KR102022936B1 - Preparation method of nano zero-valent Iron modified with PVP-VA - Google Patents

Preparation method of nano zero-valent Iron modified with PVP-VA Download PDF

Info

Publication number
KR102022936B1
KR102022936B1 KR1020180171919A KR20180171919A KR102022936B1 KR 102022936 B1 KR102022936 B1 KR 102022936B1 KR 1020180171919 A KR1020180171919 A KR 1020180171919A KR 20180171919 A KR20180171919 A KR 20180171919A KR 102022936 B1 KR102022936 B1 KR 102022936B1
Authority
KR
South Korea
Prior art keywords
solution
pvp
iron
ddiw
modified
Prior art date
Application number
KR1020180171919A
Other languages
Korean (ko)
Inventor
허자홍
박장석
공준
신민철
조보경
황유훈
Original Assignee
에이치플러스에코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이치플러스에코 주식회사 filed Critical 에이치플러스에코 주식회사
Priority to KR1020180171919A priority Critical patent/KR102022936B1/en
Application granted granted Critical
Publication of KR102022936B1 publication Critical patent/KR102022936B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Abstract

The present invention relates to a manufacturing method for a nano zero-valent iron surface-modified with a PVP-VA, comprising: a step of preparing an iron sulfate hydrate (FeSO_4·7H_2O) solution, an NaBH_4 solution, and a polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution (S10); a step of mixing and stirring the iron sulfate hydrate solution, the NaBH_4 solution, and the polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution (S20); and a step of obtaining a surface-modified nano zero-valent iron from the stirring solution (S30). Therefore, the present invention has an advantage of having a selective affinity for an organic solvent (TCE), which is an underground pollutant, without inhibiting dispersibility and reactivity.

Description

PVP-VA로 표면개질 된 나노영가철 제조방법{Preparation method of nano zero-valent Iron modified with PVP-VA}Preparation method of nano zero-valent Iron modified with PVP-VA}

본 발명은 분산성 및 반응성을 저해하지 않으면서 지중오염물질인 유기용매(TCE)에 대한 선택적 친화성을 가지는 PVP-VA로 표면개질 된 나노영가철 제조방법에 관한 것이다. The present invention relates to a method for producing nano-ferrous iron surface-modified with PVP-VA having a selective affinity for an organic solvent (TCE) that is a soil pollutant without inhibiting dispersibility and reactivity.

토양오염의 주요 물질 중 하나인 TCE/PCE 등은 발암성 물질로써 토양 내에서 시급히 제거해야할 필요가 있다. 대체로 산화/환원 반응을 통하여 TCE/PCE의 제거를 실시하였으며, 이에 대한 대표적인 소재로써 철 계열의 환원제를 들 수 있다.TCE / PCE, one of the major substances in soil pollution, is a carcinogenic substance and needs to be removed urgently from the soil. In general, the removal of TCE / PCE was carried out through an oxidation / reduction reaction, and an iron-based reducing agent may be used as a representative material.

기존에 반응성 투수 벽체 형태로 적용되던 영가철 및 철 관련 소재의 경우, 나노영가철의 적용을 통하여 관정 주입이 성공적으로 시도된 바 있으며 독성물질을 무독성물질로 분해하여 자연저감의 부담은 줄이고 오염물질 제거의 효율은 극대화시키는 장점이 있다. In the case of iron and iron-related materials, which were previously applied in the form of reactive permeable walls, the injection of wells has been successfully attempted through the application of nano-ferrous iron. The efficiency of removal has the advantage of maximizing.

그리고 미국 및 유럽 등지에서도 나노영가철을 활용에 대한 다양한 현장 실험결과가 보고되었다.In addition, various field experiments have been reported in the US and Europe.

한편 대부분의 나노소재는 합성당시에는 나노사이즈로 존재하지만, 서로 간의 인력에 의하여 쉽게 뭉쳐 나노소재의 특성을 상실하는 경우가 대부분이다. 일례로 나노영가철의 경우 합성 후 수십 분 이내에 수백 마이크로미터 내외의 큰 덩어리로 뭉치게 되는 현상이 널리 보고 되었으며, 현장에 주입하였을 때의 영향반경도 수 m가 되지 않는 것으로 보고되었다. On the other hand, most of the nanomaterials are present in the nano-size at the time of synthesis, but most of them are easily aggregated by the attraction between each other to lose the properties of the nanomaterials. For example, nano-ferrous iron has been widely reported to aggregate into large lumps of several hundred micrometers within several tens of minutes after synthesis, and has not been reported to have an impact radius of several m when injected into the field.

또한 반응성을 가지는 나노소재의 경우에는 타겟으로 하는 오염물질에 선택적으로 작용하는 것이 아니라 지중에 존재하는 오염물질과 모두 반응하여 그 반응성을 효과적으로 이용하기 어려움이 있다. In addition, in the case of nanomaterials having reactivity, it is difficult to effectively use the reactivity by reacting with all pollutants present in the ground rather than selectively acting on the pollutant as a target.

가령 수중 용존산소와 반응하여 산화됨으로써 주입량을 크게 증가시켜야 하는 단점이 있다. 따라서 나노입자의 적용성을 극대화하기 위해서는 표면의 개질을 통하여 다양한 기능성을 제공할 필요가 있다. 그런데 표면 개질의 경우 개질로 인해 반응성을 저해시키거나 분산성을 저해시키는 등의 문제가 발생되었다. For example, there is a disadvantage in that the amount of injection is greatly increased by reacting with dissolved oxygen in water. Therefore, in order to maximize the applicability of nanoparticles, it is necessary to provide various functionalities through surface modification. However, in the case of surface modification, problems such as inhibiting reactivity or dispersibility are caused by the modification.

대한민국 특허등록 제10-1190287호Republic of Korea Patent Registration No. 10-1190287

따라서 본 발명은 상술한 문제점을 해결하기 위한 것으로, 분산성 및 반응성을 저해하지 않으면서 지중오염물질인 유기용매(TCE)에 대한 선택적 친화성을 가지는 PVP-VA로 표면개질 된 나노영가철 제조방법을 제공하고자 함이다.Therefore, the present invention is to solve the above problems, a method of manufacturing nano-iron iron surface modified with PVP-VA having a selective affinity for organic solvents (TCE), which is a soil pollutant without inhibiting dispersibility and reactivity To provide.

본 발명의 PVP-VA로 표면개질 된 나노영가철 제조방법(이하 "본 발명의 제조방법"이라함)은, 황산철수화물(FeSO4·7H2O) 용액과, NaBH4용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 준비하는 단계(S10); 황산철수화물 용액과, NaBH4용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 혼합하여 교반하는 단계(S20); 교반이 이루어진 용액으로부터 표면개질 된 나노영가철을 수득하는 단계(S30);를 포함하는 것을 특징으로 한다. Nanoporous iron manufacturing method (hereinafter referred to as "manufacturing method" of the present invention) surface-modified with PVP-VA of the present invention, a ferric sulfate (FeSO 4 · 7H 2 O) solution, NaBH 4 solution, polyvinyl Preparing a pyrrolidone vinyl acetate copolymer (PVP-VA) solution (S10); Mixing and stirring the ferrous sulfate solution, the NaBH 4 solution, and the polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution (S20); It characterized in that it comprises a; step (S30) to obtain a surface-modified nano-iron iron from the solution was stirred.

하나의 예로 상기 S30단계에는, 혐기조건하에서 원심분리를 통해 교반이 이루어진 용액으로부터 표면개질 된 나노영가철을 수득하는 것을 특징으로 한다. As an example, in step S30, the surface-modified nano-iron iron is obtained from a solution in which stirring is performed through centrifugation under anaerobic conditions.

앞서 설명한 바와 같이, 본 발명의 제조방법에 의해 제조되는 PVP-VA로 표면개질된 나노영가철은 분산성 및 반응성을 저해하지 않으면서 지중오염물질인 유기용매(TCE)에 대한 선택적 친화성을 가지는 장점이 있다. As described above, nano-ferrous iron surface-modified with PVP-VA prepared by the manufacturing method of the present invention has a selective affinity for organic solvents (TCE), which is a soil pollutant without inhibiting dispersibility and reactivity. There is an advantage.

도 1은 본 발명의 제조방법을 나타내는 블록도.
도 2는 각 시료에 대한 분산성 평가결과를 나타내는 그래프.
도 3은 각 시료에 대한 반응성 평가결과를 나타내는 그래프.
도 4는 각 시료에 대한 유기용매 선택적 유도성 평가결과를 나타내는 그래프.
1 is a block diagram showing a manufacturing method of the present invention.
2 is a graph showing the results of dispersibility evaluation for each sample.
3 is a graph showing the results of reactivity evaluation for each sample.
Figure 4 is a graph showing the organic solvent selective induction evaluation results for each sample.

이하 본 발명의 실시 예를 첨부되는 도면을 통해 보다 상세히 설명하도록 한다.Hereinafter will be described in more detail with reference to the accompanying drawings an embodiment of the present invention.

본 발명의 제조방법은 도 1에서 보는 바와 같이 황산철수화물(FeSO4·7H2O) 용액과, NaBH4 용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 준비하는 단계(S10); 황산철수화물 용액과, NaBH4 용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 혼합하여 교반하는 단계(S20); 교반이 이루어진 용액으로부터 표면개질 된 나노영가철을 수득하는 단계(S30);를 포함하는 것을 특징으로 한다. The preparation method of the present invention is to prepare a ferric sulfate (FeSO 4 · 7H 2 O) solution, NaBH 4 solution, polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution as shown in FIG. (S10); Mixing and stirring the ferric sulfate solution, the NaBH 4 solution, and the polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution (S20); It characterized in that it comprises a; step (S30) to obtain a surface-modified nano-iron iron from the solution was stirred.

즉 본 발명의 제조방법에 의해 제조되는 PVP-VA로 표면개질된 나노영가철(nZVI, nanosize zero valent iron)은 나노영가철에 PVP-VA가 코팅되어 소수성을 가진 TCE의 흡착률을 증가시키며, 용존산소 및 용존이온의 침투를 억제시켜 나노영가철(nZVI)의 표면에 산화막이 생성되는 것을 방지하여 개질을 통해 반응성이 감소되는 것을 방지토록 하는 것이고, PVP/VA는 Block co-polymer로서 친수성기와 소수성기를 모두 가지고 있기 때문에 친수성 용액과 소수성 용액에서 모두 용해성을 가지고 있어 분산성의 저하를 유발하지 않는다. In other words, nanosize zero valent iron (nZVI) surface-modified with PVP-VA prepared by the production method of the present invention increases the adsorption rate of TCE having hydrophobicity by coating PVP-VA on nano-ferrous iron, It inhibits the penetration of dissolved oxygen and dissolved ions to prevent the formation of oxide film on the surface of nano-ferrous iron (nZVI) to prevent the reactivity from being reduced through the modification. PVP / VA is a block co-polymer as a hydrophilic group Since both have hydrophobic groups, they are soluble in both hydrophilic and hydrophobic solutions and do not cause a decrease in dispersibility.

우선 본 발명은 황산철수화물 용액과, NaBH4 용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 준비하는 단계(S10)를 갖는다. First, the present invention has a step (S10) of preparing a ferric sulfate solution, a NaBH 4 solution, and a polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution.

황산철수화물 수용액과 환원제가 포함된 알칼리 수용액을 교반, 반응시키면 나노영가철(nZVI)을 제조할 수 있는데 여기서 상기 환원제가 포함된 알칼리 수용액으로 NaBH4 용액이 사용되는 것이다. When stirring and reacting an aqueous solution of ferric sulfate and an alkali aqueous solution containing a reducing agent, nano-iron iron (nZVI) may be prepared, where NaBH 4 solution is used as the aqueous alkali solution containing the reducing agent.

상기 황산철수화물 수용액은 황산철수화물을 deairated deionized water (DDIW)에 혼합하여 용해시킴으로써 얻어지는 것이며, NaBH4 용액은 NaBH4를 DDIW에 혼합하여 용해시킴으로써 얻어지는 것이다. The ferrous sulfate solution is obtained by mixing and dissolving ferrous sulfate in deairated deionized water (DDIW), and the NaBH 4 solution is obtained by mixing and dissolving NaBH 4 in DDIW.

PVP-VA 용액은 PVP-VA를 DDIW에 혼합하여 용해시킴으로써 얻어지는 것이다. PVP-VA solution is obtained by mixing and dissolving PVP-VA in DDIW.

그 다음으로 황산철수화물 용액과, NaBH4 용액과, 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA) 용액을 혼합하여 교반하는 단계(S20)를 갖는다. Thereafter, a step of mixing and stirring the ferric sulfate solution, the NaBH 4 solution, and the polyvinyl pyrrolidone vinyl acetate copolymer (PVP-VA) solution is stirred.

황산철 용액과 NaBH4 용액을 연동펌프 등을 이용해 PVP-VA 용액에 넣어주면서 교반토록 하여 반응이 이루어지도록 하는 것이다. 이러한 교반은 혐기조건하에서 이루어짐이 타당하다. The iron sulfate solution and NaBH 4 solution are added to the PVP-VA solution using a peristaltic pump and stirred to allow the reaction to take place. It is reasonable that this stirring is done under anaerobic conditions.

마지막으로 교반이 이루어진 용액으로부터 표면개질 된 나노영가철을 수득하는 단계(S30)를 갖는다. Finally it has a step (S30) to obtain a surface-modified nano-iron iron from the solution was stirred.

본 단계(S30)에서는 전 단계(S20)에서 합성이 이루어진 용액을 원심분리를 통해 PVP-VA로 표면개질 된 나노영가철이 수득되도록 하는 것으로, 이러한 원심분리를 통한 표면개질 된 나노영가철의 수득과정도 혐기조건에서 이루어짐이 타당하다. In this step (S30) to obtain a surface-modified nano-ferrous iron surface-modified by PVP-VA through centrifugation of the solution synthesized in the previous step (S20), the process of obtaining the surface-modified nano-iron iron through this centrifugation It is also reasonable to carry out under anaerobic conditions.

이하 실험예를 통해 본 발명의 바람직한 실시예를 설명한다. Hereinafter, the preferred embodiment of the present invention through the experimental example.

<시료의 제조><Production of Sample>

50 ml 부피플라스크에 황산철수화물 0.4976 g을 넣고 50 ml DDIW을 주입한 다음 부피플라스크 입구를 막고 용해(Fe 35.8 mM)시켰다. 또한 다른 부피플라스크에 NaBH4 0.1693 g을 넣고, 50 ml DDIW를 주입하여 용해(NaBH4 89.5 mM)시켰다. 또한 250ml 3구 둥근바닥 플라스크에 양쪽 입구를 막고 PVP-VA를 계획된 중량 비에 따라 넣은 다음 100ml DDIW를 주입하여 용해시켰다. 0.4976 g of ferric sulfate was added to a 50 ml volumetric flask, and 50 ml DDIW was injected, and then the volumetric flask was blocked and dissolved (Fe 35.8 mM). In addition, 0.1693 g of NaBH 4 was added to another volumetric flask, and 50 ml DDIW was injected to dissolve (NaBH 4 89.5 mM). In addition, the 250ml three necked round bottom flask was closed with both inlets, PVP-VA was added according to the planned weight ratio, and then 100ml DDIW was injected to dissolve.

상기와 같은 과정에 의해 얻어진 황산철수화물 용액과, NaBH4 용액 각각 50 ml를 연동펌프를 이용해 5ml/min의 속도로 PVP-VA용액에 넣어주면서 10분간 250rpm의 속도로 교반하고, 교반이 끝난 후 100rpm의 속도로 20분간 천천히 교반시키면서 반응이 이루어지게 하였다. 50 ml each of the ferric sulfate solution and NaBH 4 solution obtained by the above process was added to the PVP-VA solution at a rate of 5 ml / min using a peristaltic pump and stirred at a speed of 250 rpm for 10 minutes. The reaction was allowed to stir for 20 minutes at a speed of 100 rpm.

이후에 합성이 끝난 200ml 용액을 50ml 코니칼튜브 4개에 나눠서 담고 4000 rpm으로 약 10분 정도 원심분리 하였다. 이렇게 원심분리한 코니칼튜브 4개의 상등액을 버리고, 한개의 코니칼튜브에 DDIW를 이용해 철을 모아서 담고, DDIW 50ml 채운 후 다시 원심분리 하였다. 원심분리 후 상등액을 버리고 1mM NaHCO₃ 50ml를 넣고 다시 원심 분리를 하여 표면이 개질된 나노영가철을 시료로서 수득하였다. Thereafter, the synthesized 200ml solution was divided into four 50ml conical tubes and centrifuged at 4000 rpm for about 10 minutes. The supernatant of the four conical tubes centrifuged in this way was discarded, iron was collected using DDIW in one conical tube, and 50 ml of DDIW was filled and centrifuged again. After centrifugation, the supernatant was discarded and 50 ml of 1 mM NaHCO₃ was added thereto, followed by centrifugation to obtain a nano-iron-modified surface as a sample.

수득된 시료는 중량비로 PVP-VA:나노영가철이 각 0:1(시료 1), 2:1(시료 2), 5:1(시료 3)인 3개의 시료를 수득하였다. The obtained samples obtained three samples of PVP-VA: nanoiron iron in each of 0: 1 (sample 1), 2: 1 (sample 2), and 5: 1 (sample 3).

<침전실험을 통한 분산성 평가><Dispersibility Evaluation through Precipitation Test>

시료의 분산성을 알아보기 위하여 분광광도계로 90분 동안 측정하였다. UV-Vis spectrophotometer를 사용해 서로 다른 합성비로 제조한 각각 시료의 침전실험을 진행하였다. 시료 제조 후, 플라스틱 큐벳에 샘플링 하여 캡을 감싸서 측정 도중 산화가 되는 것을 방지하였고, 30초 간격으로 90분간 508nm에서 흡광도를 측정하였다. 입자의 침전은 Phenrat에 의해 제안된 하기 수학식1을 이용해 해석하였다.In order to determine the dispersibility of the sample was measured for 90 minutes by spectrophotometer. Precipitation experiments were carried out using UV-Vis spectrophotometer at different synthesis ratios. After preparing the sample, the plastic cuvettes were sampled to wrap the cap to prevent oxidation during the measurement, and the absorbance was measured at 508 nm for 90 minutes at 30 second intervals. Precipitation of particles was interpreted using Equation 1 proposed by Phenrat.

Figure 112018131585376-pat00001
Figure 112018131585376-pat00001

상기 수학식1에서 lt 는 t 시간에서의 용액의 흡광도, l0는 용액의 초기 흡광도, τ 는 하기 수학식2으로부터 계산되는 스토크스 법칙에 의한 입자의 유체역학적 직경에 따른 시간이다.In Equation 1, lt is the absorbance of the solution at time t, l 0 is the initial absorbance of the solution, and τ is the time according to the hydrodynamic diameter of the particles by the Stokes law calculated from Equation 2 below.

Figure 112018131585376-pat00002
Figure 112018131585376-pat00002

상기 수학식2에서 η은 용매의 점도, β는 프랙탈 응집체의 투수성, pf는 유체의 압력, g는 중력 가속도, ρS와 ρL은 고체와 액체의 압력, RH는 유체역학적 직경을 의미한다.In Equation 2, η is the viscosity of the solvent, β is the permeability of the fractal aggregate, pf is the pressure of the fluid, g is the acceleration of gravity, ρS and ρL is the pressure of the solid and liquid, RH is the hydrodynamic diameter.

각각의 시료에 대한 침전시간을 흡광도의 변화를 통해 알아본 결과가 도 2에 도시되고 있다. 도 2에서 보는 바와 같이 각 시료 모두 침전곡선이 같은 양상을 보이고 있다. 우측의 그래프는 상기 스토크 식에서 도출된 침전특성시간을 나타낸 것이며, 각 시료에서 큰 차이를 보이지 않았다. 따라서 PVP-VA 개질에 따른 나노영가철의 분산성에는 부정적인 영향이 없음을 확인하였다. The result of retrieving the settling time for each sample through the change in absorbance is shown in FIG. 2. As shown in FIG. 2, the precipitation curves of each sample showed the same aspect. The graph on the right shows the settling characteristics time derived from the Stokes equation, and did not show a big difference in each sample. Therefore, it was confirmed that there is no negative effect on the dispersibility of nano-ferrous iron by PVP-VA modification.

이는 상기에서 언급한 바와 같이 PVP-VA가 친수성 용액과 소수성 용액에서 모두 용해성을 가지고 있음에 기인한 것으로 판단된다. This may be due to the fact that PVP-VA has solubility in both hydrophilic and hydrophobic solutions as mentioned above.

<질산성질소 환원실험을 통한 반응성 평가><Reactivity evaluation through nitrate reduction experiment>

대표적인 지하수 오염물질로 질산성질소를 고려하여 각 시료의 질산성질소와 반응성을 보고자 질산성질소 환원실험을 진행하였다. 50ml serum bottle에 합성한 nZVI용액 18ml와 DDIW 18 ml를 주입하고 알루미늄 크림프 씰과 PTFE/silicon septum을 씌워 밀폐시킨 다음, 1000 mg/L NO3--N 4 ml 질산용액(1000mg/L NO3--N)을 주사기를 이용해 주입하였다. Nitrate reduction was conducted to see the reactivity with nitrate nitrogen in each sample in consideration of nitrate nitrogen as a representative groundwater pollutant. It was injected into the nZVI solution 18ml and 18 ml DDIW composited with 50ml serum bottle and closed cover with aluminum crimp seals and PTFE / silicon septum and then, 1000 mg / L NO 3- -N 4 ml nitric acid (1000mg / L NO 3- -N) was injected using a syringe.

교반기에서 150rpm의 속도로 교반을 하면서 반응을 시켰고, 반응시작 후 정해진 시간에 주사기를 사용하여 2ml씩 샘플링을 하여 여과를 하였다. 이온크로마토그래피를 사용해서 질산성질소 농도를 측정하였다. The reaction was carried out while stirring at a speed of 150rpm in a stirrer, and the sample was filtered by 2ml each using a syringe at a predetermined time after the start of the reaction. Ion chromatography was used to measure the nitric acid concentration.

그 결과가 도 3에 도시되고 있는 바, 데이터 분석결과, 시료 3의 경우가 90분 동안 반응시킨 이후에 제거된 질산성질소의 농도는 31.98 mg/L로 가장 높았고, PVP-VA를 합성시키지 않은 시료 1의 경우 제거된 질산성질소의 양은 17.02mg/L로 가장 낮았다. The results are shown in FIG. 3. As a result of data analysis, the sample 3 had the highest concentration of nitrogen nitrate removed after reacting for 90 minutes at 31.98 mg / L, and did not synthesize PVP-VA. In case 1, the amount of nitrogen nitrate removed was the lowest at 17.02 mg / L.

이 결과를 통해 PVP-VA 합성비가 큰 합성소재일수록 반응성이 커지기 때문에 질산성질소의 제거량이 많아지는 것으로 나타났으며, 이에 따라 표면개질로 인하여 반응성에 대한 부정적인 영향은 없음을 확인하였다. The results showed that the higher the PVP-VA synthesis ratio, the greater the reactivity, and thus the greater the amount of nitrogen nitrate removed. Accordingly, it was confirmed that there is no negative effect on reactivity due to surface modification.

도 3의 그래프에 있어 (a)는 시료 1, (b)는 시료 2, (c)는 시료 3의 결과를 나타낸다.In the graph of FIG. 3, (a) shows sample 1, (b) shows sample 2, and (c) shows sample 3 results.

<유기용매에 대한 선택적 유도성 평가><Selective Inductive Evaluation of Organic Solvents>

다양한 오염물질이 존재하는 지중에서 TCE와 같은 소수성 유기오염물질에 대한 선택적 반응성을 알아보기 위한 TCE 친화도 실험은 다음과 같이 진행되었다. 20ml serum bottle에 TCE 10ml와 nZVI-PVP/VA 합성용액 10ml를 주입하고, 교반기에서 200 rpm의 속도로 교반을 시켜주며 반응 시작 후 5분, 15분, 30분, 60분, 120분, 180분, 360분에서의 nZVI-PVP/VA의 이동을 사진을 찍어 확인하였다.TCE affinity experiments were conducted to investigate the selective reactivity of hydrophobic organic pollutants such as TCE in the presence of various pollutants. Inject 10 ml of TCE and 10 ml of nZVI-PVP / VA synthetic solution into a 20 ml serum bottle, and stir at a speed of 200 rpm in a stirrer. 5, 15, 30, 60, 120 and 180 minutes after the start of the reaction The movement of nZVI-PVP / VA in 360 minutes was confirmed by taking a picture.

그 결과가 도 4에 도시되고 있는 바, 사진을 보면 시료 1의 경우 시간이 지나도 nZVI용액이 TCE쪽으로 거의 이동하지 않은 것을 알 수 있다. 반면에 시료 3의 경우 반응초기에 합성용액이 TCE쪽으로 이동한 것을 확인할 수 있고, 반응 120분 후 사진을 보면 TCE쪽의 색이 거의 검게 물든 것으로 보아 nZVI-PVP/VA 합성용액이 많이 이동한 것을 알 수 있다. The results are shown in FIG. 4, and the photographs show that in the case of Sample 1, the nZVI solution hardly moved toward the TCE even after time. On the other hand, in the case of sample 3, it can be seen that the synthesis solution moved to the TCE side at the beginning of the reaction, and 120 minutes after the reaction, the color of the TCE side was almost black, indicating that the nZVI-PVP / VA synthesis solution was moved a lot. Able to know.

이 결과는 앞서 얘기했던 것처럼 PVP-VA는 친수성기와 소수성기를 모두 가지고 있는 Block-co-polymer이기 때문에 PVP-VA에 존재하는 소수성기의 작용으로 소수성 물질인 TCE에 비교적 친화도가 높기 때문이라고 설명할 수 있다. This result can be explained by the fact that PVP-VA is a block-copolymer having both hydrophilic and hydrophobic groups. have.

즉 실험결과를 통해 nZVI에 PVP-VA를 합성함으로써 소수성물질에 대한 친화도를 높여 지중에 존재하는 소수성 오염물질 제거 효율을 높일 수 있을 것이라 판단된다. In other words, by combining PVP-VA with nZVI, we can increase the affinity for hydrophobic substances and increase the removal efficiency of hydrophobic contaminants in the ground.

도 4의 그래프에 있어, (a),(b),(c)는 시료 1에 대한 각각 반응초기, 120분, 360분, (d),(e),(f)는 시료 3에 대한 각각 반응초기, 120분, 360분을 나타낸다.In the graph of Figure 4, (a), (b), (c) is the initial reaction for Sample 1, 120 minutes, 360 minutes, (d), (e), (f) are respectively for Sample 3 Initial reaction, 120 minutes and 360 minutes are shown.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification but should be defined by the claims.

Claims (2)

황산철수화물을 deairated deionized water(DDIW)에 혼합하여 용해시킴으로써 얻어지는 황산철수화물(FeSO4·7H2O) 용액과, NaBH4를 DDIW에 혼합하여 용해시킴으로써 얻어지는 NaBH4 용액 및 폴리비닐 피롤리돈 비닐아세테이트 공중합체(PVP-VA)를 DDIW에 혼합하여 용해시킴으로써 얻어지는 PVP-VA 용액을 각각 준비하는 단계(S10);
황산철수화물 용액과 NaBH4 용액 각각을 혐기조건하에서 연동펌프를 이용하여 PVP-VA 용액에 넣어주면서 10분동안 250rpm의 속도로 교반하고, 교반이 끝난 후 100rpm의 속도로 20분 동안 다시 한번 교반시켜 반응이 이루어지도록 하는 단계(S20); 및
반응이 이루어진 용액을 복수의 시험관에 나눠 담고 혐기조건하에서 4000rpm으로 10분동안 원심분리 한 후, 원심분리한 복수의 시험관의 상등액을 버리고 한 개의 시험관에 DDIW를 이용해 철을 모아서 담고, DDIW 채운 후 다시 원심분리 하며, 원심분리 후 상등액을 버리고 NaHCO₃를 넣고 다시 한번 원심분리를 하여 나노영가철에 PVP-VA가 코팅되어 표면이 개질된 나노영가철을 수득하는 단계(S30);를 포함하는 것을 특징으로 하는 PVP-VA로 표면개질된 나노영가철 제조방법.
Ferric sulfate (FeSO4 · 7H2O) solution obtained by mixing and dissolving ferric sulfate in deairated deionized water (DDIW), NaBH4 solution and polyvinyl pyrrolidone vinyl acetate copolymer (PVP) obtained by mixing and dissolving NaBH4 in DDIW Preparing each PVP-VA solution obtained by mixing and dissolving -VA) in DDIW (S10);
The ferrous sulfate solution and the NaBH4 solution were each stirred at 250 rpm for 10 minutes while being fed into the PVP-VA solution using a peristaltic pump under anaerobic conditions, and then stirred again at 100 rpm for 20 minutes. To be made (S20); And
The reaction solution was divided into a plurality of test tubes, centrifuged at 4000 rpm for 10 minutes under anaerobic conditions, discarded the supernatants of the plurality of centrifuged test tubes, and iron was collected in one test tube using DDIW, filled with DDIW, and then filled again. Centrifugation, discarding the supernatant after centrifugation, put NaHCO₃ and centrifugation once again to obtain PVP-VA coated on the nano-iron iron (S30) to obtain a surface-modified nano-iron iron (S30); Nanoporous iron manufacturing method surface-modified with PVP-VA.
삭제delete
KR1020180171919A 2018-12-28 2018-12-28 Preparation method of nano zero-valent Iron modified with PVP-VA KR102022936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180171919A KR102022936B1 (en) 2018-12-28 2018-12-28 Preparation method of nano zero-valent Iron modified with PVP-VA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180171919A KR102022936B1 (en) 2018-12-28 2018-12-28 Preparation method of nano zero-valent Iron modified with PVP-VA

Publications (1)

Publication Number Publication Date
KR102022936B1 true KR102022936B1 (en) 2019-09-20

Family

ID=68067299

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180171919A KR102022936B1 (en) 2018-12-28 2018-12-28 Preparation method of nano zero-valent Iron modified with PVP-VA

Country Status (1)

Country Link
KR (1) KR102022936B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433838A (en) * 2021-12-10 2022-05-06 南开大学 Preparation method of high-mobility vulcanized nano zero-valent iron material
CN114735796A (en) * 2022-05-16 2022-07-12 湖南工业大学 Iron-based nano flocculant and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030043453A (en) * 2001-11-28 2003-06-02 (주)케미피아 A method for preparing sphere and/or plate type micrometal using liquid phase reduction method and micrometal prepared from this method
KR20080043542A (en) * 2006-11-14 2008-05-19 광주과학기술원 Method for synthesis of zerovalent iron nanowires and its application for groundwater treatment
KR20090010477A (en) * 2007-07-23 2009-01-30 삼성전기주식회사 Method for manufacturing nickel nanoparticles
KR20090055380A (en) * 2007-11-28 2009-06-02 광주과학기술원 Methods of controllable synthesis of nanoscale zerovalent iron
KR101190287B1 (en) 2012-03-08 2012-10-12 포항공과대학교 산학협력단 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
KR20180010403A (en) * 2016-07-21 2018-01-31 서울과학기술대학교 산학협력단 System and method for determining reactivity of zero valent iron materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030043453A (en) * 2001-11-28 2003-06-02 (주)케미피아 A method for preparing sphere and/or plate type micrometal using liquid phase reduction method and micrometal prepared from this method
KR20080043542A (en) * 2006-11-14 2008-05-19 광주과학기술원 Method for synthesis of zerovalent iron nanowires and its application for groundwater treatment
KR20090010477A (en) * 2007-07-23 2009-01-30 삼성전기주식회사 Method for manufacturing nickel nanoparticles
KR20090055380A (en) * 2007-11-28 2009-06-02 광주과학기술원 Methods of controllable synthesis of nanoscale zerovalent iron
KR101190287B1 (en) 2012-03-08 2012-10-12 포항공과대학교 산학협력단 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
KR20180010403A (en) * 2016-07-21 2018-01-31 서울과학기술대학교 산학협력단 System and method for determining reactivity of zero valent iron materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Advances in Environmental Research, Vol. 3, No. 2 (2014) 107-116* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433838A (en) * 2021-12-10 2022-05-06 南开大学 Preparation method of high-mobility vulcanized nano zero-valent iron material
CN114735796A (en) * 2022-05-16 2022-07-12 湖南工业大学 Iron-based nano flocculant and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN107478635B (en) MOF-noble metal composite SERS substrate and preparation method thereof
Yu et al. Transport and retention of aqueous dispersions of paramagnetic nanoparticles in reservoir rocks
KR102022936B1 (en) Preparation method of nano zero-valent Iron modified with PVP-VA
Zhang et al. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@ HgS core–shell structures
CA2784763A1 (en) Use of nanoparticles for labelling oil field injection waters
FR2976826A1 (en) NANOTRACTERS FOR THE MARKING OF PETROLEUM FIELD INJECTION WATER
Zeinali et al. Fabrication of a selective and sensitive electrochemical sensor modified with magnetic molecularly imprinted polymer for amoxicillin
Zhai et al. Inverse Pickering emulsions stabilized by carbon quantum dots: Influencing factors and their application as templates
Jiang et al. A novel electrostatic drive strategy to prepare glutathione-capped gold nanoclusters embedded quaternized cellulose membranes fluorescent colorimetric sensor for Pb (II) and Hg (II) ions detection
Mino et al. Functional magnetic particles providing osmotic pressure as reusable draw solutes in forward osmosis membrane process
Aziz et al. Preparation of monodispersed carboxylate-functionalized gold nanoparticles using pamoic acid as a reducing and capping reagent
CN106290182A (en) The simple and easy method of a kind of gold nanorods self assembly and the application in mercury ion detecting thereof
Pu et al. Effect of the chromium ion diffusion in polyacrylamide/chromium acetate gelation system with surrounding water on gelation behavior
Alsulami et al. Unexpected ultrafast and high adsorption performance of Ag (I) and Hg (II) ions from multiple aqueous solutions using microporous functional silica-polymer sponge-like composite
Niu et al. Fabrication of magnetic nanofibers via surface-initiated RAFT polymerization and coaxial electrospinning
WO2012071605A1 (en) Process for preparing gold nanoparticles
CN1895822A (en) Hollow ball granular chain of nano-polycrystalline noble-metal and its production
Jia et al. Novel imprinted polyethyleneimine nano-fluorescent probes with controllable selectivity for recognizing and adsorbing metal ions
CN101016413A (en) Composite of poly m-phenylenediamine and nano silver and original position reduction preparing method thereof
CN106883360B (en) Functionalized stimulus-responsive polymer and preparation method thereof
CN106046391A (en) Reticular ion imprinting polymer and preparation method and applicationthereof
Song et al. Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle
Es’haghi et al. Surface Modified Nanomagnetite-Assisted Hollow Fiber Solid/Liquid Phase Microextraction for Pre-concentration and Determination of Palladium in Water Samples by Differential Pulse Voltammetry
Lee et al. Synthesis of iron nanoparticles with poly (1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction
US10174136B2 (en) Separation of oil-water mixtures using nanotechnology

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant