KR101163280B1 - E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어 - Google Patents

E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어 Download PDF

Info

Publication number
KR101163280B1
KR101163280B1 KR20097009216A KR20097009216A KR101163280B1 KR 101163280 B1 KR101163280 B1 KR 101163280B1 KR 20097009216 A KR20097009216 A KR 20097009216A KR 20097009216 A KR20097009216 A KR 20097009216A KR 101163280 B1 KR101163280 B1 KR 101163280B1
Authority
KR
South Korea
Prior art keywords
delete delete
wtru
transmit power
tpc
cqi
Prior art date
Application number
KR20097009216A
Other languages
English (en)
Other versions
KR20090091121A (ko
Inventor
성-혁 신
도널드 엠 그리에코
로버트 엘 올젠
Original Assignee
인터디지탈 테크날러지 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39155034&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101163280(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 인터디지탈 테크날러지 코포레이션 filed Critical 인터디지탈 테크날러지 코포레이션
Publication of KR20090091121A publication Critical patent/KR20090091121A/ko
Application granted granted Critical
Publication of KR101163280B1 publication Critical patent/KR101163280B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]

Abstract

무선 송수신 유닛(WTRU)의 송신 전력 제어(TPC)를 수행하기 위한 방법 및 장치가 개시된다. 다운링크 제어 정보(DCI)가 수신기에 의해 수신된다. DCI는 업링크 스케쥴링 정보 및 TPC 정보 모두를 포함한다. 송신 전력 레벨은 프로세서에 의해 물리적 업링크 채널에 대해 결정된다. 결정된 송신 전력 레벨은 경로손실 인자에 적어도 기초하는데, 이 경로손실 인자는 TPC 정보 및 측정된 경로손실에 응답하여 조정된다. 그 다음, 스케쥴링 정보 및 결정된 송신 전력 레벨에 기초하여 송신기에 의해 물리적 업링크 채널 상에서 정보가 송신된다.

Description

E-UTRA를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (CQI 기반의) 업링크 송신 전력 제어{COMBINED OPEN LOOP/CLOSED LOOP (CQI-BASED) UPLINK TRANSMIT POWER CONTROL WITH INTERFERENCE MITIGATION FOR E-UTRA}
본 발명은 무선 통신 시스템에 관한 것이다.
E-UTRA(evolved universal terrestrial radio access) 업링크(UL)에 대해, 제3 세대 파트너십 프로젝트(3GPP) LTE(long term evolution) WG1(Work Group 1)에 제출된 몇몇 송신 전력 제어(TPC, transmit power control) 제안들이 있다. 이러한 제안들은 일반적으로, (저속의) 개방 루프 TPC 및 저속의 폐 루프 또는 채널 품질 정보(CQI, channel quality information) 기반의 TPC로 나눠질 수 있다.
개방 루프 TPC는 경로 손실(pathloss) 측정 및 시스템 파라미터에 기초하는데, 그 경로 손실 측정은 무선 송수신 유닛(WTRU)에서 수행되고, 시스템 파라미터는 진화형 노드-B(evolved Node-B, e노드-B)에 의해 제공된다.
폐 루프 TPC는 전형적으로 (TPC 커맨드와 같은) TPC 피드백 정보에 기초하는데, 이 TPC 피드백 정보는 일반적으로 e노드B에서 측정된 신호 대 간섭 잡음비(SINR, signal-to-interference noise ratio)를 이용하여 피드백 정보가 유도되는 e노드B로부터 주기적으로 전송된다.
개방 루프 TPC는, 효율적인 방법, 예컨대 송신 전력의 이력(history) 없이 롱 텀 채널 변화(long term channel variation)(예컨대, 경로 손실 및 전파 음영)를 보상할 수 있다. 그러나, 개방 루프 TPC는 전형적으로 경로 손실 측정 오류 및 송신 전력 설정 오류를 야기한다. 한편, 저속의 폐 루프 또는 CQI 기반의 TPC는 e노드B로부터 시그널링된 피드백에 기초하기 때문에 측정 및 송신 전력 설정 시의 오류에 덜 민감하다. 그러나, 저속의 폐 루프 또는 CQI 기반의 TPC는, UL 송신 중지에 기인하여 이용 가능한 피드백이 없는 경우, 또는 피드백 송신의 중단 또는 채널 변화가 매우 격렬할 때 성능이 열화된다.
E-UTRA UL에 대해, 적어도 경로 손실 및 전파 음영을 보상하거나 및/또는 간섭을 완화하기 위해 TPC가 고려된다. 간섭 완화와 개방 루프 TPC 방식 및 폐 루프 TPC를 결합하는, 향상된 UL TPC 방식이 개시된다. 폐 루프 TPC는 CQI(예컨대, UL 그랜트 정보 또는 변조 및 코딩 세트(MCS, modulation and coding set) 정보)에 기초한다. 이러한 향상된 UL TPC 방식은 UL 데이터 및 제어 채널 모두를 위해 이용할 수 있다. 또한, 이 제안하고 있는 향상된 UL TPC 방식은, E-UTRA UL 요구조건들을 달성하기 위해, 동적 시스템/링크 파라미터 및 채널 상태에 대해 유연하며 적응성이 있다.
또한, 채널 및 CQI 추정이 UL 기준 신호(reference signal)에 기초하는 양호하지 않은 UL 채널 및 CQI 추정을 피하기 위하여, 100Hz(즉, 하나 또는 두 개의 하이브리드 자동 반복 요청(HARQ) 순환 주기(들) 당 한 번의 TPC 업데이트)와 같은 느린 속도로 데이터 채널에 대한 UL TPC가 수행되는 방법이 제안된다. 데이터 연관된 제어 시그널링을 위하여, 최대 CQI 보고 속도가 1msec 송신 타이밍 간격(TTI, transmission timing interval) 당 한 번이라고 가정한다면, TPC 업데이트 속도는 1000Hz까지 증가될 수 있다.
후속하는 상세한 설명뿐만 아니라 상술한 간단한 설명은, 첨부한 도면들을 참조하여 읽을 때 더욱 잘 이해할 수 있다.
도 1은 WTRU 및 e노드B를 포함하는 무선 통신 시스템을 도시한 도면이다.
도 2는 도 1의 시스템에 의해 구현된 TPC 절차의 흐름도를 도시한 도면이다.
이후부터 언급될 때, 용어 "무선 송수신 유닛(WTRU)"은, 사용자 장치(UE), 이동국, 고정 또는 이동 가입자 유닛, 무선 호출기, 셀룰러 텔레폰, 개인 휴대용 정보 단말기(PDA), 컴퓨터 또는 무선 환경에서 동작할 수 있는 임의의 다른 종류의 사용자 장치를 포함하지만, 이들로 한정되는 것은 아니다. 이후부터 언급될 때, 용어 "진화형 노드-B(e노드B)"는, 기지국, 노드-B, 셀, 사이트 제어기, 액세스 포인트(AP), 또는 무선 환경에서 동작할 수 있는 임의의 다른 종류의 인터페이싱 장치를 포함하지만, 이들로 한정되는 것은 아니다.
도 1은 적어도 하나의 WTRU(105) 및 적어도 하나의 서빙 e노드B(110)를 포함하는 무선 통신 시스템(100)을 도시한 도면이다. WTRU(105)는 수신기(115), 송신기(120), 프로세서(125), 및 적어도 하나의 안테나(130)를 포함한다. 서빙 e노드 B(110)는 송신기(135), 수신기(140), 프로세서(145), 맵핑 테이블(150), 및 적어도 하나의 안테나(155)를 포함한다. WTRU(105) 및 e노드B(110)는 다운링크(DL) 제어 채널(160), UL 공유 데이터 채널(165), 및 UL 제어 채널(170)을 통해 통신한다.
e노드B(110)의 프로세서(145)는 수신기(140)에 의해 수신된 신호에 기초하여, UL 열잡음 간섭(IoT, interference over thermal noise) 측정을 행하며, 측정된 IoT 측정치를 미리 정의된 문턱값과 비교한다. 프로세서(145)는 또한, 정기적으로 또는 트리거될 때마다 e노드B(110)의 송신기(135)에 의해 브로드캐스팅되는 간섭 부하 표시자를 발생시킨다. 간섭 부하 표시자는, e노드B(100)에서 수행된 IoT 측정의 측정치가 미리 정의된 문턱값을 초과하는지 여부를 표시한다. WTRU(105)의 수신기(115)가 간섭 부하 표시자를 수신하고 디코딩할 때, WTRU(105)의 프로세서(125)는 e노드B(110)에서의 IoT의 상태를 판단할 수 있으며, 이 상태를 이용하여 e노드B(110)의 셀 간 간섭을 완화시킬 수 있다.
WTRU(105)는 특정 셀에 위치되어 있는 동안, 시스템 파라미터 및 경로 손실 측정치에 기초하여 개방 루프 TPC를 수행한다. WTRU(105)는 e노드B(110)의 셀 간 간섭을 완화시키기 위하여 간섭 부하 표시자를 신뢰하는데, 이 표시자는 다른 이웃셀들과 비교했을 때 특정한 셀에 이웃하는 셀들 중 가장 강한 셀에 위치된다. 가장 강한 셀이란, WTRU(105)가 가장 높은 경로 이득(즉, 가장 적은 경로 손실)을 갖는 셀을 말한다. 그 다음, 개방 루프 오류를 보상하기 위하여, WTRU(105)는 DL 제어 채널(160)을 통해 수신된 CQI 및 목표 SINR에 따라, 개방 루프 오류에 기인하여 바이어스될 수 있는, 자신의 개방 루프 기반의 계산된 송신 전력을 정정할 수 있다.
주목할 것은, CQI는 e노드B(110)가 UL 링크 적응화를 위해 DL 제어 채널(160)을 통해 WTRU(105)에 시그널링하는 UL 그랜트 정보(또는 MCS)를 말한다는 것이다. CQI는 서빙 e노드B(110)가 DL 제어 채널(160)로 WTRU(105)에 다시 공급하는, WTRU 고유의(specific) UL 채널 품질을 나타낸다. E-UTRA에서, CQI는 UL 그랜트 정보의 형태로 제공된다. 목표 SINR은 e노드B(110)에 의해 결정되고 상위 계층 시그널링을 통해 WTRU(105)에 시그널링된 WTRU 고유의 파라미터이다.
UL 공유 데이터 채널(165)을 위한 WTRU(105) 송신 전력 PTx는, e노드B(110)의 송신기(135)에 의해 송신된 DL 기준 신호(175)에 기초하여 최초의 송신 단계에서 결정된다. DL 기준 신호(175)는, 경로 손실 측정을 위해 WTRU(105)가 사용하는 알려진 송신 전력을 갖는다. 셀 내 TPC를 위해, WTRU(105) 최초 송신 전력 PTx는, 아래와 같이 개방 루프 TPC에 기초하여 정의된다:
PTx = max(min(SINRT + PL + IN0 + K,Pmax), Pmin)
여기서 SINRT는 서빙 e노드B(110)에서의 목표 신호 대 간섭 잡음비(SINR) 이고(단위는 dB), PL은 전파 음영을 포함하는, 서빙 e노드B(110)에서부터 WTRU(105)까지의 경로 손실(즉, 설정값 파라미터)(단위는 dB)이다. WTRU(105)는, DL 시그널링을 통해 WTRU(105)에 알려져 있는 송신 전력을 가진 DL 기준 신호(175)에 기초하여 경로 손실을 측정한다. 값 IN0은 서빙 e노드B(110)에서의 UL 간섭 및 잡음 전 력(dBm)이고, K는 서빙 e노드B(110)를 위해 사용된 전력 제어 마진(margin)인데, 이러한 사실을 고려하면, 실제로 DL 기준 신호(175)의 전력은 실제 송신 전력으로부터의 오프셋일 수 있다. Pmax 및 Pmin은 각각, UL 공유 데이터 채널(165) 상에서 WTRU(105)에 의해 행해진 송신에 대한 최대 송신 전력 레벨(dBm) 및 최소 송신 전력 레벨(dBm)일 수 있다.
WTRU(105) (또는 WTRU의 서브 그룹)에 대한 목표 SINR은, 서빙 e노드B(110)에서의 특정 메트릭에 따라 조정 가능하다고 가정한다. 목표 SINR 조정을 위해 외루프(outer loop) TPC 방식을 이용할 수 있다. 일반적으로, 목표 SINR은 UL 공유 데이터 채널(165)의 목표 링크 품질(예컨대, 블럭 에러율(BLER))에 기초하여 결정된다. 또한, 상이한 다중경로 페이딩 채널 상태는 통상적으로, 주어진 목표 링크 품질(예컨대, BLER)에 대해 상이한 목표 SINR을 요구한다. 이에 따라, 메트릭은 WTRU(105)에 대한 목표 링크 품질 (및 아마도 페이딩 채널 상태)을 포함한다.
UL 다중 입력 다중 출력(MIMO, multiple input multiple output)의 경우, 상이한 MIMO 모드가 주어진 링크 품질(예컨대, BLER)에 대해 상이한 전력 또는 SINR을 요구한다는 사실을 고려하면, 목표 SINR 또한 선택된 MIMO 모드에 따라 달라진다. 이러한 경우, WTRU(105)는 복수의 안테나(130)들을 포함할 수 있다.
대안으로서, WTRU(105) 송신 전력 PTx는 아래와 같이 셀 간 TPC를 포함하는 것으로 정의될 수 있다:
PTx = max(min(SINRT + PL + IN0 + K + ㅿ(IoTs), Pmax), Pmin)
여기서 값 ㅿ(IoTs)는, 가장 강한(S) 이웃 셀 IoTs의 UL 간섭 부하 표시자(IoTs)의 함수인, UL 부하 제어 스텝 사이즈(step size)를 나타낸다.
ㅿ(IoTs)는 아래와 같이 정수값을 취한다:
Figure 112009026831452-pct00001
여기서 δ는 미리 정의된 시스템 파라미터, 예컨데 δ= -1 또는 -2 dB이다. ㅿ(IoTs)를 이용하면, 이웃 셀들의 셀 간 간섭이 완화될 수 있다. 셀 중간에 있는 WTRU가 셀 가장자리에 있는 WTRU보다 다른 셀에 간섭을 덜 도입하기 때문에, 부하 제어 스텝 사이즈의 단편(fraction)은 아래와 같이 고려된다:
Figure 112009026831452-pct00002
여기서 x는 단편의 셀 간 부하 제어 인자이다.
개개의 이웃 셀에서부터 WTRU(105)까지의 경로 손실 측정치에 기초하여, WTRU(105)에서 가장 강한 이웃 셀이 결정되는데, 여기서 가장 강한 이웃 셀은 WTRU(105)를 현재 서빙하고 있는 셀에 이웃하는 셀들 중에서 WTRU(105)가 가장 적은 경로 손실을 갖는 이웃 셀이다.
셀 간 간섭(예컨대, 셀 간 TPC)을 완화시키기 위해 특히 가장 강한 이웃 셀에 ㅿ(IoTs)가 도입된다. 셀 간 TPC를 위해, e노드B는 (정기적으로 또는 주기적으로) UL 간섭을 측정한 다음, 그 측정한 간섭 레벨이 미리 정의된 문턱값을 초과하는지 여부를 판단한다. UL 간섭에 대한 결과 상태는, IoTs(즉, 부하 표시자)를 이용하여, (정기적으로 또는 트리거될 때마다) e노드B로부터 브로드캐스팅된다. 예를 들어, 간섭이 문턱값을 초과한다면, IoTs는 1로 설정됨으로써, e노드B(110)는 이웃 셀의 WTRU들에게 그들의 송신 전력을 특정한 값만큼 감소시킬 것을 명령하는데, 그 이유는 e노드B(110)가 UL에서의 과도한 셀 간 간섭을 경험하기 때문이다. 그렇지 않다면, IoTs는 0으로 설정됨으로써, 이웃 셀의 WTRU들이 그들의 송신 전력이 감소될 것을 요구하지 않도록, e노드B(110)는 현재의 UL 간섭 레벨을 수용한다. WTRU(105)는 가장 강한 이웃 셀로부터 수신된 부하 표시자를 디코딩한 다음, 커맨드(IoTs)를 따른다. IoTs가 1로서 디코딩된다면, WTRU(105)의 송신 전력은 ㅿ(IoTs) 만큼 감소된다, 즉 ㅿ(IoTs) < 0dB 이다. IoTs가 0으로서 디코딩된다면, ㅿ(IoTs) = 0dB 이다.
WTRU(105)가 선택된 가장 강한 이웃 셀로부터의 표시자 비트를 디코딩할 수 있도록, 각각의 셀은 (고속 업링크 패킷 액세스(HSUPA, high speed uplink packet access)의 상대적 그랜트와 유사하게) UL 간섭 부하 비트를 주기적으로 브로드캐스팅한다고 가정한다. WTRU(105)는 자신의 서빙 셀과 가장 강한 이웃 셀 간의 경로 손실률에 기초하여, WTRU(105)가 셀 가장 자리에 있는지 또는 셀 내에 있는지를 결정할 수 있다. 대안으로서, 단편의 셀 간 부하 제어 인자 x는 아래와 같이 정의될 수 있다:
Figure 112009026831452-pct00003
WTRU(105)가 (랜덤 액세스 채널(RACH, random access channel) 처리와 유사하게) 전력을 상승시킨 직후에 자신의 TPC 이행을 시작하는 최초의 송신 단계 후, 또는 세션 접속이 구축된 후의 WTRU 송신 전력은 아래와 같이 계산된다:
PTx = max(min(SINRT + PL + IN0 + K + α·f(CQI, SINRT), Pmax), Pmin)
여기서 f(CQI, SINRT)는 UL CQI(예컨대, UL 그랜트 정보 또는 MCS 정보), 및 대응하는 목표 SINR에 기초한 폐 루프 정정 인자이다. 가중치 인자(weighting factor) α는 채널 상태 및 CQI 가용성 (또는 UL 송신 중지)에 따라, 결정될 수 있는데, 0 ≤ α ≤ 1 이다. 예를 들어, 스케쥴링된 UL 데이터 송신의 결핍에 기인하여 e노드B(110)로부터 이용 가능한 UL CQI (UL 그랜트 또는 MCS 정보)가 없는 경우, 가중치 인자 α는 0으로 설정된다. 그렇지 않다면, 가중치 인자 α는 1로 설정된다. 간단하게 설명하기 위하여, 여기서는 비록 가중치 인자 α가 0 또는 1로 설정되지만, 대안적인 실시예는 채널 상태 및 UL/DL 채널 구성에 적응되는 적응α값을 포함한다.
정정 인자 f(CQI, SINRT)를 이용하면, 주파수 분할 듀플렉스(FDD)에서의 UL과 DL의 완벽하지 않은 상호관계(reciprocity)에 주로 기인하는 경로 손실 측정 오류, 및 비선형적인 전력 증폭에 기인하는 WTRU(105) 송신기(120)의 장애(impairment)를 포함하는 개방 루프 TPC 관련 오류들을 보상할 수 있다. 설정값 파라미터인 경로 손실과 더불어, e노드B(110)는 정정 인자가 그 또한 설정값들인, SINR, IN0, 및 K와 같은 TPC 관련 시스템 파라미터들을 조정하는 것을 용이하게 할 수 있다. 예를 들어, e노드B(110)가 주어진 WTRU(105)에 대한 목표 SINR을 조정한 다음, WTRU(105)가 그 조정에 대해 알게 할 필요한 경우, e노드B(110)는 목표 SINR을 WTRU(105)에 직접 시그널링하기 보다는, WTRU(105)에 대한 CQI(UL 그랜트)를 그에 따라 조정할 수 있다. UL CQI가 e노드B(110)에서 수신된 SINR을 나타낸다는 사실을 고려하면, 서빙 e노드B(110)로부터의 UL CQI(UL 그랜트 또는 MCS 정보) 피드백에 따라, WTRU(105)에 의해 정정 인자가 계산된다. 예를 들면,
f(CQI, SINRT) = SINRT - E{SINRest(CQI)}(dB) 이다.
여기서, SINRest(CQI)는 WTRU(105)가 UL CQI 피드백으로부터 유도한, e노드B가 수신한 SINR 추정치를 나타낸다. E{SINRest(CQI)}는 아래의 식과 같이 되도록, 추정된 SINR의 시간에 대한 평균을 나타낸다:
Figure 112009026831452-pct00004
여기서 CQIk는 k번째 수신된 CQI를 나타내고, ρ는 평균화 필터 계수를 나타내는데, O ≤ ρ ≤ l 이다.
목표 SINR과 (보고된 CQI로부터 유도된) 추정된 SINR 간의 차이에 의해 상기와 같이 주어진 정정 인자는, 보상될 필요가 있는 개방 루프 TPC 관련 오류들을 통상 나타낸다.
제안된 TPC 방식을 위한 e노드B 시그널링
WTRU (또는 WTRU의 서브 그룹) 고유의 파라미터인 목표 SINR 레벨, 즉 SINRT는, e노드B(110)로부터 WTRU(105) 까지의 거리의 함수(예컨대, 경로 손실)로서, 및/또는 BLER과 같은 주어진 품질 요구조건(들)로서 e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다. 통상적으로, e노드B(110)는 목표 품질(예컨대, BLER)을 목표 SINR 값으로 맵핑하기 위해 맵핑 테이블(150)을 이용한다. 이와 같은 맵핑 데이블이 발생되는 방법은 e노드B의 (또는 반송파 오퍼레이터의) 소유 방식(proprietary scheme)이다. 목표 SINR은 외루프 메커니즘을 통해 조정될 수 있다. 목표 SINR의 시그널링은 목표 SINR의 조정시 인 밴드(in band) L1/2 제어 시그널링을 통해 행해진다.
DL 기준 신호를 위해 주로 이용되는 e노드B 고유의 파라미터인 전력 제어 마진 K는 e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다. 예를 들어, DL 기준 신호(175)는 상위 계층 시그널링을 통해 WTRU에 알려져 있는 일정한 송신 전력 레벨로 송신되기 때문에, WTRU(105)의 경로 손실 측정을 위해 사용된다. 그러나, DL 기준 신호(175)의 실제 송신 전력은 e노드B의 소유 방식에 기인하여 시그널링된 전력 값과 상이할 수 있다. 이러한 경우, 전력 오프셋은 실제 사용된 송신 전력과 반-정적 상태로(on a semi-static basis) 브로드캐스트 채널(BCH, broadcast channel)을 통해 시그널링된 송신 전력 간의 오프셋이다. K는 반-정적 상태이고 브로드캐스트 채널(BCH)을 통해 시그널링될 것이다. WTRU(105)는 자신의 UL/DL 경로 손실 계산을 위해 이러한 정보를 이용한다. 주목할 것은, 전력 제어 마진 K는 다른 파라미터들과 함께 개별적으로 시그널링되는 것으로 가정되지만,
SINRT(임베딩 이후) = SINRT + K (dB)가 되도록, 목표 SINR, 즉 SINRT에 임베딩될 수 있다는 것이다.
이러한 경우, WTRU(105)로의 K의 명시적인(explicit) 시그널링이 요구되지 않는다.
사용중인 부반송파 (또는 무선 베어러(RB)) 모두 또는 부반송파의 서브세트에 걸쳐서 평균화된, 총 UL 간섭 및 잡음 레벨인 IN0는, e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다. 이는 e노드B(110)에 의해 측정/유도 (및 아마도 BCH를 통해 시그널링)된다. 일반적으로 이러한 시그널링을 위한 업데이트 속도는 상대적으로 느리다. e노드B(110)는 잡음 추정 기술과 같은 e노드B 소유 방식을 이 용하여 정기적으로 IN0를 측정/추정한다.
최대 및 최소 UL 송신 전력 레벨인 Pmax 및 Pmin은, e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다. 이 Pmax 및 Pmin은 WTRU 성능에 의존하는 파라미터일 수 있거나, 또는 e노드B(110)에 의해 명백히 시그널링될 수 있다.
원래는 UL 링크 적응화(예컨대, 적응 변조 및 코딩(AMC, adaptive modulation and coding)를 목적으로 시그널링되는 UL CQI(예컨대, UL 그랜트 정보 또는 MCS 정보)는, (TTI 당 한 번인 최대 시그널링 속도, 예컨대 1000Hz로) e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다.
UL CQI (예컨대, UL 그랜트 정보)는, e노드B(110)가 WTRU(105)에 시그널링하는 WTRU 고유의 피드백 정보이다. UL CQI는 원래 UL 링크 적응화를 목적으로 사용되었지만, 제안된 결합된 개방 루프 및 폐 루프 TPC의 폐 루프 컴포넌트를 위해서도 사용된다. 일반적으로, CQI(UL 그랜트)는 UL 채널 상태(예컨대, e노드B(110)에서의 SINR 측정) 및 SINR-CQI 맵핑 규칙에 기초하여 유도되는데, 이는 UL CQI가 e노드B(110)에서 측정된 SINR을 나타낸다는 것을 의미한다. 이에 따라, 일단 WTRU(105)가 CQI를 수신하고 e노드B(110)에서의 SINR-CQI 맵핑을 위해 사용되는 맵핑 규칙이 WTRU(105)에 주어지면, WTRU(105)는 수신된 CQI를 SINR 추정치로 해석할 수 있다. 추정된 SINR은 수학식 (6)에 따라 수정항(correction term)을 계산하는데 사용된다.
CQI 피드백 발생을 위해 e노드B(110)가 사용하는 CQI 맵핑 규칙 (또는 CQI와 측정된 SINR 간의 바이어스)은 e노드B(110)에 의해 WTRU(105)에 시그널링될 수 있다. 이런 규칙 또는 파라미터는 목표 SINR로 결합될 수 있다. 이러한 경우, 규칙 (또는 파라미터)의 명시적인 시그널링은 요구되지 않는다.
상기 TPC 방식은, 목표 SINR, 셀 간섭/잡음 레벨, 기준 신호 송신 전력, 및 상수 값을 포함하여, 느린 속도로 WTRU에 브로드캐스팅될 수 있는 (또는 직접적으로 시그널링될 수 있는) 상기 열거된 시스템 파라미터들 외에 추가의 피드백 TPC 커맨드를 요구하지 않는다는 것 때문에 이롭다. 또한, 상기 TPC 방식은, E-UTRA 요구조건을 달성하기 위하여, 동적 시스템/링크 파라미터들(목표 SINR 및 셀 간 간섭 로딩 조긴), 및 채널 상태(경로 손실 및 전파 음영)에 대해 유연하고 이들에 적응화되도록 설계된다. 또한, 상기 TPC 방식은 AMC, HARQ, 및 적응형 MIMO 등의 다른 링크 적응화 체계와 양립할 수 있다.
본 명세서에서 제안되는 방식이, E-UTRA UL을 위해 제안된 결합된 개방 루프 및 폐 루프 TPC의 폐 루프 컴포넌트(예컨대, 정정 인자)를 위해 UL CQI(예컨대, UL 그랜트 정보)를 이용하지만, 대안으로서 e노드B(110)는 UL 그랜트 정보에 임베딩된 정정 커맨드를 WTRU(105)에 명시적으로 시그널링할 수 있다. 이러한 경우, WTRU(105)는 (아마도 UL CQI와 결합된) 폐 루프 정정 인자를 위해 명시적으로 시그널링된 정정 커맨드를 이용할 수 있다. 또한, 서빙 e노드B(110)가 셀 간 간섭 레벨을 다른 셀들과 동등하게 조정하고 목표 SIR 또는 어쩌면 그에 따라 Pmax를 조정함으로써 그 간섭 레벨을 통합한다면, 셀 간 간섭 완화를 위해 제안된 TPC가 이용될 수 있다.
(UL 데이터/제어 시그널링 복조를 위한) 정확한 UL 채널 추정, 및 (UL 스케줄링 및 링크 적응화를 위한) 정확한 CQI 추정을 위해, 가능한 한 빠르게 양호하지 않은 채널 및/또는 시스템 상태들을 극복하기 위해 상대적으로 빠른 속도로 UL 기준 신호 송신 전력을 조정하는 것이 바람직하다. 양호하지 않은 UL 채널 및 CQI 추정을 피하기 위해, 데이터 채널에 대해 상기 제안된 UL TPC는 저속으로 WTRU 송신 전력을 업데이트하지만, (1 msec-TTI 당 UL AMC를 고려한다면) 100Hz 만큼 빠른 업데이트 속도가 구현될 수 있다(예컨대, 하나 또는 두개의 HARQ 반복 기간(들) 당 한 번의 업데이트). 바람직하게 WTRU(105)가 CQI가 수신될 때마다 업데이트할 수 있도록 WTRU(105)에 의해 업데이트 속도가 제어된다.
UL 제어 시그널링을 위해, WTRU(105)는 후속 편차들을 갖는, 상기 결합된 TPC 방식을 이용한다. UL CQI가 1 msec TTI 당 한 번인 최대 CQI 보고 속도로 이용 가능할 때, 고속 TPC 업데이트 속도가 이용된다(예컨대, 1000Hz). 이러한 경우, 수학식 (5)의 정정 인자 f(CQI, SINRT)는 아래와 같이 표현될 수 있다.
f(CQI, SINRT) = SINRT - SINRest(CQI) (dB)
여기서 CQI는 가장 최근의 UL CQI이다. 또한, 가중치 인자는 1로 설정된다(α= 1). 이는 결합된 개방 루프 및 고속 CQI 기반의 TPC를 가져온다. UL CQI가 이용 가능하지 않은 경우, CQI 기반의 TPC 컴포넌트는 이용 불가능해진다(즉,α= 0). 이는 개방 루프 TPC 만을 가져온다.
UL 공유 데이터 채널(165)에 대해, WTRU(105)는 결합된 개방 루프 및 CQI 기반의 TPC에 기초하여, 100Hz와 같은 느린 속도로 자신의 송신 전력을 결정한다. 최초의 송신에서, 및/또는 송신 중지 동안의 경우와 같이, e노드B(110)로부터 UL CQI가 이용 가능하지 않은 경우, CQI 기반의 송신 전력 제어 컴포넌트는 이용 불가능하며, 오직 개방 루프 TPC만이 이용된다.
UL 공유 데이터 채널(165)에 대해, WTRU(105)는 최대 1000Hz까지의 빠른 업데이트 속도로, 결합된 개방 루프 및 CQI 기반의 TPC에 기초하여 자신의 송신 전력을 결정한다. 송신 중지와 같이 e노드B(110)로부터 UL CQI가 이용 가능하지 않은 경우, CQI 기반의 송신 전력 제어 컴포넌트는 이용 불가능하며, 오직 개방루프 TPC 만이 이용된다.
e노드B(110)는 자신의 기준 신호 송신 전력 레벨, 간섭 레벨, 및 전력 마진을 포함하여 TPC 연관 시스템 파라미터들을 브로드캐스팅한다. 또한, e노드B(110)는, 목표 SINR, WTRU 최대 전력 레벨, 최소 전력 레벨을 포함하여 TPC 연관 WTRU 고유의 파라미터들을 WTRU(105)에 시그널링하는데, 이 시그널링은 인 밴드(in-band) 계층 1/2 제어 시그널링을 통해 행해진다. 외루프를 이용하여 목표 SINR을 조정할 수 있다.
도 2는 도 1의 시스템(100)에 의해 구현될 수 있는 TPC 절차(200)의 흐름도이다. 단계(205)에서, 최초의 UL 송신 단계가 이행된다. WTRU(105)는, DL 기준 신 호(175)의 SINR, IN0, K, 송신 전력과 같은, 서빙 e노드B에 의해 제공된 시스템 파라미터들에 기초하여, (예컨대, RACH 절차와 유사한) 최초의 UL 송신 단계를 위한 송신 전력을 설정하기 위한 경로 손실 기반의 개방 루프 셀 내 TPC 절차를 수행한다(단계 210). 단계(215)에서, 보통의 UL 송신 단계가 이행된다. WTRU(105)는 서빙 e노드B에 의해 제공된 시스템 파라미터에 기초하여 경로 손실 기반의 개방 루프 셀 내 TPC 절차를 수행하고, 서빙 e노드B에 의해 제공된 UL CQI (UL 그랜트 정보)에 기초하여 폐 루프 (CQI 기반의) 셀 내 TPC 절차를 수행한다(단계 220). 선택적으로, WTRU는 모든 이웃 셀들(e노드B들)로부터 수신된 부하 표시자(IoT)에 기초하여 IoT 기반의 셀 간 TPC 절차를 수행한다. 단계(230)에서, WTRU(105)는 단계(220)(그리고 선택적으로 단계(225))를 수행함으로써 발생된 값들에 기초하여, 적어도 하나의 UL 채널(예컨대, UL 공유 데이터 채널(165), UL 제어 채널(170))의 송신 전력을 설정한다.
실시예
1. 무선 송수신 유닛(WTRU)의 송신 전력 제어(TPC, transmit power control)를 수행하는 방법은,
(a) 상기 WTRU가 설정값(set point) 파라미터를 결정함으로써 개방 루프 셀 내 TPC 절차를 수행하는 단계; 및
(b) 상기 WTRU가 폐 루프 정정 인자를 이용함으로써 상기 개방 루프 셀 내 TPC 절차에 의해 결정된 상기 설정값 파라미터를 조정하기 위해 폐 루프 셀 내 TPC 절차를 수행하는 단계를 포함한다.
2. 실시예 1의 방법에서, 상기 설정값 파라미터는 상기 WTRU로부터 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)로부터의 업링크(UL) 경로 손실(pathloss)이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터와 연관된 개방 루프 TPC 관련 오류들을 보상한다.
3. 실시예 1과 실시예 2 중 임의의 어느 한 실시예의 방법에서, 상기 폐 루프 정정 인자는 업링크(UL) 채널 품질 정보(CQI, channel quality information)와 목표 신호 대 간섭 잡음비(SINR, signal-to-interference noise ratio)의 함수이다.
4. 실시예 1 내지 실시예 3 중 임의의 어느 한 실시예의 방법에서, 상기 설정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 목표 신호 대 간섭 잡음비(SINR)이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터와 연관된 개방 루프 TPC 관련 오류들을 보상한다.
5. 실시예 1 내지 실시예 3 중 임의의 어느 한 실시예의 방법에서, 상기 설정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 UL 간섭 및 잡음 전력(IN0, interference and noise power)이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터와 연관된 개방 루프 TPC 관련 오류들을 보상한다.
6. 실시예 1 내지 실시예 3 중 임의의 어느 한 실시예의 방법에서, 상기 설 정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 전력 제어 마진(K)이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터와 연관된 개방 루프 TPC 관련 오류들을 보상한다.
7. 송신 전력 제어(TPC)를 수행하기 위한 무선 송수신 유닛(WTRU)은,
(a) 수신기;
(b) 송신기; 및
(c) 상기 수신기 및 상기 송신기에 전기적으로 결합된 프로세서
를 포함하고, 상기 프로세서는 설정값 파라미터를 결정함으로써 개방 루프 셀 내 TPC 절차를 수행하고, 폐 루프 정정 인자를 이용함으로써 상기 개방 루프 셀 내 TPC 절차에 의해 결정된 설정값 파라미터를 조정하기 위해 폐 루프 셀 내 TPC 절차를 수행하도록 구성된다.
8. 실시예 7의 WTRU에 있어서, 상기 설정값 파라미터는 상기 WTRU로부터 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)까지의 업링크(UL) 경로 손실, PL이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터에 연관된 개방 루프 TPC관련 오류들을 보상한다.
9. 실시예 7과 실시예 8 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 폐 루프 정정 인자는 UL 채널 품질 정보와 목표 신호 대 간섭 잡음비(SINR)의 함수이다.
10. 실시예 7 내지 실시예 9 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 설정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 목표 신호 대 간섭 잡음비(SINR)이며, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터에 연관된 개방 루프 TPC 관련 오류들을 보상한다.
11. 실시예 7 내지 실시예 9 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 설정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 UL 간섭 및 잡음 전력(IN0)이고, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터에 연관된 개방 루프 TPC 관련 오류들을 보상한다.
12. 실시예 7 내지 실시예 9 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 설정값 파라미터는 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)에서의 전력 제어 마진(K)이고, 상기 폐 루프 정정 인자를 이용하여 상기 설정값 파라미터에 연관된 개방 루프 TPC 관련 오류들을 보상한다.
13. 무선 송수신 유닛(WTRU)의 송신 전력 제어(TPC)를 수행하는 방법은,
(a) 상기 WTRU가 상기 WTRU로부터 서빙 셀에 존재하는 서빙 진화형 노드-B(e노드B)까지의 주기적인 업링크(UL) 경로 손실 측정에 기초하여 개방 루프 셀 내 TPC 절차를 수행하는 단계;
(b) 상기 WTRU가 상기 서빙 e노드B에 의해 상기 WTRU에 제공된 UL 채널 품질 정보(CQI)에 기초하여 폐 루프 셀 내 TPC 절차를 수행하는 단계; 및
(c) 상기 WTRU가 상기 개방 루프 셀 내 TPC 절차 및 상기 폐 루프 셀 내 TPC 절차를 수행함으로써 발생된 파라미터 값들의 조합에 기초하여, 적어도 하나의 UL 채널의 송신 전력 레벨을 설정하는 단계를 포함한다.
14. 실시예 13의 방법은,
(d) 상기 WTRU가 UL 열잡음 간섭(IoT, interference over thermal noise) 기반의 셀 간 TPC 절차를 수행하는 단계
를 더 포함하고, 상기 단계(c)는, 상기 WTRU가 상기 개방 루프 셀 내 TPC 절차, 상기 폐 루프 셀 내 TPC 절차, 및 상기 IoT 기반의 셀 간 TPC 절차를 수행함으로써 발생된 파라미터 값들의 조합에 기초하여 상기 적어도 하나의 UL 채널의 송신 전력을 설정하는 단계를 더 포함한다.
15. 실시예 13과 실시예 14 중 임의의 한 실시예의 방법에서, 상기 적어도 하나의 UL 채널은 UL 공유 데이터 채널을 포함한다.
16. 실시예 13과 실시예 14 중 임의의 한 실시예의 방법에서, 상기 적어도 하나의 UL 채널은 UL 제어 채널을 포함한다.
17. 실시예 14의 방법은,
(e) 상기 WTRU에 대한 최초의 UL 송신 단계를 이행하는 단계를 더 포함한다.
18. 실시예 17의 방법에서, 상기 단계(a)는,
(a1) 상기 서빙 e노드B가 복수의 개방 루프 파라미터들을 상기 WTRU에 시그널링하는 단계로서, 상기 개방 루프 파라미터들은 개별적으로 시그널링되거나 또는 하나의 복합 파라미터로서 시그널링되는 것인, 복수의 개방 루프 파라미터들을 시그널링하는 단계; 및
(a2) 다운링크(DL) 기준 신호 및 상기 서빙 e노드B에 의해 송신된 개방 루프 파라미터들에 기초하여 상기 WTRU의 송신 전력 PTx를,
PTx = max(min(SINRT + PL + IN0 + K,Pmax), Pmin)의 식과 같이 결정하는 단계를 더 포함하는데, 상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음비(SINR)(dB)이고, PL은 전파 음영(shadowing)을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이다.
19. 실시예 17의 방법에 있어서, 상기 단계(d)는,
(d1) 상기 서빙 e노드B에 의해 송신된 다운링크(DL) 기준 신호에 기초하여, 상기 WTRU의 송신 전력 PTx를,
PTx = max(min(SINRT + PL + IN0 + K + ㅿ(IoTs),Pmax), Pmin)의 식과 같이 결정하는데, 상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음비(SINR)(dB)이고, PL은 전파 음영을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행 해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이고, ㅿ(IoTs)는 가장 강한 이웃 셀의 UL 간섭 부하 표시자 IoTs의 함수인 UL 부하 제어 스텝 사이즈를 나타낸다.
20. 실시예 17의 방법에서, 단계(a)는,
(a1) 상기 WTRU가 상기 최초의 UL 송신 단계를 위한 송신 전력을 설정하기 위해 경로 손실 기반의 개방 루프 셀 내 TPC 절차를 수행하는 단계를 더 포함한다.
21. 실시예 13 내지 실시예 20 중 임의의 어느 한 실시예의 방법에 있어서, 상기 UL CQI는 UL 그랜트 정보이다.
22. 실시예 14의 방법에 있어서, 상기 단계(d)는,
(d1) 상기 e노드B가 UL 간섭 레벨을 측정하는 단계;
(d2) 상기 e노드B가 상기 측정된 UL 간섭 레벨이 미리 정의된 문턱값을 초과하는지 여부를 판단하는 단계; 및
(d3) 상기 e노드B가 정기적으로 또는 트리거될 때마다 간섭 부하 표시자를 브로드캐스팅하는 단계
를 더 포함하고, 상기 간섭 부하 표시자는 상기 측정된 UL 간섭 레벨이 상기 미리 정의된 문턱값을 초과하는지 여부를 표시한다.
23. 실시예 22의 방법에 있어서, 상기 측정된 UL 간섭 레벨은 UL 열잡음 간섭(IoT) 측정치이다.
24. 실시예 17의 방법에 있어서, 상기 단계(a) 및 단계(b)는 상기 단계(e) 이후에 실행되며, 상기 단계(b)는,
(b1) 상기 WTRU 송신 전력을,
PTx = max(min(SINRT + PL + IN0 + K + α·f(CQI, SINRT), Pmax), Pmin)의 식과 같이 계산하는 단계를 더 포함하고,
상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음비(SINR)(dB)이고, PL은 전파 음영을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, f(CQI, SINRT)는 UL CQI 및 대응하는 목표 SINR에 기초한 폐 루프 정정 인자이고, α는 가중치 인자이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이다.
25. 실시예 24의 방법에 있어서, 0 ≤ α ≤ 1 이다.
26. 실시예 24와 실시예 25 중 임의의 어느 한 실시예의 방법에 있어서, 상기 폐 루프 정정 인자 f(CQI, SINRT)는 개방 루프 TPC 관련 오류들을 보상하는데 이용된다.
27. 실시예 24 내지 실시예 26 중 임의의 어느 한 실시예의 방법에 있어서, 상기 폐 루프 정정 인자 f(CQI, SINRT)는,
f(CQI, SINRT) = SINRT - E{SINRest(CQI)}(dB)이 되도록, 상기 UL CQI가 상기 e노드B에서 수신된 SINR을 나타낸다는 사실을 고려하여, 상기 서빙 e노드B로부터의 UL CQI 피드백에 따라 상기 WTRU에 의해 계산되는데, 여기서 SINRest(CQI)는 상기 WTRU가 상기 UL CQI 피드백으로부터 유도한, 상기 e노드B가 수신한 SINR 추정치를 나타낸다.
28. 실시예 27의 방법에 있어서, 상기 E{SINRest(CQI)}는,
Figure 112009026831452-pct00005
이 되도록, 시간에 대한 상기 추정된 SINR의 평균을 나타내는데, 여기서 CQIk는 k번째 수신된 CQI를 나타내며, ρ는 평균화 필터 계수인데, 여기서 O ≤ ρ ≤ l 이다.
29. 송신 전력 제어(TPC)를 수행하기 위한 무선 송수신 유닛(WTRU)은,
(a) 수신기;
(b) 상기 수신기에 전기적으로 결합된 프로세서로서, 상기 WTRU로부터 서빙 셀에 존재하는 서빙 진화형 노드B(e노드B)까지의 주기적 업링크(UL) 경로 손실 측정에 기초하여 개방 루프 셀 내 TPC 절차를 수행하고, 상기 서빙 e노드B로부터 상기 수신기에 의해 수신된 UL 채널 품질 정보(CQI)에 기초하여 폐 루프 셀 내 TPC 절차를 수행하도록 구성된 프로세서; 및
(c) 상기 프로세서에 전기적으로 결합된 송신기로서, 상기 개방 루프 셀 내 TPC 절차 및 상기 폐 루프 셀 내 TPC 절차를 수행함으로써 발생된 파라미터 값들의 조합에 기초하여 송신 전력 레벨을 갖는 적어도 하나의 UL 채널을 발생시키도록 구성된 송신기를 포함한다.
30. 실시예 29의 WTRU에 있어서, 상기 프로세서는 UL 열잡음 간섭(IoT) 기반의 셀 간 TPC 절차를 수행하도록 구성되고, 상기 송신기는 상기 개방 루프 셀 내 TPC 절차, 상기 폐 루프 셀 내 TPC 절차, 및 상기 IoT 기반의 셀 간 TPC 절차를 수행함으로써 발생된 파라미터 값들의 조합에 기초하여 송신 전력 레벨을 갖는 적어도 하나의 UL 채널을 발생시키도록 구성된다.
31. 실시예 29와 실시예 30 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 적어도 하나의 UL 채널은 UL 공유 데이터 채널을 포함한다.
32. 실시예 29와 실시예 30 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 적어도 하나의 UL 채널은 UL 제어 채널을 포함한다.
33. 실시예 29 내지 실시예 32 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 수신기는 상기 서빙 e노드B에 의해 상기 WTRU에 시그널링된 복수의 개방 루프 파라미터들을 수신하도록 구성되며, 상기 개방 루프 파라미터들은 개별적으로 시그널링되거나 또는 하나의 복합 파라미터로서 시그널링되고, 상기 프로세서는 다운링크(DL) 기준 신호 및 상기 서빙 e노드B에 의해 송신된 개방 루프 파라미터들에 기초하여 상기 WTRU의 송신 전력 PTx를,
PTx = max(min(SINRT + PL + IN0 + K, Pmax), Pmin)의 식과 같이 결정하도록 구성되는데, 상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음 비(SINR)(dB)이고, PL은 전파 음영을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이다.
34. 실시예 30의 WTRU에 있어서, 상기 프로세서는 상기 서빙 e노드B에 의해 송신된 다운링크(DL) 기준 신호에 기초하여 상기 WTRU의 송신 전력 PTx를,
PTx = max(min(SINRT + PL + IN0 + K + ㅿ(IoTs),Pmax), Pmin)의 식과 같이 결정하도록 구성되는데, 상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음비(SINR)(dB)이고, PL은 전파 음영을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이고, ㅿ(IoTs)는 가장 강한 이웃 셀의 UL 간섭 부하 표시자 IoTs의 함수인 UL 부하 제어 스텝 사이즈를 나타낸다.
35. 실시예 29 내지 실시예 34 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 프로세서는 최초의 UL 송신 단계를 위한 송신 전력을 설정하기 위해 경로 손실 기반의 개방 루프 셀 내 TPC 절차를 수행하도록 구성된다.
36. 실시예 29 내지 실시예 35 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 UL CQI는 UL 그랜트 정보이다.
37. 실시예 29 내지 실시예 36 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 프로세서는 상기 WTRU 송신 전력을,
PTx = max(min(SINRT + PL + IN0 + K + α·f(CQI, SINRT), Pmax), Pmin)의 식과 같이 계산하도록 구성되는데,
상기 식에서 SINRT는 서빙 e노드B에서의 목표 신호 대 간섭 잡음비(SINR)(dB)이고, PL은 전파 음영을 포함하여, 상기 DL 기준 신호에 기초한 상기 서빙 e노드B에서부터 상기 WTRU까지의 경로 손실(dB)이며, IN0는 서빙 e노드B에서의 UL 간섭 및 잡음 전력(dBm)이고, K는 서빙 e노드B를 위해 사용되는 전력 제어 마진이며, f(CQI, SINRT)는 UL CQI 및 대응하는 목표 SINR에 기초한 폐 루프 정정 인자이고, α는 가중치 인자이며, Pmax 및 Pmin는 각각, 상기 적어도 하나의 UL 채널 상에서 상기 WTRU에 의해 행해지는 송신을 위한 최대 및 최소의 송신 전력 레벨(dBm)이다.
38. 실시예 37의 WTRU에 있어서, 0 ≤ α ≤ 1 이다.
39. 실시예 37과 실시예 38 중 임의의 어느 한 실시예의 WTRU에 있어서, 상 기 폐 루프 정정 인자 f(CQI, SINRT)는 개방 루프 TPC 관련 오류들을 보상하는데 이용된다.
40. 실시예 37 내지 실시예 39 중 임의의 어느 한 실시예의 WTRU에 있어서, 상기 폐 루프 정정 인자 f(CQI, SINRT)는,
f(CQI, SINRT) = SINRT - E{SINRest(CQI)}(dB)이 되도록, 상기 UL CQI가 상기 e노드B에서 수신된 SINR을 나타낸다는 사실을 고려하여, 상기 서빙 e노드B로부터의 UL CQI 피드백에 따라 상기 WTRU에 의해 계산되는데, 상기 식에서 SINRest(CQI)는 상기 WTRU가 상기 UL CQI 피드백으로부터 유도한, 상기 e노드B가 수신한 SINR 추정치를 나타낸다.
41. 실시예 40의 WTRU에 있어서, 상기 E{SINRest(CQI)}는,
Figure 112009026831452-pct00006
이 되도록, 시간에 대한 상기 추정된 SINR의 평균을 나타내는데, 상기 식에서 CQIk는 k번째 수신된 CQI를 나타내고, ρ는 평균화 필터 계수이며, 여기서 O ≤ ρ ≤ l 이다.
42. 송신 전력 제어(TPC)를 수행하기 위한 진화형 노드-B(e노드B)는,
(a) 업링크(UL) 간섭 레벨을 측정하고, 상기 측정된 UL 간섭 레벨이 미리 정의된 문턱값을 초과하는지 여부를 판단하도록 구성된 프로세서; 및
(b) 상기 프로세서에 전기적으로 결합된 송신기로서, 정기적으로 또는 트리 거될 때마다, 상기 간섭 부하 표시자는 상기 측정된 UL 간섭 레벨이 미리 정의된 문턱값을 초과하는지 여부를 표시하는 간섭 부하 표시자를 브로드캐스팅하도록 구성되는 송신기를 포함한다.
43. 실시예 42의 e노드B에 있어서, 상기 측정된 UL 간섭 레벨은 UL 열잡음 간섭(IoT) 측정치이다.
44. 실시예 42의 e노드B에 있어서, 상기 송신기는 목표 신호 대 간섭 잡음비(SINR) 레벨인 SINRT를, 상기 e노드B로부터 무선 송수신 유닛(WTRU)까지의 거리와 주어진 품질 요구조건 중 적어도 하나의 함수로서 무선 송수신 유닛(WTRU)에 시그널링하도록 구성된다.
45. 실시예 44의 e노드B에 있어서, 상기 주어진 품질 요구조건은 블럭 오류율(BLER, block error rate)이다.
46. 실시예 42 내지 실시예 45 중 임의의 어느 한 실시예의 e노드B는,
(c) 상기 프로세서에 전기적으로 결합된 맵핑 테이블을 더 포함하고, 상기 프로세서는 목표 품질 값을 목표 SINR 값에 맵핑하기 위해 상기 맵핑 테이블을 이용하도록 구성된다.
47. 실시예 46의 e노드B에 있어서, 상기 목표 품질 값은 블럭 오류율(BLER)이다.
48. 실시예 42 내지 실시예 47 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 송신기는 다운링크(DL) 기준 신호를 발생시키도록 구성된다.
49. 실시예 42 내지 실시예 48 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 송신기는 전력 제어 마진 K를 시그널링하도록 구성된다.
50. 실시예 49의 e노드B에 있어서, 상기 전력 제어 마진 K는,
SINRT(임베딩 이후) = SINRT + K(dB)가 되도록, 목표 SINR, 즉 SINRT에 임베딩될 수 있다.
51. 실시예 42 내지 실시예 50 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 프로세서는, 사용 중인 부반송파 모두, 또는 부반송파의 서브세트에 걸쳐서 상기 프로세서에 의해 평균화된, 총 UL 간섭 및 잡음 레벨, IN0를 측정 또는 추정하도록 구성되고, 상기 송신기는 상기 IN0를 시그널링하도록 구성된다.
52. 실시예 42 내지 실시예 51 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 송신기는 최대 및 최소의 UL 송신 전력 레벨인, Pmax 및 Pmin를 시그널링하도록 구성된다.
53. 실시예 42 내지 실시예 52 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 송신기는 UL 채널 품질 정보(CQI)를 시그널링하도록 구성된다.
54. 실시예 53의 e노드B에 있어서, 상기 UL CQI는, 원래는 UL 링크 적응화를 목적으로 시그널링되는, UL 그랜트 정보 또는 변조 및 코딩 세트(MCS, modulation and coding set) 정보를 포함한다.
55. 실시예 42 내지 실시예 54 중 임의의 어느 한 실시예의 e노드B에 있어서, 상기 송신기는 CQI 피드백 발생을 위해 사용되는 채널 품질 정보(CQI) 맵핑 규 칙을 시그널링하도록 구성된다.
본 발명의 특징들 및 요소들이 특정한 조합으로 바람직한 실시예에서 기술되었지만, 각각의 특징 또는 요소는 바람직한 실시예의 다른 특징들 및 요소들 없이 단독으로 사용될 수 있거나, 또는 본 발명의 다른 특징들 및 요소들과의 다양한 조합으로 또는 그 다른 특징들 및 요소들 없이 다양한 조합으로 사용될 수 있다. 본 발명에서 제공되는 방법 또는 순서도는 범용 컴퓨터 또는 프로세서에 의해 실행되기 위한 컴퓨터 판독 가능 저장 매체에 유형으로 구현된 컴퓨터 프로그램, 소프트웨어, 또는 펌웨어로 실행될 수 있다. 컴퓨터 판독 가능 저장 매체의 예들은, 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), 레지스터, 캐시 메모리, 반도체 메모리 장치, 내부 하드 디스크 및 탈착가능 디스크와 같은 자기 매체, 자기 광학 매체, 및 CD-ROM 디스크 및 DVD(digital versatile disk)와 같은 광학 매체를 포함할 수 있지만, 이들로 한정되는 것은 아니다.
예로서, 적합한 프로세서는 범용 프로세서, 특수 용도의 프로세서, 종래의 프로세서, 디지털 신호 프로세서(DSP), 복수의 마이크로프로세서, DSP 코어와 관련된 하나 이상의 마이크로프로세서, 제어기, 마이크로제어기, 주문형반도체(ASIC), 필드 프로그래머블 게이트 어레이(FPGA) 회로, 임의의 다른 종류의 집적 회로(IC), 및/또는 상태 기계를 포함한다.
소프트웨어와 관련된 프로세서는, 무선 송수신 유닛(WTRU), 사용자 장치(UE), 단말기, 기지국, 무선 네트워크 제어기(RNC), 또는 임의의 호스트 컴퓨터 에서 사용되기 위한 무선 주파수 트랜시버를 구현하는 데에 사용될 수 있다. WTRU는 카메라, 비디오 카메라 모듈, 비디오폰, 스피커폰, 진동 장치, 스피커, 마이크로폰, 텔레비전 트랜시버, 핸즈프리 헤드셋, 키보드, 블루투스? 모듈, 주파수 변조(FM) 무선 유닛, 액정 디스플레이(LCD) 유닛, 유기 발광 다이오드(OLED) 디스플레이 유닛, 디지털 음악 플레이어, 미디어 플레이어, 비디오 게임 플레이어 모듈, 인터넷 브라우저, 및/또는 임의의 무선 근거리 통신망(WLAN) 모듈과 같이, 하드웨어 및/또는 소프트웨어로 실행되는 모듈과 관련하여 사용될 수 있다.

Claims (55)

  1. WTRU(Wireless Transmit/Receive Unit, 무선 송수신 유닛)의 TPC(Transmit Power Control, 송신 전력 제어)를 수행하는 방법에 있어서,
    업링크 스케쥴링 정보 - 상기 업링크 스케쥴링 정보는 MCS(Modulation and Coding Set, 변조 및 코딩 세트) 정보를 포함함 - 및 TPC 정보 모두를 포함하는 다운링크 제어 정보를 수신하는 단계;
    상기 TPC 정보, 상기 MCS 정보, 및 측정된 경로손실(pathloss)에 응답하여 조정되는 경로손실 인자(factor)에 적어도 기초하여 물리적 업링크 채널에 대한 송신 전력 레벨을 결정하는 단계; 및
    상기 스케쥴링 정보 및 상기 결정된 송신 전력 레벨에 기초하여 상기 물리적 업링크 채널 상에서 송신하는 단계
    를 포함하는 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  2. 제1항에 있어서, 상기 물리적 업링크 채널은 PUSCH(Physical Uplink Shared CHannel, 물리적 업링크 공유 채널)인 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  3. 제2항에 있어서, 상기 결정된 송신 전력 레벨은, 상기 물리적 업링크 공유 채널 송신의 MCS(변조 및 코딩 세트)와 연관된 MCS 인자에 또한 기초하는 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  4. 제1항에 있어서, 상기 경로손실 인자는 폐 루프 전력 제어 인자인 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  5. 제1항에 있어서, 상기 결정된 송신 전력 레벨은 가중치 인자 α에 또한 기초하며, 상기 α는,
    0부터 1까지의 값을 갖고,
    상기 측정된 경로손실과 곱해지는 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  6. 제1항에 있어서, 상기 결정된 송신 전력 레벨은 최대 송신 전력 레벨에 기초하는 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  7. 제1항에 있어서, 상기 물리적 업링크 채널은 PUCCH(Physical Uplink Control CHannel, 물리적 업링크 제어 채널)인 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  8. 제7항에 있어서, 상기 결정된 송신 전력 레벨은 상기 PUCCH의 CQI(Channel Quality Indication, 채널 품질 표시) 정보와 연관된 품질 인자에 또한 기초하는 것인, 무선 송수신 유닛의 송신 전력 제어 수행 방법.
  9. WTRU(Wireless Transmit/Receive Unit, 무선 송수신 유닛)에 있어서,
    업링크 스케쥴링 정보 - 상기 업링크 스케쥴링 정보는 MCS(Modulation and Coding Set, 변조 및 코딩 세트) 정보를 포함함 - 및 TPC(Transmit Power Control, 송신 전력 제어) 정보 모두를 포함하는 다운링크 제어 정보를 수신하도록 구성된 수신기;
    상기 TPC 정보, 상기 MCS 정보 및 측정된 경로손실에 응답하여 조정되는 경로손실 인자에 적어도 기초하여, 물리적 업링크 채널에 대한 송신 전력 레벨을 결정하도록 구성된 프로세서; 및
    상기 프로세서에 동작 가능하게 연결되며, 상기 스케쥴링 정보 및 상기 결정된 송신 전력 레벨에 기초하여 상기 물리적 업링크 채널 상에서 송신하도록 구성된 송신기
    를 포함하는 무선 송수신 유닛.
  10. 제9항에 있어서, 상기 물리적 업링크 채널은 PUSCH(Physical Uplink Shared CHannel, 물리적 업링크 공유 채널)인 것인, 무선 송수신 유닛.
  11. 제10항에 있어서, 상기 결정된 송신 전력 레벨은 상기 물리적 업링크 공유 채널 송신의 변조 및 코딩 세트(MCS)와 연관된 MCS 인자에 또한 기초하는 것인, 무선 송수신 유닛.
  12. 제9항에 있어서, 상기 경로손실 인자는 폐 루프 전력 제어 인자인 것인, 무선 송수신 유닛.
  13. 제9항에 있어서, 상기 결정된 송신 전력 레벨은 가중치 인자 α에 또한 기초하며, 상기 α는,
    0부터 1까지의 값을 갖고,
    상기 측정된 경로손실과 곱해지는 것인, 무선 송수신 유닛.
  14. 제9항에 있어서, 상기 결정된 송신 전력 레벨은 최대 송신 전력 레벨에 기초하는 것인, 무선 송수신 유닛.
  15. 제9항에 있어서, 상기 물리적 업링크 채널은 PUCCH(Physical Uplink Control CHannel, 물리적 업링크 제어 채널)이며, 상기 결정된 송신 전력 레벨은 상기 PUCCH의 CQI(Channel Quality Indication, 채널 품질 표시) 정보와 연관된 품질 인자에 또한 기초하는 것인, 무선 송수신 유닛.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
KR20097009216A 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어 KR101163280B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US82796506P 2006-10-03 2006-10-03
US60/827,965 2006-10-03
US86318806P 2006-10-27 2006-10-27
US60/863,188 2006-10-27
PCT/US2007/020779 WO2008042187A2 (en) 2006-10-03 2007-09-26 Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020097014794A Division KR20090097193A (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어

Publications (2)

Publication Number Publication Date
KR20090091121A KR20090091121A (ko) 2009-08-26
KR101163280B1 true KR101163280B1 (ko) 2012-07-10

Family

ID=39155034

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020147026133A KR101637798B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR20157006694A KR20150038675A (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020137032694A KR101566604B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020097014794A KR20090097193A (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020127025309A KR101524341B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR20097009216A KR101163280B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020147026133A KR101637798B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR20157006694A KR20150038675A (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020137032694A KR101566604B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020097014794A KR20090097193A (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
KR1020127025309A KR101524341B1 (ko) 2006-10-03 2007-09-26 E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어

Country Status (19)

Country Link
US (6) US8285319B2 (ko)
EP (3) EP3694261A1 (ko)
JP (4) JP5271910B2 (ko)
KR (6) KR101637798B1 (ko)
AR (1) AR063112A1 (ko)
AU (1) AU2007305480B2 (ko)
BR (1) BRPI0715323B1 (ko)
CA (2) CA2878737C (ko)
DE (1) DE202007013761U1 (ko)
DK (1) DK2080282T3 (ko)
ES (1) ES2771677T3 (ko)
IL (2) IL197940A (ko)
MX (1) MX2009003584A (ko)
MY (1) MY154919A (ko)
PL (1) PL2080282T3 (ko)
RU (1) RU2420881C2 (ko)
SG (1) SG175577A1 (ko)
TW (6) TWM339161U (ko)
WO (1) WO2008042187A2 (ko)

Families Citing this family (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807405B1 (en) 1999-04-28 2004-10-19 Isco International, Inc. Method and a device for maintaining the performance quality of a code-division multiple access system in the presence of narrow band interference
ES2555777T3 (es) 2006-04-28 2016-01-08 Panasonic Intellectual Property Corporation Of America Dispositivo de estación base de comunicación de radio y método de comunicación de radio usado para comunicación multi-portadora
JP4769657B2 (ja) * 2006-07-28 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
JP4705985B2 (ja) * 2006-08-29 2011-06-22 シャープ株式会社 移動通信システム、移動局装置、基地局装置およびランダムアクセスチャネル送信方法
JP4829049B2 (ja) * 2006-08-30 2011-11-30 京セラ株式会社 無線通信方法及び無線基地局
TWM339161U (en) 2006-10-03 2008-08-21 Interdigital Tech Corp Wireless transmit/receive unit
US20080084829A1 (en) * 2006-10-05 2008-04-10 Nokia Corporation Apparatus, method and computer program product providing link adaptation
MY154476A (en) * 2006-10-23 2015-06-30 Interdigital Tech Corp Method and apparatus for sending and receiving channel quality indicators (cqis)
US20080107198A1 (en) * 2006-11-07 2008-05-08 Innovative Sonic Limited Method and apparatus for performing multi-input multi-output transmission in a wireless communications system
TWI493911B (zh) 2007-03-07 2015-07-21 Interdigital Tech Corp 控制行動站上鏈功率結合開環/閉環方法
EP2835924B1 (en) 2007-03-19 2017-03-08 Telefonaktiebolaget LM Ericsson (publ) Channel state feedback delivery in a telecommunication system
WO2008117203A2 (en) * 2007-03-28 2008-10-02 Nxp B.V. Wireless transmission power control method and system
EP2160846B1 (en) * 2007-05-29 2011-07-06 Telefonaktiebolaget L M Ericsson (publ) Technique for uplink data transmissions in communication networks
FI20075488A0 (fi) * 2007-06-26 2007-06-26 Nokia Siemens Networks Oy Yksityisen tukiaseman kuuluvuusalue
WO2009005420A1 (en) * 2007-06-29 2009-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method for noise floor and interference estimation
GB2452697A (en) 2007-08-14 2009-03-18 Nec Corp Dynamically allocating new resources to a node provided with persistently allocated resources
US8411646B2 (en) * 2007-11-20 2013-04-02 Qualcomm Incorporated Opportunistic uplink scheduling
US8547857B2 (en) * 2007-11-20 2013-10-01 Qualcomm Incorporated Opportunistic uplink scheduling
US8160007B2 (en) * 2007-11-20 2012-04-17 Qualcomm Incorporated Opportunistic uplink scheduling
US8160602B2 (en) * 2007-11-20 2012-04-17 Qualcomm Incorporated Opportunistic uplink scheduling
KR101012005B1 (ko) * 2007-12-03 2011-01-31 삼성전자주식회사 광대역 무선통신 시스템에서 전송률 제어 장치 및 방법
WO2009081457A1 (ja) * 2007-12-20 2009-07-02 Fujitsu Limited 無線通信システムにおけるアップリンク電力制御方法および同システムにおける上位装置
WO2009133420A1 (en) * 2008-04-29 2009-11-05 Nokia Siemens Networks Oy Method and apparatus for controlling transmit power of a user equipment
US8285321B2 (en) * 2008-05-15 2012-10-09 Qualcomm Incorporated Method and apparatus for using virtual noise figure in a wireless communication network
US8531975B2 (en) * 2008-07-08 2013-09-10 Lg Electronics Inc. Method and apparatus for controlling uplink power in a wireless communication system
US8359059B2 (en) * 2008-07-08 2013-01-22 Lg Electronics Inc. Method of controlling uplink power in wireless communication system
US8150478B2 (en) * 2008-07-16 2012-04-03 Marvell World Trade Ltd. Uplink power control in aggregated spectrum systems
US8537802B2 (en) * 2008-07-23 2013-09-17 Marvell World Trade Ltd. Channel measurements in aggregated-spectrum wireless systems
US8271014B2 (en) * 2008-08-11 2012-09-18 Qualcomm Incorporated Automated parameter adjustment to compensate self adjusting transmit power and sensitivity level at the node B
WO2010019080A1 (en) * 2008-08-12 2010-02-18 Telefonaktiebolaget L M Ericsson (Publ) A method and a device in a wireless communication system
WO2010022773A1 (en) * 2008-08-27 2010-03-04 Nokia Siemens Networks Oy Multiple power control parameter sets for wireless uplink data transmission
ES2394391T3 (es) * 2008-09-11 2013-01-31 Telefonaktiebolaget L M Ericsson (Publ) Selección de modo de transmisión
EP2332374B1 (en) * 2008-09-29 2015-11-11 Telefonaktiebolaget L M Ericsson (PUBL) A method and arrangement in a radio base station, in a radio communications network
KR20100037883A (ko) * 2008-10-02 2010-04-12 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 스케줄링 우선순위 결정 장치 및 방법
DK2351445T3 (en) 2008-10-20 2015-10-26 Interdigital Patent Holdings carrier Aggregation
CN101729106B (zh) * 2008-10-30 2013-03-13 上海贝尔阿尔卡特股份有限公司 基于干扰管理和传输质量控制的增强的上行链路功率控制
US8249531B2 (en) 2008-10-31 2012-08-21 Apple, Inc. Transmit power measurement and control methods and apparatus
US8385483B2 (en) 2008-11-11 2013-02-26 Isco International, Llc Self-adaptive digital RF bandpass and bandstop filter architecture
KR101412901B1 (ko) 2008-12-02 2014-06-26 에릭슨 엘지 주식회사 Ofdm 광대역 이동통신 시스템의 상향 링크 전력 제어 방법 및 장치
KR101722810B1 (ko) 2008-12-03 2017-04-05 인터디지탈 패튼 홀딩스, 인크 캐리어 집적에 대한 업링크 파워 헤드룸 보고
US8331975B2 (en) * 2008-12-03 2012-12-11 Interdigital Patent Holdings, Inc. Uplink power control for distributed wireless communication
US8982750B2 (en) 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
WO2010091425A2 (en) 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers
US8301177B2 (en) * 2009-03-03 2012-10-30 Intel Corporation Efficient paging operation for femtocell deployment
US8660600B2 (en) * 2009-03-12 2014-02-25 Qualcomm Incorporated Over-the-air overload indicator
TWI596969B (zh) * 2009-03-17 2017-08-21 內數位專利控股公司 在多輸入多輸出中上鏈功率控制方法和裝置
US8588178B2 (en) * 2009-03-19 2013-11-19 Qualcomm Incorporated Adaptive association and joint association and resource partitioning in a wireless communication network
KR101119119B1 (ko) 2009-06-08 2012-03-16 엘지전자 주식회사 반송파 집성을 이용한 통신 방법 및 이를 위한 장치
US8676221B2 (en) * 2009-06-11 2014-03-18 Qualcomm Incorporated Multiband antenna for cooperative MIMO
JP5501453B2 (ja) 2009-06-19 2014-05-21 ブラックベリー リミテッド 単一ユーザおよびマルチユーザmimoのための伝送層を信号伝達する方法およびシステム
CN105245312B (zh) 2009-06-19 2019-05-07 交互数字专利控股公司 在lte-a中用信号发送上行链路控制信息的方法及单元
WO2011002388A1 (en) * 2009-06-30 2011-01-06 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control for dual and multi carrier radio system
US8503364B2 (en) * 2009-07-14 2013-08-06 Qualcomm Incorporated Broadcast signaling L1 overload indication
US8428521B2 (en) * 2009-08-04 2013-04-23 Qualcomm Incorporated Control for uplink in MIMO communication system
CN101998596B (zh) * 2009-08-17 2014-06-25 夏普株式会社 上行多输入多输出信道的功率控制方法
US8559325B2 (en) 2009-09-15 2013-10-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
WO2011038548A1 (zh) * 2009-09-30 2011-04-07 上海贝尔股份有限公司 基于载波聚合的通信系统中上行功率控制的方法和装置
JP5555326B2 (ja) 2009-10-01 2014-07-23 インターデイジタル パテント ホールディングス インコーポレイテッド 電力制御の方法および装置
CN102577536B (zh) * 2009-10-02 2015-09-02 交互数字专利控股公司 针对具有多天线设备的功率控制
CN102056218B (zh) * 2009-10-28 2016-03-30 中兴通讯股份有限公司 上行链路功率控制的方法及装置
US8989033B2 (en) * 2009-10-30 2015-03-24 Blackberry Limited Downlink MCS selection in a type 2 relay network
EP2494756B1 (en) * 2009-10-30 2016-12-21 Commonwealth Scientific and Industrial Research Organisation Out-of-band emission cancellation
US8559360B2 (en) * 2009-12-11 2013-10-15 Samsung Electronics Co., Ltd. Method and apparatus for controlling power for uplink
US8868091B2 (en) 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
KR101593238B1 (ko) * 2010-01-20 2016-02-12 삼성전자주식회사 무선 통신 시스템에서 송신 전력 제어 장치 및 방법
WO2011104717A1 (en) * 2010-02-28 2011-09-01 Celeno Communications Ltd. Backoff adaptation for digital communication systems with channel quality information
US9144040B2 (en) * 2010-04-01 2015-09-22 Futurewei Technologies, Inc. System and method for uplink multi-antenna power control in a communications system
US8295184B2 (en) 2010-04-01 2012-10-23 Apple Inc. Wireless connection control
WO2011136709A1 (en) * 2010-04-30 2011-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for load sharing power control
US9179426B2 (en) * 2010-05-07 2015-11-03 Qualcomm Incorporated Modulation and coding scheme adjustment for uplink channel power control in advanced telecommunication networks
US8965442B2 (en) * 2010-05-07 2015-02-24 Qualcomm Incorporated Uplink power control in aggregated carrier communication systems
JP2012004924A (ja) * 2010-06-18 2012-01-05 Hitachi Ltd 無線通信システムのリソース割当方法及び無線基地局装置
KR101684968B1 (ko) * 2010-06-30 2016-12-09 엘지전자 주식회사 무선 통신 시스템에서 송신 전력 잔여량 보고 방법 및 이를 위한 장치
US9204328B2 (en) * 2010-07-01 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for determining a channel quality offset
US8526889B2 (en) 2010-07-27 2013-09-03 Marvell World Trade Ltd. Shared soft metric buffer for carrier aggregation receivers
WO2012067429A2 (ko) * 2010-11-16 2012-05-24 엘지전자 주식회사 복수의 안테나를 지원하는 무선통신 시스템에서 복수의 코드워드 전송을 위한 상향링크 전송 전력을 제어하는 방법 및 그 방법을 수행하는 장치
US8913515B2 (en) * 2010-12-15 2014-12-16 Mediatek Singapore Pte. Ltd. Measuring and improving multiuser downlink reception quality in wireless local area networks
CN102026351A (zh) * 2010-12-31 2011-04-20 大唐移动通信设备有限公司 长期演进系统中的下行闭环功率控制方法和装置
CN102611536A (zh) * 2011-01-20 2012-07-25 夏普株式会社 信道状态信息反馈方法和用户设备
KR101904944B1 (ko) * 2011-02-22 2018-10-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 측정 수행 방법 및 이를 위한 장치
US9635624B2 (en) * 2011-02-22 2017-04-25 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US9288743B2 (en) * 2011-04-01 2016-03-15 Intel Corporation Uplink power control scheme for distributed RRH systems with same cell ID
US9432951B2 (en) * 2011-04-29 2016-08-30 Smsc Holdings S.A.R.L. Transmit power control algorithms for sources and sinks in a multi-link session
US9560608B2 (en) * 2011-05-03 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and network nodes in a telecommunication system
EP2716101A1 (en) 2011-05-23 2014-04-09 InterDigital Patent Holdings, Inc. Apparatus and methods for group wireless transmit/receive unit (wtru) handover
WO2012167442A1 (zh) 2011-06-10 2012-12-13 华为技术有限公司 修正信道质量指示值的方法和设备
EP2724574B1 (en) * 2011-06-21 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) A user equipment and a method therein for transmission power control of uplink transmissions
US8395985B2 (en) 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
CN102917436B (zh) * 2011-08-02 2017-03-15 上海贝尔股份有限公司 在共小区标识的异构网络中进行上行功率控制的方法
US20130040692A1 (en) * 2011-08-11 2013-02-14 Mediatek, Inc. Method of Heterogeneous Network Mobility
US9025478B2 (en) * 2011-08-16 2015-05-05 Google Technology Holdings LLC Self-interference handling in a wireless communication terminal supporting carrier aggregation
CN103891167B (zh) * 2011-08-19 2017-05-24 Lg电子株式会社 在包括远程无线电头端(rrh)的宏小区环境中终端决定上行链路传输功率的方法和用于该方法的终端设备
EP2761780A1 (en) 2011-09-30 2014-08-06 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
CN106455030B (zh) * 2011-10-28 2020-03-31 华为技术有限公司 上行功率控制的方法、用户设备和接入点
JP5776791B2 (ja) 2011-12-08 2015-09-09 富士通株式会社 無線基地局、無線通信システム、送信電力制御方法及び無線端末
US20130155967A1 (en) * 2011-12-15 2013-06-20 Samsung Electronics Co., Ltd. Wireless communication system with interference provisioning and method of operation thereof
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
US8526389B2 (en) 2012-01-25 2013-09-03 Ofinno Technologies, Llc Power scaling in multicarrier wireless device
EP3937551A3 (en) 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
ES2729309T3 (es) 2012-01-27 2019-10-31 Blackberry Ltd Método y aparato para transmitir información de control de enlace ascendente en un sistema de comunicación inalámbrico
US9935748B2 (en) 2012-02-10 2018-04-03 Lg Electronics Inc. Method for providing transmission power in wireless communication system and apparatus for same
EP2835023B1 (en) 2012-04-01 2021-09-01 Comcast Cable Communications, LLC Cell group configuration in a wireless device and base station with timing advance groups
US20130259008A1 (en) 2012-04-01 2013-10-03 Esmael Hejazi Dinan Random Access Response Process in a Wireless Communications
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
JP2013219507A (ja) * 2012-04-06 2013-10-24 Ntt Docomo Inc 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム
US8958342B2 (en) 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
US8964593B2 (en) 2012-04-16 2015-02-24 Ofinno Technologies, Llc Wireless device transmission power
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US8989128B2 (en) 2012-04-20 2015-03-24 Ofinno Technologies, Llc Cell timing in a wireless device and base station
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
EP3337079A1 (en) 2012-04-16 2018-06-20 Comcast Cable Communications, LLC Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups
US9179425B2 (en) 2012-04-17 2015-11-03 Ofinno Technologies, Llc Transmit power control in multicarrier communications
CN103379604B (zh) 2012-04-20 2018-04-27 北京三星通信技术研究有限公司 动态tdd小区中的上行功率控制方法
US8971298B2 (en) 2012-06-18 2015-03-03 Ofinno Technologies, Llc Wireless device connection to an application server
US9084228B2 (en) 2012-06-20 2015-07-14 Ofinno Technologies, Llc Automobile communication device
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US9179457B2 (en) 2012-06-20 2015-11-03 Ofinno Technologies, Llc Carrier configuration in wireless networks
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
US9210619B2 (en) 2012-06-20 2015-12-08 Ofinno Technologies, Llc Signalling mechanisms for wireless device handover
US9113387B2 (en) 2012-06-20 2015-08-18 Ofinno Technologies, Llc Handover signalling in wireless networks
CN103517392B (zh) * 2012-06-18 2016-09-21 电信科学技术研究院 Tpc命令的确定方法和设备
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
WO2013190669A1 (ja) * 2012-06-20 2013-12-27 富士通株式会社 無線通信システム、無線局、基地局および通信方法
EP2712244A1 (en) * 2012-09-20 2014-03-26 Sony Mobile Communications AB Transmission power control
US9794051B2 (en) 2012-10-08 2017-10-17 Qualcomm Incorporated Enhanced uplink and downlink power control for LTE TDD eIMTA
US9021332B2 (en) * 2012-12-11 2015-04-28 Seagate Technology Llc Flash memory read error recovery with soft-decision decode
CN104769901B (zh) 2013-01-04 2019-08-02 马维尔国际贸易有限公司 用于通信的方法、电信装置以及用于处理信号的芯片组
US9319916B2 (en) 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
US9210670B2 (en) 2013-03-18 2015-12-08 Samsung Electronics Co., Ltd. Uplink power control in adaptively configured TDD communication systems
CN105191445B (zh) 2013-04-03 2018-11-27 交互数字专利控股公司 一种干扰测量方法、装置及基站
CN105144768B (zh) * 2013-04-26 2019-05-21 英特尔Ip公司 频谱共享情境中的共享频谱重新分配
CN105532050B (zh) * 2013-06-12 2020-02-18 康维达无线有限责任公司 用于邻近服务的场境和功率控制信息管理
KR102090657B1 (ko) 2013-06-21 2020-03-18 콘비다 와이어리스, 엘엘씨 컨텍스트 관리
US10791171B2 (en) 2013-07-10 2020-09-29 Convida Wireless, Llc Context-aware proximity services
JP2016528817A (ja) * 2013-08-01 2016-09-15 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンク電力制御方法およびその装置
EP3036932A1 (en) * 2013-08-20 2016-06-29 Telefonaktiebolaget LM Ericsson (publ) Method and controlling node for controlling radio communication in a cellular network
US9307535B1 (en) * 2014-01-02 2016-04-05 Sprint Spectrum L.P. Managing transmission power for hybrid-ARQ groups
US9699048B2 (en) 2014-02-13 2017-07-04 Samsung Electronics Co., Ltd. Computing system with channel quality mechanism and method of operation thereof
US9337983B1 (en) 2014-03-13 2016-05-10 Sprint Spectrum L.P. Use of discrete portions of frequency bandwidth to distinguish between ACK and NACK transmissions
US9794888B2 (en) 2014-05-05 2017-10-17 Isco International, Llc Method and apparatus for increasing performance of a communication link of a communication node
US9820225B2 (en) * 2014-05-13 2017-11-14 Qualcomm Incorporated Techniques for managing power consumption of a mobile device
GB201410025D0 (en) * 2014-06-05 2014-07-16 Ocado Ltd Systems and methods for communication
US9456423B2 (en) 2014-06-18 2016-09-27 Qualcomm Incorporated Automated parameter adjustment to compensate self adjusting transmit power and sensitivity level at the node B
US9872299B1 (en) 2014-12-09 2018-01-16 Marvell International Ltd. Optimized transmit-power allocation in multi-carrier transmission
KR101877512B1 (ko) * 2014-12-24 2018-07-13 주식회사 케이티 Lte 시스템의 업링크 커버리지 분석 방법 및 장치
US10284311B2 (en) * 2015-02-11 2019-05-07 Qualcomm Incorporated RSRP and path loss measurements with coverage enhancements
CN104837189B (zh) * 2015-04-20 2019-03-01 天津大学 一种基于lte-a系统的闭环功率控制修正方法
US9253727B1 (en) * 2015-05-01 2016-02-02 Link Labs, Inc. Adaptive transmission energy consumption
EP3292642B1 (en) 2015-05-04 2020-01-29 ISCO International, LLC Method and apparatus for increasing performance of communication paths for communication nodes
WO2016179806A1 (zh) * 2015-05-13 2016-11-17 华为技术有限公司 一种功率控制方法、终端和基站
CN105307254B (zh) * 2015-09-21 2018-11-02 中国人民解放军国防科学技术大学 一种用户设备发射功率控制系统及其控制方法
CN110545575B (zh) * 2016-04-23 2022-06-21 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置
US10200907B2 (en) * 2016-05-11 2019-02-05 Nokia Of America Corporation Systems and methods for dynamic uplink and downlink rate assignment in a wireless communication network
CA3024175A1 (en) 2016-06-01 2017-12-07 Isco International, Llc Method and apparatus for performing signal conditioning to mitigate interference detected in a communication system
US11171800B1 (en) 2016-06-24 2021-11-09 United Services Automobile Association (Usaa)) Microservice based multi-device coordinated user experience
KR102247421B1 (ko) 2016-09-30 2021-05-03 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 통신 시스템에서 물리 채널의 전력 제어를 수행하는 시스템들 및 방법들
CN116209048A (zh) 2017-03-22 2023-06-02 Idac控股公司 用于在新型无线电(nr)系统中执行功率控制的方法
EP3603225B1 (en) * 2017-03-23 2022-07-27 Interdigital Patent Holdings, Inc. Method and system for altitude path-loss based power control for aerial vehicles
CN108632968B (zh) * 2017-03-24 2021-01-29 华为技术有限公司 用于上行功率控制的方法和装置
US10298279B2 (en) 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
US10548096B2 (en) * 2017-04-21 2020-01-28 Samsung Electronics Co., Ltd. Information type multiplexing and power control
US10425900B2 (en) 2017-05-15 2019-09-24 Futurewei Technologies, Inc. System and method for wireless power control
US10284313B2 (en) 2017-08-09 2019-05-07 Isco International, Llc Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
US10812121B2 (en) 2017-08-09 2020-10-20 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
CN109495224B (zh) * 2017-09-11 2021-04-27 电信科学技术研究院 一种信息处理方法、装置、设备及计算机可读存储介质
CN108173581B (zh) * 2017-12-25 2020-12-18 南京邮电大学 多天线无线通信系统中信道非互易条件下的误差校正方法
EP3753343A4 (en) * 2018-02-16 2021-12-08 Telefonaktiebolaget LM Ericsson (publ) PROCEDURE AND SYSTEM FOR SCHEDULED UPLINK TRANSMISSION TO REMOVE CHANNEL INTERFERENCES IN A WIRELESS NETWORK USING A COORDINATION INDICATOR
AU2018418095B8 (en) * 2018-04-13 2023-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of uplink power control, terminal device, and network device
CN108880745A (zh) * 2018-04-23 2018-11-23 中国科学院自动化研究所 一种基于5g通信网络的mcs选择方法及系统
US11445487B2 (en) 2018-06-15 2022-09-13 At&T Intellectual Property I, L.P. Single user super position transmission for future generation wireless communication systems
US11140668B2 (en) 2018-06-22 2021-10-05 At&T Intellectual Property I, L.P. Performance of 5G MIMO
US10945281B2 (en) 2019-02-15 2021-03-09 At&T Intellectual Property I, L.P. Facilitating improved performance of multiple downlink control channels in advanced networks
US10757655B1 (en) 2019-04-18 2020-08-25 At&T Intellectual Property I, L.P. Uplink interference avoidance under closed loop power control conditions
CN110233650B (zh) * 2019-05-09 2020-12-29 中国科学院计算技术研究所 一种mimo-noma系统中功率调整方法及系统
US11039398B2 (en) 2019-05-31 2021-06-15 At&T Intellectual Property I, L.P. Uplink interference avoidance under open loop power control conditions
US11160033B2 (en) * 2019-06-18 2021-10-26 Electronics And Telecommunications Research Institute Method and apparatus for controlling transmit power in sidelink communication system
US11778566B2 (en) * 2020-02-10 2023-10-03 Qualcomm Incorporated Transmission parameter modification for uplink communications
CN111683384B (zh) * 2020-06-10 2023-01-24 广州空天通讯技术服务有限公司 运用人工智能实现通讯链路动态加权的网络优化方法
TWI759920B (zh) * 2020-10-22 2022-04-01 國立清華大學 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
WO2022269920A1 (ja) * 2021-06-25 2022-12-29 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023096276A1 (ko) * 2021-11-29 2023-06-01 삼성전자 주식회사 업 링크를 위한 자원의 할당을 요청하는 전자 장치, 업 링크를 위한 자원을 할당하는 네트워크 및 그 동작 방법
WO2023153963A1 (en) * 2022-02-11 2023-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of transmitter circuitry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168994A1 (en) 2001-05-14 2002-11-14 Interdigital Technology Corporation Common control channel uplink power control for adaptive modulation and coding techniques

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689815A (en) 1995-05-04 1997-11-18 Oki Telecom, Inc. Saturation prevention system for radio telephone with open and closed loop power control systems
US6829226B1 (en) 1997-04-04 2004-12-07 Ericsson Inc. Power control for a mobile terminal in a satellite communication system
WO1999049595A1 (en) 1998-03-23 1999-09-30 Samsung Electronics Co., Ltd. Power control device and method for controlling a reverse link common channel in a cdma communication system
WO2000003499A1 (en) 1998-07-13 2000-01-20 Samsung Electronics Co., Ltd. Power control device and method for reverse link common channel in mobile communication system
MY128631A (en) 1999-03-22 2007-02-28 Interdigital Tech Corp Outer loop/weighted open loop power control in a time division duplex communication system
US6597723B1 (en) * 2000-03-21 2003-07-22 Interdigital Technology Corporation Weighted open loop power control in a time division duplex communication system
US6600772B1 (en) 2000-03-21 2003-07-29 Interdigital Communications Corporation Combined closed loop/open loop power control in a time division duplex communication system
US7010319B2 (en) 2001-01-19 2006-03-07 Denso Corporation Open-loop power control enhancement for blind rescue channel operation
CN1154275C (zh) 2001-05-14 2004-06-16 华为技术有限公司 码分多址通信系统的功率控制方法
US6850500B2 (en) 2001-05-15 2005-02-01 Interdigital Technology Corporation Transmission power level estimation
JP2003008507A (ja) 2001-06-25 2003-01-10 Denso Corp 無線通信システム
US6819938B2 (en) 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US6983166B2 (en) * 2001-08-20 2006-01-03 Qualcomm, Incorporated Power control for a channel with multiple formats in a communication system
KR100463526B1 (ko) 2002-01-04 2004-12-29 엘지전자 주식회사 다중 입력 다중 출력 시스템에서의 전력 할당 방법
US7209517B2 (en) * 2002-03-04 2007-04-24 Qualcomm Incorporated Method and apparatus for estimating a maximum rate of data and for estimating power required for transmission of data at a rate of data in a communication system
US7340267B2 (en) * 2002-04-17 2008-03-04 Lucent Technologies Inc. Uplink power control algorithm
CN1208977C (zh) 2002-04-19 2005-06-29 华为技术有限公司 用于移动通信系统的外环功率控制方法
US6754475B1 (en) 2002-06-28 2004-06-22 Motorola, Inc. Transmission performance measurement and use thereof
DE60217097T2 (de) 2002-08-13 2007-05-10 Matsushita Electric Industrial Co., Ltd., Kadoma Hybrides automatisches Wiederholungsaufforderungsprotokoll
JP3629017B2 (ja) * 2002-08-20 2005-03-16 松下電器産業株式会社 アウターループ送信電力制御方法および無線通信装置
US7477920B2 (en) * 2002-10-25 2009-01-13 Intel Corporation System and method for automatically configuring and integrating a radio base station into an existing wireless cellular communication network with full bi-directional roaming and handover capability
US6748235B1 (en) * 2002-11-12 2004-06-08 Interdigital Technology Corporation Power control during a transmission pause
JP4205937B2 (ja) 2002-12-03 2009-01-07 パナソニック株式会社 制御局装置
US7372898B2 (en) * 2002-12-11 2008-05-13 Interdigital Technology Corporation Path loss measurements in wireless communications
KR100595584B1 (ko) 2003-02-12 2006-07-03 엘지전자 주식회사 무선 송수신 장치
US7929921B2 (en) 2003-06-10 2011-04-19 Motorola Mobility, Inc. Diversity control in wireless communications devices and methods
CN1322767C (zh) 2003-07-29 2007-06-20 大唐移动通信设备有限公司 移动通信系统的功率控制方法
GB2404539B (en) 2003-07-31 2006-06-14 Fujitsu Ltd Adaptive modulation and coding
DE60328235D1 (de) * 2003-09-30 2009-08-13 Mitsubishi Electric Corp System für Mobilkommunikation zur Steuerung des Kommunikationsmodus
US7570968B2 (en) 2003-12-29 2009-08-04 Samsung Electronics Co., Ltd Method and apparatus for adaptive open-loop power control in mobile communication system using TDD
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
US7197327B2 (en) 2004-03-10 2007-03-27 Interdigital Technology Corporation Adjustment of target signal-to-interference in outer loop power control for wireless communication systems
JP4604545B2 (ja) 2004-05-10 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法ム
EP2364054B1 (en) 2004-06-10 2015-11-04 Godo Kaisha IP Bridge 1 Communication terminal device, base station device and radio communication system
JP2006054617A (ja) * 2004-08-10 2006-02-23 Matsushita Electric Ind Co Ltd 通信装置、基地局装置及びシグナリング方法
US8897828B2 (en) * 2004-08-12 2014-11-25 Intellectual Ventures Holding 81 Llc Power control in a wireless communication system
KR20060016042A (ko) 2004-08-16 2006-02-21 삼성전자주식회사 시분할 듀플렉싱 방식을 사용하는 이동 통신 시스템에서업링크 전력 제어 장치 및 방법
KR100725773B1 (ko) 2004-08-20 2007-06-08 삼성전자주식회사 시분할 듀플렉스 방식의 이동통신 시스템에서 단말기의상태에 따라 상향링크 전력제어방식을 적응적으로변경하기 위한 장치 및 방법
US7580723B2 (en) 2004-08-30 2009-08-25 Motorola, Inc. Method and apparatus for dual mode power control
US20060046786A1 (en) 2004-09-02 2006-03-02 Franco Montebovi Mobile communication terminal and method
US7412254B2 (en) 2004-10-05 2008-08-12 Nortel Networks Limited Power management and distributed scheduling for uplink transmissions in wireless systems
KR100790115B1 (ko) 2004-10-29 2007-12-31 삼성전자주식회사 통신 시스템에서 적응적 안테나 시스템을 위한 프리앰블 시퀀스 송신 전력 제어 장치 및 방법
JP2006140650A (ja) 2004-11-10 2006-06-01 Ntt Docomo Inc 移動通信システム、移動局及び無線基地局
US20070041322A1 (en) 2005-01-12 2007-02-22 Won-Joon Choi Rate adaptation using semi-open loop technique
US7205842B2 (en) 2005-01-13 2007-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Continuous alternating closed-open loop power control
FI20050114A0 (fi) * 2005-02-01 2005-02-01 Nokia Corp Nousevalta siirtotieltä tulevan datan käsittely viestintäjärjestelmässä
WO2006082627A1 (ja) 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha 送信制御方法、移動局および通信システム
JP2006217173A (ja) 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd 基地局装置及びリソース割り当て方法
US7512412B2 (en) * 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US8942639B2 (en) * 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US7349504B2 (en) * 2005-03-18 2008-03-25 Navini Networks, Inc. Method and system for mitigating interference in communication system
JP2007221178A (ja) 2005-04-01 2007-08-30 Ntt Docomo Inc 送信装置及び送信方法
US7630343B2 (en) 2005-04-08 2009-12-08 Fujitsu Limited Scheme for operating a wireless station having directional antennas
KR20060117056A (ko) * 2005-05-12 2006-11-16 삼성전자주식회사 이동 통신 시스템에서 핸드오버 수행을 위한 시스템 및방법
US7724813B2 (en) * 2005-05-20 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmit power control
JP4834352B2 (ja) 2005-06-14 2011-12-14 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局及び電力制御方法
EP2267929B1 (en) 2005-08-16 2012-10-24 Panasonic Corporation Method and apparatuses for activation of Hybrid Automatic Request (HARQ) processes
TWI410098B (zh) 2006-03-17 2013-09-21 Lg Electronics Inc 用以轉換資料之方法,及以其傳輸和接收資料之方法
US7830977B2 (en) 2006-05-01 2010-11-09 Intel Corporation Providing CQI feedback with common code rate to a transmitter station
KR100869922B1 (ko) 2006-05-12 2008-11-21 삼성전자주식회사 광대역 무선 통신시스템에서 상향링크 전력 제어 장치 및방법
TWI343200B (en) 2006-05-26 2011-06-01 Lg Electronics Inc Method and apparatus for signal generation using phase-shift based pre-coding
JP4189410B2 (ja) 2006-06-12 2008-12-03 株式会社東芝 無線通信装置及び送信制御方法
US20080045260A1 (en) 2006-08-15 2008-02-21 Tarik Muharemovic Power Settings for the Sounding Reference signal and the Scheduled Transmission in Multi-Channel Scheduled Systems
TWM339161U (en) 2006-10-03 2008-08-21 Interdigital Tech Corp Wireless transmit/receive unit
WO2008103313A2 (en) 2007-02-16 2008-08-28 Interdigital Technology Corporation Method and apparatus for transmitting control signaling for mimo transmission
TWI493911B (zh) 2007-03-07 2015-07-21 Interdigital Tech Corp 控制行動站上鏈功率結合開環/閉環方法
US8121211B2 (en) 2007-03-26 2012-02-21 Cisco Technology, Inc. Adaptive switching techniques for hybrid automatic repeat request systems
WO2010091425A2 (en) 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers
CN102577536B (zh) 2009-10-02 2015-09-02 交互数字专利控股公司 针对具有多天线设备的功率控制
KR101785712B1 (ko) 2009-10-23 2017-10-17 한국전자통신연구원 무선랜 시스템에서 송신 출력 제어 방법 및 장치
EP2761780A1 (en) 2011-09-30 2014-08-06 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
US9807709B2 (en) 2012-05-31 2017-10-31 Interdigital Patent Holdings, Inc. Device to-device (D2D) cross link power control
CN109890025B (zh) 2013-01-16 2022-02-22 交互数字专利控股公司 发现信号生成和接收

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168994A1 (en) 2001-05-14 2002-11-14 Interdigital Technology Corporation Common control channel uplink power control for adaptive modulation and coding techniques

Also Published As

Publication number Publication date
KR101566604B1 (ko) 2015-11-06
AU2007305480B2 (en) 2011-08-04
US20080081655A1 (en) 2008-04-03
MY154919A (en) 2015-08-28
TWI511593B (zh) 2015-12-01
TWI617210B (zh) 2018-03-01
TWI441542B (zh) 2014-06-11
US20150195793A1 (en) 2015-07-09
TW201141275A (en) 2011-11-16
PL2080282T3 (pl) 2020-05-18
US8644876B2 (en) 2014-02-04
KR20090097193A (ko) 2009-09-15
TW201431403A (zh) 2014-08-01
US20180343621A1 (en) 2018-11-29
IL197940A (en) 2013-09-30
WO2008042187A2 (en) 2008-04-10
JP2010506494A (ja) 2010-02-25
BRPI0715323A8 (pt) 2019-01-08
JP5271854B2 (ja) 2013-08-21
BRPI0715323A2 (pt) 2013-07-09
JP5960753B2 (ja) 2016-08-02
KR20120127662A (ko) 2012-11-22
US20200154369A1 (en) 2020-05-14
SG175577A1 (en) 2011-11-28
DE202007013761U1 (de) 2008-03-06
MX2009003584A (es) 2009-06-03
KR101637798B1 (ko) 2016-07-07
CA2878737C (en) 2018-10-02
JP2013110773A (ja) 2013-06-06
US9014747B2 (en) 2015-04-21
IL197940A0 (en) 2009-12-24
TW201541999A (zh) 2015-11-01
CA2665178A1 (en) 2008-04-10
KR20140130487A (ko) 2014-11-10
EP3694262A1 (en) 2020-08-12
DK2080282T3 (da) 2020-02-24
KR101524341B1 (ko) 2015-06-04
KR20090091121A (ko) 2009-08-26
EP3694261A1 (en) 2020-08-12
US8285319B2 (en) 2012-10-09
KR20150038675A (ko) 2015-04-08
IL228070A (en) 2014-04-30
CA2665178C (en) 2015-01-27
WO2008042187A3 (en) 2008-12-18
KR20140002091A (ko) 2014-01-07
US10070397B2 (en) 2018-09-04
JP5571815B2 (ja) 2014-08-13
RU2009116624A (ru) 2010-11-10
JP2009296664A (ja) 2009-12-17
US10880842B2 (en) 2020-12-29
US20130035132A1 (en) 2013-02-07
JP5271910B2 (ja) 2013-08-21
TW201808037A (zh) 2018-03-01
ES2771677T3 (es) 2020-07-06
RU2420881C2 (ru) 2011-06-10
TW200820802A (en) 2008-05-01
US20140086182A1 (en) 2014-03-27
IL228070A0 (en) 2013-09-30
EP2080282A2 (en) 2009-07-22
CA2878737A1 (en) 2008-04-10
JP2014171270A (ja) 2014-09-18
EP2080282B1 (en) 2019-11-27
TWM339161U (en) 2008-08-21
AR063112A1 (es) 2008-12-30
US10548094B2 (en) 2020-01-28
BRPI0715323B1 (pt) 2020-02-27
AU2007305480A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101163280B1 (ko) E-utra를 위한 간섭 완화와 결합된 개방 루프/폐 루프 (cqi 기반의) 업링크 송신 전력 제어
JP6219916B2 (ja) 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法

Legal Events

Date Code Title Description
A201 Request for examination
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150611

Year of fee payment: 4