KR101175829B1 - 간접 점화식 가스 터빈 파워 플랜트 - Google Patents

간접 점화식 가스 터빈 파워 플랜트 Download PDF

Info

Publication number
KR101175829B1
KR101175829B1 KR1020087027981A KR20087027981A KR101175829B1 KR 101175829 B1 KR101175829 B1 KR 101175829B1 KR 1020087027981 A KR1020087027981 A KR 1020087027981A KR 20087027981 A KR20087027981 A KR 20087027981A KR 101175829 B1 KR101175829 B1 KR 101175829B1
Authority
KR
South Korea
Prior art keywords
turbine
power plant
furnace
compressor
gas
Prior art date
Application number
KR1020087027981A
Other languages
English (en)
Other versions
KR20090018610A (ko
Inventor
제이슨 제너스
브라이언 플렉
도날드 가우티어
테드 알. 헤이드릭
Original Assignee
화이어박스 에너지 시스템 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 화이어박스 에너지 시스템 엘티디. filed Critical 화이어박스 에너지 시스템 엘티디.
Publication of KR20090018610A publication Critical patent/KR20090018610A/ko
Application granted granted Critical
Publication of KR101175829B1 publication Critical patent/KR101175829B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

간접 점화식 가스 터빈 파워 플랜트는 압축기, 상기 압축기에 기계적으로 연결된 터빈, 로(furnace), 상기 터빈으로 유출구 단부 지점 및 상기 압축기로 유입구 단부 지점에서 유체 연통적으로 연결되고 상기 로(furnace) 내측부의 열 교환 장치, 연소 생성물을 상기 열 교환 장치와 접촉함을 방지하기 위해 열 교환 장치의 일부 주위에서 가스 장벽을 형성하기 위한 수단을 포함한다. 상기 수단은 상기 열 교환 장치의 일부 주위에서 위치된 복수의 가스 방출 매니폴드가 될 수 있다. 상기 매니폴드는 상기 터빈에 의해 배출된 가열된 작동 가스로 연결될 수 있다.

Description

간접 점화식 가스 터빈 파워 플랜트{INDIRECT-FIRED GAS TURBINE POWER PLANT}
본 발명은 터빈 파워 플랜트에 관한 것이고, 보다 상세하게 간접 점화식 가스 터빈 파워 플랜트에 관한 것이다.
가스 터빈(gas turbines)은 전기 전력(electrical power)을 발생시키기 위해 잘 알려진 메카니즘이다. 상기 터빈은 전기 발생기에 전력 공급하는 샤프트(shaft)를 구동시키기 위해 가열된 압축 작동 가스(compressed working gas)에 의해 구동된다. 작동 가스는 상기 터빈에 연결된 압축기(compressor)에 의해 압축되고 공기 및 연료의 연소로부터 형성된 열에 의해 가열된다. 종래 가스 터빈은 천연 가스 및 증류 오일(distillate oil)과 같이 값 비싼 정제 연료(refined fuels)에 대해 간혹 제한된다.
알려진 가스 터빈의 형태는 상기 작동 가스가 연소 처리 과정에 의해 발생된 열을 작동 가스로 전달하는 열 교환기에 의해 연소 생성물(combustion produdts)로부터 분리가 유지되는 간접 점화식 가스 터빈(indirect-fired gas turbine)이다. 상기 열 교환기는 연료 및 공기의 연소가 발생되는 분리 로(separate furnace) 내측부에 위치된다. 이러한 간접 사이클은 종래 가스 터빈 작동에서 발생되는 브레이튼 사이클(Brayton cycle)을 복제한다. 상기 간접 점화식 가스 터빈은 유해한 연소 생성물로 터빈 구성 요소를 노출시키지 않음에 따라 특히 유리한 장점을 가진다. 추가적으로, 연소 처리 과정 중 석탄, 중유, 목제 및 그 외 다른 바이오매스(biomass), 용해 가스(solution gas) 및 가연성의 폐기물 재료와 같이 덜 정제되고 덜 비싼 연료(이하"미정제 연료)를 사용하는 것이 가능하다.
열 교환기는 종래 스팀 보일러 시스템에 대해 일반적인 표면 온도보다 높은 표면 온도를 가지는 로(furnace) 내 도관(conduits)을 가진다. 이러한 높은 온도는 로의 주요 연소 챔버 내 발광하는 플레임(luminous flame)으로부터 직접 발산하는 가열에 의해 구현된다. 전술된 좀 더 무거운 연료는 천연 가스, 프로판 또는 정제 액체와 같이 보다 가벼운 연료보다 보다 용이하게 열 방사(thermal radiation)를 발산하며 높게 발광하는 플레임(flames)과 함께 일반적으로 연소된다. 이와 같이, 보다 무거운 연료는 열 전달의 보다 높은 비율에 대해 유리하다. 미정제 중유를 사용하는 어느 한 단점은 이러한 연료로부터 상기 발광하는 플레임이 금속, 유연(soot), 슬래그(slag), 재(ash) 또는 미연소 연료와 같은 퇴적 물질(fouling flames) 뿐만 아니라, 보다 잘 반응하는 라디칼, 부식성 설퍼(corrosive sulphur) 구성 요소 및 그 외 다른 라디칼의 한 요소 또는 복합물을 포함하는 경향이 있는 것이다. 열 교환기 도관과 연결할 때 그러한 입자(particles)는 도관에 대해 유해하며 상기 도관의 수명과 열적인 효과를 감소시킬 수 있다.
본 발명의 목적은 종래 기술의 간접 점화 가스 터빈 파워 플랜트의 하나 이상의 문제점을 해결하는 간접 점화 가스 터빈 파워 플랜트를 제공하는 것이다.
본 발명의 어느 한 측면에 따르면, 간접 점화 가스 터빈 파워 플랜트가 있으며, 이는 압축기(compressor), 상기 압축기에 기계적으로 연결된 터빈, 로(furnace), 로 내측부에서 유입구 단부 지점에서 압축기에 유체 연통적으로 연결(fluidly coupled)되고 유출구 지점에서 터빈으로 연결된 열 교환기, 연소 생성물을 상기 열 교환기와 접촉함을 방지하기 위해 상기 열 교환기의 일부 주위에서 가스 장벽(gas barrier)을 형성하기 위한 수단을 포함한다. 가스 장벽을 형성하기 위한 상기 수단은 가스 장벽을 형성하기 위한 터빈으로부터 배출된 가열된 작동 가스를 수용하기 위하여 터빈에 유체 연통적으로 연결(fluidly coupled)될 수 있다.
상기 열 교환기는 대류적인 가열 섹션 및 발산 가열 섹션을 포함할 수 있다. 그러한 경우에, 가스 장벽을 형성하기 위한 수단은 발산 가열 섹션 주위에 위치된다.
상기 로(furnace)는 목재 제품 그 외 다른 바이오매스(biomass), 석탄, 중유, 용해 가스(solution gas) 및 가연성 폐기물 재료로 구성되는 그룹으로부터 선택된 연료원에 유체연통적으로 연결된 버너(burner)를 가질 수 있다. 상기 버너는 로(furnace)에서 연소를 위한 터빈으로부터 배출된 가열된 공기를 수신하기 위하여 상기 터빈으로 유체 연통적으로 연결될 수 있다. 상기 로(furnace)는 연료원에 유체 연통적으로 연결되고 로(furnace)의 배출 단부 지점에서 위치된 애프터버너(afterburner)를 가질 수 있다.
가스 장벽을 형성하기 위한 수단은 가스 공급원(gas source)에 연결된 하나 이상의 매니폴드를 포함하고 발산 가열 섹션(radiant heating section)의 일부 주위에서 안내된 하나 이상의 가스 노즐를 가진다. 보다 상세하게, 발산 가열 섹션의 일부분을 둘러싸는 복수의 매니폴드가 제공될 수 있다. 상기 발산 가열 섹션의 상기 부분은 일반적으로 직선이고 평행하게 공간이 형성된 복수의 도관을 포함할 수 있다. 그러한 경우에 있어, 상기 매니폴드는 상기 도관 사이 공간 지점에서 안내된다. 여러 개의 도관 부분을 덮는 내열성 라이닝(refractory lining)이 제공될 수 있다. 가스 장벽을 형성하기 위한 수단은 도관 및 매니폴드 주위에 위치된 내열성 디버터(refractory diverter)를 노즐에 의해 방전된 가스가 가스 장벽을 형성하기 위해 안내되도록 하기 위하여 추가적으로 포함할 수 있다.
또한, 파워 플랜트는 압축기로부터 열 교환기까지 작동 가스 스트림(working gas stream)을 갖는 터빈으로부터 작동 가스 배출 스트림을 열적으로 연결시키는 복열 장치(recuperator)를 포함할 수 있다.
또한 상기 파워 플랜트는 상기 압축기로 연결되는 증발적인 냉각 조립체(evaporative cooling assembly)를 포함할 수 있다. 상기 증발적인 냉각 조립체는 압축기로 작동 가스 공급 스트림으로 유체 연통적으로 연결된 하나 이상의 유입구 퍼깅 장치(inlet fogging device), 압축기로부터 열 교환 장치까지 작동 가스 스트림에 유체 연통적으로 연결된 워터 스프레이(water spray), 상기 압축기 지점으로 안내된 인터쿨링 스프레이(intercooling spray)를 포함할 수 있다.
또한 상기 파워 플랜트(power plant)는 압축기로부터 열 교환기까지 작동 가스 스트림에 유체 연통적으로 연결된 워터 스트림을 갖는 로(furnace)로부터 배출 스트림(exhaust stream)을 열적으로 연결시키는 스트림 주입 조립체(steam injection assembly)를 포함할 수 있다. 스트림은 배출 스트림으로부터 워터 스트림까지 전달된 열에 의해 형성된다. 상기 스트림은 작동 가스 스트림에 주입된다.
본 발명의 또 다른 측면에 따르면, 간접 점화식 가스 터빈 파워 플랜트를 위한 로(furnace)가 제공된다. 상기 파워 플랜트는 압축기 및 상기 압축기로 기계적으로 연결된 터빈으로 구성된다. 로(furnace)는 로(furnace) 내측부에서 유입구 단부 지점에서 압축기로 유체 연통적으로 연결되고 유출구 단부에서 터빈으로 연결하기 위한 열 교환기를 포함하고, 상기 열 교환기를 접촉시킴으로부터 연소 생성물을 방해시키기 위해 열 교환기의 일부분 주위에서 가스 장벽을 형성하기 위한 수단을 포함한다.
다음의 도면은 본 발명의 실례인 일 실시예를 설명한다.
도 1은 연소실(combustor)을 포함하는 종래 기술의 간단한 파워 플랜트를 도식적으로 도시하는 도면.
도 2는 연소실 및 복열 장치(recuperator)를 포함하는 종래 기술의 파워 플랜트를 도식적으로 도시하는 도면.
도 3은 본 발명의 제 1 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 4는 신선한 공기 공급원으로부터 로(furnace)의 버너(burner)까지 연소 공기 공급을 가지고, 본 발명의 제 2 실시예에 따라 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 5는 신선한 공기 공급원으로부터 로(furnace)의 버너까지 연소 공기 공급 라인 및 복열 장치 요소를 가지며, 본 발명의 제 3 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 6은 터빈으로부터 로(furnace)의 버너까지 연소 공급 공급 라인과 복열 장치 요소를 가지고, 본 발명의 제 4 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 7은 워터 스프레이 장치, 유입구 퍼깅 장치(inlet fogging apparatus), 인터쿨링 스프레이 장치(intercooling spray apparatus)를 가지며, 본 발명의 제 5 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 8은 워터 스프레이 장치, 유입구 퍼깅 장치, 인터쿨링 스프레이 장치 및 복열 장치 요소를 가지고, 본 발명의 제 6 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 9는 워터 스프레이 장치, 유입구 퍼깅 장치, 인터쿨링 스프레이 장치 및 터빈으로부터 로(furnace)의 버너까지 공기 공급 라인을 가지며, 본 발명의 제 7 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 10은 복열 장치 요소, 워터 스프레이 장치, 유입구 퍼깅 장치, 인터쿨링 스프레이 장치 및 터빈으로부터 로(furnace)의 버너까지 공기 공급 라인을 가지고, 본 발명의 제 8 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 11은 열 복원(recovery) 및 스팀 발생기를 가지며, 본 발명의 제 9 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 12는 복열 장치 요소와 열 복원 및 스팀 장치를 가지며, 본 발명의 제 10 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 13은 열 복원 및 스팀 발생기와 터빈으로부터 로(furnace)의 버너까지 공기 공급 라인을 가지고, 본 발명의 제 11 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 14는 열 복원 및 스팀 발생기와 터빈으로부터 로(furnace)의 버너까지 공기 공급 라인과, 복열 장치 요소를 가지며, 본 발명의 제 12 실시예에 따르는 간접 점화식 가스 터빈 파워 플랜트를 도식적으로 도시하는 도면.
도 15 및 도 16은 본 발명의 모든 실시예에 있어서 파워 플랜트의 일정한 구성 요소를 도시하는 투시도 및 상단도.
도 17은 본 발명의 모든 실시예에 있어서 상기 파워 플랜트의 로(furnace) 내 일정한 구성 요소를 보다 상세하게 도시하는 투시도.
도 18은 본 발명의 모든 실시예에 있어서 파워 플랜트의 열 교환 장치 도관과 가스 장벽 조립체를 도식적으로 도시하는 도면.
수반되는 도면을 보다 상세하게 참조하여, 도면 부호 10으로 일반적으로 표시되며, 본 발명에 따르는 간접 점화식 가스 터빈 파워 플랜트의 다양한 실시예가 설명된다.
도 1 및 도 2는 종래 기술로써 일반적인 2개의 터빈 파워 플랜트를 설명한다. 도 1에는 간단한 파워 플랜트가 설명되고, 여기에는 연소실(combustor, 48)이 터빈으로 도입하기 이전에 압축된 공기를 가열하기 위해 사용되고, 배출부(exhaust, 50)는 터빈으로부터 간단하게 분출된다. 상기 간단한 가스 터빈 엔진의 효율을 향상시키기 위한 선택은 도 2에서 설명되는 바와 같이 복열 장치(recuperator)를 사용하는 것이다. 상기 복열 장치(52)는 본질적으로 열 교환 장치의 형태이고, 이는 연소실(48)로 나가는 압축된 공기를 예열하기 위하여 연소실(48)에 의해 발생된 배출 가스(50)로부터 열을 전달한다. 상기 연소실(48)은 상기 복열 장치(52)로 상기 배출(exhaust)이 유입되기 이전에 터빈 배출부(50)로 열을 추가하기 위하여, 상기 터빈의 다운스트림(downstream)에 간혹 위치된다.
보다 상세하게 도 3을 참조하고 본 발명의 제 1 실시예에 따르면, 정제 연료 및 미정제 연료를 사용하여 특히 효과적인 간접 점화식 가스 터빈 파워 플랜트(indirect-fired gas turbine power plant, 10)가 제공된다. 정제 연료의 실례는 천연 가스, 프로판, 증류유(distillate oil)를 포함한다. 미정제 연료 및 보다 무거운 연료는 석탄, 중유, 목재 제품 및 그 외 다른 바이오매스, 용해 가 스(solution gas) 및 가연성 폐기물 재료를 포함한다. 미정제 연료의 사용은 상기 파워 플랜트(10)가 원격지(remote site)에 위치될 때 특히 유리하고, 정제 연료에 대한 접근이 용이하지 않다. 예를 들어, 상기 파워 플랜트(10)는 원격 작업 캠프에서 위치될 수 있고, 정기적으로 재충진되는 천연 가스 저장 탱크가 제공될 수 있다. 그러한 경우에 있어서, 목재 제품과 같이 보다 용이하게 접근 가능한 연료는 상기 파워 플랜트(10)에 의해 연소될 수 있다. 더욱이, 미정제 연료는 일반적이며 실질적으로 정제 연료보다 덜 비싸다. 특정 미정제 연료의 연소는 파워 플랜트(10)의 로(furnace) 내측부에 구성 요소에 대해 유해할 수 있는 연소 제품을 형성하기 때문에, 상기 파워 플랜트(10)는 하기에서 상세하게 설명되는 바와 같이 구성 요소를 보호하기 위해 작동하는 가스 장벽 조립체(gas barrier assembly, 71)가 제공된다.
상기 파워 플랜트(10)는 압축기(22)를 포함하고, 상기 압축기는 압축기 유입구(12) 지점에서 작동 가스로 얻어지고 높은 압력으로 상기 공기를 압축시킨다. 그러나 상기 실시예의 작동 가스는 주위 공기이고, 그 외 다른 작동 가스는 특히 부분 폐쇄 사이클이거나 또는 전체 폐쇄 사이클로, 상기 기술 분야에 있어 알려지는 바와 같이 사용될 수 있다. 상기 압축된 공기는 상기 압축 처리 과정으로 인하여 온도가 증가된다. 압축된 공기는 높은 압력을 갖는 공기 매니폴드(17)로 안내되고(압축된 공기 경로 수단), 이는 폐쇄 덕트(closed duct)이며, 공기가 가열되는 로(furnace, 23)에서 열 교환 장치 조립체(20)로 다소 분량의 미가열 공기를 운반한다. 가열 공정 이후, 상기 공기는 종래 기술에서 알려지는 바와 같은 작동을 형 성시키기 위하여 터빈(24)으로 안내된다.
열 교환 장치 조립체(20)는 로(furnace, 23) 및 터빈(24)에 대한 주요 연결 구성 요소(tie-in component)이다. 이는 상기 터빈(24)을 연료 또는 배출 생성물을 직접 접촉하지 않고 작동시키며, 이에 따라 터빈(24)에 대한 값비싼 보호 증대(expensive protextive enhancements)를 가질 필요가 없다. 상기 설계의 또 다른 장점은 터빈의 수명이 크게 증가되고, 오랜 기간 종안 비용이 감소하는 것이다. 종래 가스 터빈 엔진의 것과 유사한 레벨을 구현하기 위하여 상기 파워 플랜트(10)의 수행을 허용하는 고온 금속 합금이 용이하게 이용 가능하다. 실제로, 로(furnace, 23) 내 연소 공기와 같이 상기 가스 터빈 배출로부터 가열된 공기를 사용할 때, 본 발명의 전체적인 수행은 종래 가스 터빈 엔진의 수행을 초과할 수 있다.
가스 터빈 엔진은 본 발명의 범위 이내에서 알려진 수 많은 터빈 형태 중 어느 한 형태가 될 수 있다. 가장 선호하는 것은 파워 플랜트(10)로 사용하기 위해 용이하게 수정될 수 있는 캔 형태 연소실(can- type combustors)을 가진 가스 터빈이다. 열 추가의 전체적인 비율(overall rate of heat addition)은 중요한 요인이 될 것이다. 사일로 형태 가스 터빈(silo-type gas turbines)으로 연결된 모듈식 설계는 사용자의 필요를 만족시키기 위한 융통성 뿐만 아니라 상당한 비용 절감에 있어서 그 외 다른 기술에 걸쳐 많은 장점을 가진다.
공기 매니폴드(17)는 유입구(inlet, 54), 열 교환 장치 분기부(heat exchange branch, 32), 바이패스 분기부(bypass branch, 34) 및 유출구(outlet, 56)를 포함한다. 상기 유입구(54)는 압축기(22) 및 분기로부터 2개의 경로까지 모 든 압축 공기를 수용하는 폐쇄 덕트이며 상기 열 교환 장치 분기(32)인 어느 한 분기는 열 교환 장치(20)로 안내되고 반면, 바이패스 분기(bypass branch, 34)인 또 다른 분기는 터빈(24)으로 직접 상기 열 교환 장치(20)를 지나는 바이패스(bypass)를 제공한다. 상기 바이패스 분기(34)는 열 교환 장치 조립체(20)에서 가열되도록 상기 압축기(22)로부터 공기 덩어리 흐름의 마찰을 허용함으로써, 흐름 비율 및 로(furnace)에 기반으로 한 입력을 갖는 폐쇄 루프 제어 시스템에 기초된 공기 덩어리 흐름을 조정하는 다양한 흐름 제어 밸브(36)를 포함하고, 상기 시스템은 열 교환 장치 조립체(20) 내에서 가열되는 전체 공기 덩어리 흐름의 마찰을 조절함으로써 로(furnace) 온도(불규칙한 연료 연소 또는 공기 흐름 비율에 의해 야기될 수 있는 온도)에서 가능한 한 불안정(fluctuations)을 보상하며, 이는 터빈(24)으로 유입되는 가스 온도를 제한한다. 유출구(56)는 상기 터빈(24)으로 이러한 흐름을 복합하며, 열 교환 및 바이패스 분기(32, 34)로부터 분리된 공기 흐름을 수용하는 폐쇄 덕트이다.
로(furnace, 23)는 흐름 비율 및 내용에 있어 불일치하고 부식성인 연료를 연소시키기 위해 설계된다. 그 외 다른 로(furnace) 기술과 달리, 상기 로(23)는 용해 가스(solution gas)의 경우와 같이, 상기 연료 자체가 불량한 품질인 경우에 조차 일정한 열 분배를 이송하는 동안 오염된 연료 또는 낮은 등급의 연료의 사용을 허용하며, 지극히 융통성있도록 설계된다. 로(23)는 폭 넓은 흐름 비율을 수용하기 위하여 형태 및 크기에 있어 수정 가능하다. 상기 로(23)는 바람직하게 내화성 라인으로 형성된 동봉(enclosure)이며 동봉 내에서 연료 및 강산화성 물질은 연 소 작용에서 혼합되고 반응하고 이에 열을 착탈시킨다. 열은 열 교환 장치 조립체(20)로 열 전달에 의해 상기 로(furnace, 23)로부터 제거되고, 순차적으로 열 교환 장치 조립체(20)의 열 교환 장치 튜브(42)를 통해 지나는 작동 가스 공기로 상기 열을 분배한다(imparts). 로(furnace) 온도 및 유입구 스트림의 적당한 혼합인, 연소 또는 반작용 잔류 시간으로 인하여, 상기 로(furnace, 23) 내 양호한 품질의 연료 및 양호하지 못한 품질의 연료 연소 효율은 일반적인 내부 연소 가스 터빈 연소 챔버의 연소 효율과 비교하여 유사할 것이다. 상기 로(furnace, 23)는 로(furnace, 23)를 통하여 누출되는 경우 로(furnace) 가스의 고온 및 유해한 효과, 부식성 효과를 제한하기 위하여 주위 압력이나 또는 다소 이하에서 작동한다.
상기 로(furnace, 23)는 연료 공급원의 열 착탈 양에 대해 보다 용이하게 적합되도록 로(furnace) 전체 출력 내 조절을 허용하는 모듈식 버너 레이아웃(modular burner layout)을 가질 수 있다. 상기 열 교환 장치 조립체(20)는 모듈식 열 교환 장치 섹션(38)을 포함한다. 각각의 섹션(38)의 설계는 이용 가능한 열 착탈의 양에 의존하여 추가되거나 또는 제거되도록 한다. 이는 연료 흐름 비율이 증가되거나 또는 감소됨에 따라 용이하게 적합되도록 한다. 또한, 상기 레이아웃은 요구된 가스 터빈 엔진의 크기에 의존하는 추가되는 섹션 또는 삭제되는 섹션에 의해 가스 터빈 엔진의 크기가 수용된다. 압축 공기는 매니 폴드(manifold, 17)로부터 유입되고 로(furnace, 23) 내 뜨거운 배출 생성물의 중간 흐름(mean flow)과 수직하여 연결되는 평행한 부식 내성 튜브(42)의 연속적인 뱅크(banks)를 관통한다. 상기 결과는 열 형태의 에너지가 뜨거운 로(furnace) 가스로부터 열 교환 장치 조 립체(20)를 거쳐 높은 압력 매니폴드(17) 내 공기로 이동되는 것이다.
열 교환 장치 섹션(38)가 도 3에서 직렬로 연결되는 것을 도시하는 반면, 상기 섹션(38)은 평행하거나 또는 직렬이며 평행한 복합으로 연결될 수 있다.
터빈(24)은 공기 매니폴드(17)로부터 수용된 가열된 압축 공기를 확장시키고 처리 과정 중에 샤프트(25)를 구동시키기 위한 작업을 추출하는 이러한 일반적인 형태의 공통적으로 알려진 파워 플랜트로써 기능하고, 순차적으로 샤프트(27)를 통한 프로세스 듀티(process duty, 47) 및/또는 샤프트(26)를 통한 전기 발생기(46)와 압축기(22)를 구동한다.
연료 및 공기는 버너(49)를 통하여 로(furnace, 23)로 주입되고 연소 챔버로 주입되며 종래 기술에서 잘 알려진 바와 같은 열 에너지를 발생시키기 위하여 연소된다(combusted). 상기 버너(49)가 위치되는 상기 로(furnace, 23)의 단부는 상기 로(furnace, 23)의 "버너 단부(burner end)"와 같이 언급되고, 상기 연소 챔버는 연소가 발생하는 상기 로(furnace, 23)의 부분을 언급하며, 이는 하기에서 추가적으로 보다 상세하게 설명되는 바와 같이 일반적으로, 로(furnace, 23)의 발산하는 가열 섹션이다. 상기 버너(49)는 천연 가스 또는 프로판과 같이 정제된 연료를 포함한 연료 저장소(40)에 연결된 연료 공급 라인(52)을 가진다. 상기 연료 공급 라인(52)은 제 2 연료 공급원(51)에 연결되고, 이는 목재 생성물 및 그 외 다른 바이오매스(biomass), 중유(heavy oil), 또는 용해 가스(solution gas)와 같은 미정제 연료가 될 수 있다. 그러한 재료들은 미세한 파우더(powder) 또는 페이스트(paste)로 일반적으로 준비되고 상기 버너(49)에 의해 연소 챔버로 주입된다.
그러므로, 로(furnace, 23)는 1개 또는 2개의 공급원으로부터 연료 공급을 이용하여 작동될 수 있다. 예를 들어, 저장소(40)로부터 천연 가스는 파워 플랜트(10)가 시동될 때 사용될 수 있으며 이후 상기 파워 플랜트가 의도된 작동 온도에 도달한 이후 제 2 연료 공급원(51)으로부터 연료에 대해 스위치 연결된다.
연소 챔버 내 미연소 연료 및 공기인 연소 생성물(combustion products)을 포함하는 로(furnace) 배출부는 연소 챔버의 다운스트림 단부 지점에서 분기(도시되지 않음)를 통하여 흐르고, 연소의 입자들이 수집되는 분진(재, ash) 트랩(particulate trap)을 지나, 상기 버너 단부와 마주하여 상기 로(furnace, 23)의 배출 단부 지점에서 위치된 배출 도관(33)을 통하여 상기 로(furnace, 23)의 외부로 지난다. 배출 도관(33)에 연결된 배출부 팬(35)은 상기 로(furnace, 23)의 외부에 로(furnace) 배출을 흡입하기 위하여 상기 로(furnace, 23) 내측부에서 부 압력(negative pressure)을 제공한다.
애프터버너 조립체(afterburner assembly, 28)는 상기 로(furnace, 23)의 배출 단부 근방에서 제공된다. 애프터버너 조립체(28)는 연소 챔버 및 열 교환 장치(20)의 다운스트림의 위치로 설계 부하(design load)에 대한 연료 흐름의 불안정(fluctuations)은 완전하게 연소된다. 열 교환 장치(20)를 충분하게 가열하기 위해 필요한 연료보다 초과한 연료는 초과 연료 공급 라인(29)을 통하여 애프터버너 조립체(28)로 안내된다. 애프터버너 조립체(28)용 연소 공기는 송풍기(blower, 66)에 의해 제공된다. 애프터버너(28)에서 방출된 열은 애프터버너 배출부가 열 교환 장치(20)로부터 이격되어 흐르고 배출부 도관(33)을 통하여 로(furnace, 23)의 외부로 흐르기 때문에 상기 열 교환 장치(20)를 통한 작동 가스의 가열에 대해 기여되지 않는다. 애프터버너(28)는 주기적으로 점화될 수 있고 이에 따라 활성적으로 모니터가 형성된 파일롯트(pilot)와 화염 감독 시스템(도시되지 않음)이 필요하다.
파워 플랜트(10)에는 제어 밸브 및 체크 밸브(31)가 제공되며, 상기 밸브는 메인 버너(49)와 애프터버너(28)를 경유하여 로(furnace, 23)를 향해 연료 흐름 비율을 조정하도록 하기 위해 동기화된다(synchronized). 상기 메카니즘은 로(furnace, 23) 내 온도 진단과 측정된 유입되는 연료 흐름에 있어 양 변화에 반응하도록 설계된다. 이는 폐쇄 루프 제어 시스템의 부분이며 상기 시스템은 열 교환 장치 조립체(20) 내 온도를 제한하고 안정한 베이스 로드 작동(base load operation)을 유지한다.
이러한 실시예에 있어서, 상기 버너(49)는 터빈(24)의 공기 배출 유출구로 연결되는 공기 공급 라인(line, 53)으로부터 수용되고, 터빈(24)으로부터 고온의 배출 공기는 연소 공기로써 사용하기 위한 로(furnace, 23)를 향해 이와 같이 안내된다. 대안적으로 그 외 다른 실시예에서 찾아볼 수 있는 바와 같이, 상기 연소 공기는 신선한 공기에 의해 제공될 수 있다.
파워 플랜트의 그 외 다른 구성 요소는 다음을 포함한다.
?방출 제어 시스템(도시되지 않음): 상기 구성 요소는 사용자의 필요에 따라 가변화될 것이다. 대부분의 용해 가스가 다소의 황 함유 내용물(sulphur content)을 가지는 경우, 적절하게 처리 공정을 가지는 것이 유리하다.
?턴키 발생기(Turnkey Generator, 46): 상기 구성 요소는 가스 터빈의 기계적인 에너지를 전기 전력으로 변환한다.
?프로세스 듀티(Process Duty, 47): 상기 구성 요소는 가스 터빈의 기계적인 에너지를 가령 작동 부위에서 펌프의 전력 형성(powering)과 같이, 비전기적인 작업으로 변환한다.
?원격 계측 장치(Remote Telemetric Device)(도시되지 않음): 항상 현장 직원이 없이 상기 시스템의 감시를 허용하는 제어 메카니즘과 모니터링 또한 다소의 제어 시스템의 원격 처리를 허용할 것이다.
도 15 내지 도 18을 참조하여, 로(furnace, 23)는 대류 가열 섹션(convective heating section, 70) 및 발산 가열 섹션(radiant heating section, 73)을 포함하고, 연소 과정의 결과로써 형성된 부식 입자 및 그 외 다른 유해한 입자로부터 발산 가열 섹션(73) 내 열 교환 장치 튜브(42)를 보호하는 가스 장벽(gaseous barrier)을 형성하는 가스 장벽 조립체(gas barrier assembly, 71)를 가진다. 전술된 바와 같이, 압축기(compressor, 22)는 작동 가스를 압축하고 이를 매니폴드(17)로 이동시킨다. 상기 작동 가스는 상기 매니폴드(17)를 통하여 진행되고 열 교환 장치 분기(heat exchange branch, 32)로 진행하며, 대류 가열 섹션(70) 내 구불 구불한 대류 열 교환 장치 튜브(42(a))로 이동한다. 각각의 대류 열 교환 장치 튜브(42(a))로부터 나오는 작동 가스는 발산 가열 섹션(73) 내 발산 열 교환 장치 튜브(42(b))로 연결된다. 이러한 발산 열 교환 장치 튜브(42(b))는 일반적으로 직선으로 형성되고 일반적으로 평행한 배열로 서로로부터 이격되어 공간화 형성된다. 이러한 발산 열 교환 장치 튜브(42(b))의 단부는 상기 터빈(24)에 연결되는 매니폴드 유출구 도관(56)으로 모두 공급된다. 이와 같이 상기 작동 가스는 발산 열 교환 장치 튜브(42(b))를 통하여 이동하며 이에 상기 가스는 종래 기술에서 잘 알려지는 바와 같은 작업을 제공하기 위한 터빈(24)으로 발산 열(radiant heat)에 의해 주로 가열된다. 로(furnace, 23) 이내 작동 가스의 잔류 시간(residence time)은 브레이트 사이클(Brayton cycle)을 완성하고 필요한 터빈 유입구 온도를 만족시키기 위하여 작동 가스에 대한 충분한 열을 추가하기에 충분하다.
상기 작동 가스는 표준 역흐름 열 교환 장치 설계 전략(standard counterflow heat exchanger design strategy)에 따라 대류 가열 섹션(70)으로 경로되고 이후 발산 가열 섹션(73)으로 경로된다.
발산 가열 섹션(73)은 가스 장벽 조립체(gas barrier assembly, 71), 발산 열 교환 장치 튜브(42(b)), 버너(49)를 포함한다. 터빈 배출부로부터 나온 가열된 공기는 공급 라인(53)을 경유하여 상기 버너(49)를 통하고 도면의 참조 부호 74로 일반적으로 표시된 연소 챔버로 안내된다. 하나 또는 두 개의 연료 공급원(40, 51)으로부터 나온 연료는 공급라인(52)(도 15 내지 도 18에서 도시되지 않음)에 의해 상기 버너(49)를 통하여 연소 챔버(74)로 안내된다. 상기 연료는 공기 중에서 연소되고 열은 종래 기술에서 잘 알려진 바와 같이 연소 챔버(74) 내에서 발생된다.
연소 챔버(74)는 최소의 연료 소요량(base load of fuel)에 대한 주요한 연소 챔버이다. 상기 연료 공급원(40 또는 51)에서 나오며 최소 열 방출 소요량을 만 족시키는 연료는 터빈(24)으로부터 예열 공기와 함께 유입된다. 상기 연소 공기 및 연료는 미리 혼합되지 않은 내식성 버너(49)에서 복합되고 상기 공간 이내에서 반응한다. 가스의 순 흐름(net flow)은 상기 버너(49)로부터 로(furnace, 23)의 배출 단부를 향하며, 이에 상기 열 교환기(20)의 대류 섹션이 위치된다. 로(furnace, 23) 크기는 유입 연료 종류가 대류 열 교환 장치 튜브(42(a))를 마주치기 이전에 모두 소모되도록 선택된다.
터빈 배출부로부터 나온 공기는 공급 라인(30)에 의해 가스 장벽 조립체(71)로 공급된다. 대안적으로, 공기 또는 또 다른 가스는 또 다른 공급원으로부터 가스 장벽 조립체(71)로 공급될 수 있으며, 예를 들어 신선한 공기는 송풍기(도시되지 않음)에 의해 공급될 수 있다. 상기 가스 장벽 조립체(71)는 그 안에서 발산 열 교환 장치 튜브(42(b))가 이격되어 공간이 형성되고 평행한 클러스터(cluster)가 방사상으로 둘러싸며 발산 조립체의 길이를 연결하는(run) 복수의 가스 방출 매니폴드(76)를 포함한다. 복수의 매니폴드(76) 각각은 상기 튜브(42(b))의 방향과 상대적으로 공기의 횡단 흐름을 형성하기 위하여 상기 튜브(42(b)) 사이에서 일반적으로 발산 열 교환 장치 튜브(42(b)) 지점 및 보다 상세하게 상기 공간(78)의 지점에서 목적이 되는 다중 공기 노즐(77)(도 18 참조)을 가진다. 이러한 매니폴드(76)에 의해 방출된 공기는 상기 튜브(42)를 둘러싸는 외부 로(furnace) 주위에서 공기 압력 장벽(79)을 형성한다. 상기 장벽(79)은 열적인 복사 에너지(thermal radiation, 80)가 지나가도록 하며(가스는 낮은 흡수 임계값(absorption threshold)과 짧은 복사 에너지 전달 경로 길이를 가진다), 상기 튜브(42(b))와 상호 작용(막히는 현 상(fouling) 또는 부식(corroding))으로부터 원하지 않는 가스와 반출된 고체, 액체를 방지한다. 가스가 매우 고온이므로(> 450℃) 상기 튜브(42(b))에 대한 대류 열 손실이 감소된다. 내열성 라이닝(refractory lining, 81)은 연소 영역으로부터 열적 복사 에너지에 노출되지 않은 상기 튜브(42(b)) 측부 상에 대류 열 손실을 추가적으로 최소화시키기 위하여 제공된다. 발산 가열 섹션(73)의 길이 넘어로 상기 장벽(79) 형상을 향상시키기 위하여 발산 튜브(42(b)) 및 내열성 라이닝(81) 주위에서 가스 장벽 조립체(71)에 의해 방출된 터빈 배출 가스를 안내하는 내열성 디버터(refractory diverters, 82)가 제공된다.
가스 장벽 조립체(71)에 의해 방출된 공기의 횡단 흐름은 상기 버너(49)에 의해 방출된 공기-연료 혼합물을 유리하게 혼합시킨다. 이는 미정제 또는 오염 연료(dirty fuel)가 사용될 때 특히 유리하며, 그러한 연료는 일반적으로 완전히 연소되는 데에는 오랜 시간이 필요하다. 공기 연료 혼합물을 혼합시키기 위해 횡단 흐름 공기(cross-flow air)의 사용은 연소 챔버(74)를 확대해야 할 필요없이 연소의 전체 시간(burn-out time)이 감소한다.
발산 열 교환 장치 튜브(b)는 압축기(22)로부터 작동 가스를 포함한다. 열 병합 발전의 어플리케이션에 있어서, 스팀 형성(steam production)을 위해 물을 포함하는 분리된 튜브(도시되지 않음)가 설치될 수 있다.
상기 가스 장벽 조립체(71)가 튜브(42(b))를 둘러싸는 복수의 가스 방출 매니폴드(76)와 함께 도시되는 반면, 연소 생성물을 상기 튜브(42(b))와 접촉하는 것을 방지하는, 상기 튜브(42(b)) 주위에서 가스 장벽을 형성하는 그 외 다른 형상이 제공될 수 있다.
도 4 내지 도 14에 있어서, 파워 플랜트(10)의 대안적인 실시예가 설명된다. 상기 도면에서 도시된 파워 플랜트(10)의 도식적인 도면은 상기 실시예 사이의 차이점을 보다 용이하게 나타내기 위하여 도 3에서 도시된 파워 플랜트(10)의 도식적인 도면과 비교하여 다소 간단하다. 도 4 내지 도 14에서 도시된 구성 요소는 아니지만 도 3의 도식적인 도면에서 나타난 구성 요소는 이러한 도면 내 실시예로부터 생략되어 도시되지는 않는다.
도 4를 참조하고 본 발명의 제 2 실시예에 따르면, 상기 터빈(24)으로부터 가열된 배출 공기는 도관(112)을 통해 파워 플랜트로부터 배출되고 상기 터빈(24)과 달리 공급원으로부터 나오는 신선한 공기 또는 공기는 공기 공급 라인(114)을 통해 상기 버너(49)로 공급되는 점을 제외하고 제 1 실시예와 본질적으로 동일한 파워 플랜트(110)가 제공된다.
도 5를 참조하고 본 발명의 제 3 실시예에 따르면, 터빈(24)으로부터 가열된 배출 공기 공급 라인(215)으로 상기 압축기(22)로부터 압축된 공기 공급 라인(213)을 열적으로 연결하는 복열 장치(recuperator, 212)를 추가적으로 포함하는 것을 제외하고, 제 2 실시예의 파워 플랜트(110)와 본질적으로 동일한 파워 플랜트(210)를 제공한다. 이의 목적은 파워 플랜트(10)의 효율을 높이는 것이고, 이는 파워 출력의 주어진 양에 대한 로(furnace, 23)에서부터 요구된 보다 적은 열의 결과가 되고, 터빈(24)으로부터 배출 가스 내 열을 사용하여 상기 압축기(22)로부터 열 교환 장치(20)까지 나가는 공기를 예열함으로써 수행된다.
도 6을 참조하며 본 발명의 제 4 실시예에 따르면, 복열 장치(recuperator 212)를 관통한 이후 도관(53)에 의해 버너(49)로 상기 터빈(24)으로부터 나온 배출 가스가 공급되는 것을 제외하고 제 3 실시예와 본질적으로 동일한 파워 플랜트(310)가 제공된다. 이러한 형상은 상기 터빈(24) 배출부가 로(furnace, 23)에 대해 직접 공급될 수 있고, 추가적으로 NOx 방출이 감소되는 동안 전체 시스템의 효율을 추가적으로 증가되는 추가적인 장점을 제공한다.
도 7을 참조하고 본 발명의 제 5 실시예에 따르면, 증발 냉각 조립체(412)를 추가적으로 포함하는 것을 제외하고 제 2 실시예와 본질적으로 동일한 파워 플랜트(410)가 제공된다. 상기 조립체(412)는 워터 스프레이(water spray, 414), 압축기 유입구 퍼깅 장치(compressor inlet fogging device, 416), 압축기 중간 냉각 장치(418)를 포함한다. 대안적으로, 상기 조립체(412)는 이러한 세가지 특징부(414, 416, 418)를 가질 수 있다. 상기 워터 스프레이(414)는 압축된 매니폴드 유입구(54)로 연결되고 압축기(22)로부터 압축된 공기 배출부 스트림으로 워터 스프레이를 공급하고, 이에 의해 가스/스팀 혼합물로 터빈 작동 유체를 변화시킨다. 보다 낮은 상대적인 작동이 효율적으로 스프레이에 액체를 펌프 형성 하기위해 필요하고 브레이튼 사이클 시스템에 있어 다소의 랜킨 사이클의 장점을 얻는다. 압축기 유입구 퍼깅 장치(compressor inlet fogging device, 416)는 공기 유입구(12)에 연결되고 물로 압축기에 공기 공급 스트림을 포화시키도록 하며 이에 의해 작동 유체의 특정한 열을 증가시킨다. 상기 압축기 중간 냉각 장치(compressor intercooling device, 418)는 압축기(24)에서 워터 스프레이를 안내하고, 이에 의해 전체 사이클 작동을 증가시키며 작동 가스의 특정한 열의 증가를 허용한다.
도 8을 참조하고 본 발명의 제 6 실시예에 따르면, 제 3 실시예에서 알 수 있는 것과 유사한 복열 장치(recuperator, 212)를 추가적으로 포함하는 것을 제외하고, 본질적으로 제 5 실시예와 동일한 파워 플랜트(510)가 제공된다.
도 9를 참조하고 본 발명의 제 7 실시예에 따르면, 터빈(24)으로부터 버너(49)까지 배출부 공기를 안내하는 공급 라인(53)을 추가적으로 포함하는 것을 제외하고 제 5 실시예와 본질적으로 동일한 파워 플랜트(610)가 제공된다.
도 10을 참조하고 본 발명의 제 8 실시예에 따르면, 복열 장치(212)를 관통한 이후 상기 터빈(24)으로부터 버너(49)까지 배출 공기를 안내하는 공급 라인(53)을 추가적으로 포함하는 것을 제외하고 제 6 실시예와 본질적으로 동일한 파워 플랜트(710)가 제공된다.
도 11을 참조하고 본 발명의 제 9 실시예에 따르면, 워터 도관(water conduits, 814)과 함께 상기 로(furnace, 23)에서부터 배출 도관(33)을 열적으로 연결하는 스팀 주입 조립체(812)를 추가적으로 포함하는 것을 제외하고 제 2 실시예와 본질적으로 동일한 파워 플랜트(810)가 제공된다. 스팀 주입 조립체(812)는 워터 도관(814) 내 워터로 로(furnace) 배출부로부터 열을 전달하기 위한 열 교환 장치 조립체(20)와 유사하게 작동하며, 이에 의해 스팀이 형성된다. 상기 워터 도관(814)은 작동 가스 매니폴드 유입구(54)에 연결되고 상기 터빈(24)에 대한 작동 가스로 스팀을 공급하도록 한다. 상기 스팀 사이클의 특정한 후방 작동(steam cycle specific back-work)은 워터 펌핑 작동이 브레이트 사이클 시스템 내 다소의 랜킨 사이클의 장점을 가지는 효과에 있어 공기 압축보다 적은 작동(work intensive)이므로 보다 낮다.
도 12를 참조하고 본 발명의 제 10 실시예에 따르면, 제 3 실시예에서 사용되는 바와 같은 복열 장치를 추가적으로 포함하는 것을 제외하고 제 9 실시예와 본질적으로 동일한 파워 플랜트(910)가 제공된다.
도 13을 참조하고 본 발명의 제 11 실시예에 따르면, 상기 복열 장치(212)를 통하여 관통된 이후 상기 터빈(24)으로부터 버너(49)까지 배출 공기를 안내하는 공급 라인(53)을 추가적으로 포함하는 것을 제외하고 제 9 실시예와 본질적으로 동일한 파워 플랜트(1010)가 제공된다.
도 14를 참조하고 본 발명의 제 12 실시예에 따르면, 상기 복열 장치(212)를 통하여 관통된 이후 상기 터빈(24)으로부터 버너(49)까지 배출 공기를 안내하는 공급 라인(53)을 추가적으로 포함하는 것을 제외하고 제 10 실시예와 본질적으로 동일한 파워 플랜트(1110)가 제공된다.
본 명세서에서 설명된 파워 플랜트(10)의 실시예는 개별적인 구성요소의 수명을 개선하며, 일정한 지점에서만 그 외 다른 구성요소로 주입하여야 하고 특정 기능에 대해 형성된 각각의 구성요소와 함께 모듈식으로 형성될 수 있다. 주목되는 또 다른 특징은 원거리 원격 측정 모니터링 시스템(도시되지 않음)의 결합(incorporation)이며, 이는 트래킹(tracking) 수행을 고려할 것이고, 잠재적인 문제와 함께 유닛 트래킹(unit tracking), 출력 모니터링(out monitoring)에 대해 경계(alerts)한다. 또한 각각의 유닛은 개별 사용자의 요구에 따라 가변화되는 방출 제어 시스템(도시되지 않음)을 포함할 것이다. 이러한 방출 제어 측정 및 원거리 원격 측정의 추가는 전체 처리 과정을 보강하고 엔드 유저(end users)를 위해 보다 실용적으로 형성시킨다.
본 발명에 따라 바람직한 파워 플랜트는 작동 중에 함께 연결되는 2개의 표준 스키드 마운트(Standard skid mounts)(도시되지 않음) 상에 수용될 수 있다. 어느 한 스키드 조립체(skid assembly)는 가스 터빈 엔진, 턴키 발생기(turnkey generator, 46), 온-보드 변전소(onboard substation) 및 고온 열 교환 장치(20)의 절반(one-half of the high-temperature heat exchanger)을 포함한다. 또 다른 스키드(skid)는 로(furnace, 23)를 수용하고, 열 교환 장치(20)의 또 다른 절반과 방출 제어로 적층된다(stack).
가스 장벽 조립체(71)를 가진 로(furnace, 23)는 가스 터빈과 달리 어플리케이션(applications)에 있어서 사용될 수 있다. 예를 들어, 가스 장벽 조립체(71)의 작동은, 오염된 연료가 사용되는 극도의 환경에 발산 섹션(radiant section)이 영향을 받는 방식으로 작동하지만, 가스 터빈에 접근하지 못하는 로(furnace)의 어플리케이션으로 연장될 수 있다. 이러한 다소의 실례는 바이오매스(biomass) 또는 폐기물 열 복구 로(furnaces), 석탄을 이용하는 송풍 로(blast furnaces) 및 시설을 포함한다. 가스가 없는 터빈 어플리케이션에 있어서, 가스 터빈의 배출부에 의해 일반적으로 제공될 수 있는 열 부하(heat load) 및 흐름(mass flow)은 종래 기술에서 알려진 바와 같이 그 외 다른 수단에 의해 견줄만하다(emulated).
본 발명의 특별한 실시예가 전술되는 바와 같이 기술되는 반면, 그 외 다른 실시예는 본 발명의 범위 이내에서 가능하고 본 명세서 내용을 포함하도록 의도된다고 이해된다. 도시되지 않은 본 발명의 수정물 또는 변경물은 실례의 실시예를 통해 설명되는 바와 같이 본 발명의 범위로부터 벗어남이 없이 가능하다고 종래 기술의 당업자들에게 자명하게 될 것이다. 그러므로, 첨부된 청구항의 범위에 의해 본 발명이 고려된다.

Claims (23)

  1. 간접 점화식 가스 터빈 파워 플랜트에 있어서, 상기 파워 플랜트는
    (a) 압축기,
    (b) 상기 압축기에 기계적으로 연결된 터빈,
    (c) 로(furnace),
    (d) 상기 터빈으로 열 교환 장치의 유출구 단부 지점과 압축기로 열 교환 장치의 유입구 지점에서 유체 연통적으로 연결되며 상기 로(furnace) 내측부의 열 교환 장치 및,
    (e) 연소 생성물을 상기 열 교환 장치와 접촉하는 것을 방해하기 위하여 일부 열 교환 장치 주위에서 가스 장벽을 형성시키기 위한 수단을 포함하는 것을 특징으로 하는 파워 플랜트.
  2. 제 1 항에 있어서, 가스 장벽을 형성하기 위한 수단은 가스 장벽을 형성하기 위해 터빈으로부터 배출되는 가열된 작동 가스를 수용하기 위하여 상기 터빈에 유체 연통적으로 연결되는 것을 특징으로 하는 파워 플랜트.
  3. 제 1 항에 있어서, 상기 열 교환 장치는 대류 가열 섹션 및 발산 가열 섹션을 포함하고, 이에 가스 장벽을 형성하기 위한 수단은 발산 가열 섹션 주위에 존재하는 것을 특징으로 하는 파워 플랜트.
  4. 제 1 항에 있어서, 상기 로(furnace)는 석탄, 중유, 바이오매스, 용해 가스 및 연소 가능한 폐기물 재료를 구성하는 그룹으로부터 선택된 연료 공급원에 유체 연통적으로 연결된 버너를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  5. 제 4 항에 있어서, 상기 로(furnace)는 상기 연료 공급원에 유체 연통적으로 연결되고 상기 로(furnace)의 배출 단부 지점에서 애프터버너(afterburner)를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  6. 제 4 항에 있어서, 상기 버너는 상기 로(furnace) 내 연소를 위하여 터빈으로부터 배출되는 가열된 공기를 수용하기 위하여 상기 터빈에 유체 연통적으로 연결되는 것을 특징으로 하는 파워 플랜트.
  7. 제 3 항에 있어서, 가스 장벽을 형성하기 위한 수단은 일부 발산 가열 섹션(radiant heating section)의 주위에서 안내된 하나 이상의 가스 노즐을 가지고 가스 공급원에 연결된 하나 이상의 매니폴드를 포함하는 것을 특징으로 하는 파워 플랜트.
  8. 제 7 항에 있어서, 가스 장벽을 형성하기 위한 수단은 일부 발산 가열 섹션을 둘러싸는 복수의 매니폴드를 포함하는 것을 특징으로 하는 파워 플랜트.
  9. 제 8 항에 있어서, 가스 장벽을 형성하기 위한 수단에 의해 둘러싸인 발산 가열 섹션의 일부는 일반적으로 직선이고 평행하며 공간이 형성된 복수의 도관을 포함하고 상기 매니폴드는 상기 도관들 사이 공간에서 방향되는 것을 특징으로 하는 파워 플랜트.
  10. 제 9 항에 있어서, 로(furnace)는 다소의 도관 일부를 덮는 내열성 라이닝을 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  11. 제 9 항에 있어서, 가스 장벽을 형성하기 위한 수단은 가스 장벽을 형성하기 위한 수단에 의해 방출된 가스가 상기 가스 장벽을 형성하기 위해 방향되도록 상기 매니폴드 및 도관 주위에서 위치된 내열성 디버터(refractory diverter)를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  12. 제 1 항에 있어서, 상기 파워 플랜트는 상기 압축기로부터 열 교환 장치까지 가스 스트림을 작동 가스 스트림을 가진 터빈으로부터 배출된 작동 가스를 열적으로 커플링 결합하는 복열 장치를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  13. 제 12 항에 있어서, 로(furnace) 내 연소를 위한 터빈으로부터 배출되는 가열된 공기를 수용하기 위하여, 상기 터빈으로 유체 연통적으로 연결되는 버너를 포함하는 것을 특징으로 하는 파워 플랜트.
  14. 제 1 항에 있어서, 상기 파워 플랜트는 상기 압축기에 연결된 증발의 냉각 조립체를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  15. 제 14 항에 있어서, 증발의 냉각 조립체는 상기 압축기로 작동 가스 공급 스트림에 유체 연통적으로 연결된 하나 이상의 유입구 퍼깅 장치(fogging device), 상기 압축기로부터 열 교환 장치까지 작동 가스 스트림으로 유체 연통적으로 연결된 워터 스프레이(water spray), 상기 압축기 지점에서 방향된 중간 냉각 스프레이를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  16. 제 15 항에 있어서, 상기 압축기로부터 열 교환 장치까지 작동 가스 스트림을 갖는 터빈으로부터 배출된 작동 가스를 열적으로 연결하는 복열 장치(recuperator)를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  17. 제 15 항 또는 제 16 항에 있어서, 상기 로(furnace) 내 연소를 위한 터빈으로부터 배출된 가열된 공기를 수용하기 위하여 상기 터빈으로 유체 연통적으로 연결되는 버너를 더 포함하는 것을 특징으로 하는 파워 플랜트.
  18. 제 1 항에 있어서, 상기 압축기로부터 열 교환 장치까지 작동 가스 스트림에 유체 연통적으로 연결된 워터 스트림을 갖는 상기 로(furnace)에서부터 배출 스트림을 열적으로 커플링 결합하는 스팀 주입 조립체를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  19. 제 18 항에 있어서, 상기 압축기로부터 상기 열 교환 장치까지 작동 가스 스트림을 가지는 상기 터빈으로부터 배출된 작동 가스를 열적으로 커플링 결합하는 복열 장치를 추가적으로 포함하는 것을 특징으로 하는 파워 플랜트.
  20. 제 18 항 또는 제 19 항에 있어서, 상기 로(furnace) 내 연소를 위한 터빈으로부터 배출된 가열 공기를 수용하기 위하여 터빈으로 유체 연통적으로 연결되는 버너를 더 포함하는 것을 특징으로 하는 파워 플랜트.
  21. 간접 점화식 가스 터빈 파워 플랜트에 있어서, 상기 파워 플랜트는
    (a) 압축기,
    (b) 상기 압축기로 기계적으로 연결된 터빈,
    (c) 로(furnace),
    (d) 상기 터빈으로 열 교환 장치의 유출구 단부 지점과 압축기로 열 교환 장치의 유입구 단부 지점에서 유체 연통적으로 연결되며 상기 로(furnace) 내측부의 열 교환 장치 및,
    (e) 연소 생성물을 상기 열 교환 장치의 일부와 접촉함으로부터 방지하는 가스 장벽을 형성하기 위해 작동 가능하며 열 교환 장치 일부 주위의 가스 방출 매니폴드를 포함하는 것을 특징으로 하는 간접 점화식 가스 터빈 파워 플랜트.
  22. 압축기로 기계적으로 연결된 터빈과 압축기를 포함하는 간접 점화식 가스 터빈 파워 플랜트를 위한 로(furnace)에 있어서, 상기 로(furnace)는
    (a) 상기 터빈으로 열 교환 장치의 유출구 단부 지점과 압축기로 열 교환 장치의 유입구 단부 지점에서 유체 연통적으로 연결되며 상기 로(furnace) 내측부의 열 교환 장치 및,
    (b) 연소 생성물을 상기 열 교환 장치와 접촉함으로부터 방지하기 위한 열 교환 장치의 일부 주의에서 가스 장벽을 형성시키기 위한 수단을 포함하는 것을 특징으로 하는, 압축기로 기계적으로 연결된 터빈과 압축기를 포함하는 간접 점화식 가스 터빈 파워 플랜트를 위한 로(furnace).
  23. 압축기로 기계적으로 연결된 터빈과 압축기를 포함하는 간접 점화식 가스 터빈 파워 플랜트를 위한 로(furnace)에 있어서, 상기 로(furnace)는
    (a) 상기 터빈으로 열 교환 장치의 유출구 단부 지점과 압축기로 열 교환 장치의 유입구 단부 지점에서 유체 연통적으로 연결시키기 위하며 상기 로(furnace) 내측부의 열 교환 장치 및,
    (b) 연소 생성물을 열 교환 장치의 일부와 접촉하는 것을 방지하는 가스 장벽을 형성하기 위해 작동 가능하며 상기 열 교환 장치의 일부 주위에서 가스 장벽 매니폴드를 포함하는 것을 특징으로 하는, 압축기로 기계적으로 연결된 터빈과 압축기를 포함하는 간접 점화식 가스 터빈 파워 플랜트를 위한 로(furnace).
KR1020087027981A 2006-05-02 2007-05-02 간접 점화식 가스 터빈 파워 플랜트 KR101175829B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79658706P 2006-05-02 2006-05-02
US60/796,587 2006-05-02
PCT/CA2007/000741 WO2007124592A1 (en) 2006-05-02 2007-05-02 Indirect-fired gas turbine power plant

Publications (2)

Publication Number Publication Date
KR20090018610A KR20090018610A (ko) 2009-02-20
KR101175829B1 true KR101175829B1 (ko) 2012-08-24

Family

ID=38655017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087027981A KR101175829B1 (ko) 2006-05-02 2007-05-02 간접 점화식 가스 터빈 파워 플랜트

Country Status (7)

Country Link
US (1) US8448438B2 (ko)
EP (1) EP2019917A1 (ko)
JP (1) JP4791573B2 (ko)
KR (1) KR101175829B1 (ko)
CN (1) CN101484675B (ko)
CA (1) CA2650981A1 (ko)
WO (1) WO2007124592A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669423B2 (en) * 2007-01-25 2010-03-02 Michael Nakhamkin Operating method for CAES plant using humidified air in a bottoming cycle expander
FR2928414B1 (fr) * 2008-03-07 2011-03-25 Sorea Dispositif de production d'energie a partir de biomasse
CN101709672B (zh) * 2009-12-07 2011-10-05 哈尔滨翔凯科技发展有限公司 高效高温型内外混燃气轮机
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
TW201408592A (zh) * 2012-04-17 2014-03-01 艾克頌美孚上游研究公司 用於形成碳同素異形體之碳質進料
EP2877724B1 (en) * 2012-07-24 2018-10-17 Schmid AG - Energy Solutions Solid biomass-fuelled gas turbine system
US9938895B2 (en) 2012-11-20 2018-04-10 Dresser-Rand Company Dual reheat topping cycle for improved energy efficiency for compressed air energy storage plants with high air storage pressure
JP2014136742A (ja) * 2013-01-16 2014-07-28 Yasuo Shimotsubo 林地残材活用燃料供給方法、林地残材活用燃料供給システム、林地残材活用燃料、および低炭素型木質燃料
US9328669B2 (en) * 2013-03-15 2016-05-03 Alstom Technology Ltd Dynamic and automatic tuning of a gas turbine engine using exhaust temperature and inlet guide vane angle
WO2016022602A1 (en) * 2014-08-05 2016-02-11 Monarch Power Corp. Quad generation of electricity, heat, chill, and clean water
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
FR3063311B1 (fr) * 2017-02-27 2019-07-19 Vianney Rabhi Systeme de refroidissement regeneratif
GB2573131A (en) * 2018-04-25 2019-10-30 Hieta Tech Limited Combined heat and power system
US11776702B2 (en) 2021-02-08 2023-10-03 Rolls-Royce North American Technologies Inc. System for control of externally heated turbine engine
US11499474B2 (en) 2021-02-08 2022-11-15 Rolls-Royce North American Technologies Inc. System for startup support of externally heated turbine engine
US11879385B2 (en) 2021-02-08 2024-01-23 Rolls-Royce North American Technologies Inc. Engine system with fuel-drive thermal support
CN115263553A (zh) * 2022-08-08 2022-11-01 克兰茨(海南)科技有限公司 热交换式轮机发电机及其工作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586474B1 (ko) 1998-08-20 2006-06-07 가부시끼가이샤 히다치 세이사꾸쇼 보일러 및 그 보일러 내 혼합기를 연소시키는 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820348A (en) 1953-08-11 1958-01-21 Techische Studien Ag F Utilizing intermittently produced waste heat
HU168785B (ko) 1974-12-09 1976-07-28
US4228659A (en) 1978-05-22 1980-10-21 Purification Sciences Inc. Gas turbine system
US4326382A (en) 1980-10-24 1982-04-27 E. H. Robbins Power plant
US4380154A (en) * 1981-06-23 1983-04-19 Thermacore, Inc. Clean coal power system
US4492085A (en) 1982-08-09 1985-01-08 General Electric Company Gas turbine power plant
US4785634A (en) 1987-05-28 1988-11-22 General Electic Company Air turbine cycle
US4840226A (en) 1987-08-10 1989-06-20 The United States Of America As Represented By The United States Department Of Energy Corrosive resistant heat exchanger
US5431016A (en) * 1993-08-16 1995-07-11 Loral Vought Systems Corp. High efficiency power generation
US5664414A (en) 1995-08-31 1997-09-09 Ormat Industries Ltd. Method of and apparatus for generating power
US5799724A (en) 1997-07-22 1998-09-01 The Babcock & Wilcox Company Trapezoidal deflectors for heat exchanger tubes
CN1154791C (zh) 1999-04-28 2004-06-23 联邦科学及工业研究组织 热动力设备
US20030066291A1 (en) * 2001-10-05 2003-04-10 Claudio Filippone Internally powered compact actuator for robotic applications
JP2005069575A (ja) 2003-08-25 2005-03-17 Takuma Co Ltd 熱交換器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586474B1 (ko) 1998-08-20 2006-06-07 가부시끼가이샤 히다치 세이사꾸쇼 보일러 및 그 보일러 내 혼합기를 연소시키는 방법

Also Published As

Publication number Publication date
US20100050639A1 (en) 2010-03-04
CN101484675B (zh) 2012-01-25
CN101484675A (zh) 2009-07-15
KR20090018610A (ko) 2009-02-20
JP2009535559A (ja) 2009-10-01
WO2007124592A1 (en) 2007-11-08
JP4791573B2 (ja) 2011-10-12
CA2650981A1 (en) 2007-11-08
US8448438B2 (en) 2013-05-28
EP2019917A1 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR101175829B1 (ko) 간접 점화식 가스 터빈 파워 플랜트
US6247315B1 (en) Oxidant control in co-generation installations
US7866283B2 (en) Heating appliance
US8479508B2 (en) Catalytic burner apparatus for stirling engine
US7377107B2 (en) Cogeneration system
JP7039782B2 (ja) 火力発電プラント、混焼ボイラ及びボイラの改造方法
CN104541104A (zh) 利用稀释气体混合器的连续燃烧
CN105276574A (zh) 带有内部烟道气再循环的炉系统
US6287111B1 (en) Low NOx boilers, heaters, systems and methods
CS207551B2 (en) Combustion facility
KR950006874B1 (ko) 관소(管巢)연소형 연소기(Combustor)를 구비한 가스터어빈 장치
EP0793790B1 (en) Method of operating a combined cycle power plant
KR100218605B1 (ko) 간접 가열식 가스터어빈의 상부장착 연소기
US10570823B2 (en) Heat recovery unit and power plant
RU2339878C2 (ru) Способ плазменно-угольной безмазутной растопки котла и устройство для его реализации
RU2741994C2 (ru) Газотурбинная установка
JP2004108150A (ja) 熱電併給システム
PL198811B1 (pl) Aparat spalający pracujący przy ciśnieniu wyższym od ciśnienia atmosferycznego
SE0701181L (sv) Integrerad brännare och värmeväxlare i ett kombinerat värme- och kraftsystem
FI100355B (fi) Menetelmä ja laitteisto kaasun polttamiseksi tulipesässä
ES2358837T3 (es) Procedimiento que usa un sistema de cogeneración con un sistema auxiliar de aire enriquecido en oxígeno.
KR200204324Y1 (ko) 온수보일러 겸용 난로
WO2017130165A1 (en) A high temperature combustion system and its process thereof for producing heat for wide range of application
MXPA00009443A (en) Method and system for the recovery of heat from products of combustion
Jugjai et al. Concept for the Future Burner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee