KR101027139B1 - Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same - Google Patents

Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same Download PDF

Info

Publication number
KR101027139B1
KR101027139B1 KR1020090103591A KR20090103591A KR101027139B1 KR 101027139 B1 KR101027139 B1 KR 101027139B1 KR 1020090103591 A KR1020090103591 A KR 1020090103591A KR 20090103591 A KR20090103591 A KR 20090103591A KR 101027139 B1 KR101027139 B1 KR 101027139B1
Authority
KR
South Korea
Prior art keywords
polyphenol
nzvi
iron
solution
coated
Prior art date
Application number
KR1020090103591A
Other languages
Korean (ko)
Inventor
이진욱
조성국
장윤석
김재환
전종록
Original Assignee
효림산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효림산업주식회사 filed Critical 효림산업주식회사
Priority to KR1020090103591A priority Critical patent/KR101027139B1/en
Application granted granted Critical
Publication of KR101027139B1 publication Critical patent/KR101027139B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/37Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by reduction, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A polyphenol-coated nano-scale zero valent iron(P-nZVI) for restoring soil and underground water and a method for preparing the same are provided to expand the effective radius of the P-nZVI by including the superior dispersibility and the mobility. CONSTITUTION: A method for preparing P-nZVI includes the following: polyphenol is added to an iron-contained solution to obtain a polyphenol-Fe solution. A reducing agent is added to the polyphenol-Fe solution. A reaction is implemented to synthesize the P-nZVI. The adding amount of the polyphenol is 10 to 50 parts by weight with respect to 100 parts by weight of iron.

Description

토양 및 지하수 복원을 위한 친환경 Р―nZVI 및 그 제조방법 {Polyphenol-coated Nano-scale Zero Valent Iron for Restoring Soil and Underground Water and a Method for Preparing the Same}Poly-Coated Nano-scale Zero Valent Iron for Restoring Soil and Underground Water and a Method for Preparing the Same}

본 발명은 토양 및 지하수 복원을 위한 친환경 P-nZVI(Polyphenol-coated Nano-scale Zero Valent Iron) 및 그 제조방법에 관한 것으로, 보다 상세하게는, Fe0 를 함유하고 천연물질인 폴리페놀(polyphenol)로 코팅되어 있는 P-nZVI 및 그 제조방법에 관한 것이다.The present invention relates to an environmentally friendly polyphenol-coated nano-scale zero valent iron (P-nZVI) and a method for manufacturing the same for restoring soil and groundwater, and more specifically, a polyphenol containing Fe 0 and a natural material. The present invention relates to a P-nZVI coated with and a method of manufacturing the same.

환경 분야에서 철의 활용은 크게 다음과 같은 경우로 나눌 수 있다. 지난 20년간 수처리 분야에 응용되어 온 철의 활용 방법으로서 2가 혹은 0가 철과 과산화수소의 반응으로 발생하는 수산화라디칼을 이용한 Fenton and Fenton-like oxidation가 있다. 또한, ZVI연구가 활발해지면서 최근 상업화까지 이루어지고 있는, 철의 산화/환원 반응을 이용한 중금속 고정화와 탈염화반응이다.      The use of iron in the environmental field can be divided into the following cases. As a method of utilizing iron that has been applied to the water treatment field for the past 20 years, there are Fenton and Fenton-like oxidation using radical hydroxide generated by the reaction of divalent or zero-valent iron with hydrogen peroxide. In addition, the ZVI research is being actively commercialized, the heavy metal immobilization and desalination reaction using the oxidation / reduction reaction of iron, which has recently been commercialized.

전이금속으로 환원력만 있다면 다양한 물질들이 산화/환원반응에 의해 오염물질 처리에 사용될 수 있다. 특히, 영가 금속 철 (Fe0, Zero Valent Iron, ZVI)이 가장 널리 사용되고 있다. 반응성을 갖는 환원금속에는 Ca(-2.87), Mg(-2.70) 등 여러 가지가 있으며, 환원력 또한 철보다 크지만, 금속 철은 우선 반응성이 비교적 높고 쉽게 구할 수 있으며 원하는 크기의 입자를 제조할 수 있다. 또한, 저렴하며, metal scrap 등과 같은 재활용물질을 이용할 수도 있기 때문에 매우 경제적이다. 비록 철이 중금속에 포함되지만 독성이 매우 낮아 소량의 철이 지하수에 함유되어 있어도 인간이나 생태계에는 큰 악영향을 미치지 않는다. Various materials can be used to treat pollutants by oxidation / reduction reactions as long as they have reducing power as transition metals. In particular, zero-valent metal iron (Fe 0 , Zero Valent Iron, ZVI) is the most widely used. Reactive metals include Ca (-2.87), Mg (-2.70), etc., and the reducing power is also higher than iron, but metal iron is relatively high in reactivity and readily available and can produce particles of desired size. have. In addition, it is inexpensive and very economical because it is possible to use recycled materials such as metal scrap. Although iron is included in heavy metals, its toxicity is so low that even a small amount of iron in groundwater does not have a significant adverse effect on humans or ecosystems.

이러한 전이금속을 이용한 탈염화 환원반응이 일어나기 위해서는 전자 전달이 필요하며, 철과 오염물질의 접촉 방법에 따라 세가지 모델이 제시되고 있다. (Scherer et al. 1999). 첫 번째 모델은 철 표면의 산화에 의해 Cathode와 anode domain이 발생하며, cathode에 오염물질이 직접 오염물질이 접촉하는 모델로, 이 경우 철 표면의 reactive site가 지극히 작아 철 표면에서 일어나는 모든 반응을 설명할 수 없다. 그리하여 제시된 두 번째 모델은 철 표면에 생성된 산화막(Oxide film)이 반도체(semi-conductor)역할을 하여 산화막 두께에 의해 감소된 환원전위를 통해 유기물의 환원반응이 이루어진다는 모델이다. 이 경우 첫번째 직접 접촉 모델을 보완할 수는 있지만, 여전히 표면반응만을 설명 할 수 있다. 세번째의 경우 철 표면의 산화막에 존재하는 Fe-H, Fe-OH bond들의 coordination에 의해 반응이 진행될 수 있음을 보여주는 Model이며 이 경우 환원전위는 제일 낮다.In order to cause the dechlorination reduction reaction using the transition metal, electron transfer is required, and three models have been proposed according to the contact method of iron and contaminants. (Scherer et al . 1999). The first model is the cathode and anode domains caused by the oxidation of the iron surface, and contaminants directly contact the cathode. In this case, the reactive site on the iron surface is extremely small, explaining all reactions that occur on the iron surface. Can not. Thus, the second model presented is a model in which the oxide film formed on the iron surface acts as a semi-conductor, and the reduction reaction of organic matter is carried out through the reduction potential reduced by the oxide film thickness. In this case, we can supplement the first direct contact model, but still only account for the surface response. In the third case, the model shows that the reaction can proceed by coordination of Fe-H and Fe-OH bonds in the oxide film on the iron surface. In this case, the reduction potential is the lowest.

영가철은 그 종류에 따라 -0.3~0.7 V 의 환원전위를 가지고 있음이 보고 되고 있고, 철의 환원전위 보다 낮은 전위를 갖는 환원 반응은 이론적으로 처리가 가능하다. 이러한 영가철을 이용하여 오염물질을 제거하는 연구가 계속되고 있으며, 철에 의한 탈염화 반응에 의해 처리 가능한 염화유기오염물질은 halogenated ethylenes (TCE, PCE), Halogenated Alkanes(TCM, DCM 등), Halogenated aromatics (염화페놀, PCBs, 염화다이옥신, PBDEs)등으로 처리속도에 차이는 있지만 대부분 탈염화 반응이 가능하다. Nitrate, Nitrite, Nitro-aromatics와 같은 질소화합물의 경우 매우 빠른 반응속도로 질소 가스로 환원되어 수처리에 응용 가능하다. 또한 산화/환원에 의한 흡착반응에 의해 Cr, As, Pb, Zn, Ni 등의 중금속 및 우라늄 등의 방사성 물질까지 처리할 수 있음이 보고되고 있다. It is reported that zero iron has a reduction potential of -0.3 to 0.7 V depending on the type thereof, and a reduction reaction having a lower potential than that of iron can be theoretically treated. Research on the removal of contaminants by using such ferric iron is ongoing. Chlorinated organic pollutants that can be treated by desalination reaction with iron are halogenated ethylenes (TCE, PCE), halogenated alkanes (TCM, DCM, etc.) and halogenated compounds. Aromatics (phenol chlorides, PCBs, dioxins, PBDEs), etc., vary in processing speed, but most of them can be desalted. Nitrogen compounds such as nitrate, nitrite, and nitro-aromatics are reduced to nitrogen gas at very fast reaction rates and can be applied to water treatment. In addition, it has been reported that heavy metals such as Cr, As, Pb, Zn, and Ni and radioactive materials such as uranium can be treated by adsorption reaction by oxidation / reduction.

이러한 반응성 있는 철은 이용 목적에 따라 다양한 방법으로 제조 할 수 있다.Such reactive iron can be prepared by various methods depending on the purpose of use.

대표적으로, 나노 영가철을 제조 제조 기술로서 최근에 개발된 기술은 크게 물리적 합성법 과 화학적 합성법으로 구분할 수 있다. 물리적 합성법에는 1) Inert Gas condensation, 2) Severe plastic deformation, 3) High-energy ball billing 및 4) Ultrasound shot peening이 있으며, 화학적 합성법에는 1) Reverse Micelle (or Microemulsion), 2) Controlled chemical coprecipitation 3)Chemical vapor condensation, 4) pulse electrodeposition 5) Liquid flame spray 6) Liquid-phase reduction 및 7) Gas-phase reduction 방법이 있다. 이중 환경정화에 이용되는 합성법은 주로 Boll-milling, liquid-phase reduction(습식환원법) 및 Gas- phase reduction(가스상 환원법)에 의한 방법이다. 초기에 영가철을 이용하던 반응벽체(PRB)에 사용되는 micro size ZVI 는 Boll-milling에 의해 만들어져 왔으며, 최근에는 NaBH4와 같은 환원제를 이용하여 합성하는 습식환원법에 의해 Nano size ZVI(FeBH)를 만들어 비표면적을 크게하여 반응성을 증가시키고, 입자크기를 줄여 토양 공극을 더욱 쉽게 이동할 수있는 nZVI를 합성하여 현장에 적용하고자 하는 연구가 활발히 진행되고 있다. 또한 고온 고압하에서 H2를 주입하여 환원하는 가스상환원법으로 제조하여 환경정화에 적용 및 시판되고 있는 RNIP(FeH2, Reactive Nano Iron Particle)를 이용하고 있다.Representatively, the recent development of nano-ferrous iron as a manufacturing technology can be largely divided into physical synthesis and chemical synthesis. Physical synthesis includes 1) Inert Gas condensation, 2) Severe plastic deformation, 3) High-energy ball billing, and 4) Ultrasound shot peening, and chemical synthesis includes 1) Reverse Micelle (or Microemulsion), 2) Controlled chemical coprecipitation 3) Chemical vapor condensation, 4) pulse electrodeposition 5) Liquid flame spray 6) Liquid-phase reduction and 7) Gas-phase reduction. Synthesis methods used for dual environmental purification are mainly by boll-milling, liquid-phase reduction (wet reduction), and gas-phase reduction (gas-phase reduction). Initially, micro size ZVI, which is used for reactive iron (PRB), which has been used for iron, has been produced by boll-milling, and recently, nano size ZVI (FeBH) is produced by a wet reduction method synthesized using a reducing agent such as NaBH 4 . In order to increase the specific surface area, increase the reactivity, and reduce the particle size, research is being actively conducted to synthesize nZVI which can move the soil pores more easily. In addition, RNIP (Fe H2 , Reactive Nano Iron Particle), which is manufactured and applied to the environmental purification by injecting and reducing H 2 under high temperature and high pressure, is used.

기존의 나노 영가철 합성법 중에서 수소 환원(FeH2)법 및 전기환원법에 의해 제조된 나노영가철은 순도는 뛰어나지만, 고가이고, 쉽게 산화되어, 추가적인 산화방지를 위한 노력과 비용이 소요된다. 최근에 사용되는 습식환원법-FeBH은 비교적 간단한 촉매의 합성과 응용을 가능하게 하여 환경오염물질 처리에 가장 알맞은 합성방법으로 각광받고 있다. Nanoporous iron prepared by the hydrogen reduction (Fe H2 ) method and the electro-reduction method of the existing nano-ferrous iron synthesis method is excellent in purity, but expensive and easily oxidized, it takes effort and cost for additional oxidation prevention. Recently, the wet reduction method-Fe BH has been spotlighted as the most suitable synthesis method for treating environmental pollutants by enabling the synthesis and application of relatively simple catalysts.

그러나 이러한 습식합성법도 서로 뭉치려는 입자들의 강한 성향, 빠른 침강, 그리고 그에 따른 입자들의 현장 적용시 이동성 제약 및 응용성 감소가 초래된다. 나노 크기의 영가철 입자는 강자성 물질이므로 각각의 입자가 자석처럼 작용해 막대나 사슬 형태를 이루고, 뭉치는 힘이 더욱 강하게 작용하게 되면 그물과 같은 형태를 보이며, 이러한 그물 구조가 더 밀집되게 되면 덩어리가 자체가 마치 하나의 입자처럼 행동하게 되고, 표면에 음전하가 모이게 되어 강한 물리적 힘으로도 각각의 입자를 분리하기 어려워지며, 뭉침 정도를 줄여주는 첨가제를 필요하게 되었다. However, this wet synthesis also results in a strong tendency of the particles to agglomerate with each other, rapid sedimentation, and consequent mobility restrictions and reduced applicability in the field application of the particles. Nano sized ferric iron particles are ferromagnetic materials, so each particle acts like a magnet, forming a rod or chain, and when the uniting force becomes stronger, it looks like a net. The gas itself acts as a single particle, and negative charges accumulate on the surface, making it difficult to separate each particle even with strong physical forces, and require additives to reduce aggregation.

지금까지 이러한 나노 영가철을 이용하여 실험실에서는 다양한 실험을 하여, DNAPL(Dense Non-Aqueous Phase Liquid) 처리 및 중금속 고정화에 관해 연구를 하여왔다. 하지만 실제로 현장에 적용하기 위해서는 nZVI의 빠른 반응성과, Aggregation에 의해 토양에서 오염물질과 반응하기 전에 토양 내에 존재하는 산소와 먼저 반응을 하여 산화되어 반응성을 잃고, 응집된 나노영가철이 토양공극을 통해 이동을 하지 못해 영향반경을 작게 형성하여, 추가적인 나노영가철의 주입을 하게 되어, 최종적으로는 정화비용이 증가하는 문제점을 해결 하여야 한다.Until now, various experiments have been conducted in the laboratory using nano-ferrous iron, and have been studied on DNAPL (Dense Non-Aqueous Phase Liquid) treatment and heavy metal immobilization. However, in order to apply to the field, the rapid reactivity of nZVI and the reaction of oxygen in soil before reacting with pollutants in soil by Aggregation, oxidized and lost reactivity, and the aggregated nano-iron iron moves through soil pores. It is not possible to form a small impact radius, and the injection of additional nano-ferrous iron, finally to solve the problem of increased purification costs.

이에 본 발명자들은 상기 종래 기술의 문제점을 해결하고, 오염물질 제거능력이 우수하고 친환경적인 나노영가철을 노력하고자 예의 노력한 결과, 환원제로서 NaBH4를 이용한 습식환원법으로 nZVI를 제조하되, 제조 과정 중에 폴리페놀(polyphenol)을 첨가하여, 폴리페놀(polyphenol)로 코팅되어 있는 Fe0를 함유하는 P-ZVI를 제조하고, 상기 P-ZVI가 토양 내에서의 반응성 유지 특성, 분산성 및 이동성이 뛰어날 뿐만 아니라 2차 오염을 일으키지 않는다는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the problems of the prior art, and to strive for environmentally friendly nano-ferrous iron with excellent pollutant removal ability, but to produce nZVI by the wet reduction method using NaBH 4 as a reducing agent, The addition of phenol (polyphenol) to prepare a P-ZVI containing Fe 0 coated with a polyphenol (polyphenol), the P-ZVI not only has excellent reactivity retention, dispersibility and mobility in soil, The present invention was completed by confirming that no secondary pollution was caused.

본 발명의 목적은 토양 및 지하수 복원을 위한 친환경 P-nZVI 및 그 제조방법을 제공하는데 있다.An object of the present invention to provide an environmentally friendly P-nZVI and a method for manufacturing the soil and ground water restoration.

상기 목적을 달성하기 위하여 본 발명은, (a) Fe 함유 용액에 폴리페놀(polyphenol)을 첨가하여 Polyphenol-Fe 용액을 제조하는 단계; 및 (b) 상기 Polyphenol-Fe 용액에 환원제를 첨가하여 합성된 P-nZVI를 수득하는 단계를 포함하는 P-nZVI의 제조방법을 제공한다.The present invention to achieve the above object, (a) adding a polyphenol (polyphenol) to the Fe-containing solution to prepare a Polyphenol-Fe solution; And (b) adding a reducing agent to the polyphenol-Fe solution to obtain a synthesized P-nZVI.

본 발명은 또한, 폴리페놀(polyphenol)로 코팅되어 있는 Fe0 를 함유하는 P-nZVI를 제공한다.The present invention also provides P-nZVI containing Fe 0 coated with polyphenols.

본 발명에 따른 P-nZVI는 폴리페놀(polyphenol)에 의한 표면 코팅 구조로 인하여 반응안정성이 우수하고, 오염매질 내에서의 반응안정성, 분산성 및 이동성이 뛰어나 영향반경을 확대할 수 있으므로 경제적이고 친환경적이다.P-nZVI according to the present invention has excellent reaction stability due to the surface coating structure of polyphenol (polyphenol), excellent reaction stability, dispersibility and mobility in the contaminant medium, and can expand the radius of impact, economical and environmentally friendly to be.

본 발명은 일 관점에서, (a) Fe 함유 용액에 폴리페놀(polyphenol)을 첨가하여 Polyphenol-Fe 용액을 제조하는 단계; 및 (b) 상기 Polyphenol-Fe 용액에 환원제를 첨가하여 합성된 P-nZVI를 수득하는 단계를 포함하는 P-nZVI의 제조방법에 관한 것이다.The present invention in one aspect, (a) adding a polyphenol (polyphenol) to the Fe-containing solution to prepare a Polyphenol-Fe solution; And (b) adding a reducing agent to the polyphenol-Fe solution to obtain a synthesized P-nZVI.

본 발명은 환원제를 이용하는 합성법인 습식환원법에 의하여 나노영가철을 제조하는 과정에서 천연물질인 폴리페놀(polyphenol)을 첨가하여, 상기 폴리페놀(polyphenol)로 코팅된 나노영가철을 제조하는 것을 특징으로 한다. The present invention is characterized in that the production of nano-iron iron coated with the polyphenol (polyphenol) by adding a polyphenol (polyphenol) as a natural material in the process of manufacturing nano-iron iron by a wet reduction method of a synthetic method using a reducing agent. do.

Polyphenol(hydrolyzable tannin)은 하이드록시기를 2개 이상 가지는 천연물질로서 다가 페놀이라고도 불리우며 주로 식물류의 열매나 잎에 존재하는 물질이다. Polyphenol (hydrolyzable tannin) is a natural substance having two or more hydroxyl groups, also called polyhydric phenol, and is mainly present in the fruits and leaves of plants.

본 발명에 따른, 폴리페놀(polyphenol)로 코팅된 나노영가철은 상기 폴리페놀(polyphenol) 코팅 막으로 인하여 수용성 오염매질 내에서 우수한 반응안정성, 분산성 및 이동성을 나타내며, 정화제로 사용시 친환경적이며, 2차 오염을 유발하지 않게 된다. 이러한 수용성 매질 내에서의 반응 안정성은 nZVI 표면에 형성된 하이드록시페닐기와 물과의 수소 결합 형성으로 인해 물과의 친화력이 증진될 수 있도록 하며, nZVI 입자간의 응집이 저해되는 효과를 얻을 수 있게 한다.According to the present invention, the nano-ferrous iron coated with polyphenols exhibits excellent reaction stability, dispersibility and mobility in water-soluble contamination media due to the polyphenol coating membrane, and is environmentally friendly when used as a purifying agent. It will not cause secondary pollution. The stability of the reaction in such a water-soluble medium enables the affinity with water to be enhanced due to the formation of hydrogen bonds with hydroxyphenyl groups formed on the nZVI surface and water, and the effect of inhibiting aggregation between nZVI particles can be obtained.

본원에서 사용된 용어 "P-nZVI"는 상기 폴리페놀(polyphenol)로 코팅된 나노영가철을 의미하는 것으로, 상기 나노영가철의 제조과정에 사용된 폴리페놀(polyphenol)의 종류에 따라 표기법을 달리할 수 있다. 예를 들어, 본원에서는 폴리페놀(polyphenol)로서 타닌산(Tannic Acid)을 사용한 경우 T-nZVI(Tannic Acid-coated Nano-scale Zero Valent Iron)로 표기한다.The term "P-nZVI" as used herein refers to nano-ferrous iron coated with the polyphenol, and the notation varies depending on the type of polyphenol used in the manufacturing process of the nano-ferrous iron. can do. For example, in the present application, when a tannic acid is used as a polyphenol, it is referred to as T-nZVI (Tannic Acid-coated Nano-scale Zero Valent Iron).

본원에서 사용된 용어 "nZVI"는 일반적으로 사용되는 나노영가철을 의미한다.As used herein, the term “nZVI” refers to nanoferrous iron commonly used.

본원에서 사용된 용어 "Fe 함유 용액"이란, Fe가 이온화 되어 함유되어 있는 용액을 의미한다. 예를 들어, Fe가 Fe3+의 상태로 함유되어 있는 FeCl3·6H2O 수용액일 수 있다.As used herein, the term "Fe-containing solution" means a solution in which Fe is ionized and contained. For example, Fe may be FeCl 3 · 6H 2 O aqueous solution containing Fe 3+ in the state.

본원에서 사용된 용어 "Polyphenol-Fe 용액"이란, 상기 Fe 함유 용액과 폴리페놀(polyphenol)이 혼합되어 있는 상태의 용액을 의미한다.As used herein, the term "polyphenol-Fe solution" means a solution in which the Fe-containing solution and polyphenol (polyphenol) is mixed.

본원에서 사용된 용어 "오염매질"이란, 중금속, 질산염, 황산염, 유기할로겐오염물질, DNAPL 등과 같은 물질로 오염된 지하수, 토양 등을 의미한다.As used herein, the term "pollution medium" refers to groundwater, soil, and the like contaminated with heavy metals, nitrates, sulfates, organic halogen contaminants, DNAPL, and the like.

본 발명에 있어서, 상기 폴리페놀(polyphenol)의 첨가량은 상기 Fe 함유 용액에 함유된 Fe 100 중량부에 대하여 10~50 중량부이며, 바람직하게는 12~25 중량부이며, 보다 바람직하게는 0.16중량부인 것을 특징으로 할 수 있다. 상기 폴리페놀(polyphenol)의 첨가농도가 10~50 중량부일 때 P-nZVI의 분산성, 중금속과 유기할로겐오염물질의 제거효율이 우수하다.In the present invention, the amount of the polyphenol added is 10 to 50 parts by weight, preferably 12 to 25 parts by weight, more preferably 0.16 part by weight based on 100 parts by weight of Fe contained in the Fe-containing solution. It may be characterized by a denial. When the concentration of the polyphenol (polyphenol) is 10 to 50 parts by weight, the dispersibility of P-nZVI, the removal efficiency of heavy metals and organic halogen contaminants are excellent.

본 발명에 있어서, 상기 환원제의 첨가량은 상기 Fe 함유 용액에 함유된 Fe 100 중량부에 대하여 100~200 중량부인 것을 특징으로 할 수 있다. 상기 환원제의 첨가량이 100~200중량부일 때 P-nZVI의 효율이 우수하다.In the present invention, the addition amount of the reducing agent may be characterized in that 100 to 200 parts by weight based on 100 parts by weight of Fe contained in the Fe-containing solution. When the amount of the reducing agent added is 100 to 200 parts by weight, the efficiency of P-nZVI is excellent.

본 발명에 있어서, 상기 Fe 함유 용액은 FeCl3·6H2O 수용액인 것을 특징으 로 할 수 있다. 상기 FeCl3·6H2O 수용액은 FeCl3·6H2O를 0 < DO 농도 < 0.3 mg/L인 2차 증류수에 용해시켜 제조할 수 있다.In the present invention, the Fe-containing solution may be characterized in that the FeCl 3 · 6H 2 O aqueous solution. The FeCl 3 · 6H 2 O aqueous solution can be prepared by dissolving FeCl 3 · 6H 2 O in secondary distilled water of 0 <DO concentration <0.3 mg / L.

본 발명에 있어서, 상기 폴리페놀(polyphenol)의 첨가는 타닌산(Tannic acid), 갈산(Gallic acid), 카테킨(Catechin), 캠퍼롤(Kaempferol), 루테올린(Luteolin) 및 퀘세틴(Quercetin)으로 구성된 군에서 선택되는 천연 폴리페놀(polyphenol) 또는 상기 천연 폴리페놀(polyphenol)을 함유하는 식물의 천연 추출물을 첨가하는 것을 특징으로 한다. 이때, 상기 천연 추출물은 물 또는 70% 에탄올을 용매로 하여 추출할 수 있으며, 상기 천연 폴리페놀(polyphenol)을 함유하는 식물은 포도, 복숭아, 사과 등의 과일류 껍질 또는 씨앗일 수 있다.In the present invention, the addition of the polyphenol (polyphenol) is composed of tannic acid (Ganlic acid), gallic acid (Gallic acid), catechin (Catechin), Camperol (Kaempferol), Luteolin (Quecetin) and Quecetin (Quercetin) It is characterized by adding a natural polyphenol (polyphenol) selected from the group or a natural extract of the plant containing the natural polyphenol (polyphenol). At this time, the natural extract may be extracted with water or 70% ethanol as a solvent, the plant containing the natural polyphenol (polyphenol) may be fruit peel or seeds, such as grapes, peaches, apples.

본 발명에 있어서, 상기 환원제는 NaBH4인 것을 특징으로 할 수 있다. In the present invention, the reducing agent may be characterized in that NaBH 4 .

한편, 상기 환원제는 천천히 적가하는 방식으로 첨가하는 것이 바람직하며, 적가속도는 1.0 ~ 5.0ml/min일 수 있다. On the other hand, the reducing agent is preferably added in a slow dropwise manner, the dropping rate may be 1.0 ~ 5.0ml / min.

본 발명에 있어서, 상기 (a) 단계 및 (b) 단계는 혐기조건 하에서 수행되는 것을 특징으로 할 수 있다. 구체적으로, 상기 (a) 단계 및 (b) 단계는 밀폐 상태에서 N2 gas를 지속적으로 purging 하여 혐기조건을 유지시킨 채 수행하는 것이 바람직하다.In the present invention, the steps (a) and (b) may be performed under anaerobic conditions. Specifically, the steps (a) and (b) is preferably carried out while maintaining the anaerobic conditions by continuously purging the N 2 gas in a closed state.

본 발명에 있어서, 상기 (b) 단계 후에 초음파 건조 및 세척 단계를 추가로 포함하는 것을 특징으로 할 수 있다. 상기 초음파 건조 및 세척 단계로 거치면서 P-nZVI의 표면에 잔여하는 환원제의 잔여물과 불순물을 제거할 수 있다. 상기 초음파 건조 및 세척 단계 역시 상기 (a) 및 (b) 단계와 마찬가지로 혐기조건 하에서 수행되는 것이 바람직하다.In the present invention, after the step (b) may be characterized in that it further comprises the ultrasonic drying and washing step. Through the ultrasonic drying and washing step, residues and impurities of the reducing agent remaining on the surface of P-nZVI may be removed. The ultrasonic drying and washing step is also preferably performed under anaerobic conditions as in the step (a) and (b).

본 발명은 다른 관점에서, Fe0 를 함유하고 폴리페놀(polyphenol)로 코팅되어 있는 P-nZVI에 관한 것이다. 즉, 상기 P-nZVI는 코어-쉘(core-shell) 형태로서, 중심부에 Fe0 가 위치하고, 상기 Fe0 를 폴리페놀(polyphenol)이 둘러싸고 있는 형상을 가진다.In another aspect, the invention relates to P-nZVI containing Fe 0 and coated with polyphenol. That is, the P-nZVI has a core-shell shape, in which Fe 0 is positioned at the center, and Fe 0 is surrounded by polyphenol.

본 발명에 있어서, 상기 P-nZVI에서 상기 Fe0의 함량은 42~50중량%인 것을 특징으로 할 수 있다. 상기 Fe0의 함량이 42% 미만이거나 50%를 초과할 때에 비하여, Fe0 함량이 상기 수치범위에 속할 때, P-nZVI의 분산성, 중금속 제거능력 및 환원력이 우수하다.In the present invention, the content of Fe 0 in the P-nZVI may be characterized in that 42 to 50% by weight. When the Fe 0 content is within the numerical range, the dispersibility, heavy metal removal ability and reducing power of P-nZVI are excellent, as compared with when the Fe 0 content is less than 42% or more than 50%.

본 발명에 있어서, 상기 폴리페놀(polyphenol)은 3~5nm 두께로 코팅되어 있는 것을 특징으로 할 수 있다. 상기 폴리페놀(polyphenol) 코팅막에 의하여 P-nZVI의 빠른 산화를 방지하여 오염매질 내에서 반응성을 장기간 유지시키고, 전자전달을 쉽게 할 수 있으며, 나노영가철 표면에 하전된 음전하에 의해 Particle의 Van der Waals forces 와 Magnetic interaction을 감소시켜 입자들의 분산을 향상시킬 수 있다. 이 때, 상기 폴리페놀(polyphenol) 코팅막의 두께가 3nm 미만이면, 전술한 바와 같은 P-nZVI의 반응성 유지, 전자전달력, 분산성 향상 등과 같은 효과가 저감되고, 5nm를 초과하면 P-nZVI 입자의 크기가 커지는 문제점이 있다.In the present invention, the polyphenol (polyphenol) may be characterized in that it is coated with a thickness of 3 ~ 5nm. The polyphenol coating film prevents rapid oxidation of P-nZVI to maintain reactivity in the contaminant medium for a long time, and facilitates electron transfer, and the van der of the particles by the negative charge charged on the nano-ferrous iron surface. The dispersion of particles can be improved by reducing the Waals forces and the magnetic interaction. At this time, when the thickness of the polyphenol (polyphenol) coating film is less than 3nm, effects such as maintaining the reactivity of the P-nZVI, electron transfer power, dispersibility, etc. as described above is reduced, if the thickness exceeds 5nm of the P-nZVI particles There is a problem that the size increases.

본 발명에 있어서, 상기 P-nZVI의 입자크기는 40~80nm인 것을 특징으로 할 수 있으며, 상기 수치범위의 입자크기로 인하여, 토양 공극사이를 이동하여 충분한 영향 반경을 확보할 수 있어 오염된 토양, 지하수와 같은 오염매질에 직접 상기 P-nZVI 주입하여 오염물질을 처리할 수 있게 한다. In the present invention, the particle size of the P-nZVI may be characterized in that 40 ~ 80nm, due to the particle size of the numerical range, can move between the soil pores to ensure a sufficient radius of influence contaminated soil For example, the P-nZVI can be directly injected into a contaminant such as groundwater to treat contaminants.

본 발명에 있어서, 상기 P-nZVI는 중금속, 질산염(NO3 -), 황산염(SO4 2-), 유기할로겐오염물질, DNAPL(Dense Non-Aqeous Phase Liquid) 및 이들의 혼합물로 구성된 군에서 선택되는 물질을 포함하는 오염매질 정화용으로 사용되는 것을 특징으로 할 수 있다.In the present invention, the P-nZVI are heavy metals, nitrate (NO 3 -), sulfate (SO 4 2-), organohalogen pollutants, DNAPL (Dense Non-Aqeous Phase Liquid) and selected from the group consisting of a mixture thereof It may be characterized in that it is used for the purification of the contaminating medium containing the material.

구체적으로 상기 중금속은 Cr6+, As, Hg, Cu, Pb, Ni, Cd 및 이들의 혼합물로 구성된 군에서 선택되는 것일 수 있고, 상기 유기염소오염물질은 PCE(perhloroethylene), TCE(trichloroethylene), PCBs(polychlorinated biphenyls) 및 이들의 혼합물로 구성된 군에서 선택되는 것일 수 있다.Specifically, the heavy metal may be selected from the group consisting of Cr 6+ , As, Hg, Cu, Pb, Ni, Cd, and mixtures thereof. The organochlorine pollutants may be PCE (perhloroethylene), TCE (trichloroethylene), It may be selected from the group consisting of polychlorinated biphenyls (PCBs) and mixtures thereof.

본 발명에 따른 P-nZVI Cr6+를 기준으로 0.1~0.2g/g Fe0의 중금속 제거능력을 나타낸다.P-nZVI Cr 6+ according to the present invention shows a heavy metal removal capacity of 0.1 ~ 0.2g / g Fe 0 .

최근에는 실제 현장에 적용할 수 있는 나노 영가철을 제조하기 위한 기술 개발이 활발하게 이루어지고 있다. 여기에 맞춰 본 발명에 따른 P-nZVI는 표면에 폴리페놀(polyphenol)에 의해 안정적인 보호막을 가지고 있다. 따라서, 폴리페놀(polyphenol)에 의해 철 침자들의 표면의 전하를 (-)Charge로 하전 시켜 입자들 간의 응집을 방지하므로, 안정적인 분산효과를 가져 올 수 있으며, 이로 인하여 나노 영가철 입자의 토양 공극내 침전을 방지하고, 멀리 이동하게 되어 충분한 영향반경을 확보 할 수 있는 장점이 있다.Recently, the development of technology for manufacturing nano-ferrous iron that can be applied to the actual field has been actively made. According to the present invention, P-nZVI has a stable protective film by polyphenol (polyphenol) on the surface. Therefore, polyphenol (charge) on the surface of the iron acupuncture by (-) Charge to prevent agglomeration between particles, resulting in a stable dispersing effect, which can lead to nano-ferrous iron particles in the soil voids There is an advantage to prevent precipitation, to move far enough to secure a sufficient impact radius.

이러한 장점은 최근 나노 영가철을 이용하여 현장에 적용하기 위해 중요시 되고 있는 충분한 반응성 및 넓은 영향반경 확보를 가능하게 한다. 결국, 본 발명의 P-nZVI을 이용하여 오염지역을 복원하고자 할 경우, P-nZVI의 주입량을 최소화하고, P-nZVI 주입 Well 설치의 최소화 및 오염지역의 굴착이 없이 직접 주입할 수 있어, 토양/지하수 내에 DNAPL(Dense non-aqeous phase liquid) 및 중금속 오염물질을 친환경적이고, 단순한 공법 적용으로 경제적인 복원을 할 수 있다. This advantage enables sufficient responsiveness and a wide range of influences, which are becoming important for applications in the field recently using nano-ferrous iron. As a result, when the contaminated area is to be restored using the P-nZVI of the present invention, the amount of P-nZVI injection can be minimized, and the P-nZVI injection well can be directly injected without minimizing the installation of the contaminated area and soil. Dense non-aqeous phase liquid (DNAPL) and heavy metal contaminants in groundwater can be economically restored by applying environmentally friendly and simple methods.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: P-nZVI의 제조Example 1 Preparation of P-nZVI

P-nZVI 제조에 사용되는 시약으로는, Fe 함유 용액을 제조하기 위하여 FeCl3·6H2O(Aldrich Chemical, USA), 폴리페놀(polyphenol)로서 Tannic acid(Aldrich Chemical, USA) 및 환원제로서 NaBH4(Aldrich Chemical, USA)을 사용하였다. 또한, 증류수로서 2차 증류수를 사용하되 N2로 퍼징(purging)시켜 0 < DO 농도 < 0.3 mg/L인 2차 증류수를 사용하였다. 하기 1-1 및 1-2의 공정은 모두 N2로 퍼징하여 혐기성상태로 실시하였다.Reagents used to prepare P-nZVI include FeCl 3 · 6H 2 O (Aldrich Chemical, USA), Tannic acid as polyphenol (Aldrich Chemical, USA) and NaBH 4 as reducing agent to prepare Fe-containing solutions. (Aldrich Chemical, USA) was used. In addition, secondary distilled water was used as distilled water, but secondary distilled water having 0 <DO concentration <0.3 mg / L was purged with N 2 . The following steps 1-1 and 1-2 were all purged with N 2 and carried out in an anaerobic state.

1-1. Polyphenol-Fe 용액 제조1-1. Polyphenol-Fe Solution Preparation

FeCl3·6H2O 13.52g을 100ml의 증류수에 녹여 0.5M Fe3+ 용액을 제조하였다. 상기 0.5M Fe3+ 용액 100ml에 Tannic acid 0.46g을 첨가하여 Polyphenol-Fe 수용액을 제조하였다.13.52 g of FeCl 3 · 6H 2 O was dissolved in 100 ml of distilled water to prepare a 0.5 M Fe 3+ solution. Polyphenol-Fe aqueous solution was prepared by adding 0.46 g of tannic acid to 100 ml of the 0.5 M Fe 3+ solution.

1-2. 환원제 첨가1-2. Reducing agent added

NaBH4 0.9g을 증류수 30ml에 녹여 0.8M NaBH4 용액을 제조한 후, 1-1에서 제조된 Polyphenol-Fe 수용액 10ml에 적가하되, 0.1~0.6ml/min의 속도로 적절히 변화시키면서 적가하여, P-nZVI를 제조하였다 (반응식 (1) 참조). 0.9 g of NaBH 4 was dissolved in 30 ml of distilled water to prepare a 0.8 M NaBH 4 solution. The solution was added dropwise to 10 ml of an aqueous polyphenol-Fe solution prepared in 1-1, and added dropwise while appropriately changing at a rate of 0.1 to 0.6 ml / min. -nZVI was prepared (see Scheme (1)).

4Fe3+ + 3BH4- + 9H2O -> 4Fe0 + 3H2BO3- + 12H+ + 6H2 (1)4Fe 3+ + 3BH 4- + 9H 2 O-> 4Fe 0 + 3H 2 BO 3- + 12H + + 6H 2 (1)

1-3. 초음파 건조 및 세척1-3. Ultrasonic Drying and Washing

1-2에서 제조된 P-nZVI에 초음파를 20분 동안 가하여(sonication) 건조시킨 후, N2로 purging한 증류수로 3회 세척하여, 표면에 남아있는 B(Boron)과 불순물을 제거하였다 (도 1).After ultrasonication was applied to P-nZVI prepared in 1-2 for 20 minutes to dry, and then washed three times with distilled water purged with N 2 to remove B (Boron) and impurities remaining on the surface (Fig. One).

실시예 2: P-nZVI 입자특성 분석Example 2: P-nZVI Particle Characterization

실시예 1에서 제조된 P-nZVI의 특성을 분석하였다. The properties of P-nZVI prepared in Example 1 were analyzed.

2-1. P-nZVI 입자의 크기 및 형상2-1. Size and Shape of P-nZVI Particles

TEM(Transmission electron microscopy )(JEM-2100F, JEOL, USA)을 이용하여 상기 P-nZVI 입자의 크기 및 형상을 분석하였다.Transmission electron microscopy (TEM) (JEM-2100F, JEOL, USA) was used to analyze the size and shape of the P-nZVI particles.

그 결과, 도 2의 (a)에 나타난 바와 같이, 상기 P-nZVI 입자는 평균 직경 40~80nm의 크기를 가진다는 것을 확인하였다. As a result, as shown in Fig. 2 (a), it was confirmed that the P-nZVI particles have a size of 40 ~ 80nm in average diameter.

또한, 도 2의 (b)에 나타난 바와 같이, 상기 P-nZVI 입자는 표면에 5nm 두께의 폴리페놀(polyphenol) 막이 생성되어 코팅된 형상을 가진다는 것을 확인하였다. In addition, as shown in (b) of FIG. 2, the P-nZVI particles were confirmed to have a polyphenol (polyphenol) film having a thickness of 5nm on the surface has a coated shape.

2-2. P-nZVI 성분 분석2-2. P-nZVI Component Analysis

XRD(X-ray diffraction)(Max-2500V, RIGAKU, JP) 분석을 통하여 P-nZVI의 주된 성분이 Fe0 임을 확인하였다.X-ray diffraction (XRD) analysis (Max-2500V, RIGAKU, JP) confirmed that the major component of P-nZVI was Fe 0 .

GC-TCD(Thermal Conductivity Detector, HP-6890, USA)에 의해 정량한 H2값을 이용하여 P-nZVI에 함유된 Fe0 함량을 정량하되, 반응식 (2)에 따라 건조된 나노 영가철에 HCl(37%)를 주입한 후 발생하는 H2를 정량하여 Fe0의 함량을 정량하였다. The content of Fe 0 contained in P-nZVI was quantified using the H 2 value quantified by GC-TCD (Thermal Conductivity Detector, HP-6890, USA). The amount of Fe 0 was quantified by quantifying H 2 generated after (37%) injection.

정량 결과, P-nZVI에 함유된 Fe0 함량은 47.3%인 것을 확인하였다. 기존의 nZVI에 함유된 Fe0 함량이 51.29%(Yueqiang Liu and Gregory V. Lowry., Environ. Sci. Technol. 39:1338-1345, 2005)이므로, 상기 P-nZVI와 nZVI에 함유된 Fe0 함량은 큰 차이가 없다는 것을 알 수 있었다.As a result of quantification, it was confirmed that the Fe 0 content contained in P-nZVI was 47.3%. Since the Fe 0 content in the existing nZVI is 51.29% (Yueqiang Liu and Gregory V. Lowry., Environ. Sci. Technol. 39: 1338-1345, 2005), the Fe 0 content in the P-nZVI and nZVI Could see no big difference.

Fe0 + 2H+ -> Fe2+ + H2↑ (2)Fe 0 + 2H + -> Fe 2+ + H 2 ↑ (2)

2-3. P-nZVI 비표면적 측정2-3. P-nZVI Specific Surface Area Measurement

ASAP 2010 Analyzer BET(Micromeritics, USA)을 이용하여, P-nZVI에 대한 BET 분석을 하였다. 그 결과, 평균 비표면적 (Specific Surface Area, SSA) 값은 약 17.27m2/g 인 것을 확인하였다. 상기 P-nZVI 의 비표면적이 적게 측정된 이유는 폴리페놀(polyphenol)과 같은 고분자 물질이 표면에 코팅되어 있는 경우에는 질소가스(Nitrogen gas)와 adsorbent(P-nZVI)간의 Soild-Gas attractivity가 낮아져서 비표면적 값이 적게 나왔다고 볼 수 있다. BET analysis of P-nZVI was performed using ASAP 2010 Analyzer BET (Micromeritics, USA). As a result, it was confirmed that the average specific surface area (SSA) value was about 17.27 m 2 / g. The reason why the specific surface area of the P-nZVI is measured is that when the polymer material such as polyphenol is coated on the surface, the Soild-Gas attractivity between nitrogen gas and adsorbent (P-nZVI) is lowered. It can be said that the specific surface area value is low.

실험예 1: P-nZVI의 제조에 있어서 Polyphenol의 적정 첨가량 분석Experimental Example 1 Analysis of Proper Addition of Polyphenol in Preparation of P-nZVI

실시예 1에 따른 P-nZVI 제조에 있어서, 폴리페놀(polyphenol)의 최적 첨가량을 산정하기 위한 실험을 하였다. In the preparation of P-nZVI according to Example 1, an experiment was carried out to calculate the optimum amount of polyphenol (polyphenol).

실시예 1의 방법에 따라 P-nZVI를 제조하되, 폴리페놀(polyphenol)의 첨가량을 각각 Fe 질량대비 0.5Fe, 0.25Fe, 0.167Fe, 0.125Fe 및 0.01Fe 비율로 첨가하여 5가지 P-nZVI를 제조하였다. 그 후, 상기 5가지 P-nZVI에 Cr6+ 5mg씩을 주입하여, 각 경우의 Cr6+ 제거량을 비교함으로써, 폴리페놀(polyphenol)의 최적 첨가량을 산정하는 실험을 하였다.Preparation of P-nZVI according to the method of Example 1, 5 P-nZVI was added by adding the amount of polyphenol in the ratio of 0.5Fe, 0.25Fe, 0.167Fe, 0.125Fe and 0.01Fe to the mass of Fe, respectively Prepared. Thereafter, 5 mg of Cr 6+ was injected into each of the five P-nZVI, and the amount of Cr 6+ removed was compared to determine the optimum amount of polyphenol.

상기 실험 전후, Cr6+ 의 잔류량을 비교한 결과, 도 3에 나타난 바와 같이 폴리페놀(polyphenol)의 첨가량이 0.25Fe, 0.167Fe 및 0.125Fe 경우에 실험 후 Cr6+ 이 모두 제거된 것을 확인하였다. 결국, 폴리페놀(polyphenol)의 첨가량이 0.25Fe, 0.167Fe 및 0.125Fe일 때, Cr6+에 대한 P-nZVI의 제거효율이 우수한 것을 알 수 있었다.As a result of comparing the residual amount of Cr 6+ before and after the experiment, it was confirmed that all the Cr 6+ was removed after the experiment in the case of 0.25Fe, 0.167Fe and 0.125Fe addition amount of polyphenol (polyphenol) as shown in FIG. . As a result, when the addition amount of polyphenol (0.25Fe, 0.167Fe and 0.125Fe), it was found that the removal efficiency of P-nZVI for Cr 6+ is excellent.

또한 추가 실험으로서, 상기 폴리페놀(polyphenol)의 첨가량이 0.25Fe, 0.167Fe 및 0.125Fe 경우, Cr6+의 농도를 높여 Cr6+ 10mg씩을 주입한 후 2.5hr 동안 반응시킨 결과, Cr6+의 잔류량이 각각 1.0mg, 0.89mg 및 2.21mg인 것을 확인하였다. 폴리페놀(polyphenol)의 첨가량이 0.167Fe일 때, Cr6+에 대한 P-nZVI의 제거효율이 가장 우수한 것을 알 수 있었다.In addition, as a result of further experiments, the amount of addition of the polyphenol (polyphenol) if reacted for 0.25Fe, 0.167Fe 0.125Fe and, after increasing the concentration of Cr 6+ injection ssikeul Cr 6+ 10mg 2.5hr, of Cr 6+ It was confirmed that the residual amounts were 1.0 mg, 0.89 mg, and 2.21 mg, respectively. When the amount of polyphenol added was 0.167Fe, it was found that the removal efficiency of P-nZVI for Cr 6+ was the best.

실험예 2: P-nZVI의 분산성 테스트Experimental Example 2: Dispersibility Test of P-nZVI

P-nZVI의 분산성을 확인하기 위하여, 침전(sedimentation) 실험을 수행하였 다.In order to confirm the dispersibility of P-nZVI, sedimentation experiments were performed.

실시예 1에 따라 P-nZVI를 제조하되, 실험예 1에서 도출한 폴리페놀(polyphenol)의 최적 첨가량을 활용하여, 폴리페놀(polyphenol)로서 사용한 Tannic acid의 첨가량을 0.167Fe로 하여 P-nZVI를 제조하였다. 이때, Fe0의 농도를 40mg/L, 80mg/L 및 160mg/L로 증가시켜 Fe0 농도에 따른 침전속도를 UV-visible spectrometer(Varian, Cary-3bio, USA)를 이용하여 분석하였다. P-nZVI was prepared according to Example 1, but P-nZVI was prepared using the optimal amount of polyphenol derived from Experimental Example 1, and the amount of tannic acid used as polyphenol was 0.167Fe. Prepared. At this time, the concentration of Fe 0 to 40mg / L, 80mg / L and 160mg / L by increasing the precipitation rate according to Fe 0 concentration was analyzed using a UV-visible spectrometer (Varian, Cary-3bio, USA).

또한, P-nZVI와의 비교실험을 위해 일반적인 nZVI를 제조하여, 상술한 바와 같이 Fe0 농도에 따른 침전속도를 UV를 이용하여 분석하였다. 이 때, nZVI는 0.8M NaBH4 과 0.5M FeCl3·6H2O을 1:1.6 비로 합성하여 제조하였다.In addition, a general nZVI was prepared for a comparative experiment with P-nZVI, and the precipitation rate according to the Fe 0 concentration was analyzed using UV as described above. At this time, nZVI was prepared by synthesizing 0.8M NaBH 4 and 0.5M FeCl 3 .6H 2 O in a 1: 1.6 ratio.

그 결과, 도 4에 나타난 바와 같이, nZVI의 경우, Fe0의 농도가 증가할수록 침전속도가 증가하여 Fe0의 농도가 160mg/L일 때 30분이 경과하면 nZVI가 모두 침전하였다. 반면, P-nZVI의 경우, Fe0의 농도가 40mg/L, 80mg/L 및 160mg/L일 때 모두 침전률이 10% 이내에 불과하여, 안정적인 분산성을 나타낼 수 있음을 알 수 있었다. As a result, as shown in FIG. 4, in the case of nZVI, as the concentration of Fe 0 increased, the precipitation rate increased, and nZVI precipitated after 30 minutes when the concentration of Fe 0 was 160 mg / L. On the other hand, in the case of P-nZVI, when the concentration of Fe 0 is 40mg / L, 80mg / L and 160mg / L, all of the precipitation rate is less than 10%, it can be seen that it can represent a stable dispersibility.

실험예 3: P-nZVI의 중금속 제거능력 테스트Experimental Example 3: Heavy Metal Removal Ability Test of P-nZVI

3-1: P-nZVI의 Cr3-1: Cr of P-nZVI 6+6+ 제거실험 Removal experiment

P-nZVI의 중금속 제거능력을 확인하기 위하여, P-nZVI의 Cr6+ 제거실험을 수행하였다.In order to confirm the heavy metal removal ability of P-nZVI, Cr 6+ removal experiment of P-nZVI was performed.

실시예 1에 따라 P-nZVI를 제조하되, 실험예 1에서 도출한 폴리페놀(polyphenol)의 최적 첨가량을 활용하여, 폴리페놀(polyphenol)로서 사용한 타닌산(Tannic acid)의 첨가량을 0.167Fe로 하여 P-nZVI를 제조하였다. Prepare P-nZVI according to Example 1, but utilizing the optimal amount of polyphenol derived from Experimental Example 1, the amount of tannic acid used as polyphenol (Pannic acid) is 0.167Fe -nZVI was prepared.

상기 제조된 P-nZVI 55.84mg에 Cr6+(Kanto, 1000ppm Cr6+ standard solution)을 주입하되, 상기 Cr6+의 농도를 2, 10, 20, 40 및 60ppm으로 증가시켜가면서 주입하여 제거 실험을 수행하였다.Cr 6+ (Kanto, 1000ppm Cr 6+ standard solution) was injected into 55.84mg of the prepared P-nZVI, but the experiment was removed by increasing the concentration of Cr 6+ to 2, 10, 20, 40 and 60ppm. Was performed.

상기 실험 후, 상등액의 Cr6+ 함량은 UV-Visible Spectrometer(CARY 3Bio, Varian, USA)를 이용하여 디페닐카르바지드법으로 분석하여 정량하였다. 상등액의 Total-Cr 함량은 AA(Specra AA, Varian, USA)를 이용하여 분석하고, P-nZVI에 흡착/침전된 Total-Cr 함량은 Cr6+이 주입된 P-nZVI 시료를 건조한 후 ICP(ICP Spectrometer EOP, Spectro 社, DE)로 분석하여, 시료의 Total- Cr의 Mass Balance를 분석하였다.After the experiment, the Cr 6+ content of the supernatant was quantified by analyzing by diphenylcarbazide method using a UV-Visible Spectrometer (CARY 3Bio, Varian, USA). The total-Cr content of the supernatant was analyzed using AA (Specra AA, Varian, USA), and the total-Cr content adsorbed / precipitated on P-nZVI was dried by Cr 6 + -injected P-nZVI sample and then ICP ( ICP Spectrometer EOP, Spectro Co., DE) to analyze the mass balance of the total-Cr of the sample.

분석결과, 상등액의 Cr6+ 및 Total-Cr은 측정되지 않았다. 또한, 상기 Cr6+이 주입된 P-nZVI 시료의 분석결과, 표 1에 나타난 바와 같이, 시료의 Total- Cr Mass Balance는 63.3~111.68%로 모두 P-nZVI 표면에 흡착/침전되었다는 것을 알 수 있었 다.As a result, Cr 6+ and Total-Cr of the supernatant were not measured. In addition, as a result of analysis of the P-nZVI sample injected with Cr 6+ , as shown in Table 1, the total-Cr mass balance of the sample was 63.3 ~ 111.68%, indicating that all of the adsorption / precipitated on the P-nZVI surface was observed. there was.

ppmppm Solution Vol.(ml)Solution Vol. (Ml) Cr6+ mass(mg)Cr 6+ mass (mg) Fe mass
(mg)
Fe mass
(mg)
T-Cr
weight%
T-Cr
weight%
Adsorption
Cr6+(mg)
Adsorption
Cr 6+ (mg)
Cr Mass BalanceCr Mass Balance
55 2020 0.10.1 55.8455.84 0.20.2 0.1120.112 111.68111.68 1010 2020 0.20.2 55.8455.84 0.360.36 0.2010.201 100.51100.51 2020 2020 0.40.4 55.8455.84 0.680.68 0.3800.380 94.9394.93 4040 2020 0.80.8 55.8455.84 1.381.38 0.7710.771 96.3296.32 6060 2020 1.21.2 55.8455.84 1.361.36 0.7590.759 63.2963.29

3-2: Polyphenol 함량에 따른 P-nZVI의 Cr3-2: Cr of P-nZVI with Polyphenol Content 6+6+ 제거실험 Removal experiment

실시예 1의 방법에 따라 P-nZVI를 제조하되, 폴리페놀(polyphenol)의 첨가량을 각각 Fe 질량대비 0.5Fe, 0.25Fe, 0.167Fe, 0.125Fe 및 0.01Fe 비율로 첨가하여 5가지 P-nZVI를 제조하였다. 그 후, 상기 5가지 P-nZVI에 Cr6+ 6mg씩을 주입하여, 각 경우의 Cr6+ 제거량을 비교 분석하였다. 이 때, 분석방법은 Cr6+을 주입하고, 2min, 5min, 15min, 30min, 60min 및 120min 후에, 상등액의 Cr6+ 함량을 UV-Visible Spectrometer(CARY 3Bio, Varian, USA)를 이용하여 디페닐카르바지드법으로 분석하였다.Preparation of P-nZVI according to the method of Example 1, 5 P-nZVI was added by adding the amount of polyphenol in the ratio of 0.5Fe, 0.25Fe, 0.167Fe, 0.125Fe and 0.01Fe to the mass of Fe, respectively Prepared. Thereafter, 6 mg of Cr 6+ was injected into the five P-nZVIs, and the amount of Cr 6+ removal in each case was analyzed. At this time, the analysis method is injected Cr 6+ , after 2min, 5min, 15min, 30min, 60min and 120min, the Cr 6+ content of the supernatant was diphenyl using a UV-Visible Spectrometer (CARY 3Bio, Varian, USA) It was analyzed by the carbazide method.

그 결과, 도 5에 나타난 바와 같이, 폴리페놀(polyphenol)의 첨가량이 0.167Fe일 때 상등액의 Cr6+ 함량이 낮아, Cr6+ 제거효율이 우수하다는 것을 확인하였다.As a result, as shown in Figure 5, when the addition amount of polyphenol (polyphenol) is 0.167Fe Cr 6+ content of the supernatant was confirmed that the Cr 6+ removal efficiency is excellent.

3-3: 포도씨의 천연 추출물을 이용한 P-nZVI의 Cr3-3: Cr of P-nZVI using natural extract of grape seed 6+6+ 제거실험 Removal experiment

천연 추출물인 천연 추출 폴리페놀(polyphenol)을 이용하여 P-nZVI를 제조하여 Cr6+ 제거실험을 수행하였다. 포도씨(Vitis vinifera, Campbell-Early variety)를 건조시킨 후, 분쇄기로 파쇄하여 1g을 정량하였다. 1g의 포도씨 분말과 ethanol(70%) 10ml을 섞어 10분간 Vortexing을 시킨후, 원심분리기를 이용하여 상등액을 추출하였다. 추출한 상등액에서 ethanol을 없애기 위해 10분간 질소 purging 하였다.Cr 6+ removal was performed by preparing P-nZVI using a natural extract polyphenol, a natural extract. Grape seed (Vitis vinifera, Campbell-Early variety) was dried, and then crushed with a grinder to quantify 1g. 1 g of grape seed powder and 10 ml of ethanol (70%) were mixed and vortexed for 10 minutes, and then the supernatant was extracted using a centrifuge. Nitrogen purging was performed for 10 minutes to remove ethanol from the extracted supernatant.

포도씨의 천연 추출물 500㎕를 첨가한 Fe(0.5M) 수용액 2ml을 NaBH4 (0.8M) 6ml과 반응시켜, 포도씨의 천연 추출물로 코팅되어 있는 P-nZVI 55.85mg을 제조하였다. 2 ml of an aqueous Fe (0.5M) solution to which 500 μl of the grape seed extract was added was reacted with 6 ml of NaBH 4 (0.8 M) to prepare 55.85 mg of P-nZVI coated with the natural extract of grape seed.

상기 제조된 Grape Seed P-nZVI 55.85mg과 Cr6+(Kanto, Cr6+ Standard 1000ppm) 수용액 50ppm, 100ppm, 150ppm, 200ppm을 각각 반응시켜 제거량을 알아보는 Batch Test를 실시하였다. 일정한 시간별(2분, 5분, 10분, 20분, 40분, 60분, 120분)로 샘플링(Disposal Syringe(1ml)) 하여 0.22㎛ 필터(Millipore)로 여과 후 Cr6+ 함량을 UV-Visible Spectrometer(CARY 3Bio, Varian, USA)를 이용한 디페닐카르바지드법으로 분석하여 정량하였다. 55.85mg of Grape Seed P-nZVI prepared above and 50ppm, 100ppm, 150ppm, and 200ppm of Cr 6+ (Kanto, Cr 6+ Standard 1000ppm) aqueous solution were each reacted to perform a batch test to determine the removal amount. Constant over time (2 min, 5 min, 10 min, 20 min, 40 min, 60 min, 120 min.) At a sampling (Disposal Syringe (1ml)) by UV- the Cr 6+ content after filtration as 0.22㎛ filter (Millipore) Quantitative analysis was performed using a diphenylcarbazide method using a Visible Spectrometer (CARY 3Bio, Varian, USA).

그 결과, 도 6에 나타난 바와 같이, 50ppm 및 100ppm의 Cr6+ 수용액은 2분안에 모두 제거가 되었으며 150ppm은 99.71%, 200ppm은 75.73%의 효율을 보였다. 120min후 최종 제거 효율은 50ppm, 100ppm, 150ppm은 100% 그리고 200ppm은 83.91% 였다. 이 같은 결과를 이용한 포도씨의 천연 추출물로 코팅되어 있는 P-nZVI Cr6+ 제거능은 90.2 mg [Cr6+] / 1g [Grape Seed P-nZVI] 로 산정되었다. As a result, as shown in Figure 6, both 50ppm and 100ppm Cr 6 + aqueous solution was removed in two minutes, 150ppm 99.71%, 200ppm showed 75.73% efficiency. After 120 min, the final removal efficiencies were 50 ppm, 100 ppm, 150 ppm at 100% and 200 ppm at 83.91%. The removal ability of P-nZVI Cr 6+ coated with the natural extract of grape seed using this result was calculated as 90.2 mg [Cr 6+ ] / 1g [Grape Seed P-nZVI].

실험예 4: P-nZVI의 환원능력 테스트Experimental Example 4: Reduction Capability Test of P-nZVI

P-nZVI의 환원능력(reduction potential)을 알아보기 위해, P-nZVI를 이용하여 유기할로겐물질인 TCE(trichloroethylene) 분해 실험을 실시하였다. 또한, P-nZVI의 환원능력 비교대상으로서 nZVI를 이용한 유기할로겐물질인 TCE(trichloroethylene) 분해 실험도 실시하였다.In order to examine the reduction potential of P-nZVI, an organic halogen TCE (trichloroethylene) decomposition experiment was performed using P-nZVI. In addition, the decomposition of TCE (trichloroethylene) which is an organic halogen material using nZVI as a comparison target of P-nZVI was also conducted.

실시예 1에서 제조된 P-nZVI 0.056g([Fe] = 0.5M. 2ml)과 15mg/L의 TCE 수용액 25ml을 40ml amber vial에 넣어 24hr 동안 반응시켰다. 반응 시작 후 0, 1, 3, 6, 9, 12 및 24hr에 샘플링 하여 TCE의 농도를 측정하여, P-nZVI의 TCE 제거율을 분석하였다. nZVI에 대해서도 상기 P-nZVI와 동일한 방식으로 TCE 제거율을 분석하였다. 또한, 대조군으로서 15mg/L의 TCE 수용액 25ml을 24hr 동안 40ml amber vial에 넣어 유지한 후, TCE 제거율을 분석하였다. 이때, 분석기기로는 HSS(Headspace sampler)(Agilent Technologies, USA)와 GC-ECD(Gas chromatograph Electron Capture Detector)(Agilent Technologies, USA)를 사용하여 분석을 하였다. 0.056 g of P-nZVI ([Fe] = 0.5 M. 2 ml) prepared in Example 1 and 25 ml of 15 mg / L TCE aqueous solution were added to a 40 ml amber vial and reacted for 24 hr. After the reaction was started, the concentration of TCE was measured by sampling at 0, 1, 3, 6, 9, 12, and 24hr, and the TCE removal rate of P-nZVI was analyzed. For nZVI, the TCE removal rate was analyzed in the same manner as the P-nZVI. As a control, 25 ml of 15 mg / L TCE aqueous solution was kept in a 40 ml amber vial for 24 hr and analyzed for TCE removal rate. At this time, the analyzer was analyzed using a headspace sampler (HSS) (Agilent Technologies, USA) and gas chromatograph electron capture detector (GC-ECD) (Agilent Technologies, USA).

HSS와 GC-ECD 분석 결과, 도 7에 나타난 바와 같이, 24hr 동안 대조군의 TCE 농도는 12.6~15g/L으로 초기 농도와 큰 변화가 없었으며, nZVI을 사용한 경우에는 24hr 후 TCE 농도가 5.35g/mL까지 감소하였고, P-nZVI을 사용한 경우에는 24hr 후 TCE가 검출되지 않아 TCE가 P-nZVI에 의해 모두 분해되었고, 아울러 cis-DCE, trans-DCE, VC 등과 같은 부산물도 검출되지 않은 것을 확인하였다.As a result of HSS and GC-ECD analysis, as shown in FIG. 7, the TCE concentration of the control group was 12.6-15 g / L for 24 hr, and there was no significant change from the initial concentration. When nZVI was used, the TCE concentration was 5.35 g / 24 hr after 24 hr. When P-nZVI was used, it was confirmed that TCE was not detected after 24hr when P-nZVI was used, and TCE was all degraded by P-nZVI, and no by-products such as cis-DCE, trans-DCE, and VC were detected. .

결국, P-nZVI는 nZVI에 비해 TCE 제거능력이 우수하여 환원능력이 향상된 것을 알 수 있었다.As a result, P-nZVI showed better TCE removal ability than nZVI, indicating that the reducing ability was improved.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 P-nZVI의 제조공정도이다.1 is a manufacturing process diagram of P-nZVI according to the present invention.

도 2는 본 발명에 따른 P-nZVI의 TEM 사진이다.2 is a TEM photograph of P-nZVI according to the present invention.

도 3은 폴리페놀(polyphenol) 첨가량에 따른 P-nZVI의 Cr6+ 제거량을 나타낸 그래프이다.3 is a graph showing the Cr 6+ removal amount of P-nZVI according to the amount of polyphenol (polyphenol) added.

도 4는 Fe0의 농도에 따른 nZVI 및 P-nZVI의 침전속도를 나타낸 그래프이다.4 is a graph showing precipitation rates of nZVI and P-nZVI according to the concentration of Fe 0 .

도 5는 폴리페놀(polyphenol)의 첨가량 및 시간에 따른 P-nZVI의 Cr6+ 제거량을 나타낸 그래프이다.5 is a graph showing the amount of polyphenol (polyphenol) and Cr 6+ removal of P-nZVI over time.

도 6은 천연 추출물인 Grape Seed에서 추출한 폴리페놀(polyphenol)로 코팅되어 있는 P-nZVI을 이용하여 시간에 따른 Cr6+ 제거량을 나타낸 그래프이다.Figure 6 is a graph showing the removal amount of Cr 6+ over time using P-nZVI coated with polyphenol (polyphenol) extracted from the natural extract Grape Seed.

도 7은 대조군, nZVI 및 P-nZVI의 시간에 따른 TCE 분해량을 나타낸 그래프이다.7 is a graph showing the amount of TCE degradation over time of the control group, nZVI and P-nZVI.

Claims (6)

다음의 단계를 포함하는, Fe0 를 함유하고 폴리페놀(Polyphenol)로 코팅되어 있는 P-nZVI(Polyphenol-coated Nano-scale Zero Valent Iron)의 제조방법:Process for preparing Polyphenol-coated Nano-scale Zero Valent Iron (P-nZVI) containing Fe 0 and coated with Polyphenol, comprising the following steps: (a) Fe 함유 용액에 폴리페놀(polyphenol)을 첨가하여 Polyphenol-Fe 용액을 제조하는 단계; 및 (a) adding a polyphenol to the Fe-containing solution to prepare a Polyphenol-Fe solution; And (b) 상기 Polyphenol-Fe 용액에 환원제를 첨가하고 반응시켜 P-nZVI를 합성하는 단계.(b) adding a reducing agent to the polyphenol-Fe solution and reacting to synthesize P-nZVI. 제1항에 있어서, 상기 폴리페놀(Polyphenol)의 첨가량은 상기 Fe 함유 용액에 함유된 Fe 100 중량부에 대하여 10~50 중량부인 것을 특징으로 하는 P-nZVI의 제조방법.The method of claim 1, wherein the polyphenol is added in an amount of 10 to 50 parts by weight based on 100 parts by weight of Fe contained in the Fe-containing solution. 제1항에 있어서, 상기 폴리페놀(Polyphenol)의 첨가는 타닌산(Tannic acid), 갈산(Gallic acid), 카테킨(Catechin), 캠퍼롤(Kaempferol), 루테올린(Luteolin) 및 퀘세틴(Quercetin)으로 구성된 군에서 선택되는 천연 폴리페놀(Polyphenol) 또는 상기 천연 폴리페놀(Polyphenol)을 함유하는 식물의 천연 추출물을 첨가하는 것을 특징으로 하는 P-nZVI의 제조방법.The method of claim 1, wherein the polyphenol is added to tannic acid, gallic acid, catechin, kaempferol, luteolin, and quercetin. Natural polyphenol (Polyphenol) selected from the group consisting of or a method for producing P-nZVI, characterized in that the natural extract of the plant containing the polyphenol (Polyphenol) is added. Fe0 를 함유하고 폴리페놀(Polyphenol)로 코팅되어 있는 P-nZVI.P-nZVI containing Fe 0 and coated with Polyphenol. 제4항에 있어서, 상기 Fe0의 함량은 42~50중량%이고, 상기 코팅된 폴리페놀(Polyphenol)의 두께는 3~5nm이며, 상기 P-nZVI의 입자크기는 40~80nm인 것을 특징으로 하는 P-nZVI.The method of claim 4, wherein the content of Fe 0 is 42 to 50% by weight, the thickness of the coated polyphenol (Polyphenol) is 3 ~ 5nm, the particle size of the P-nZVI is characterized in that 40 ~ 80nm P-nZVI. 제4항에 있어서, 상기 P-nZVI는 중금속, 질산염(NO3 -), 황산염(SO4 2-), 유기할로겐오염물질, DNAPL(Dense Non-Aqeous Phase Liquid) 및 이들의 혼합물로 구성된 군에서 선택되는 물질을 포함하는 오염물질 정화용으로 사용되는 것을 특징으로 하는 P-nZVI.The method of claim 4, wherein the P-nZVI are heavy metals, nitrate (NO 3 -), sulfate (SO 4 2-), organohalogen pollutants, DNAPL (Dense Non-Aqeous Phase Liquid) and from mixtures thereof P-nZVI, characterized in that it is used for the purification of contaminants containing the selected substance.
KR1020090103591A 2009-10-29 2009-10-29 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same KR101027139B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090103591A KR101027139B1 (en) 2009-10-29 2009-10-29 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090103591A KR101027139B1 (en) 2009-10-29 2009-10-29 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Publications (1)

Publication Number Publication Date
KR101027139B1 true KR101027139B1 (en) 2011-04-05

Family

ID=44049647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090103591A KR101027139B1 (en) 2009-10-29 2009-10-29 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Country Status (1)

Country Link
KR (1) KR101027139B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190287B1 (en) 2012-03-08 2012-10-12 포항공과대학교 산학협력단 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
KR101241377B1 (en) * 2010-10-14 2013-03-11 효림산업주식회사 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants
CN103253757A (en) * 2013-05-16 2013-08-21 同济大学 Method for deep treatment of complex industrial wastewater by utilizing nano-zero-valent iron
KR101443147B1 (en) 2013-10-07 2014-09-24 한국에너지기술연구원 Aminoclay-coated magnetic metal composite, its manufacturing method and harvesting process of microalgae using the composite
KR101682421B1 (en) * 2016-07-01 2016-12-12 대구대학교 산학협력단 Treatment process for selective mercury removal from waste water
CN109290587A (en) * 2018-10-18 2019-02-01 浙江田成环境科技有限公司 Green syt Nanoscale Iron-polyphenol chelating particle and its application in environment remediation
CN110202162A (en) * 2019-05-09 2019-09-06 吉林大学 Using the method for the vulcanization repairing hexavalent chromium polluted underground water of Nanoscale Iron
KR20190134335A (en) * 2018-05-25 2019-12-04 서울대학교산학협력단 Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119606A (en) * 2006-11-13 2008-05-29 Toshiichi Yamahama Treatment method for underground water and treatment device therefor
KR100913615B1 (en) * 2007-10-12 2009-08-26 포항공과대학교 산학협력단 Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119606A (en) * 2006-11-13 2008-05-29 Toshiichi Yamahama Treatment method for underground water and treatment device therefor
KR100913615B1 (en) * 2007-10-12 2009-08-26 포항공과대학교 산학협력단 Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241377B1 (en) * 2010-10-14 2013-03-11 효림산업주식회사 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants
KR101190287B1 (en) 2012-03-08 2012-10-12 포항공과대학교 산학협력단 Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
WO2013133509A1 (en) * 2012-03-08 2013-09-12 효림산업주식회사 Synthesis of nanoscale zero valent iron coated with iron sulfide precipitate on surface thereof by means of hydrogen sulfide ions and method for purifying environmental pollutants in contaminated soil and ground water using same
CN103253757A (en) * 2013-05-16 2013-08-21 同济大学 Method for deep treatment of complex industrial wastewater by utilizing nano-zero-valent iron
CN103253757B (en) * 2013-05-16 2014-04-02 同济大学 Method for deep treatment of complex industrial wastewater by utilizing nano-zero-valent iron
KR101443147B1 (en) 2013-10-07 2014-09-24 한국에너지기술연구원 Aminoclay-coated magnetic metal composite, its manufacturing method and harvesting process of microalgae using the composite
KR101682421B1 (en) * 2016-07-01 2016-12-12 대구대학교 산학협력단 Treatment process for selective mercury removal from waste water
KR20190134335A (en) * 2018-05-25 2019-12-04 서울대학교산학협력단 Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
KR102114995B1 (en) * 2018-05-25 2020-05-26 서울대학교산학협력단 Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
CN109290587A (en) * 2018-10-18 2019-02-01 浙江田成环境科技有限公司 Green syt Nanoscale Iron-polyphenol chelating particle and its application in environment remediation
CN110202162A (en) * 2019-05-09 2019-09-06 吉林大学 Using the method for the vulcanization repairing hexavalent chromium polluted underground water of Nanoscale Iron

Similar Documents

Publication Publication Date Title
KR101027139B1 (en) Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same
Ma et al. Catalytic degradation of ranitidine using novel magnetic Ti3C2-based MXene nanosheets modified with nanoscale zero-valent iron particles
Nawaz et al. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite
Xu et al. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects
Gopal et al. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study
Ghasemi et al. Superparamagnetic Fe3O4@ EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from water and soil environmental samples
Duan et al. Enhanced immobilization of U (VI) using a new type of FeS-modified Fe0 core-shell particles
Mahlangu et al. Thiol-modified magnetic polypyrrole nanocomposite: An effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silver-laden nanocomposite
Bhowmick et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism
Wang et al. Modification of Pd–Fe nanoparticles for catalytic dechlorination of 2, 4-dichlorophenol
Wang et al. Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater
Yao et al. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles
Kumar et al. Novel insights into adsorption of heavy metal ions using magnetic graphene composites
Xu et al. Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: synergistic effects and mechanisms
Wen et al. Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (Nanosized-MMIM): Synergistic effect and interface catalysis
Shao et al. Advantages of aeration in arsenic removal and arsenite oxidation by structural Fe (II) hydroxides in aqueous solution
Ye et al. Vitamin C mediates the activation of green tea extract to modify nanozero-valent iron composites: enhanced transport in heterogeneous porous media and the removal of hexavalent chromium
Yan et al. Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions
Yin et al. Synthesis and characterization of Nanoscale Zero-Valent Iron (nZVI) as an adsorbent for the simultaneous removal of As (III) and As (V) from groundwater
Mishra et al. Development of high-performance bi-functional novel CdSnS 2 atom clusters for adsorption of rose Bengal and AOP-assisted degradation of methylene blue
RU2752401C2 (en) Iron-based medium
Misra et al. Adsorption studies of carbamazepine by green-synthesized magnetic nanosorbents
Ghosh et al. Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction
Li et al. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: adsorption and redox transformation
Kim et al. Bifunctional iron-modified graphitic carbon nitride (g-C3N4) for simultaneous oxidation and adsorption of arsenic

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee