다 각각 8.7배와 1.3배 큰 값을 갖는다.
As a result, as shown in the graph of FIG. 6, the H-nZVI synthesized by the HS - ion addition method is much more reactive than the D-nZVI synthesized by the S 2 O 4 2 - ion addition method as well as nZVI. there was. In fact, when comparing the rate constant ( k obs ), H-nZVI is 8.7 times and 1.3 times larger than nZVI and D-nZVI, respectively.

이는, 새롭게 합성된 H-nZVI이 TCE에 대해 높은 반응성을 가지고 있다는 것을 나타낸다. 또한 종래의 S2O4 2 - 첨가 합성법에 비해서 1/3정도의 HS-이온 첨가만으로 반응성이 훨씬 증가하였으며, 이를 통해 보다 경제적인 방법으로 반응성이 향상된 나노영가철을 만드는 것이 가능할 것으로 기대된다.
This indicates that the newly synthesized H-nZVI has high reactivity with TCE. In addition, compared with the conventional S 2 O 4 2 - addition method, the addition of about one-third of HS - ions increased the reactivity, it is expected that it is possible to make the nano-ferrous iron with improved reactivity in a more economical way.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

삭제delete 삭제delete 나노영가철(nZVI) 합성에 사용되는 수소화붕소나트륨(Sodium borohydride)에 황화수소나트륨(Sodium hydrosulfide)를 첨가하여 황화수소 이온에 의해 나노영가철 표면에 황화철(FeS; Ferrous sulfide)이 코팅된 것을 특징으로 하는 황화철 코팅 나노영가철(Hydrosulfide mediated-nZVI) 제조방법
Ferrous sulfide (FeS) is coated on the surface of nano-ferrous iron by hydrogen sulfide by adding sodium hydrosulfide to sodium borohydride used for nano-ferrous iron (nZVI) synthesis. Iron sulfide coated nano-iron iron (Hydrosulfide mediated-nZVI) manufacturing method
제3항에 있어서,
상기 제조방법은 염화제이철(Ferric chloride; FeCl3)을 물에 녹여 Fe3+용액을 제조하는 단계와;
수소화붕소나트륨(Sodium borohydride; NaBH4)를 물에 녹여 수소화붕소나트륨 용액을 제조하고, 상기 수소화붕소나트륨 용액에 황화수소나트륨(Sodium hydrosulfide)을 첨가하여 NaBH4-NaHS 수용액을 제조하는 단계와;
상기 Fe3 +용액에 NaBH4-NaHS 수용액을 40-50 drops/min 적가하여 황화수소 이온에 의해 표면에 황화철(Ferrous sulfide) 침전물이 코팅된 황화철 코팅 나노영가철(H-nZVI)을 제조하는 단계와;
상기 제조된 황화철 코팅 나노영가철(H-nZVI)에 초음파를 가한 후, 질소(N2)로 purging한 증류수로 세척하여 표면의 불순물을 제거하는 단계를 포함하여 구성되는 것을 특징으로 하는 황화철 코팅 나노영가철(Hydrosulfide mediated-nZVI) 제조방법
The method of claim 3,
The manufacturing method comprises the steps of preparing a Fe 3 + solution by dissolving ferric chloride (FeCl 3 ) in water;
Dissolving sodium borohydride (NaBH 4 ) in water to prepare a sodium borohydride solution, and adding sodium hydrosulfide to the sodium borohydride solution to prepare an aqueous NaBH 4 -NaHS solution;
Comprising the steps of: by dropwise addition of NaBH 4 solution -NaHS to the Fe 3 + solution 40-50 drops / min producing the iron sulfide (Ferrous sulfide) coating an iron sulfide precipitate is coated nano zero-valent iron (nZVI-H) on the surface by the sulfide ions ;
After applying ultrasonic waves to the prepared iron sulfide-coated nano-iron iron (H-nZVI), washing with distilled water purged with nitrogen (N 2 ) to remove impurities on the surface of the iron sulfide coating nano Manufacturing method of Hydrosulfide mediated-nZVI
제4항에 있어서,
상기 황화수소나트륨(Sodium hydrosulfide)의 첨가농도를 0.01 g/L ~ 2.0 g/L로 조정하는 것을 특징으로 하는 황화철 코팅 나노영가철(Hydrosulfide mediated-nZVI) 제조방법
The method of claim 4, wherein
Iron sulfide-coated nano-iron sulfide (Hydrosulfide mediated-nZVI) manufacturing method characterized in that the concentration of the sodium hydrogensulfide (Sodium hydrosulfide) is adjusted to 0.01 g / L ~ 2.0 g / L
제4항에 있어서,
상기 황화수소나트륨(Sodium hydrosulfide) 수용액을 제조하는 과정에서 증류수의 pH를 8로 조절하여 황화수소(HS-) 이온에 의해 나노영가철 표면에 황화철( Ferrous sulfide)이 코팅되도록 하는 것을 특징으로 하는 황화철 코팅 나노영가철(Hydrosulfide mediated-nZVI) 제조방법
The method of claim 4, wherein
Iron sulphide coating nano characterized in that by the ion such that iron sulfide (Ferrous sulfide) is coated on the nano-zero-valent iron surface by controlling the process for producing the sodium hydrosulfide (Sodium hydrosulfide) aqueous solution of the pH of distilled water to 8 hydrogen sulfide (HS) Manufacturing method of Hydrosulfide mediated-nZVI
제4항에 있어서,
상기 황화수소나트륨(Sodium hydrosulfide) 수용액을 제조하는 과정에서 증류수의 pH를 3 ~ 13으로 조절하여 H2S 또는 HS-이온 또는 S2 -이온에 의해 나노영가철 표면에 황화철(FeS; Ferrous sulfide)이 코팅되도록 하는 것을 특징으로 하는 황화철 코팅 나노영가철(Hydrosulfide mediated-nZVI) 제조방법
The method of claim 4, wherein
In the process of preparing the aqueous sodium hydrosulfide solution, by adjusting the pH of distilled water to 3 to 13, ferrous sulfide (FeS; Ferrous sulfide) is formed on the surface of the nano-ferrous iron by H 2 S or HS - ions or S 2 - ions. Iron sulfide coated nano-iron iron (Hydrosulfide mediated-nZVI) manufacturing method characterized in that the coating
삭제delete 삭제delete
KR1020120024108A 2012-03-08 2012-03-08 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants KR101190287B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120024108A KR101190287B1 (en) 2012-03-08 2012-03-08 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
PCT/KR2012/010505 WO2013133509A1 (en) 2012-03-08 2012-12-06 Synthesis of nanoscale zero valent iron coated with iron sulfide precipitate on surface thereof by means of hydrogen sulfide ions and method for purifying environmental pollutants in contaminated soil and ground water using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120024108A KR101190287B1 (en) 2012-03-08 2012-03-08 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants

Publications (1)

Publication Number Publication Date
KR101190287B1 true KR101190287B1 (en) 2012-10-12

Family

ID=47287858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120024108A KR101190287B1 (en) 2012-03-08 2012-03-08 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants

Country Status (2)

Country Link
KR (1) KR101190287B1 (en)
WO (1) WO2013133509A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441570B1 (en) 2013-02-19 2014-09-24 한국과학기술연구원 Zero valent iron coated lipids and method for fabricating the same
CN104308181A (en) * 2014-10-17 2015-01-28 浙江工业大学 Method for preparing nanoscale zero-valent iron and nanoscale duplex metal Cu/Fe
KR101717127B1 (en) * 2015-10-01 2017-03-20 효림산업주식회사 Nano-zero-valent iron doped with iron sulfide, copper and palladium on its surface and its preparation method
KR102022936B1 (en) 2018-12-28 2019-09-20 에이치플러스에코 주식회사 Preparation method of nano zero-valent Iron modified with PVP-VA
CN113070076A (en) * 2021-02-25 2021-07-06 山东大学 Preparation method and application of zero-valent iron sulfide
KR20210141826A (en) * 2020-05-13 2021-11-23 광운대학교 산학협력단 A denitrification catalyst, a manufacturing method thereof and a denitrification method using thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174414B (en) * 2015-09-28 2017-11-21 中国地质大学(武汉) A kind of FeS/Fe0Composite and its preparation method and application
CN107601642A (en) * 2017-10-13 2018-01-19 山东大学 The method of complexing agent collaboration sulfide modifier Zero-valent Iron processing waste water from dyestuff
CN110980858B (en) * 2019-11-25 2021-10-01 中国科学技术大学 Method for removing halogenated organic matters in sewage
CN111437800A (en) * 2020-04-01 2020-07-24 山东省中医药研究院 Application of β -cyclodextrin embedded S-nZVI material
CN114259975B (en) * 2021-12-28 2022-12-02 华中科技大学 Modified zero-valent iron and preparation method and application thereof
CN114702211B (en) * 2022-04-07 2024-01-23 扬州大学 Preparation method and application of load type nanometer zero-valent iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027139B1 (en) 2009-10-29 2011-04-05 효림산업주식회사 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103590B1 (en) * 2009-02-26 2012-01-09 광주과학기술원 Method For Preparing Stable Nanoscale Zerovalent Iron with high reactivity for water treatment And The Stable Nanoscale Zerovalent Iron Thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027139B1 (en) 2009-10-29 2011-04-05 효림산업주식회사 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1 : ACS APPL.MATER.INTERFACES
논문2 : JOURNAL OF CONTAMINANT HYDROLOGY

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441570B1 (en) 2013-02-19 2014-09-24 한국과학기술연구원 Zero valent iron coated lipids and method for fabricating the same
CN104308181A (en) * 2014-10-17 2015-01-28 浙江工业大学 Method for preparing nanoscale zero-valent iron and nanoscale duplex metal Cu/Fe
KR101717127B1 (en) * 2015-10-01 2017-03-20 효림산업주식회사 Nano-zero-valent iron doped with iron sulfide, copper and palladium on its surface and its preparation method
KR102022936B1 (en) 2018-12-28 2019-09-20 에이치플러스에코 주식회사 Preparation method of nano zero-valent Iron modified with PVP-VA
KR20210141826A (en) * 2020-05-13 2021-11-23 광운대학교 산학협력단 A denitrification catalyst, a manufacturing method thereof and a denitrification method using thereof
KR102415042B1 (en) * 2020-05-13 2022-06-29 광운대학교 산학협력단 A denitrification catalyst, a manufacturing method thereof and a denitrification method using thereof
CN113070076A (en) * 2021-02-25 2021-07-06 山东大学 Preparation method and application of zero-valent iron sulfide
CN113070076B (en) * 2021-02-25 2022-04-12 山东大学 Preparation method and application of zero-valent iron sulfide

Also Published As

Publication number Publication date
WO2013133509A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
KR101190287B1 (en) Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
Xu et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties
Liu et al. Insight into pH dependent Cr (VI) removal with magnetic Fe3S4
Zhang et al. Chitosan-stabilized FeS magnetic composites for chromium removal: characterization, performance, mechanism, and stability
Cai et al. Sulfidation of zero-valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene
Kim et al. Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry
Calderon et al. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation
Wang et al. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles
Simeonidis et al. Optimizing magnetic nanoparticles for drinking water technology: the case of Cr (VI)
Su et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal
Zhu et al. Magnetic graphene nanoplatelet composites toward arsenic removal
Reddy et al. Recent progress on Fe-based nanoparticles: synthesis, properties, characterization and environmental applications
Kim et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
Dickinson et al. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent
Liu et al. Optimized synthesis of FeS nanoparticles with a high Cr (VI) removal capability
KR101241377B1 (en) D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants
Kržišnik et al. Nanoscale zero-valent iron for the removal of Zn2+, Zn (II)–EDTA and Zn (II)–citrate from aqueous solutions
Esfahani et al. Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: impact of operational parameters and artificial neural network modeling
Selvarani et al. Removal of toxic metal hexavalent chromium [cr (vi)] from aqueous solution using starch–stabilized nanoscale zerovalent iron as adsorbent: equilibrium and kinetics
KR101717127B1 (en) Nano-zero-valent iron doped with iron sulfide, copper and palladium on its surface and its preparation method
Wen et al. Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (Nanosized-MMIM): Synergistic effect and interface catalysis
Su et al. Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives
Zhang et al. Preparation of new materials by ethylene glycol modification and Al (OH) 3 coating NZVI to remove sulfides in water
Lei et al. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr (VI)
Zhu et al. Novel core-shell sulfidated nano-Fe (0) particles for chromate sequestration: Promoted electron transfer and Fe (II) production

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee