WO2011038548A1 - 基于载波聚合的通信系统中上行功率控制的方法和装置 - Google Patents

基于载波聚合的通信系统中上行功率控制的方法和装置 Download PDF

Info

Publication number
WO2011038548A1
WO2011038548A1 PCT/CN2009/074335 CN2009074335W WO2011038548A1 WO 2011038548 A1 WO2011038548 A1 WO 2011038548A1 CN 2009074335 W CN2009074335 W CN 2009074335W WO 2011038548 A1 WO2011038548 A1 WO 2011038548A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
specific
path loss
user equipment
base carrier
Prior art date
Application number
PCT/CN2009/074335
Other languages
English (en)
French (fr)
Inventor
温萍萍
仲崇显
杨林
尤明礼
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN200980160652.9A priority Critical patent/CN102474824B/zh
Priority to PCT/CN2009/074335 priority patent/WO2011038548A1/zh
Publication of WO2011038548A1 publication Critical patent/WO2011038548A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to a communication system based on carrier aggregation technology, and more particularly to a method and apparatus for performing uplink power control in a communication system based on carrier aggregation technology.
  • LTE-Advanced is a further evolution of LTE (Long Term Evolution), which supports forward and backward compatibility with LTE and supports multi-spectral aggregation. From the evolution of LTE to LTE-Advanced systems, the demand for wider spectrum will become one of the important factors affecting the evolution. To this end 3GPP (3 rd Generation Partnership Project, Third Generation Partnership Project) proposed carrier aggregation (Carrier Aggregation) technology, which may very well be multiple carriers aggregated into a wider spectrum, but can also put some not The continuous spectrum is aggregated together.
  • 3GPP 3 rd Generation Partnership Project, Third Generation Partnership Project
  • Carrier Aggregation Carrier Aggregation
  • LTE-A supports continuous carrier aggregation and non-contiguous carrier aggregation between in-band and inter-band.
  • the User Equipment UE
  • the uplink power control of the LTE-A system requires further consideration of these new features of the LTE-A system.
  • 3GPP proposes that the Transmission Power Control (TCP) of the LTE-A system is based on the power control of the LTE system and only minor modifications are made thereto. Also, in some proposals it is proposed that in the LTE-A system, carrier-specific power control is considered for each uplink physical channel transmission, but a more specific scheme is not given.
  • TCP Transmission Power Control
  • component carrier-specific power control is required due to different propagation conditions on different carriers; on the other hand, carrier specific power control is also required due to the level of different modulation and coding schemes and frequency time resources.
  • PUSCH Physical Uplink Shared Channel
  • P(i) min ⁇ R CMAX ( , 101og 10 PUSCH ( ) + R 0 PUSCH (0 + a(i) ⁇ PL ⁇ i) + ⁇ ⁇ + /( ⁇ ,) ⁇
  • Equation (1) P CMAX (0 indicates the maximum transmission power of the user equipment on the carrier CC(i), M PUSCH G) indicates the number of physical resource blocks allocated on the carrier CC(i).
  • PUSCH ( ) is a cell-specific or user equipment-specific or carrier-specific parameter
  • a ( ) is a cell-specific or carrier-specific path loss compensation coefficient
  • PL ⁇ represents the path loss of the carrier CC(i), which is controlled by the radio resource layer
  • the specified parameter for a specific modulation and coding scheme, ⁇ is a carrier-specific closed-loop power control instruction
  • /( ) indicates that the closed-loop power control instruction is an accumulated value instruction or an absolute value instruction
  • the higher-level informs the user equipment
  • 1 ⁇ 11 ⁇ ⁇ indicates the minimum value, indicating the transmit power of the user equipment on the base carrier CC(i).
  • the user equipment Since it is not known in advance in the LTE-A system which carriers are aggregated, the user equipment should perform reference signal reception power on each of the aggregated carriers.
  • the present invention provides, in an embodiment, a method for performing uplink power control in a user equipment of a carrier aggregation technology-based communication system, characterized in that the method comprises the following steps:
  • the parameters, ⁇ , ⁇ are carrier-specific closed-loop power control commands, and the function /() is used to indicate that the closed-loop power control command is an accumulated value command or an absolute value command, and 1 ⁇ 1 ⁇ indicates that the minimum value indicates that the user equipment is Transmit power on the base carrier CC(i);
  • PU) min ⁇ c ( ), 101 Ogl ⁇ PUS CH U) + ⁇ O.PUSCH U) + «(;) - ⁇ PL ⁇ j) - F PL ( ⁇ /)) + F PL ( ⁇ /) + ⁇ ⁇ + / ( ⁇ ⁇
  • j ⁇ N3 ⁇ i
  • denotes the number of carriers to be aggregated
  • ⁇ / denotes the frequency band in which the non-base carrier CC(j) is located and the frequency band in which the base carrier CC(i) is located Frequency interval
  • ( ⁇ /) represents the difference between the path loss of the non-base carrier CC(j) and the path loss of the base carrier CC(i)
  • CMAX /) indicates that the user equipment is on the non-base carrier CCG)
  • M PUSCH ( ) indicates the number of physical resource blocks allocated on the non-base carrier CCG)
  • P PUSCH ( ) is a cell-specific or user equipment-specific or carrier-specific parameter
  • the present invention provides a power control apparatus for performing uplink power control in a user equipment of a carrier aggregation technology-based communication system, wherein the power control apparatus includes:
  • a first determining means configured to perform reference signal received power measurement on each of the aggregated plurality of carriers to determine a path loss of each carrier
  • a computing device configured to calculate, by using the following formula, a transmit power of a base carrier CC(i) among the plurality of aggregated carriers,
  • M PUSCH ( ) indicates the number of physical resource blocks allocated on the base carrier CC(i), corp. j> USCH G) is cell-specific or user-specific or carrier-specific
  • the parameter, a is a cell-specific or carrier-specific path loss compensation coefficient
  • PL represents the path loss of the base carrier CC(i)
  • ⁇ TF is a parameter specified by the RRC layer for a specific modulation and coding scheme, which is carrier-specific.
  • the closed loop power control instruction, function / () is used to indicate that the closed loop power control instruction is an accumulated value instruction or an absolute value instruction, ! ⁇ !1 ⁇ indicates the minimum value, and >() indicates the transmission power of the user equipment on the base carrier CC(i);
  • P( ) min ⁇ P c ( , 101o gl M PUSCH ( + corpse. ⁇ ⁇ ( + ⁇ (_/) ⁇ ( ⁇ )- ( ⁇ /))+/ ⁇ ( ⁇ /) + ⁇ ⁇ +/( ⁇ ⁇
  • j N indicates the number of carriers to be aggregated
  • ⁇ / indicates the frequency interval between the frequency band in which the non-base carrier CCG is located and the frequency band in which the base carrier CC(i) is located
  • ( ⁇ /) indicates the non-base carrier CC
  • the difference between the path loss of (j) and the path loss of the base carrier CC(i), ( ) indicates the maximum transmission power of the user equipment on the non-base carrier cc(j)
  • M PUSCH ( ) indicates the number of physical resource blocks allocated on the non-base carrier CCG), P.
  • _ pusch ') is a cell-specific or user equipment-specific or carrier-specific parameter
  • a ( ) is a cell-specific or carrier-specific path loss compensation coefficient
  • PL ⁇ ) represents the path loss of the non-base carrier CC(j)
  • ⁇ TF is The parameter specified by the RRC layer for a particular modulation coding scheme
  • is the carrier-specific closed-loop power control instruction
  • the function /() is used to indicate
  • the closed loop power control command is an accumulated value command or an absolute value command
  • mini ⁇ indicates that the minimum value is
  • the path loss difference generated by the frequency spacing between the respective carriers is fully compensated, so that the base station can perform joint resource scheduling on multiple carriers fairly to obtain a huge frequency diversity gain.
  • FIG. 1 is a flow chart showing a method for performing uplink power control in a user equipment of a carrier aggregation technology based communication system according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a power control apparatus for performing uplink power control in a user equipment of a carrier aggregation technology-based communication system according to another embodiment of the present invention
  • Fig. 3 is a block diagram showing the structure of a first determining means according to an embodiment of the present invention.
  • the aggregated carrier CC1 is a low-band carrier
  • the carrier CC2 is a high-band carrier.
  • the transmit power of the user equipment on CC1 is corpse (1) two min ⁇ CMAX (1), 10 log 10 PUSCH (1) + R 0 PUSCH (1) + ⁇ (1) ⁇ PL ( ⁇ ) + ⁇ ⁇ + /( ⁇ ,) ⁇
  • the path loss of the low-band carrier CC1 is small, and the path loss of the high-band carrier CC2 is large, if the user equipment transmits data on the carrier CC1 and the carrier CC2 with the same transmission power, the received power of the base station on the carrier CC2. It will be less than the received power on carrier CC1.
  • the low-band carrier CC1 is used as the base carrier, and accordingly, the high-band carrier CC2 is a non-base carrier.
  • the frequency interval in which the carrier CC2 is located and the frequency band in which the carrier CC1 is located is defined as ⁇ /.
  • the transmission power of the user equipment on carrier CC1 and carrier CC2 is defined as
  • the received power of the base station only considers the path loss of the carrier CC1 and the carrier CC2, and the received power of the base station on the carrier CC1 is
  • P(l)-PL(l) 10log l0 M PUSCH (1) + corpse. PUSCH (1) + ⁇ ⁇ + f(A,) + ⁇ (1) - PL ⁇ ) - PL(l)
  • FIG. 1 is a flow chart showing a method for performing uplink power control in a user equipment of a carrier aggregation technology based communication system according to an embodiment of the present invention.
  • step S11 the user equipment performs reference signal received power (RSRP) measurement on each of the aggregated plurality of carriers to determine a path loss for each carrier.
  • RSRP reference signal received power
  • the user equipment first obtains, from the base station, a transmit power value that the base station sends the reference signal.
  • the user equipment determines the path loss of each carrier based on the transmit power value acquired from the base station and the received power value of the reference signal received on each carrier.
  • step S12 the user equipment calculates the transmit power of the base carrier CC(i) among the aggregated plurality of carriers by using formula (9).
  • ⁇ (, ⁇ ) min ⁇ P c ⁇ ( ), 10 log 10 M (/) + P O PUSCH (0 + a ⁇ i) ⁇ PL(i) + ⁇ ⁇ + f(A t ) ⁇ ( 9
  • P CMAX represents the maximum transmit power of the user equipment on the base carrier CC(i)
  • M PUSCH represents the number of physical resource blocks allocated on the base carrier CC(i), corpse.
  • _PUSCH ' is a cell-specific or user equipment-specific or carrier-specific parameter
  • a G) is a cell-specific or carrier-specific path loss compensation coefficient
  • PL G) represents the path loss of the base carrier CC(i)
  • ⁇ TF is The parameter specified by the RRC layer for a specific modulation and coding scheme
  • is a carrier-specific closed-loop power control instruction
  • the function /( ) is used to indicate that the closed-loop power control instruction is an accumulated value instruction or an absolute value instruction
  • min ⁇ indicates Taking the minimum value
  • ⁇ ) indicates the transmission power of the user equipment on the base carrier CC(i);
  • the user equipment calculates, by using the formula (10), the transmit power of the non-base carrier CC(j) among the aggregated multiple carriers,
  • P(j) min ⁇ CMAX (y),101og l0 PUSCH (;) + P 0 PUSCH (j) + «( > ⁇ (P (j) ⁇ F PL ( ⁇ /))+ F PL ( ⁇ /) + ⁇ ⁇ + /( ⁇ ⁇
  • ' l ⁇ V and ⁇ denotes the number of carriers to be aggregated, ⁇ / denotes the non-base carrier CCG) and the frequency interval between the frequency band in which the base carrier CC(i) is located,
  • the difference between the path loss of the non-base carrier CCG) and the path loss of the base carrier CC(i), PCMAXC) represents the maximum transmit power of the user equipment on the non-base carrier CCG)
  • M PUSCH represents the non-base carrier) the number of physical resource blocks on CC (j) is allocated
  • p._ PUSCH () is a cell-specific or user-specific or device-carrier-specific parameters, "() loss compensation factor, a cell-specific or specific carrier path) represents
  • the path loss of the non-base carrier CCG) is the parameter specified by the RRC layer for a specific modulation and coding scheme, ⁇ , is the carrier-specific closed-loop power control command, and the function /( ) is used to indicate the closed-loop power
  • the user equipment After the user equipment calculates the transmit power on each carrier, the user equipment transmits data to the base station on the respective carriers at the calculated transmit power.
  • the frequency of the frequency band in which the frequency band is located is the lowest.
  • the carrier is used as the base carrier, and its transmit power is determined according to the carrier-specific power control equation as shown in equation (1), and the transmit power of the remaining non-base carrier is based on the path loss difference between the non-base carrier and the base carrier.
  • the carrier-specific power control equation shown in equation (1) is adjusted.
  • the path loss difference ⁇ ( ⁇ /) between the non-base carrier CC (j) and the base carrier CC (i) can be the path of the carrier-specific power control equation.
  • loss compensation a ( ') ⁇ compensate for this one, in one variation, the path between the non-base carriers CC (j) and the base carrier CC (i) the loss difference £ ( ⁇ /) in the carrier may be The ⁇ of a specific power control equation.
  • ⁇ PUSCH U) This item compensates, ie the system is transmitting the parameter P. Before the _PUSCH /) to the user equipment, first add the path loss difference ⁇ ( ⁇ /) to the parameter ⁇ ) _ PUSCH ( ). For the user equipment, the parameters it receives are
  • the power control device 10 includes a first determining device 101 and a computing device 102.
  • Fig. 3 shows a block diagram of the structure of the first determining means 101 according to an embodiment of the present invention.
  • the first determining device 101 includes an obtaining device 1011 and a second determining device 1012.
  • the first determining means 101 in the power control device 10 performs reference signal received power (RSRP) measurement on each of the aggregated plurality of carriers to determine the path loss of each carrier.
  • RSRP reference signal received power
  • the acquiring device 1011 in the first determining device 101 first obtains, from the base station, a transmit power value that the base station transmits the reference signal.
  • the second determining means 1012 in the first determining means 101 receives the received power according to the received power value obtained from the base station and the reference signal received on each carrier. Rate value, determine the path loss of each carrier.
  • the first determining means 101 determines the path loss of each of the aggregated plurality of carriers. This should be understood by those of ordinary skill in the art, and for the sake of brevity, no further details are provided herein.
  • the computing device 102 in the power control device 10 calculates the transmit power of the base carrier CC(i) among the plurality of aggregated carriers by the formula (11).
  • ⁇ (0 indicates the maximum transmission power of the user equipment on the base carrier CC(i)
  • M PUSCH represents the number of physical resource blocks allocated on the base carrier CC(i)
  • P.- PUSCH G is the cell Specific or user equipment specific or carrier specific parameters, are cell-specific or carrier-specific path loss compensation coefficients
  • PL G) represents the path loss of the base carrier CC(i)
  • ⁇ TF is specified by the radio resource control layer for a certain
  • the parameters of the specific modulation and coding scheme are carrier-specific closed-loop power control commands, and the function /() is used to indicate that the closed-loop power control command is an accumulated value command or an absolute value command, and 1 ⁇ 11 ⁇ indicates a minimum value
  • p (o represents The transmit power of the user equipment on the
  • the computing device 102 calculates the transmit power of the non-base carrier CCG) of the aggregated plurality of carriers by using equation (12).
  • PU) min ⁇ CMAX ( ), 101og 10 PUSCH U) + corpse. — PUSCH ( + «(;) - (PL(j) - F PL ( ⁇ /)) + F PL ( ⁇ /) + ⁇ ⁇ + ( ⁇ ,) ⁇
  • _/ l ⁇ N and ⁇
  • indicates the number of carriers to be aggregated
  • ⁇ / indicates the frequency band in which the non-base carrier CCG is located
  • the frequency band in which the base carrier CC(i) is located The frequency interval, ⁇ ( ⁇ /), represents the difference between the non-base carrier CC (the path loss of 0 and the path loss of the base carrier CC(i), and R CMAX ( ) indicates that the user equipment is on the non-base carrier CCG)
  • the maximum transmit power, M PUSCH ' represents the number of physical resource blocks allocated on the non-base carrier CC(j).
  • _ PUSCH (/) is a cell-specific or user equipment-specific or carrier-specific parameter
  • «0 ⁇ ) is a cell-specific or carrier-specific path loss compensation coefficient
  • PL ') represents the path loss of the non-base carrier CCG
  • a TF is The parameter specified by the RRC layer for a particular modulation coding scheme, ⁇ ; is a carrier-specific closed-loop power control instruction, and the function /() is used to indicate that the closed-loop power control instruction is an accumulated value instruction or an absolute value instruction, min ⁇ ⁇ means take The minimum value, R( ), represents the transmit power of the user equipment on the non-base carrier CC(j).
  • the computing device 102 in the power control device 10 calculates the transmit power of the user equipment on each carrier, the user equipment transmits data to the base station on the respective carriers with the calculated transmit power.
  • the carrier with the lowest frequency of the frequency band is used as the base carrier, and the transmission power is determined according to the carrier-specific power control equation as shown in formula (1), and the remaining non-base carriers are used.
  • the transmit power is adjusted based on the carrier-specific power control equation shown in equation (1) according to the path loss difference between the non-base carrier and the base carrier.
  • the path loss difference between the non-base carrier CC (j) and the base carrier CC(i) is £ ( ⁇ /), which is the path loss of the carrier-specific power control equation.
  • Compensation ⁇ ( ⁇ (compensation in this term, in one variant, the path loss difference ⁇ ( ⁇ /) between the non-base carrier CC ( j ) and the base carrier CC ( i ) can also be at carrier specific power P.- PUSCH C equations to compensate this one, i.e. prior to transmission parameters P._ PUSCH (j) to the user device, plus the difference in path loss to the system parameter P._ PUSCH (j) £ ( ⁇ /).
  • the parameters it receives are
  • P 0—PUSCH (J) ⁇ 0_PUSCH ) + F PL (Af).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于载波聚合的通信
系统中上行功率控制的方法和装置 技术领域
本发明涉及基于载波聚合技术的通信系统, 尤其涉及在基于载波 聚合技术的通信系统中进行上行功率控制的方法和装置。 背景技术
LTE-Advanced是 LTE ( Long Term Evolution, 长期演进)的进一 步演进, 支持与 LTE的前后向兼容性发展, 支持多频谱聚合。从 LTE 到 LTE-Advanced系统的演进过程中, 更宽频谱的需求将会成为影响 演进的重要因素之一。 为此 3GPP ( 3rd Generation Partnership Project, 第三代合作伙伴计划)提出了载波聚合( Carrier Aggregation )技术, 其可以很好地将多个载波聚合成一个更宽的频谱, 同时也可以把一些 不连续的频谱聚合在一起。
LTE-A 支持连续载波聚合以及频带内和频带间的非连续载波聚 合。 在 LTE-A系统的上行链路中, 用户设备(UE ) 可以在多个载波 上同时传输数据, 这与在 LTE 的上行链路中仅能在单载波上传输数 据大为不同。 因此, LTE-A 系统的上行功率控制需要进一步考虑 LTE-A系统的这些新的特点。
目前, 3GPP建议 LTE-A系统的传输功率控制 (Transmit Power Control, TCP )基于 LTE系统的功率控制而仅对其进行较小的修改。 并且, 在一些提议中提出在 LTE-A 系统中, 对于每个上行物理信道 传输考虑载波特定的功率控制, 但是并未给出更为具体的方案。
由于 LTE-A 系统的传输功率控制处理中涉及多个载波并且有些 载波之间的频率间隔较远, 使得它们之间的路径损耗不同, 因此, 如 果不对各个载波之间的路径损耗差异进行完全补偿的话, 那么, 基站 在多个载波上进行联合调度(资源分配)将会不公平。 发明内容
当 LTE-A系统支持载波聚合技术时,对于非邻近信道聚合, 由于 不同载波上不同的传输情况(propagation condition ) , 载波特定功率 控制 ( component carrier-specific power control )是需要的; 另一方面, 对于邻近信道聚合, 由于不同的调制编码方案的等级以及频时资源, 载波特定功率控制也是需要的。
因此, 需要为 LTE-A系统定义一个与 Release 8 (版本 8 )中相似 的 PUSCH (物理上行共享信道) 功率控制方程, 并且使得该功率控 制方程中的一些参数载波特定。 该载波特定功率控制方程为
P(i) = min{RCMAX ( , 101og10 PUSCH ( ) + R0 PUSCH (0 + a(i) · PL{i) + ΔΤΡ + /(Δ,)}
( 1 ) 式 ( 1 ) 中, PCMAX(0表示用户设备在载波 CC(i)上的最大发射功 率, MPUSCHG)表示载波 CC(i)上所分配的物理资源块数目, 。—PUSCH( )为 小区特定或用户设备特定或载波特定的参数, a ( )为小区特定或载 波特定的路径损耗补偿系数, PL ω表示载波 CC(i)的路径损耗, 为 由无线资源控制层指定的针对某种特定调制编码方案的参数, Δ,为载 波特定的闭环功率控制指令, /( )指示闭环功率控制指令是积累值指 令或绝对值指令, 由高层告知用户设备, 1^11{ }表示取最小值, 表 示本用户设备在基础载波 CC(i)上的发射功率。
由于在 LTE-A系统中事先并不知晓哪几个载波进行聚合, 因此, 用户设备应该在所聚合的每个载波上进行参考信号接收功率
( Reference Signal Receiving Power, RSPP ) 测量。 而且, 在传输功 率控制 (TPC ) 中, 尽管路径损耗由 a 部分补偿, 但是由各个载 波间的频率间隔 (frequency separation ) 所产生的路径损耗差值应该 完全得到补偿, 以使得基站能够在多个载波上公平地进行联合调度。 如果由各个载波间的频率间隔所产生的路径损耗差值不能得到补偿, 当用户设备在多个载波上以相同的发射功率发送数据时,基站将在不 同的载波上得到不同的接收功率,从而使得基站在不同载波上的联合 调度出现不公平现象。 基于此, 本发明提供了在一个实施例中提供了一种在基于载波聚 合技术的通信系统的用户设备中用于进行上行功率控制的方法, 其特 征在于, 所述方法包括以下步骤:
a. 在所聚合的多个载波中的每个载波上进行参考信号接收功率 测量, 以确定每个载波的路径损耗;
b. 通过以下公式计算所聚合的多个载波中基础载波 CC(i)的发射 功率,
尸·) = min{PCMAX (0, 10 log10 PUSCH () + 0_PUSCH () + «(0 · PL(i) + ΔΤΡ + /(Δ;)} 其中, ΜΑΧ(0表示本用户设备在基础载波 CC(i)上的最大发射功 率, MPUSCH(0表示基础载波 CC(i)上所分配的物理资源块数目, 。j>USCHG)为小区特定或用户设备特定或载波特定的参数, a ( )为小 区特定或载波特定的路径损耗补偿系数, PL (/)表示基础载波 CC(i) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, Δ,·为载波特定的闭环功率控制指令, 函数 /()用于指示 闭环功率控制指令是积累值指令或绝对值指令, 1^1 {}表示取最小值, 表示本用户设备在基础载波 CC(i)上的发射功率;
以及, 通过以下公式计算所聚合的多个载波中非基础载波 CCG') 的发射功率,
PU) = min^c ( ),101Ogl ^PUSCH U) + ^O.PUSCH U) + «(;) - {PL{j) - FPL (Δ/))+ FPL (Δ/) + Δπ +/(Δ } 其中, j = \~N3 ≠i, Ν表示所聚合的载波的个数, Δ/表示非基 础载波 CC(j)所在的频段与基础载波 CC(i)所在的频段的频率间隔, (Δ/)表示非基础载波 CC(j)的路径损耗与基础载波 CC(i)的路径损耗 之间的差值, CMAX /)表示本用户设备在非基础载波 CCG)上的最大发 射功率, MPUSCH( )表示非基础载波 CCG)上所分配的物理资源块数目, P PUSCH( )为小区特定或用户设备特定或载波特定的参数, " ·)为小 区特定或载波特定的路径损耗补偿系数, PL ·)表示非基础载波 CCG) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, Δ,.为载波特定的闭环功率控制指令, 函数 /()用于指示 闭环功率控制指令是积累值指令或绝对值指令, 1^11{}表示取最小值, P{j)表示本用户设备在非基础载波 CC(j)上的发射功率。
本发明在另一个实施例中提供了一种在基于载波聚合技术的通 信系统的用户设备中用于进行上行功率控制的功率控制装置, 其特征 在于, 所述功率控制装置包括:
第一确定装置, 用于在所聚合的多个载波中的每个载波上进行参 考信号接收功率测量, 以确定每个载波的路径损耗;
计算装置, 用于通过以下公式计算所聚合的多个载波中基础载波 CC(i)的发射功率,
= min{PCMAX (), 10 log10 PUSCH () + 0 PUSCH () + a(i) · PL(i) + ΔΤΡ + /(Δ, )} 其中, ΑΜΛΧ(0表示本用户设备在基础载波 CC(i)上的最大发射功 率, MPUSCH( )表示基础载波 CC(i)上所分配的物理资源块数目, 尸。 j>USCHG)为小区特定或用户设备特定或载波特定的参数, a 为小 区特定或载波特定的路径损耗补偿系数, PL 表示基础载波 CC(i) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, 为载波特定的闭环功率控制指令, 函数 /()用于指示 闭环功率控制指令是积累值指令或绝对值指令, !^!1{}表示取最小值, >()表示本用户设备在基础载波 CC(i)上的发射功率;
以及, 通过以下公式计算所聚合的多个载波中非基础载波 CC(j) 的发射功率,
P( ) = min{Pc ( , 101ogl MPUSCH ( +尸。 Ρ Η( + α(_/)·( Ο)- (Δ/))+/^(Δ/) + Δπ+/(Δ } 其中, j = N表示所聚合的载波的个数, Δ/表示非基 础载波 CCG)所在的频段与基础载波 CC(i)所在的频段的频率间隔, (Δ/)表示非基础载波 CC(j)的路径损耗与基础载波 CC(i)的路径损耗 之间的差值,
Figure imgf000006_0001
( )表示本用户设备在非基础载波 cc(j)上的最大发 射功率, MPUSCH( )表示非基础载波 CCG)上所分配的物理资源块数目, P。_pusch ')为小区特定或用户设备特定或载波特定的参数, a ( )为小 区特定或载波特定的路径损耗补偿系数, PL ·)表示非基础载波 CC(j) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, Δ 为载波特定的闭环功率控制指令, 函数 /()用于指示 闭环功率控制指令是积累值指令或绝对值指令, mini}表示取最小值,
P( 表示本用户设备在非基础载波 CCG)上的发射功率。
通过应用本发明的方法和装置, 由各个载波之间的频率间隔所产 生的路径损耗差值完全得到补偿, 使得基站能够公平地在多个载波上 进行联合资源调度从而获得巨大地频率分集增益。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描 述, 本发明的上述及其他特征将会更加清晰:
图 1示出了根据本发明的一个实施例的在基于载波聚合技术的通 信系统的用户设备中用于进行上行功率控制的方法流程图;
图 2示出了根据本发明的另一个实施例的在基于载波聚合技术的 通信系统的用户设备中用于进行上行功率控制的功率控制装置的结 构框图; 以及
图 3 示出了根据本发明的一个实施例的第一确定装置的结构框 图。
附图中相同或相似的标记用于表示相同或相似的步骤或装置。 具体实施方式
以 LTE-A系统中上行链路使用两载波聚合为例,其中,所聚合的 载波 CC1为低频段载波, 载波 CC2为高频段载波。
根据载波特定功率控制方程, 用户设备在 CC1上的发射功率为 尸 (1)二 min{ CMAX (1), 10 log10 PUSCH (1) + R0 PUSCH (1) + α(1) · PL(\) + ΔΤΡ + /(△,)}
( 2 ) 用户设备在载波 CC2上的发射功率为
尸 (2) = min{ CMAX (2), 10 log,。 PUSCH (2) + 0 PUSCH (2) + α(2) · PL(2) + ΔΤΡ + /(Δ2)}
( 3 ) 需要说明的是, 关于式(2 )和式(3 ) 中各参量的含义可参见发 明内容部分对式 ( 1 ) 的详细解释, 为简明起见, 在此不作赘述。
由于低频段载波 CC1的路径损耗较小, 而高频段载波 CC2的路 径损耗较大, 如果用户设备以相同的发射功率分别在载波 CC1 和载 波 CC2上发送数据的话, 基站在载波 CC2上的接收功率将小于在载 波 CC1上的接收功率。
将低频段载波 CC1作为基础载波, 相应地, 高频段载波 CC2为 非基础载波。 将载波 CC2所在的频段和栽波 CC1所在的频段的频率 间隔定义为 Δ/。 载波 CC2 的路径损耗 (2)与载波 CC1 的路径损耗 尸 (1)定义为 = PL(2) - PL(l)。
以下为简单起见, 将用户设备在载波 CC1和载波 CC2上的发射 功率分别定义为
(l) = 101og10 PUSCH PUSCH (1) + «(1)Κ1) + + (4) (2) = 101og10 PUSCH PUSCH
需要说明的是, 如果式(4 )和式(5 )的计算值分别大于尸 CMAX(1) 和尸 CMAX(2), 那么, 用户设备在载波 CC1和载波 CC2上的发射功率将 分别为 CMAX(I)和^; MAX(2)。 这是本领域普通技术人员可以理解的, 在 此不作赘述。
上述式 (5 ) 可变形为
尸 (2) = 10 log10 PUSCH (2) + 0 PUSCH (2) + «(2)· PL(\) + "(2) · FPL (Δ/) + ΔΤΡ+ /(Δ2)
( 6) 为便于分析, 对于基站的接收功率仅考虑载波 CC1 和载波 CC2 的路径损耗的问题, 则基站在载波 CC1上的接收功率为
P(l)-PL(l) = 10logl0M PUSCH (1) +尸。 PUSCH (1) + ΔΤΡ + f(A,) + α(1) - PL{\) - PL(l)
= 10 log10 Mp誦 (1) +尸 o p画 (1) + ΔΤΡ + ) + (α(1) - l)^(l)
( 7) 基站在载波 CC2上的接收功率为
尸 (2)- Ζ(2) = 101Ο 。Μρυ Η(2) + Ο ρυ5(:Η(2) + ΔΤΓ+/(Δ2) + "(2)·7^(1) + α(2)·7^(Δ/) - (2)
= 101og10 PUSCH(2) + PO PUSCH(2) + ATF+/(A2) + (a(2)-l) L(l) + (a(2)-l) M(A -) 由于在部分功率控制 (Fractional Power Control , FPC ) 中, 0 < «( ≤1 , 因此, 在式 ( 8 ) 中, (《(2) - 1) (Δ/)≤0, 从而使得 ((«(2)― 1)R (1) + («(2) - \)FPLW)) < (α(2) - l) L(l)。
由此可见, 由于高频段载波 CC2和低频段载波 CC1之间的频率 间隔 Δ/而导致的载波 CC2与载波 CC1之间的路径损耗差值 £(Δ/)使 得基站在载波 CC2上的接收功率小于在载波 CC1上的接收功率, 从 而影响了基站对载波 CC1和载波 CC2进行公平地联合资源调度。 因 此, 克服由于所聚合的不同载波之间的频率间隔所带来的路径损耗差 异问题对于基站能够实现公平地联合调度将是十分必要的。
由式 (8 ) 可见, 为克服路径损耗差值所带来的问题, 在针对载 波 CC2的原有载波特定功率控制方程( 3 )中,应加上 (1- α(2))/^(Δ/) 一项, 从而可以有效地解决由于所聚合的各个载波之间路径损耗差异 所导致的基站在不同的载波上接收功率的差异问题。
需要说明的是, 以上分析仅是以两个载波聚合为例, 其原理可延 伸至多个载波聚合的情形, 这是本领域普通技术人员可以理解的, 为 简明起见, 在此不作赘述。
下面结合附图对本发明作进一步详细描述。
图 1示出了根据本发明的一个实施例的在基于载波聚合技术的通 信系统的用户设备中用于进行上行功率控制的方法流程图。
首先, 在步骤 S11中, 用户设备在所聚合的多个载波中的每个载 波上进行参考信号接收功率 (RSRP ) 测量, 以确定每个载波的路径 损耗。
具体的, 用户设备首先从基站处获取基站发送该参考信号的发射 功率值。
然后, 用户设备根据从基站处获取的发射功率值以及在每个载波 上接收到的该参考信号的接收功率值, 确定每个载波的路径损耗。
需要说明是, 关于用户设备如何计算所聚合的多个载波中每个载 波的路径损耗是现有技术。 这是本领域普通技术人员应能理解的, 为 简明起见, 在此不作赘述。 其次, 在步骤 S12 中, 用户设备通过公式 (9)计算所聚合的多 个载波中基础载波 CC(i)的发射功率,
Ρ(,·) = min{Pc丽 ( ), 10 log10 M議 (/) + PO PUSCH (0 + a{i) · PL(i) + ΔΤΡ+ f(At )} ( 9 ) 式( 9 )中, PCMAX(0表示本用户设备在基础载波 CC(i)上的最大发 射功率, MPUSCH(0表示基础载波 CC(i)上所分配的物理资源块数目, 尸。 _PUSCH ')为小区特定或用户设备特定或载波特定的参数, a G)为小 区特定或载波特定的路径损耗补偿系数, PL G)表示基础载波 CC(i) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, Δ为载波特定的闭环功率控制指令, 函数 /( )用于指示 闭环功率控制指令是积累值指令或绝对值指令, min{}表示取最小值, Ρ{ί)表示本用户设备在基础载波 CC(i)上的发射功率;
并且, 用户设备通过公式(10)计算所聚合的多个载波中非基础 载波 CC(j)的发射功率,
P(j) = min{ CMAX(y),101ogl0 PUSCH (;) + P0 PUSCH (j) + «( > · (P (j)― FPL (Δ/))+ FPL (Δ/) + ΔΤΡ + /(△ }
(10) 式(10)中, ' = l~ V且 Ν表示所聚合的载波的个数, Δ/ 表示非基础载波 CCG)所在的频段与基础载波 CC(i)所在的频段的频 率间隔, 表示非基础载波 CCG)的路径损耗与基础载波 CC(i) 的路径损耗之间的差值, PCMAXC)表示本用户设备在非基础载波 CCG) 上的最大发射功率, MPUSCH( 表示非基础载波 CC(j)上所分配的物理 资源块数目, p。_PUSCH( )为小区特定或用户设备特定或载波特定的参 数, 《 ( )为小区特定或载波特定的路径损耗补偿系数, ·)表示非 基础载波 CCG)的路径损耗, 为由无线资源控制层指定的针对某种 特定调制编码方案的参数, Δ,.为载波特定的闭环功率控制指令, 函数 /( )用于指示闭环功率控制指令是积累值指令或绝对值指令, 《^{}表 示取最小值, 表示本用户设备在非基础载波 CC(j)上的发射功率。
当用户设备计算出在各个载波上的发射功率后, 该用户设备在各 个载波上以所计算出的发射功率发送数据至基站。
需要说明的是, 在所聚合的多个载波中, 将所处频段频率最低的 载波作为基础载波, 其发射功率根据如公式 ( 1) 所示的载波特定功 率控制方程确定, 而其余非基础载波的发射功率则根据该非基础载波 与基础载波之间的路径损耗差值在如式 ( 1 ) 所示的载波特定功率控 制方程的基础上进行调整。
另一需要说明的是, 式 (10) 中, 非基础载波 CC (j) 和基础载 波 CC (i)之间的路径损耗差值 ^^(Δ/)即可以在载波特定功率控制方 程的路径损耗补偿 a(') · 这一项中进行补偿, 在一个变化例中, 非基础载波 CC (j)和基础载波 CC (i)之间的路径损耗差值 £(Δ/) 也可以在载波特定功率控制方程的 Ρ。― PUSCH U)这一项中进行补偿, 即 系统在发送参数 P。_PUSCH /)至用户设备前, 先在该参数^) _PUSCH( )上加 上路径损耗差值 ^ (Δ/)。 对于用户设备而言, 其所接收到的参数是
Ρ 0 PUSCH ( ) = PQ PUSCH (J) + FPL ( f)。 以上是从方法步骤的角度对本发明的技术方案进行的描述, 以下 将从装置模块的角度对本发明的技术方案做进一步的描述。
图 2示出了根据本发明的另一个实施例的在基于载波聚合技术的 通信系统的用户设备中用于进行上行功率控制的功率控制装置 10的 结构框图。 其中, 功率控制装置 10包括第一确定装置 101 以及计算 装置 102。
图 3示出了根据本发明的一个实施例的第一确定装置 101的结构 框图。 其中, 第一确定装置 101 包括获取装置 1011 以及第二确定装 置 1012。
首先, 功率控制装置 10中的第一确定装置 101在所聚合的多个 载波中的每个载波上进行参考信号接收功率 (RSRP) 测量, 以确定 每个载波的路径损耗。
具体的, 第一确定装置 101 中的获取装置 1011 首先从基站处获 取基站发送该参考信号的发射功率值。
然后, 第一确定装置 101 中的第二确定装置 1012根据从基站处 获取的发射功率值以及在每个载波上接收到的该参考信号的接收功 率值, 确定每个载波的路径损耗。
需要说明是, 关于第一确定装置 101如何确定所聚合的多个载波 中每个载波的路径损耗是现有技术。这是本领域普通技术人员应能理 解的, 为简明起见, 在此不作赘述。
其次, 功率控制装置 10中的计算装置 102通过公式 ( 11 ) 计算 所聚合的多个载波中基础载波 CC(i)的发射功率,
尸 (0 = min{ CMAX (0, 10 log10 PUSCH (/) + O PUSCH (/) + a(i) · PL(i) + ΔΤΡ + /(Δ,· )} (11) 式(11)中, ΜΑΧ(0表示本用户设备在基础载波 CC(i)上的最大 发射功率, MPUSCH( 表示基础载波 CC(i)上所分配的物理资源块数目, P。一 PUSCHG)为小区特定或用户设备特定或载波特定的参数, 为小 区特定或载波特定的路径损耗补偿系数, PL G)表示基础载波 CC(i) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码 方案的参数, 为载波特定的闭环功率控制指令, 函数 /()用于指示 闭环功率控制指令是积累值指令或绝对值指令, 1^11{}表示取最小值, p(o表示本用户设备在基础载波 CC(i)上的发射功率;
并且, 计算装置 102通过公式(12)计算所聚合的多个载波中非 基础载波 CCG)的发射功率,
PU) = min{ CMAX ( ),101og10 PUSCH U) +尸。— PUSCH ( + «(;) - (PL(j)― FPL (Δ/))+ FPL (Δ/) + ΔΤΡ + (Δ,)}
(12) 式(12)中, _/ = l~N且 ≠ί, Ν表示所聚合的载波的个数, Δ/表 示非基础载波 CCG)所在的频段与基础载波 CC(i)所在的频段的频率 间隔, ^(Δ/)表示非基础载波 CC(0的路径损耗与基础载波 CC(i)的 路径损耗之间的差值, RCMAX( )表示本用户设备在非基础载波 CCG)上 的最大发射功率, MPUSCH ')表示非基础载波 CC(j)上所分配的物理资源 块数目, 。_PUSCH(/)为小区特定或用户设备特定或载波特定的参数, « 0·)为小区特定或载波特定的路径损耗补偿系数, PL ')表示非基础 载波 CCG)的路径损耗, ATF为由无线资源控制层指定的针对某种特定 调制编码方案的参数, Δ;为载波特定的闭环功率控制指令, 函数 /() 用于指示闭环功率控制指令是积累值指令或绝对值指令, min{}表示取 最小值, R( )表示本用户设备在非基础载波 CC(j)上的发射功率。
当功率控制装置 10中的计算装置 102计算出用户设备在各个载 波上的发射功率后, 则用户设备在各个载波上以所计算出的发射功率 发送数据至基站。
需要说明的是, 在所聚合的多个载波中, 将所处频段频率最低的 载波作为基础载波, 其发射功率根据如公式 ( 1 ) 所示的载波特定功 率控制方程确定, 而其余非基础载波的发射功率则根据该非基础载波 与基础载波之间的路径损耗差值在如式 ( 1 ) 所示的载波特定功率控 制方程的基础上进行调整。
另一需要说明的是, 式 ( 12 ) 中, 非基础载波 CC ( j ) 和基础载 波 CC ( i )之间的路径损耗差值 £(Δ/)即可以在载波特定功率控制方 程的路径损耗补偿 α ( · ( 这一项中进行补偿, 在一个变化例中, 非基础载波 CC ( j ) 和基础载波 CC ( i )之间的路径损耗差值 ^(Δ/) 也可以在载波特定功率控制方程的 P。— PUSCHC 这一项中进行补偿, 即 系统在发送参数 P。_PUSCH (j)至用户设备前, 先在该参数 P。_PUSCH (j)上加 上路径损耗差值 £(Δ/)。 对于用户设备而言, 其所接收到的参数是
P 0—PUSCH (J) = ^0_PUSCH ) + FPL (Af)。
通过应用本发明的方法和装置, 由各个载波之间的频率间隔所产 生的路径损耗差值完全得到补偿,使得基站能够公平地在多个载波上 进行联合资源调度从而获得巨大地频率分集增益。 对于本领域技术人员而言, 显然本发明不限于上述示范性实施例 的细节, 而且在不背离本发明的精神或基本特征的情况下, 能够以其 他的具体形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例 看作是示范性的, 而且是非限制性的, 本发明的范围由所附权利要求 而不是上述说明限定, 因此旨在将落在权利要求的等同要件的含义和 范围内的所有变化嚢括在本发明内。 不应将权利要求中的任何附图标 记视为限制所涉及的权利要求。 此外, 显然 "包括" 一词不排除其他 单元或步骤, 单数不排除复数。 系统权利要求中陈述的多个单元或装 置也可以由一个单元或装置通过软件或者硬件来实现。 第一, 第二等 词语用来表示名称, 而并不表示任何特定的顺序。

Claims

权 利 要 求 书
1. 一种在基于载波聚合技术的通信系统的用户设备中用于进行 上行功率控制的方法, 其特征在于, 所述方法包括以下步骤:
a. 在所聚合的多个载波中的每个载波上进行参考信号接收功率 测量, 以确定每个载波的路径损耗;
b. 通过以下公式计算所聚合的多个栽波中基础栽波 CC(i)的发射 功率,
=
Figure imgf000015_0001
(ζ·), 10 log10 PUSCH (/) +尸 o— PUSCH (0 + aii) · PL(i) + ΔΤΡ + (Δ, )} 其中, PCMAX(0表示本用户设备在基础载波 CC(i)上的最大发射功 率, MPUSCH(f)表示基础载波 cc(i)上所分配的物理资源块数目,
Figure imgf000015_0002
为小区特定或用户设备特定或载波特定的参数, 《 ϋ·)为小区特定或载 波特定的路径损耗补偿系数, PL 表示基础栽波 CC(i)的路径损耗, ATF为由无线资源控制层指定的针对某种特定调制编码方案的参数, Δ; 为载波特定的闭环功率控制指令, 函数 /( )用于指示闭环功率控制指 令是积累值指令或绝对值指令, 1^11{}表示取最小值, 0表示本用户 设备在基础载波 CC(i)上的发射功率;
以及, 通过以下公式计算所聚合的多个载波中非基础载波 CC(j) 的发射功率,
^') = min{Pc ( UOlo^MpuscHW + fo— PUSCHC) + a( )'(i^( )- (Δ/))+^(Δ/) + Δ + /(Δ } 其中, _/ = 1~^且 , Ν表示所聚合的载波的个数, Δ/表示非基础载 波 cc(j)所在的频段与基础载波 cc(i)所在的频段的频率间隔, FPL 表示非基础载波 CC(j)的路径损耗与基础载波 CC(i)的路径损耗之间 的差值, CMAX( >表示本用户设备在非基础载波 CCG)上的最大发射功 率, MPUSCH( )表示非基础载波 CC(j)上所分配的物理资源块数目, 尸。 _PUSCH( )为小区特定或用户设备特定或载波特定的参数, a ·)为小区 特定或载波特定的路径损耗补偿系数, PL ( )表示非基础载波 CCG) 的路径损耗, Δ TF为由无线资源控制层指定的针对某种特定调制编码方 案的参数, Δ;为载波特定的闭环功率控制指令, 函数 /()用于指示闭 环功率控制指令是积累值指令或绝对值指令, !^!1{ }表示取最小值, W) 表示本用户设备在非基础载波 CCG)上的发射功率。
2. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 a包括以 下步骤:
- 从基站获取参考信号的发射功率值;
- 根据所获取的发射功率值以及在每个载波上接收到的所述参考 信号的接收功率值, 确定每个载波的路径损耗。
3. 一种在基于载波聚合技术的通信系统的用户设备中用于进行 上行功率控制的功率控制装置,其特征在于,所述功率控制装置包括: 第一确定装置, 用于在所聚合的多个载波中的每个载波上进行参 考信号接收功率测量, 以确定每个载波的路径损耗;
计算装置, 用于通过以下公式计算所聚合的多个载波中基础载波
CC(i)的发射功率,
= min{?CMAX ( ), 10 log10 MPUSCH ( ) + PO PUSCH ( ) + a(i) · PL(i) + ΔΤΡ + /(Δ,· )} 其中, PCMAX(0表示本用户设备在基础载波 CC(i)上的最大发射功 率, MPUSCHG)表示基础载波 cc(i)上所分配的物理资源块数目, 。_Ρυ ¾ω 为小区特定或用户设备特定或载波特定的参数, a (,·)为小区特定或载 波特定的路径损耗补偿系数, PL ω表示基础载波 cc(i)的路径损耗,
ΔΤΡ为由无线资源控制层指定的针对某种特定调制编码方案的参数, Δ; 为载波特定的闭环功率控制指令, 函数 /( )用于指示闭环功率控制指 令是积累值指令或绝对值指令, !^!1{ }表示取最小值, 0表示本用户 设备在基础载波 CC(i)上的发射功率;
以及, 通过以下公式计算所聚合的多个载波中非基础载波 CCG) 的发射功率,
P(j) = mini^ (y),10 log10 PUSCH (j) + 0 PUSCH (j) + "(Λ - (尸 (_ )― FPL (Δ/))+ FPL (Af) + ΔΤΡ + /(Δ, )} 其中, j = l ~ N j≠i , N表示所聚合的载波的个数, Δ/表示非基础载 表示非基础载波 CC(j)的路径损耗与基础载波 CC(i)的路径损耗之间 的差值, pCMAX )表示本用户设备在非基础载波 CCG)上的最大发射功 率, MPUSCH( )表示非基础载波 CC(j)上所分配的物理资源块数目, 。_PUSOT( )为小区特定或用户设备特定或载波特定的参数, " ·)为小区 特定或载波特定的路径损耗补偿系数, PL ·)表示非基础载波 CCG) 的路径损耗, ATF为由无线资源控制层指定的针对某种特定调制编码方 案的参数, Δ为载波特定的闭环功率控制指令, 函数 /( )用于指示闭 环功率控制指令是积累值指令或绝对值指令, 1^11{}表示取最小值,尸 ( ) 表示本用户设备在非基础载波 CCG)上的发射功率。
4. 根据权利要求 3所述的功率控制装置, 其特征在于, 所述第一 确定装置还包括:
获取装置, 用于从基站获取参考信号的发射功率值;
第二确定装置, 用于根据所获取的发射功率值以及在每个载波上 接收到的所述参考信号的接收功率值, 确定每个载波的路径损
PCT/CN2009/074335 2009-09-30 2009-09-30 基于载波聚合的通信系统中上行功率控制的方法和装置 WO2011038548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980160652.9A CN102474824B (zh) 2009-09-30 2009-09-30 基于载波聚合的通信系统中上行功率控制的方法和装置
PCT/CN2009/074335 WO2011038548A1 (zh) 2009-09-30 2009-09-30 基于载波聚合的通信系统中上行功率控制的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074335 WO2011038548A1 (zh) 2009-09-30 2009-09-30 基于载波聚合的通信系统中上行功率控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2011038548A1 true WO2011038548A1 (zh) 2011-04-07

Family

ID=43825493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074335 WO2011038548A1 (zh) 2009-09-30 2009-09-30 基于载波聚合的通信系统中上行功率控制的方法和装置

Country Status (2)

Country Link
CN (1) CN102474824B (zh)
WO (1) WO2011038548A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883343A (zh) * 2011-07-13 2013-01-16 华为技术有限公司 一种扩展载波路径损耗测量方法和相关设备
CN103596257A (zh) * 2012-08-14 2014-02-19 电信科学技术研究院 一种上行功率控制的方法、系统及装置
WO2018126874A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 上行功率控制方法及终端
CN109429303A (zh) * 2017-08-30 2019-03-05 中国移动通信有限公司研究院 一种网络搜索方法和终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204203A1 (ko) 2013-06-18 2014-12-24 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
CN107925968B (zh) * 2015-08-26 2023-02-17 Idac控股公司 用于无线系统中的功率控制的系统和方法
CN109963328B (zh) * 2017-12-25 2022-08-09 成都鼎桥通信技术有限公司 特殊的lte-fdd小区中上行功率控制命令的发送方法和系统
CN110536392B (zh) * 2018-08-10 2022-11-15 中兴通讯股份有限公司 功率控制方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042187A2 (en) * 2006-10-03 2008-04-10 Interdigital Technology Corporation Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra
CN201167319Y (zh) * 2007-03-07 2008-12-17 美商内数位科技公司 用于控制移动站上行链路功率的无线发射接收单元
CN101527586A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 一种路径损耗补偿方法、系统及移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042187A2 (en) * 2006-10-03 2008-04-10 Interdigital Technology Corporation Combined open loop/closed loop (cqi-based) uplink transmit power control with interference mitigation for e-utra
CN201167319Y (zh) * 2007-03-07 2008-12-17 美商内数位科技公司 用于控制移动站上行链路功率的无线发射接收单元
CN101527586A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 一种路径损耗补偿方法、系统及移动终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)", 3GPP TS 36.213, V8.6.0, March 2009 (2009-03-01) *
"NextWave Wireless, IPWireless. Pathloss Estimation for Uplink Power Control", 3GPP TSG RAN WG1 MEETING #54BIS, R1-083846, 3 October 2008 (2008-10-03) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883343A (zh) * 2011-07-13 2013-01-16 华为技术有限公司 一种扩展载波路径损耗测量方法和相关设备
CN103596257A (zh) * 2012-08-14 2014-02-19 电信科学技术研究院 一种上行功率控制的方法、系统及装置
WO2018126874A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 上行功率控制方法及终端
CN110115070A (zh) * 2017-01-06 2019-08-09 华为技术有限公司 上行功率控制方法及终端
US11356957B2 (en) 2017-01-06 2022-06-07 Huawei Technologies Co., Ltd. Uplink power control method and terminal
CN109429303A (zh) * 2017-08-30 2019-03-05 中国移动通信有限公司研究院 一种网络搜索方法和终端
CN109429303B (zh) * 2017-08-30 2021-01-15 中国移动通信有限公司研究院 一种网络搜索方法、终端和计算机可读存储介质

Also Published As

Publication number Publication date
CN102474824A (zh) 2012-05-23
CN102474824B (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
USRE50017E1 (en) Method and apparatus for transmission power control for a sounding reference signal
US10517049B2 (en) Uplink scheduling apparatus and method based on uplink report in wireless communication system
US10349393B2 (en) Method and device for transmitting random access and other uplink channels of other cell in mobile communication system carrier aggregation
WO2011038548A1 (zh) 基于载波聚合的通信系统中上行功率控制的方法和装置
CN108990143B (zh) 有效报告用户设备传输功率的方法及其装置
US9510296B2 (en) PUCCH power control method and device
US9668227B2 (en) Method and apparatus for calculating power headroom in carrier aggregation mobile communication system
JP5878643B2 (ja) アップリンク電力制御方法及び装置
US9107175B2 (en) Uplink transmission power configuration method and apparatus for mobile communication system
CN106131946B (zh) 用于在无线通信系统中计算功率余量的方法和装置
WO2013040954A1 (zh) 一种上行功率控制的方法及装置
WO2014117696A1 (zh) 载波聚合下的功率余量上报方法和设备
CN103124428B (zh) 一种上行功率控制方法及装置
WO2013016855A1 (zh) 一种功率控制方法和终端设备
WO2015018357A1 (zh) 一种上行功率控制方法和装置
KR20110098768A (ko) 캐리어 집합체에 대한 업링크 파워 헤드룸 보고
WO2013141647A1 (ko) 무선 접속 시스템에서 상향링크 전송 파워 제어 방법 및 이를 위한 장치
WO2013051855A1 (ko) 파워 헤드룸 리포팅 전송 방법 및 이를 위한 장치
WO2012041170A1 (zh) 载波聚合场景下上报功率上升空间报告的方法和装置
CN104956748B (zh) 移动站、基站以及发送和接收功率余量报告的方法
WO2013127278A1 (zh) 上行发射功率确定方法及装置、功率控制参数确定方法及装置
WO2021088978A1 (en) Method for determining a transmission power of an uplink transmission, user equipment, and computer readable medium
WO2011082549A1 (zh) 用于控制用户终端设备发射功率的方法和设备
CN109392072A (zh) 功率余量的计算方法
US20170195979A1 (en) Terminal apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160652.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849956

Country of ref document: EP

Kind code of ref document: A1