WO2018126874A1 - 上行功率控制方法及终端 - Google Patents

上行功率控制方法及终端 Download PDF

Info

Publication number
WO2018126874A1
WO2018126874A1 PCT/CN2017/116578 CN2017116578W WO2018126874A1 WO 2018126874 A1 WO2018126874 A1 WO 2018126874A1 CN 2017116578 W CN2017116578 W CN 2017116578W WO 2018126874 A1 WO2018126874 A1 WO 2018126874A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
uplink
terminal
power
control information
Prior art date
Application number
PCT/CN2017/116578
Other languages
English (en)
French (fr)
Inventor
张兴炜
冯淑兰
杜光龙
黎超
时洁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780080593.9A priority Critical patent/CN110115070A/zh
Priority to EP17890398.5A priority patent/EP3550896B1/en
Publication of WO2018126874A1 publication Critical patent/WO2018126874A1/zh
Priority to US16/503,078 priority patent/US11356957B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to an uplink power control method and a terminal.
  • Power control is an important technology in wireless communication systems that compensates for various fading effects of the channel, enabling wireless signals to reach the receiver with reasonable power.
  • power control includes uplink power control and downlink power control.
  • the uplink power control is to control the transmission power of different uplink channels.
  • Physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), and Sounding Reference Signal (SRS) have clear power control when performing uplink power control. formula.
  • uplink power can be determined according to various power control influencing factors, the uplink power control accuracy is improved, and the uplink transmission quality is improved.
  • an uplink power control method including:
  • the terminal acquires a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type; wherein the beamforming information may be sent on the uplink channel
  • the beamforming indication signaling may also be the identifier of the beam where the uplink channel is located; the subcarrier spacing is the subcarrier spacing of the resource carrying the uplink channel; the time length is the length of time of the resource carrying the uplink channel; the service type is the uplink channel.
  • the service type of the sent uplink information the terminal determines the transmit power of the uplink channel according to the power control influence factor; the terminal transmits the uplink channel by using the transmit power of the uplink channel.
  • the terminal determines the transmit power of the uplink channel according to the power control influence factor, including:
  • the terminal determines the power control information according to the power control influencing factor, and the power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter;
  • the terminal determines a transmit power of the uplink channel according to the power control information.
  • each power control influence factor can correspond to the respective power control information, and the power control influence
  • the factor includes at least two of beamforming information, subcarrier spacing, time length, and service type
  • at least two types of power control influencing factors may correspond to one power control information.
  • the terminal determines, according to the power control influencing factor, the transmit power of the uplink channel, including:
  • the terminal Determining, by the terminal, the power control information according to the beamforming information, where the power control information includes an uplink control information bit function or an uplink control information format function;
  • the terminal determines a transmit power of the uplink channel according to the uplink control information bit function or an uplink control information format function.
  • the terminal determines, according to the power control influencing factor, the transmit power of the uplink channel, including:
  • the terminal Determining, by the terminal, the first power control information according to the beamforming information, where the first power control information includes an uplink control information bit function or an uplink control information format function;
  • the second power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter;
  • the terminal determines a transmit power of the uplink channel according to the first power control information and the second power control information.
  • the terminal determines the power control information according to the power control influence factor, including:
  • the terminal determines, according to a preset mapping relationship, the power control information corresponding to the power control influencing factor; the preset mapping relationship is configured by the base station to the terminal, where the preset mapping relationship includes different power control influencing factors and Mapping of power control information.
  • the method further includes:
  • the terminal performs power control on transmit power of the at least two uplink channels according to priorities of at least two uplink channels in power control.
  • the priority of the at least two uplink channels in the power control is determined according to a plurality of power control factors under the type. For example, for multiple subcarrier spacings, the longer the subcarrier spacing, the higher the priority of the corresponding upstream channel.
  • each power control influencing factor may be prioritized.
  • the order of priority from high to low is subcarrier spacing, beamforming information, time length, and service type.
  • the subcarrier spacing is used to determine the priority of the at least two uplink channels in the power control. If the subcarrier spacing is the same, the beamforming information is used to determine the priority of the uplink channel in the power control, and so on.
  • the method further includes:
  • the terminal performs power control on the transmit power of the at least two uplink channels according to priorities of the at least two uplink channels in power control.
  • the power control influencing factor is configured for the base station by the base station.
  • the uplink channel includes at least one of the following:
  • Physical uplink control channel PUCCH Physical uplink control channel PUCCH, physical uplink shared channel PUSCH, physical random access channel PRACH, listening reference signal SRS, physical beamforming channel PBFCH.
  • the uplink channel is a physical beamforming channel PBFCH
  • the power control influencing factor includes beamforming information
  • the offset value determined by the terminal according to the beamforming information is The offset value of the PBFCH and the PUCCH;
  • the offset value determined by the terminal according to the beamforming information is an offset value of the PBFCH and the PUSCH; or
  • the power headroom of the terminal is calculated according to the transmit power of the PBFCH.
  • the PBFCH has the highest priority
  • the PUSCH includes a scheduling-based PUSCH and a scheduling-free PUSCH, and the scheduling-based PUSCH has a higher priority than the unscheduled PUSCH.
  • an uplink power control method including:
  • the base station sends a power control influencing factor to the terminal, so that the terminal determines the transmit power of the uplink channel according to the power control influencing factor;
  • the base station receives an uplink channel sent by the terminal to determine the transmit power of the uplink channel.
  • the method before the receiving, by the base station, the uplink channel sent by the terminal to determine the transmit power of the uplink channel, the method further includes:
  • the base station sends a preset mapping relationship to the terminal, where the preset mapping relationship includes: mapping relationship between different power control influencing factors and power control information.
  • an embodiment of the present application provides a terminal, including:
  • An obtaining module configured to obtain a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type;
  • a processing module configured to determine, according to the power control influencing factor, a transmit power of the uplink channel
  • a sending module configured to send the uplink channel by using a transmit power of the uplink channel.
  • the processing module is specifically configured to:
  • the power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter;
  • the processing module is specifically configured to:
  • the power control information includes an uplink control information bit function or an uplink control information format function
  • the processing module is specifically configured to:
  • first power control information Determining, according to the beamforming information, first power control information, where the first power control information includes an uplink control information bit function or an uplink control information format function;
  • Second power control information includes at least one of: a scaling factor, an offset value, and an attribute of a power control parameter
  • the processing module is specifically configured to:
  • the preset mapping relationship is configured by the base station to the terminal, where the preset mapping relationship includes different power control influencing factors and power control information Mapping relationship.
  • the power control module is further included:
  • the power control module is configured to determine, according to the power control influencing factor, a priority of at least two of the uplink channels in power control;
  • the power control module is further included:
  • the power control module is configured to determine, according to an uplink channel type, a priority of the at least two uplink channels in the power control; where, when the uplink channel types corresponding to the uplink channel are the same, determining, by the power control influencing factors, the uplink channel Priority in power control;
  • the longer the subcarrier spacing the higher the priority of the corresponding uplink channel.
  • an embodiment of the present application provides a base station, including:
  • a sending module configured to send a power control influencing factor to the terminal, so that the terminal determines a transmit power of the uplink channel according to the power control influencing factor
  • a receiving module configured to receive, by the terminal, an uplink channel that is sent by using a transmit power of the determined uplink channel.
  • an embodiment of the present application provides a terminal, including: at least one processor and a memory;
  • the memory stores a computer execution instruction
  • the at least one processor executes the computer-executed instructions stored by the memory such that the terminal performs the uplink power control method described above.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores computer execution instructions, and when the processor executes the computer execution instruction, implements uplink power control as described above. method.
  • the terminal determines the transmit power of the uplink channel for the specific power control influence factor by acquiring the power control influence factor, and the power control influence factors of the embodiment include beamforming information and subcarriers. At least one of the interval, the length of time, and the service type, the terminal can determine the transmit power for different power control influencing factors, and send the uplink channel by using the transmit power of the uplink channel, thereby improving the accuracy of the uplink power control, thereby Improve the quality of uplink transmission.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a flowchart 1 of a method for uplink power control according to an embodiment of the present application
  • FIG. 3 is a second flowchart of a method for uplink power control according to an embodiment of the present application.
  • FIG. 4 is a third flowchart of a method for uplink power control according to an embodiment of the present application.
  • FIG. 5 is a flowchart 4 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of hardware of a terminal according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application.
  • the network architecture provided by this embodiment includes a base station 01 and a terminal 02.
  • the terminal involved in the embodiments of the present application may include various handheld devices, wireless devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment and mobile stations. (Mobile Station, MS) and more.
  • a base station (BS) involved in an embodiment of the present application is a network device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • Uplink power control in Long Term Evolution (LTE) systems is to compensate for channel path loss and shadow effects.
  • the uplink transmit power is completed by the power control command of the base station.
  • the base station will instruct the terminal to raise the transmission power, and vice versa.
  • the physical uplink control channel (PUCCH) and the physical uplink shared channel (PUSCH) have explicit power control formulas, and the Sounding Reference Signal (SRS) is An offset is added to the transmit power of the PUSCH.
  • the base station can configure the parameters in the formula to the terminal in a semi-static manner, thereby implementing the raising or lowering of the terminal transmitting power.
  • New Radio Access Technology (NR) in the 5th Generation Mobile Communications 5G defines a new air interface access technology to support a user experience rate of 0.1 to 1 Gbps with a million connections per square kilometer. Number density, millisecond-level end-to-end delay, tens of Tbps traffic density per square kilometer, mobility above 500Km per hour and peak rate of tens of Gbps.
  • the five major application scenarios and requirements of 5G include: enhanced mobile broadband, massive machine-like communications, and ultra-reliable low-latency communications.
  • the scenes corresponding to ultra-high reliability and low latency communication include unmanned driving, industrial control, etc., requiring low latency and high reliability.
  • the specific requirements for low latency are end-to-end 0.5 ms delay, and air interface information is exchanged back and forth for 1 ms delay.
  • the specific requirement for high reliability is that the Block Error Rate (BLER) reaches 10 -5 , that is, the correct reception ratio of the data packet reaches 99.999%.
  • BLER Block Error Rate
  • the baseline is 15 kHz
  • the subcarrier spacing can be 3.75 kHz, 7.5 kHz, 15 kHz, and 15 kHz x 2 n , where n is an integer up to 480 kHz, up to eight.
  • n is an integer up to 480 kHz, up to eight.
  • the report of the Beam Forming Indication is that the terminal reports the beam identification (Beamforming RS) of the measurement result or the best measurement result to the base station by measuring the beamforming downlink reference signal BRS (Beamforming RS) transmitted by the base station.
  • the Beam ID is carried in the BFI.
  • the BFI may be carried in the PUCCH, or may be carried in the PUSCH, or have a separate channel, such as a Physical Beam Forming Channel (PBFCH), to carry the BFI.
  • PBFCH Physical Beam Forming Channel
  • the embodiment provides a method for controlling the uplink power, so that the control of the uplink power is applicable to various sub-carrier interval scenarios, and/or BFI reporting.
  • the method for controlling the uplink power provided in this embodiment will be described in detail below by using a detailed embodiment.
  • FIG. 2 is a flowchart 1 of a method for uplink power control according to an embodiment of the present disclosure. As shown in Figure 2, the method includes:
  • the terminal acquires a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type.
  • the beamforming information of the embodiment may be beamforming indication signaling sent on the uplink channel, or may be an identifier of a beam where the uplink channel is located, for example, beam 1, beam 2, beam 3, beam 4, and beam 5 Wait.
  • the subcarrier spacing of this embodiment is a subcarrier spacing of resources carrying the uplink channel. It may be a physical frequency domain subcarrier spacing, such as 3.75 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz.
  • the length of time in this embodiment is the length of time for the resource carrying the uplink channel.
  • the length of the symbol, the length of the slot, the length of the subframe, and the like, and the length of the physical uplink control channel (PUCCH) may be 0.5 ms or 1 ms, and the length of the short PUCCH may be 1 symbol or
  • the length of one symbol can be 71us.
  • the service type of this embodiment is a service type of uplink information sent by the uplink channel, such as enhanced mobile broadband, massive machine type communication, and ultra high reliability low latency communication.
  • the uplink channel of this embodiment includes at least one of the following: a PUCCH, a PUSCH, a Physical Random Access Channel (PRACH), an SRS, and a PBFCH. That is, in this embodiment, the terminal may determine the subcarrier spacing of the resource carrying the uplink channel. When there are multiple uplink channels and multiple resources carrying the uplink channel, the subcarrier spacing corresponding to each resource may be the same or different. .
  • the resource may be, for example, a time domain resource, a frequency domain resource, an air domain resource, a code domain resource, and a power domain resource.
  • the above-mentioned power control influencing factors may be configured for the base station to the terminal.
  • the base station may send configuration information to the terminal, where the configuration information includes power control influence factors.
  • the terminal can obtain the power control influence factor according to the configuration information.
  • the configuration information sent by the base station to the terminal may be semi-static configuration information, that is, the configuration information may be valid for a period of time, and the base station does not need to send configuration information to the terminal frequently.
  • the base station may send the configuration information directly to the terminal, and may also carry the configuration information in other information. The specific implementation manner for the base station to send the configuration information to the terminal is not described herein again.
  • the base station may directly configure the power control influencing factors for the terminal, or may configure multiple power control influencing factors for the terminal, and the terminal selects the current among multiple power control influencing factors.
  • the power control factors may directly configure the power control influencing factors for the terminal, or may configure multiple power control influencing factors for the terminal, and the terminal selects the current among multiple power control influencing factors.
  • the configuration information may include multiple beamforming information, that is, corresponding to multiple beam identifiers, and the terminal may select one beam among multiple beam identifiers to obtain beamforming information. Further, the terminal may also adopt the foregoing method, that is, the terminal obtains beamforming information according to the measurement result by measuring the BRS sent by the base station.
  • the configuration information may also include multiple subcarrier spacings, and the terminal may select one subcarrier spacing among the plurality of subcarrier intervals.
  • the terminal determines, according to the power control influencing factor, a transmit power of the uplink channel.
  • the terminal may search for the power control information corresponding to the beamforming information according to the preset mapping relationship or the preset protocol table, and then obtain the uplink channel transmission power according to the power control information.
  • the preset mapping relationship or the preset protocol table includes power control information corresponding to each of the multiple beam identifiers.
  • the terminal may search for the power control information corresponding to the subcarrier spacing according to the preset mapping relationship or the preset protocol table, and then obtain the uplink channel transmission power according to the power control information.
  • the preset mapping relationship or the preset protocol table includes power control information corresponding to each of the multiple subcarrier intervals.
  • the terminal may search for the power control information corresponding to the time length according to the preset mapping relationship or the preset protocol table, and then obtain the transmit power of the uplink channel according to the power control information.
  • the preset mapping relationship or the preset protocol table includes power control information corresponding to each of the multiple time lengths.
  • the terminal may search for the power control information corresponding to the service type according to the preset mapping relationship or the preset protocol table, and then obtain the transmit power of the uplink channel according to the power control information.
  • the preset mapping relationship or the preset protocol table includes the power control information corresponding to each of the multiple service types.
  • each power control influence factor can correspond to the respective power control information, and the power control influence
  • the factor includes at least two of beamforming information, subcarrier spacing, time length, and service type
  • at least two types of power control influencing factors may correspond to one power control information.
  • the above-mentioned power control information may specifically be a scaling factor, an offset value, an attribute of a power control parameter, an uplink control information function, and the like for a preset formula.
  • the terminal sends the uplink channel by using a transmit power of the uplink channel.
  • the terminal After the terminal determines the transmit power of the uplink channel, the terminal transmits the uplink channel to the base station by using the transmit power.
  • the base station receives the uplink channel sent by the terminal.
  • the terminal determines the transmit power of the uplink channel for the specific power control influence factor by acquiring the power control influence factor, and the power control influence factors of the embodiment include beamforming information and subcarriers. At least one of the interval, the length of time, and the service type, the terminal can determine the transmit power for different power control influencing factors, and send the uplink channel by using the transmit power of the uplink channel, thereby improving the accuracy of the uplink power control, thereby Improve the quality of uplink transmission.
  • the terminal determines the power control information according to the power control influencing factor, where the power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter; the terminal according to the power control information Determine the transmit power of the uplink channel.
  • the terminal determines the power control information according to beamforming information or subcarrier spacing or time length or service type.
  • the following describes the subcarrier spacing and beamforming information as an example.
  • the terminal determines the power control information corresponding to the subcarrier spacing according to the preset mapping relationship.
  • the preset mapping relationship is configured by the base station to the terminal, where the preset mapping relationship includes mapping of different subcarrier spacings and power control information. relationship.
  • the mapping relationship may be a mapping relationship between different subcarrier spacings and power control information. Specifically, each subcarrier spacing maps different scaling factors, different offset values, and attributes of different power control parameters.
  • the terminal can determine the power control information corresponding to the subcarrier spacing according to the mapping relationship, and then obtain the transmit power of the uplink channel according to the power control information and the power control formula corresponding to each uplink channel.
  • a preset mapping relationship configured by the base station to the terminal may be static, that is, it may be permanently used once configured, or may be semi-statically configured, that is, the preset mapping relationship may be used for a period of time, and then The base station updates the preset mapping relationship according to the current channel quality.
  • the following takes the PUCCH as an example, and uses several specific embodiments to describe an implementation manner in which the terminal acquires the transmit power of the uplink channel according to the power control information.
  • P PUCCH (i) represents the transmit power of the PUCCH channel of the subframe i;
  • P CMAX, c represents the terminal a maximum power on carrier c emitted;
  • P 0_PUCCH represents PUCCH channels open loop power;
  • ⁇ F_PUCCH (F) indicates compensation for different PUCCH formats;
  • h(n CQI , n HARQ , n SR ) is different uplink control information for the same PUCCH format (format) (Uplink Control Information, UCI) compensation of the number of bits;
  • g(i) represents the dynamic offset of the power control;
  • ⁇ PUCCH is a DL grant (downlink scheduling signaling DCI Format 1/1A/1B/ 1D/2/2A/2B
  • the sub-carrier spacing of 15 kHz adopts the existing LTE power control mechanism and calculation formula, and the power control of other sub-carrier intervals can be obtained by other methods. The details will be described below.
  • Solution 1 The 15 kHz subcarrier spacing is used as the baseline, and the other subcarrier spacing is multiplied by a scaling factor K SCS based on the transmission power of 15 kHz.
  • the scaling factor is greater than 1 when the subcarrier spacing is greater than 15 kHz, and the scaling factor is less than 1 when the subcarrier spacing is less than 15 kHz.
  • the scaling factor can be proportional to the size of the subcarrier spacing.
  • Option 2 Different subcarrier spacings are added with an offset value at the end of the power control formula as a compensation term.
  • the offset value when the subcarrier spacing is greater than 15 kHz, the offset value is greater than 0, and when the subcarrier spacing is less than 15 kHz, the offset value is less than zero.
  • the magnitude of the offset value can be proportional to the size of the subcarrier spacing.
  • Solution 3 Different sub-carrier spacings use different power control parameters, that is, the attributes of the above-mentioned power control parameters are specific parameter values of preset power control parameters.
  • P CMAX,c,scs (i), P 0_PUCCH,scs, and PL c,scs are preset power control parameters, the subcarrier spacing is different, and the values of the corresponding power control parameters are different.
  • the terminal determines the power control information corresponding to the beamforming information according to the preset mapping relationship; the preset mapping relationship is configured by the base station to the terminal, and the preset mapping relationship includes different beamforming information and power control information. Mapping relationship.
  • the preset mapping relationship may be a mapping relationship between different beamforming information and power control information. Specifically, each beam maps different scaling factors, different offset values, and attributes of different power control parameters.
  • the terminal may determine the power control information corresponding to the beamforming information according to the preset mapping relationship, and then obtain the transmit power of the uplink channel according to the power control information and a power control formula corresponding to each uplink channel.
  • a preset mapping relationship configured by the base station to the terminal may be static, that is, it may be permanently used once configured, or may be semi-statically configured, that is, the preset mapping relationship may be used for a period of time, and then The base station updates the preset mapping relationship according to the current channel quality.
  • the following takes the PUCCH as an example, and uses several specific embodiments to describe an implementation manner in which the terminal acquires the transmit power of the uplink channel according to the power control information.
  • Solution 1 Different beams are added with an offset value at the end of the power control formula as a compensation term.
  • ⁇ BF (BFI) for the associated power compensation i.e. BFI required power reported by the terminal to the base station.
  • Option 2 The BFI is embodied in the PUCCH format related power control term ⁇ F_PUCCH (F).
  • Solution 3 Different BFIs use different power control parameters or coefficients, that is, the attributes of the above-mentioned power control parameters are specifically the parameter values of the preset power control parameters and the coefficients of the preset power control parameters.
  • P CMAX,c,b (i), P 0_PUCCH,b ,PL c,b are preset power control parameters; ⁇ b is the power control coefficient.
  • P PUSCH,c (i) represents the transmit power of the PUSCH channel of the carrier c on the subframe i
  • P CMAX,c represents the maximum power transmission of the terminal on the carrier c
  • M PUSCH,c (i) represents the PUSCH channel bandwidth
  • P O_PUSCH, c (j) represents the open loop power of the PUSCH channel
  • PLc (Path Loss) represents the path loss on the carrier c
  • ⁇ c (j) represents the path loss compensation factor on the carrier c
  • ⁇ TF,c ( i) indicates compensation for different transmission formats
  • f c (i) indicates closed-loop power control adjustment values.
  • the BFI may be carried by the PUSCH, and the power formula of the corresponding PUSCH may be changed.
  • the specific implementation is similar to the BFI by the PUCCH, as follows:
  • Solution 1 Different beams are added with an offset value at the end of the power control formula as a compensation term.
  • ⁇ BF (BFI) is the relevant power compensation term, that is, the power required by the terminal to report the BFI to the base station.
  • Solution 2 Different BFIs use different power control parameters or coefficients, that is, the attributes of the above-mentioned power control parameters are specifically the parameter values of the preset power control parameters and the coefficients of the preset power control parameters.
  • the preset power control parameter is indicated by b below.
  • the terminal determines the power control information according to the beamforming information, where the power control information may be an uplink control information function, where the uplink control information function includes an uplink control information bit function or an uplink control information format function.
  • the terminal determines the transmit power of the uplink channel according to the uplink control information bit function or the uplink control information format function.
  • the power control formula of the PUCCH described above is continued as an example for description.
  • Solution 1 The number of bits of the BFI is taken into account in the variable of the h function, which is an example of the bit function of the uplink control information. That is, h(n CQI , n HARQ , n SR ) in the above formula 1 becomes h(n CQI , n HARQ , n SR , n BFI ), or BFI can be counted in the number of bits of CQI, that is, in calculating n CQI Add the bit of BFI.
  • Option 2 Different h functions can be used when reporting BFI.
  • the h function is an example of the uplink control information format function.
  • h1 is used for beam 1 and h2 is used for beam 2. That is, different beams correspond to different h functions.
  • the above-mentioned power control information may include an identifier of the function.
  • FIG. 3 is a second flowchart of a method for uplink power control according to an embodiment of the present disclosure. The method includes:
  • the terminal determines, according to the beamforming information, the first power control information, where the first power control information includes an uplink control information bit function or an uplink control information format function.
  • the process of determining the first power control information by the terminal may be referred to the h function, and the implementation principle and the technical effect are similar.
  • the terminal determines second power control information according to the subcarrier spacing, where the second power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter;
  • the process of determining the second power control information by the terminal according to the subcarrier spacing may be referred to the process of determining the power control information according to the subcarrier spacing in the foregoing embodiment, which is not described herein again.
  • the terminal determines, according to the first power control information and the second power control information, a transmit power of the uplink channel.
  • the uplink control information function in the first power control information is mainly an h function, and the implementation process of the h function is not affected by the second power control information, and the two are relatively independent and do not affect each other. . Therefore, in the power control formula, the corresponding first power control information may be used on the basis of using the second power control information, that is, both are used simultaneously to determine the transmit power of the uplink channel.
  • the impact of the subcarrier spacing and the BFI on the uplink power can be considered in the process of transmitting the uplink channel, so that the terminal can determine the uplink power for different subcarrier spacings and different beamforming information.
  • the present embodiment defines a new uplink control channel, that is, the PBFCH, which is used for reporting the BFI by the terminal.
  • the power control of the new uplink control channel PBFCH is provided, including Transmit power calculation.
  • the PBFCH shares a power control parameter with the PUCCH or the PUSCH, and adds an offset value based on the PUCCH or PUSCH transmit power, where the offset value is configured by the base station and is a beam-specific parameter.
  • the PUSCH bandwidth may be large, and the PBFCH data amount is small, the bandwidth may be small. If the PUSCH transmission power is used as a reference, the difference term of the bandwidth is increased. The details are described below separately.
  • the offset value determined by the terminal according to the beamforming information is an offset value of PBFCH and PUCCH.
  • the terminal determines the uplink power of the PBFCH according to the offset value. details as follows:
  • P PBFCH P PUCCH +P Offset
  • P PBFCH represents the uplink power of the PBFCH
  • P PUCCH represents the uplink power of the PUCCH
  • P Offset represents the offset value
  • the offset value determined by the terminal according to the beamforming information is an offset value of the PBFCH and the PUSCH.
  • the terminal determines the uplink power of the PBFCH according to the offset value. details as follows:
  • P PBFCH P PUSCH -10logM PUSCH +10logM PBFCH +P Offset
  • P PBFCH represents the uplink power of the PBFCH
  • P PUSCH represents the uplink power of the PUSCH
  • P Offset represents the offset value
  • M PUSCH represents the PUSCH channel bandwidth
  • M PBFCH represents the PBFCH channel bandwidth
  • the PBFCH is separately controlled by the base station, and the power control parameters are configured by the base station, which are beam-specific parameters. Different beams have different power control parameters, and specific items may refer to the power control items of the PUCCH or the PUSCH.
  • the BFI carried by the PBFCH belongs to the control information, it tends to be modified based on the transmission power of the PUCCH.
  • the power headroom of the terminal is calculated according to the transmit power of the PBFCH, that is, the terminal obtains the power headroom according to the difference between the maximum transmit power and the uplink transmit power configured by the base station.
  • the terminal determines the transmit power of the uplink channel according to the subcarrier spacing and/or the beamforming information.
  • the transmission power of at least two uplink channels needs to be scaled. For details, refer to FIG. 4 and FIG. 5.
  • FIG. 4 is a third flowchart of a method for uplink power control according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes:
  • the terminal acquires a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type, where the uplink channel is at least two, and the beam is The shaped information is transmitted on at least one of the upstream channels.
  • the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type, where the uplink channel is at least two, and the beam is The shaped information is transmitted on at least one of the upstream channels.
  • each uplink channel is carried by one resource, and each resource corresponds to one subcarrier interval.
  • the subcarrier spacing corresponding to each resource may be the same or different.
  • the beamforming information may be carried on one uplink channel or may be carried on multiple uplink channels, that is, beamforming information may be dispersed on multiple uplink channels.
  • the beamforming information includes a Beam ID, a BFI, a CQI, etc., wherein the Beam ID and CQI information are carried on the uplink control channel PUCCH, and the BFI information is carried on the uplink data channel PUSCH.
  • the terminal determines, according to a power control influence factor, a transmit power of each of the at least two uplink channels.
  • the terminal may determine respective transmit powers of the at least two uplink channels according to beamforming information.
  • the terminal can calculate the transmit power of each uplink channel by using an uplink control information bit function according to the number of bits of the beamforming information carried on each uplink channel.
  • the uplink channel carrying the beamforming information has a higher priority, and the transmission power of the uplink channel carrying the beamforming information is preferentially guaranteed.
  • the terminal determines the transmit power of each uplink channel according to the subcarrier spacing corresponding to each of the at least two resources. For a specific implementation manner of determining the transmit power of the uplink channel corresponding to each sub-carrier interval, refer to the foregoing implementation manner for determining the transmit power according to the first mapping relationship, which is not described herein again in this embodiment.
  • the method for determining, by the terminal, the transmit power of the uplink channel according to the beamforming information and the corresponding subcarrier spacing of the at least two resources may be: the terminal determines an uplink control information function according to the beamforming information, and the terminal determines the work according to the subcarrier spacing. Control information, and then the terminal determines the uplink power of each channel according to the uplink control information function and the power information.
  • the terminal determines an uplink control information function according to the beamforming information
  • the terminal determines the work according to the subcarrier spacing. Control information
  • the terminal determines the uplink power of each channel according to the uplink control information function and the power information.
  • the terminal determines the respective transmit powers of the at least two uplink channels according to the length of time. Those skilled in the art can understand that when multiple channels are simultaneously transmitted, the channel transmission powers with different time lengths are different.
  • the terminal determines whether the sum of the transmit powers of the uplink channels is greater than the uplink maximum transmit power. If not, execute S304, and if yes, execute S305.
  • the terminal sends each of the uplink channels by using transmit power of each of the uplink channels.
  • the terminal determines, according to respective power control influencing factors of each of the uplink channels, a priority of at least two of the uplink channels in power control.
  • the priority of the at least two uplink channels in the power control is determined according to a plurality of power control factors under the type. For example, for multiple subcarrier spacings, the longer the subcarrier spacing, the higher the priority of the corresponding upstream channel.
  • each power control influencing factor may be prioritized.
  • the order of priority from high to low is subcarrier spacing, beamforming information, time length, and service type.
  • the subcarrier spacing is used to determine the priority of the at least two uplink channels in the power control. If the subcarrier spacing is the same, the beamforming information is used to determine the priority of the uplink channel in the power control, and so on.
  • the terminal performs power control on the transmit power of the at least two uplink channels according to priorities of the at least two uplink channels in the power control.
  • the terminal After the terminal determines the transmit power of each uplink channel, the terminal sums the transmit powers of the uplink channels to obtain the sum of the transmit powers of the uplink channels. Then, the terminal determines whether the sum is greater than the maximum transmit power, and if not, transmits each uplink channel according to the transmit power of each uplink channel; if yes, determines at least two uplink channels according to respective power control influence factors of each uplink channel Priority in power control. Specifically, the longer the subcarrier spacing is, the higher the priority of the corresponding uplink channel is, and the shorter the time length is, the higher the priority of the corresponding uplink channel is. The more urgent the service corresponding to the service type, the higher the priority of the corresponding uplink channel.
  • the priority of the uplink channel in the power control is determined by the uplink channel type.
  • the relationship between the uplink channel type and the priority may be configured for the base station, and the relationship may be static or semi-static. For example, if a terminal needs to simultaneously transmit PBFCH, PUCCH, PUSCH, SRS, and PRACH in the same subframe, the priority of power scaling may be: PBFCH>PRACH>PUCCH>PUSCH>SRS, and other possibilities may be given.
  • the arrangement of the stages is not limited in this embodiment.
  • the terminal performs scaling processing on the transmit power of the at least two uplink channels according to the priority of the at least two uplink channels in the power control.
  • the transmit power of each uplink channel may be scaled, and during the scaling process, the transmit power of each channel may be multiplied by a scaling factor for scaling.
  • the scaling factor is greater than 0 and less than 1.
  • the higher the priority of the uplink channel the larger the corresponding scaling factor.
  • the total power may be subtracted from the transmit power corresponding to the channel with the highest priority, and then the remaining transmit power is subtracted from the transmit power corresponding to the second-highest channel, and so on, until the remaining transmit power is zero.
  • FIG. 5 is a fourth flowchart of a method for uplink power control according to an embodiment of the present disclosure. As shown in FIG. 5, the method includes:
  • the terminal acquires a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type, where the uplink channel is at least two, and the beam is assigned. Shape information is transmitted on at least one of the uplink channels;
  • the terminal determines, according to a power control influence factor, a transmit power of each of the at least two uplink channels.
  • S401 and S402 are similar to the implementations of S301 and S302, and are not described herein again in this embodiment.
  • the terminal determines whether the sum of the transmit power of each of the uplink channels is greater than the uplink maximum transmit power; if not, then execute S404, and if yes, execute S405;
  • the terminal sends, by using the transmit power of each of the uplink channels, each of the uplink channels.
  • the terminal determines a priority of the at least two uplink channels in the power control according to the uplink channel type corresponding to each of the uplink channels.
  • the uplink channel is determined by the power control influencing factor when the uplink channel types corresponding to the uplink channel are the same. Priority in power control; see the description of S305 for details.
  • the terminal performs power control on the transmit power of the at least two uplink channels according to priorities of the at least two uplink channels in power control.
  • the priority of the at least two uplink channels in the power control is determined according to the uplink channel types corresponding to the uplink channels. If the uplink channels corresponding to the uplink channel are similar, the power control influence factor determines the priority of the uplink channel in the power control. For example, the priority of the uplink channel in power control is determined according to the subcarrier spacing or the length of time. After the priority is determined, the process of the power control is similar to the embodiment of FIG. 4, and details are not described herein again.
  • the PBFCH is taken as an example to provide a possible implementation of PBFCH power scaling. If the terminal needs to simultaneously transmit PBFCH, PUCCH, PUSCH, SRS, PRACH in the same subframe, power limitation may occur; when power is limited, The channel power needs to be scaled.
  • the priority of power scaling can be considered: PBFCH>PRACH>PUCCH>PUSCH>SRS
  • the priority of the PBFCH is between the PUCCH and the PUSCH, which is not limited in the embodiment of the present application.
  • the priority of the PBFCH is between PUCCH and PUSCH as an example.
  • the PBFCH only appears on one carrier of the terminal, such as the primary carrier. among them, Represents the transmit power of the PBFCH, Represents the maximum transmit power, Represents the transmit power of the PUCCH.
  • the PBFCH may be present on multiple carriers, and the PBFCH power on multiple carriers is scaled proportionally, which may be implemented by the following formula 14.
  • the power of the PBFCH on each carrier is scaled, and the scaled power is less than or equal to the difference between the maximum transmit power and the PUCCH transmit power.
  • This embodiment only shows the process of the power scaling.
  • the power scaling implementation of the other modes can be applied to the embodiment. This embodiment will not be repeated here.
  • the terminal includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the unit and algorithm steps of the examples described in the embodiments disclosed in the embodiments of the present application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application may divide the function module into the terminal according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function module. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal 10 includes an obtaining module 11, a processing module 12, a sending module 13, and a power control module 14.
  • the power control module 14 is an optional module.
  • the obtaining module 11 is configured to obtain a power control influencing factor, where the power control influencing factor includes at least one of the following: beamforming information, subcarrier spacing, time length, and service type;
  • the processing module 12 is configured to determine, according to the power control influencing factor, a transmit power of the uplink channel;
  • the sending module 13 is configured to send the uplink channel by using the transmit power of the uplink channel.
  • processing module 12 is specifically configured to:
  • the power control information includes at least one of the following: a scaling factor, an offset value, and an attribute of the power control parameter;
  • the processing module 12 is specifically configured to:
  • the power control information includes an uplink control information bit function or an uplink control information format function
  • the processing module 12 is specifically configured to:
  • first power control information Determining, according to the beamforming information, first power control information, where the first power control information includes an uplink control information bit function or an uplink control information format function;
  • Second power control information includes at least one of: a scaling factor, an offset value, and an attribute of a power control parameter
  • processing module 12 is specifically configured to:
  • the preset mapping relationship is configured by the base station to the terminal, where the preset mapping relationship includes different power control influencing factors and power control information Mapping relationship.
  • the power control module 14 is configured to determine, according to the power control influence factor, at least two of the uplink channels. Priority in power control;
  • the power control module 14 is configured to determine, according to the uplink channel type, the priority of the at least two uplink channels in the power control. a level; wherein, when the uplink channel types corresponding to the uplink channel are the same, the priority of the uplink channel in the power control is determined by the power control influencing factor;
  • the power control influencing factor is a subcarrier spacing
  • the longer the subcarrier spacing the higher the priority of the corresponding uplink channel.
  • the power control influencing factor is configured by the base station to the terminal.
  • the uplink channel includes at least one of the following:
  • Physical uplink control channel PUCCH Physical uplink control channel PUCCH, physical uplink shared channel PUSCH, physical random access channel PRACH, listening reference signal SRS, physical beamforming channel PBFCH.
  • the uplink channel is a physical beamforming channel PBFCH
  • the power control influencing factor includes beamforming information
  • the offset determined by the terminal according to the beamforming information is the PBFCH and Offset value of PUCCH;
  • the offset value determined by the terminal according to the beamforming information is an offset value of the PBFCH and the PUSCH; or
  • the power headroom of the terminal is calculated according to the transmit power of the PBFCH.
  • the PBFCH has the highest priority
  • the PUSCH includes a scheduling-based PUSCH and a scheduling-free PUSCH, and the scheduling-based PUSCH has a higher priority than the unscheduled PUSCH.
  • the transmitting module can be implemented as a transmitter.
  • the acquiring module may be implemented as a receiver.
  • the processing module and the power control module can be implemented as a processor.
  • the acquiring module selects a specific power control influencing factor from the configured power control influencing factors, the acquiring module may be implemented as a processor.
  • the data and program code can be stored in a memory and controlled by the processor in accordance with corresponding program instructions.
  • FIG. 7 is a schematic structural diagram of hardware of a terminal according to an embodiment of the present disclosure.
  • the terminal 20 includes at least one processor 21, a memory 22, a transmitter 23, and a receiver 24.
  • the memory 22 stores computer-executed instructions; the at least one processor 21 executes computer-executed instructions stored by the memory 22 to enable the terminal 20 to perform the method embodiments illustrated in Figures 1 through 4 above.
  • the receiver 24 receives a power control influencing factor or a preset mapping relationship configured by the base station.
  • the processor 21 calls the computer execution instruction stored in the memory 22, and the processor 21 executes S102 in FIG. 2, S202 and S203 in FIG. 3, S302, S303, S305, S306 in FIG. 4, and S402, S403 in FIG. Steps of S405 and S406.
  • the transmitter 23 performs S103 in Fig. 2, S304 in Fig. 4, and S305 in Fig. 5.
  • the terminal provided in this embodiment can perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and the details are not described herein again.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores computer execution instructions, and when the at least one processor of the terminal executes the computer to execute the instruction, the terminal executes the foregoing various possible designs.
  • the uplink power control method provided.
  • a computer program product comprising computer executed instructions, the computer executed instructions being stored in a computer readable storage medium.
  • At least one processor of the terminal can read the computer-executable instructions from a computer-readable storage medium, and the at least one processor executes the computer-executed instructions to cause the terminal to implement an uplink power control method provided by various possible designs in the foregoing method embodiments.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本申请实施例提供一种上行功率控制方法及终端,该方法包括:终端获取功率控制影响因素,所述功率控制影响因素包括下述至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率;所述终端以所述上行信道的发射功率发送所述上行信道。本实施例可以提高上行功率控制的精度。

Description

上行功率控制方法及终端
本申请要求于2017年1月6日提交中国专利局、申请号为201710011398.2、申请名称为“上行功率控制方法及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种上行功率控制方法及终端。
背景技术
功率控制是无线通信系统中一项重要的技术,可以补偿信道的各种衰落影响,使无线信号能够以合理的功率到达接收机。
在长期演进(Long Term Evolution,LTE)系统中,功率控制包括上行功率控制和下行功率控制。其中,上行功率控制是控制不同上行信道的传输功率。在进行上行功率控制时,物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、侦听参考信号(Sounding Reference Signal,SRS)都有明确的功率控制公式。
在第五代移动通信(the 5th Generation Mobile Communication,5G)新无线接入技术(New Radio Access Technology,NR)中,影响功率控制的因素有很多,而现有的功率控制方式并没有考虑不同的影响因素,若沿用现有的功率控制方法,则会导致上行功率控制不够精确,从而降低了上行传输的质量。
发明内容
本申请实施例提供一种上行功率控制方法及设备,本实施例可以根据各种功率控制影响因素来确定上行功率,提高了上行功率的控制精度,提高了上行传输的质量。
第一方面,本申请实施例提供一种上行功率控制方法,包括:
终端获取功率控制影响因素,所述功率控制影响因素包括如下中的至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;其中,波束赋形信息,可以为在上行信道上发送的波束赋形指示信令,也可以是上行信道所在的波束的标识;子载波间隔为承载上行信道的资源的子载波间隔;时间长度为承载上行信道的资源的时间长度;业务类型为上行信道发送的上行信息的业务类型;所述终端根据所述功率控制影响因素,确定上行信道的发射功率;所述终端以所述上行信道的发射功率发送所述上行信道。
在一种可能的设计中,所述终端根据所述功率控制影响因素,确定上行信道的发射功率,包括:
所述终端根据所述功率控制影响因素确定功控信息,所述功控信息包括如下中的 至少一个信息:缩放系数、偏移值以及功控参数的属性;
所述终端根据所述功控信息,确定所述上行信道的发射功率。
本领域技术人员可以理解,在功率控制影响因素包括波束赋形信息、子载波间隔、时间长度、业务类型中的一个时,可以每个功率控制影响因素对应各自的功控信息,在功率控制影响因素包括波束赋形信息、子载波间隔、时间长度、业务类型中的至少两个时,也可以至少两个类型的功率控制影响因素对应一个功控信息。
在一种可能的设计中,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率,包括:
所述终端根据所述波束赋形信息确定功控信息,所述功控信息包括上行控制信息比特函数或上行控制信息格式函数;
所述终端根据所述上行控制信息比特函数或上行控制信息格式函数,确定所述上行信道的发射功率。
在一种可能的设计中,若所述功率控制影响因素包括波束赋形信息和子载波间隔,所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率,包括:
所述终端根据所述波束赋形信息确定第一功控信息,所述第一功控信息包括上行控制信息比特函数或上行控制信息格式函数;
所述终端根据所述子载波间隔确定第二功控信息,所述第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
所述终端根据所述第一功控信息和所述第二功控信息,确定所述上行信道的发射功率。
在一种可能的设计中,所述终端根据所述功率控制影响因素,确定功控信息,包括:
所述终端根据预设映射关系确定所述功率控制影响因素对应的功控信息;所述预设映射关系为基站配置给所述终端的,所述预设映射关系包括不同的功率控制影响因素与功控信息的映射关系。
在一种可能的设计中,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,所述方法还包括:
所述终端根据所述功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级;
所述终端根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
在功率控制影响因素为一个类型时,根据该类型下的多个功率控制因素来确定至少两个上行信道在功率控制中的优先级。例如,针对多个子载波间隔,则子载波间隔越长,则对应的上行信道的优先级越高。
在功率控制影响因素为多个时,可以对各个功率控制影响因素进行优先级排序,例如优先级从高到低的顺序为子载波间隔、波束赋形信息、时间长度、业务类型,则优先以子载波间隔来确定至少两个上行信道在功率控制中的优先级,若子载波间隔相同,则再以波束赋形信息来确定上行信道在功率控制中的优先级,以此类推。
在一种可能的设计中,若有至少两个不同的所述上行信道同时发送,且上行发射 功率受限,所述方法还包括:
所述终端根据上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由所述功率控制影响因素,确定上行信道在功率控制中的优先级;具体确定过程,可参见上述描述。
所述终端根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
在一种可能的设计中,所述功率控制影响因素为基站配置给所述终端的。
在一种可能的设计中,所述上行信道包括如下中的至少一种信道:
物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH、侦听参考信号SRS、物理波束赋形信道PBFCH。
在一种可能的设计中,若所述上行信道为物理波束赋形信道PBFCH,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUCCH的偏移值;或者
所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUSCH的偏移值;或者
所述终端的功率余量是根据所述PBFCH的发射功率计算得到的。
在一种可能的设计中,所述PBFCH的优先级最高;和/或
所述PUSCH包括基于调度的PUSCH和免调度的PUSCH,所述基于调度的PUSCH的优先级比所述免调度的PUSCH的优先级高。
第二方面,本申请实施例提供一种上行功率控制方法,包括:
基站向终端发送功率控制影响因素,以使所述终端根据所述功率控制影响因素确定上行信道的发射功率;
所述基站接收终端以确定的上行信道的发射功率发送的上行信道。
在一种可能的设计中,在所述基站接收终端以确定的上行信道的发射功率发送的上行信道之前,还包括:
所述基站向所述终端发送预设映射关系,所述预设映射关系包括:不同的功率控制影响因素与功控信息的映射关系。
第三方面,本申请实施例提供一种终端,包括:
获取模块,用于获取功率控制影响因素,所述功率控制影响因素包括下述至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;
处理模块,用于根据所述功率控制影响因素,确定所述上行信道的发射功率;
发送模块,用于以所述上行信道的发射功率发送所述上行信道。
在一种可能的设计中,所述处理模块,具体用于:
根据所述功率控制影响因素确定功控信息,所述功控信息包括如下中的至少一个信息:缩放系数、偏移值以及功控参数的属性;
根据所述功控信息,确定所述上行信道的发射功率。
在一种可能的设计中,若所述功率控制影响因素包括波束赋形信息,所述处理模块,具体用于:
根据所述波束赋形信息确定功控信息,所述功控信息包括上行控制信息比特函数 或上行控制信息格式函数;
根据所述上行控制信息比特函数或上行控制信息格式函数,确定所述上行信道的发射功率。
在一种可能的设计中,若所述功率控制影响因素包括波束赋形信息和子载波间隔,所述处理模块,具体用于:
根据所述波束赋形信息确定第一功控信息,所述第一功控信息包括上行控制信息比特函数或上行控制信息格式函数;
根据所述子载波间隔确定第二功控信息,所述第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
根据所述第一功控信息和所述第二功控信息,确定所述上行信道的发射功率。
在一种可能的设计中,所述处理模块,具体用于:
根据预设映射关系确定所述功率控制影响因素对应的功控信息;所述预设映射关系为基站配置给所述终端的,所述预设映射关系包括不同的功率控制影响因素与功控信息的映射关系。
在一种可能的设计中,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,还包括:功控模块:
所述功控模块,用于根据所述功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级;
根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
在一种可能的设计中,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,还包括:功控模块:
所述功控模块,用于根据上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由所述功率控制影响因素,确定上行信道在功率控制中的优先级;
根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
在一种可能的设计中,当所述功率控制影响因素为子载波间隔时,子载波间隔越长,则对应的上行信道的优先级越高。
第四方面,本申请实施例提供一种基站,包括:
发送模块,用于向终端发送功率控制影响因素,以使所述终端根据所述功率控制影响因素确定上行信道的发射功率;
接收模块,用于接收终端以确定的上行信道的发射功率发送的上行信道。
第五方面,本申请实施例提供一种终端,包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述终端执行上所述的上行功率控制方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上所述的上行功 率控制方法。
本实施例提供的上行功率控制方法,终端通过获取功率控制影响因素,针对具体地的功率控制影响因素,确定上行信道的发射功率,本实施例的功率控制影响因素包括波束赋形信息、子载波间隔、时间长度、业务类型中的至少一种,实现了终端可以针对不同的功率控制影响因素来确定发射功率,并以上行信道的发射功率发送上行信道,提高了上行功率控制的精确度,从而提高了上行传输的质量。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例提供的上行功率控制的方法流程图一;
图3为本申请实施例提供的上行功率控制的方法流程图二;
图4为本申请实施例提供的上行功率控制的方法流程图三;
图5为本申请实施例提供的上行功率控制的方法流程图四;
图6为本申请实施例提供的终端的结构示意图;
图7为本申请实施例提供的终端的硬件结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括基站01和终端02。本申请实施例所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备和移动台(Mobile Station,MS)等等。本申请实施例所涉及到的基站(Base Station,BS)是一种部署在无线接入网中用以为终端提供无线通信功能的网络设备。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。
长期演进(Long Term Evolution,LTE)系统中上行功率控制是为了补偿信道路损以及阴影影响。上行的发射功率通过基站的功率控制指令完成。当终端的上行信道质量较差时,基站会指示终端抬升发射功率,反之降低发射功率。
在LTE中,物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)都有明确的功率控制公式,侦听参考信号(Sounding Reference Signal,SRS)则是在PUSCH的发射功率上增加一个偏移量。基站可以采取半静态的方式向终端配置公式中的参数,从而实现终端发射功率的抬升或降低。
第五代移动通信通信5G中的新无线接入技术(New Radio Access Technology,NR),定义了新的空口接入技术,以支持0.1~1Gbps的用户体验速率,每平方公里一百万的连接数密度,毫秒级的端到端时延,每平方公里数十Tbps的流量密度,每小 时500Km以上的移动性和数十Gbps的峰值速率。
5G的三大应用场景和需求包括:增强移动宽带、海量机器类通信以及超高可靠低时延通信。其中,超高可靠低时延通信对应的场景包括无人驾驶、工业控制等,要求低时延高可靠,低时延的具体要求为端到端0.5ms时延,空口信息交互来回1ms时延,高可靠的具体要求为误块率(Block Error Rate,BLER)达到10 -5,即数据包正确接收比例达到99.999%。
基于5G的应用场景和需求,在5G NR中,引入了多种子载波间隔(SubCarrier Spacing,SCS)。例如基线为15kHz,子载波间隔可以为3.75kHz、7.5kHz、15kHz、以及15kHz×2 n,n为整数,直到480kHz,最多8种。对应的,有多种符号长度、子帧长度。
进一步地,当工作于高频场景,衰落严重,覆盖范围小时,为了解决覆盖问题,在5G NR中,加强了对于波束赋形的使用和对波束的管理,在5G中引入波束赋形指示(Beam Forming Indication,BFI)的上报,即终端通过测量基站发送的波束赋形下行参考信号BRS(Beamforming RS),将测量结果或最好测量结果的波束标识(Beam ID)上报给基站。该Beam ID被承载在BFI中。该BFI会被承载在PUCCH中,也可能被承载在PUSCH中,或者有单独的信道如物理波束赋形信道(Physical Beam Forming Channel,PBFCH)来承载该BFI。
然而,在现有的LTE系统中,在进行上行功率控制时,并没有考虑多种不同的子载波间隔的场景及可能的BFI上报所消耗的功率。基于此,本实施例提供一种上行功率的控制方法,以使得上行功率的控制适用于各种子载波间隔场景,和/或BFI上报。下面采用详细的实施例,对本实施例提供的上行功率的控制方法进行详细说明。
图2为本申请实施例提供的上行功率控制的方法流程图一。如图2所示,该方法包括:
S101、终端获取功率控制影响因素,所述功率控制影响因素包括如下中的至少一项:波束赋形信息、子载波间隔、时间长度、业务类型。
本实施例的波束赋形信息,可以是在上行信道上发送的波束赋形指示信令,也可以是上行信道所在的波束的标识,例如波束1、波束2、波束3、波束4和波束5等。
本实施例的子载波间隔,为承载上行信道的资源的子载波间隔。可以是物理的频域子载波间隔,如3.75kHz、7.5kHz、15kHz、30kHz、60kHz、120kHz、240kHz、480kHz。
本实施例的时间长度,为承载上行信道的资源的时间长度。如符号长度、时隙长度、子帧长度等,又如长物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)时间长度可以为0.5ms或者1ms,而短PUCCH的时间长度可以为1个符号或者2个符号等,对于15kHz的子载波间隔(SubCarrier Spacing,简称SCS),1个符号的长度可以为71us。
本实施例的业务类型,为上行信道发送的上行信息的业务类型,如增强移动宽带、海量机器类通信、超高可靠低时延通信。
本实施例的上行信道包括如下中的至少一种信道:PUCCH、PUSCH、物理随机接入信道(Physical Random Access Channel,PRACH)、SRS、PBFCH。即在本实施例中,终端可以确定承载上行信道的资源的子载波间隔,当上行信道为多个,承载上行信道的资源为多个时,各个资源对应的子载波间隔可以相同,也可以不同。该资源例如可以为时域资源、频域资源、空域资源、码域资源、功率域资源。
上述的功率控制影响因素可以为基站配置给终端的。例如,基站可以向终端发送配置信息,该配置信息中包括功率控制影响因素。终端可以根据该配置信息,来获取功率控制影响因素。
在一个具体的示例中,基站向终端发送的配置信息具体可以为半静态的配置信息,即该配置信息可以在一段时间内有效,基站不需要频繁的向终端发送配置信息。基站可以直接向终端发送配置信息,也可以在其它信息中携带该配置信息,对于基站向终端发送配置信息的具体实现方式,本实施例此处不再赘述。
具体地,针对同一类型的功率控制影响因素,基站可以给终端直接配置功率控制影响因素,也可以为基站给终端配置多个功率控制影响因素,由终端在多个功率控制影响因素中来选择当前的功率控制影响因素。
以波束赋形信息为例,该配置信息中可以包括多个波束赋形信息,即对应多个波束标识,终端可以在多个波束标识中选择一个波束,从而获取波束赋形信息。进一步地,终端也可以采用上述的方法,即终端通过测量基站发送的BRS,根据测量结果得到波束赋形信息。该配置信息也可以包括多个子载波间隔,终端可以在多个子载波间隔中选择一个子载波间隔。
S102、所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率。
终端在获取到波束赋形信息后,可以根据预设映射关系或预设协议表格,查找该波束赋形信息对应的功控信息,然后根据该功控信息得到上行信道的发射功率。其中,该预设映射关系或预设协议表格中包括多个波束标识各自对应的功控信息。
终端在获取到子载波间隔后,可以根据预设映射关系或预设协议表格,查找该子载波间隔对应的功控信息,然后根据该功控信息得到上行信道的发射功率。其中,该预设映射关系或预设协议表格中包括多个子载波间隔各自对应的功控信息。
终端在获取到时间长度后,可以根据预设映射关系或预设协议表格,查找该时间长度对应的功控信息,然后根据该功控信息得到上行信道的发射功率。其中,该预设映射关系或预设协议表格中包括多个时间长度各自对应的功控信息。
终端在获取到业务类型后,可以根据预设映射关系或预设协议表格,查找该业务类型对应的功控信息,然后根据该功控信息得到上行信道的发射功率。其中,该预设映射关系或预设协议表格中包括多个业务类型各自对应的功控信息。
本领域技术人员可以理解,在功率控制影响因素包括波束赋形信息、子载波间隔、时间长度、业务类型中的一个时,可以每个功率控制影响因素对应各自的功控信息,在功率控制影响因素包括波束赋形信息、子载波间隔、时间长度、业务类型中的至少两个时,也可以至少两个类型的功率控制影响因素对应一个功控信息。
上述的功控信息具体可以为针对预设公式的缩放系数、偏移值以及功控参数的属性、上行控制信息函数等。
S103、所述终端以所述上行信道的发射功率发送所述上行信道。
当终端确定了上行信道的发射功率后,终端以该发射功率向基站发送该上行信道。基站接收该终端发送的上行信道。
本实施例提供的上行功率控制方法,终端通过获取功率控制影响因素,针对具体地的功率控制影响因素,确定上行信道的发射功率,本实施例的功率控制影响因素包括波束赋 形信息、子载波间隔、时间长度、业务类型中的至少一种,实现了终端可以针对不同的功率控制影响因素来确定发射功率,并以上行信道的发射功率发送上行信道,提高了上行功率控制的精确度,从而提高了上行传输的质量。
下面用几个具体的实施例来对上述的上行功率的控制方法进行详细说明。
1)在一个可能的实现方式中,终端根据功率控制影响因素确定功控信息,功控信息包括如下中的至少一个信息:缩放系数、偏移值以及功控参数的属性;终端根据功控信息,确定上行信道的发射功率。
具体地,终端根据波束赋形信息或子载波间隔或时间长度或业务类型确定功控信息。下面以子载波间隔和波束赋形信息为例来进行说明。
在一个可能的示例中,终端根据预设映射关系确定子载波间隔对应的功控信息;预设映射关系为基站配置给终端的,该预设映射关系包括不同子载波间隔与功控信息的映射关系。
在具体实现过程中,该映射关系可以为不同子载波间隔与功控信息的映射关系。具体地,每个子载波间隔映射不同的缩放系数、不同的偏移值以及不同的功控参数的属性。终端根据该映射关系,可以确定该子载波间隔对应的功控信息,然后根据该功控信息以及每个上行信道对应的功率控制公式,来获取上行信道的发射功率。
本领域技术人员可以理解,基站向该终端配置的预设映射关系可以为静态的,即一旦配置之后可以永久使用,也可为半静态配置的,即该预设映射关系可以使用一段时间,然后基站会根据当前信道质量,对该预设映射关系进行更新。
下面以PUCCH为例,采用几个具体的实施例来说明终端根据功控信息来获取上行信道的发射功率的实现方式。
在进行说明之前,首先来说明一下现有技术中的PUCCH的功率控制公式。
Figure PCTCN2017116578-appb-000001
其中,P PUCCH(i)表示子帧i上的PUCCH信道的发射功率;P CMAX,c表示终端在载波c上的最大功率发射;P 0_PUCCH表示PUCCH信道开环功率;PLc(Path Loss)表示在载波c上的路径损耗;Δ F_PUCCH(F)表示是对不同的PUCCH format(格式)的补偿;h(n CQI,n HARQ,n SR)是对相同的PUCCH format(格式)下不同上行控制信息(Uplink Control Information,UCI)比特数的补偿;g(i)表示功控动态偏移;
Figure PCTCN2017116578-appb-000002
表示第i个上行子帧相对于第i-1个上行子帧有一个发射功率控制(Transmission Power Control,TPC)累积量,δ PUCCH为DL grant(下行调度信令DCI Format 1/1A/1B/1D/2/2A/2B)或DCI Format 3/3A中的TPC功控命令指示的闭环修正系数。
在一种可能的示例中,为了保持6GHz以下与LTE系统的共存,15kHz的子载波间隔采用现有LTE功率控制机制及计算公式,其他的子载波间隔的功率控制则可以采用其它方式来获取,下面详细进行说明。
方案一:以15kHz子载波间隔为基线,其他子载波间隔在15kHz的发射功率基础上乘以一个缩放系数K SCS
Figure PCTCN2017116578-appb-000003
可选地,当子载波间隔大于15kHz时,该缩放系数大于1,当子载波间隔小于15kHz时,该缩放系数小于1。该缩放系数可以与子载波间隔的大小成正比。
方案二:不同的子载波间隔在功控公式末尾增加一个偏移值作为补偿项。
Figure PCTCN2017116578-appb-000004
可选地,当子载波间隔大于15kHz时,该偏移值大于0,当子载波间隔小于15kHz时,该偏移值小于0。该偏移值的大小可以与子载波间隔的大小成正比。
方案三:不同的子载波间隔使用不同的功控参数,即上述的功控参数的属性具体为预设的功控参数的参数值。
Figure PCTCN2017116578-appb-000005
在公式四中,P CMAX,c,scs(i)、P 0_PUCCH,scs以及PL c,scs为预设的功控参数,子载波间隔不同,对应的功控参数的值不同。
方案四:作为已有项如PL的系数a scs,即上述的功控参数的属性具体为预设的功控参数的系数。
Figure PCTCN2017116578-appb-000006
本领域技术人员可以理解,在具体实现过程中,上述的几种方案可以单独使用,也可以几种方案结合使用。上述仅示出了针对PUCCH的功率公式公式的实现方式,针对其它上行信道的功率控制公式,其实现原理类似,本实施例此处不再赘述。
在另一个可能的示例中,终端根据预设映射关系确定波束赋形信息对应的功控信息;预设映射关系为基站配置给终端的,预设映射关系包括不同波束赋形信息与功控信息的映射关系。
在具体实现过程中,该预设映射关系可以为不同波束赋形信息与功控信息的映射关系。具体地,每个波束映射不同的缩放系数、不同的偏移值以及不同的功控参数的属性。终端根据该预设映射关系,可以确定该波束赋形信息对应的功控信息,然后根据该功控信息以及每个上行信道对应的功率控制公式,来获取上行信道的发射功率。
本领域技术人员可以理解,基站向该终端配置的预设映射关系可以为静态的,即一旦配置之后可以永久使用,也可为半静态配置的,即该预设映射关系可以使用一段时间,然后基站会根据当前信道质量,对该预设映射关系进行更新。
下面以PUCCH为例,采用几个具体的实施例来说明终端根据功控信息来获取上行信道的发射功率的实现方式。
在本实施例中,继续以上述的公式一为例,来进行详细说明。
方案一:不同的波束在功控公式末尾增加一个偏移值作为补偿项。
Figure PCTCN2017116578-appb-000007
其中,Δ BF(BFI)为相关的功率补偿项,即终端向基站上报BFI所需的功率。
方案二:将BFI体现在PUCCH格式相关的功控项Δ F_PUCCH(F)中。
方案三:不同的BFI使用不同的功控参数或系数,即上述的功控参数的属性具体为预设的功控参数的参数值和预设的功控参数的系数。
Figure PCTCN2017116578-appb-000008
其中,P CMAX,c,b(i)、P 0_PUCCH,b、PL c,b为预设的功控参数;α b为功控系数。
可选地,下面再以PUSCH为例,对一些实施例进行说明。PUSCH的功率控制公式为如下公式八所示。
Figure PCTCN2017116578-appb-000009
其中,P PUSCH,c(i)表示载波c在子帧i上的PUSCH信道的发射功率,P CMAX,c表示终端在载波c上的最大功率发射,M PUSCH,c(i)表示PUSCH信道带宽,P O_PUSCH,c(j)表示PUSCH信道开环功率,PLc(Path Loss)表示在载波c上的路径损耗,α c(j)表示在载波c上的路径损耗补偿因子,Δ TF,c(i)表示是对不同的传输格式的补偿,f c(i)表示闭环功控调整值。
本领域技术人员可以理解,由于BFI是对数据打孔,不影响PUSCH的带宽,因而可以与数据一起做功控。
可选地,该BFI还可以由PUSCH来承载,对应的PUSCH的功率公式会发生一些变化,具体的实现方式与BFI由PUCCH承载类似,具体如下:
方案一:不同的波束在功控公式末尾增加一个偏移值作为补偿项。
Figure PCTCN2017116578-appb-000010
其中,Δ BF(BFI)为相关的功率补偿项,即终端向基站上报BFI所需的功率
方案二:不同的BFI使用不同的功控参数或系数,即上述的功控参数的属性具体为预设的功控参数的参数值和预设的功控参数的系数。
Figure PCTCN2017116578-appb-000011
其中,预设的功控参数以下标b表示。
2)在又一个可能的实现方式中,终端根据波束赋形信息确定功控信息,该功控信息可以为上行控制信息函数,该上行控制信息函数包括上行控制信息比特函数或上行控制信息格式函数;终端根据上行控制信息比特函数或上行控制信息格式函数,确定上行信道的发射功率。
在本实施例中,继续以上述的PUCCH的功率控制公式为例来进行说明。
方案一:将BFI的比特数考虑到h函数的变量中,该h函数是上行控制信息比特函数的一个示例。即将上述公式1中的h(n CQI,n HARQ,n SR)变成h(n CQI,n HARQ,n SR,n BFI),或者BFI可以算到CQI的比特数中,即在计算n CQI时加上BFI的比特。
Figure PCTCN2017116578-appb-000012
方案二:有上报BFI时可以使用不同的h函数,该h函数是上行控制信息格式函数的一个示例。例如对于波束1使用h1,对于波束2使用h2。即不同的波束对应不同的h函数。上述的功控信息中可以包括函数的标识。
Figure PCTCN2017116578-appb-000013
Figure PCTCN2017116578-appb-000014
3)在再一个可能的实现方式中,终端根据子载波间隔和波束赋形信息,确定上行信道的发射功率。具体可参见图3所示。图3为本申请实施例提供的上行功率控制的方法流程图二。该方法包括:
S201、终端根据波束赋形信息确定第一功控信息,第一功控信息包括上行控制信息比特函数或上行控制信息格式函数。
在本实施例中,终端确定第一功控信息的过程可参见上述的h函数,其实现原理和技术效果类似,本实施例此处不再赘述。
S202、终端根据子载波间隔确定第二功控信息,第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
在本实施例中,终端根据子载波间隔确定第二功控信息的过程可参见上述实施例中的根据子载波间隔确定功控信息的过程,本实施例此处不再赘述。
S203、终端根据第一功控信息和第二功控信息,确定上行信道的发射功率。
由上述的实施例可知,第一功控信息中的上行控制信息函数主要为h函数,该h函数的实现过程并不受第二功控信息的影响,二者是相对独立,互不影响的。因此, 在功率控制公式中,可以在使用第二功控信息的基础上,使用相应的第一功控信息,即二者同时使用,以确定上行信道的发射功率。
本实施例可以在发送上行信道的过程中,同时考虑子载波间隔和BFI对上行功率的影响,实现了终端可以针对不同的子载波间隔和不同的波束赋形信息,来确定上行功率。
4)在又一个可能的实现方式中,本实施例定义一种新的上行控制信道,即上述的PBFCH,用于终端上报BFI,本实施例给出新的上行控制信道PBFCH的功率控制,包括发射功率计算。
在一种可能的情况中,PBFCH与PUCCH或PUSCH共享功控参数,在PUCCH或PUSCH发射功率基础上增加一个偏移值,其中偏移值由基站配置,是波束特定的参数。考虑到PUSCH带宽可能较大,而PBFCH数据量较小可能带宽较小,如果使用PUSCH发射功率作为参考,则增加带宽的差值项。下面分别进行详细说明。
终端根据波束赋形信息确定的偏移值为PBFCH与PUCCH的偏移值。终端根据该偏移值确定PBFCH的上行功率。具体如下:
P PBFCH=P PUCCH+P Offset
其中,P PBFCH代表PBFCH的上行功率,P PUCCH代表PUCCH的上行功率,P Offset代表偏移值;
终端根据波束赋形信息确定的偏移值为PBFCH与PUSCH的偏移值。终端根据该偏移值确定PBFCH的上行功率。具体如下:
P PBFCH=P PUSCH-10logM PUSCH+10logM PBFCH+P Offset
其中,P PBFCH代表PBFCH的上行功率,P PUSCH代表PUSCH的上行功率,P Offset代表偏移值,M PUSCH表示PUSCH信道带宽,M PBFCH表示PBFCH信道带宽。
在另一种可能的情况中,PBFCH单独做功控,其功控参数由基站配置,是波束特定的参数,不同的波束有不同的功控参数,具体项可以参考PUCCH或PUSCH的功控项,但考虑到PBFCH承载的BFI属于控制信息,因而倾向于在PUCCH的发射功率基础上改造。
Figure PCTCN2017116578-appb-000015
Figure PCTCN2017116578-appb-000016
其中,公式12和公式13的各参数的具体含义,可参见上述实施例,本实施例此处不再赘述。其中下标为PBFCH的公式项,是针对PBFCH信道而言的。
可选地,在上述的实现方式中,终端的功率余量是根据PBFCH的发射功率计算得到的,即终端根据基站配置的最大发射功率与上行发射功率的差值,得到功率余量。
在上述实施例的基础上,若有至少两个不同的上行信道需要同时发送,且上行发射功率受限,则在终端根据子载波间隔和/或波束赋形信息,确定上行信道的发射功率之后,还需要对至少两个上行信道的发射功率进行缩放处理,具体可参见图4和图5。
图4为本申请实施例提供的上行功率控制的方法流程图三。如图4所示,该方法包括:
S301、终端获取功率控制影响因素,所述功率控制影响因素包括如下中的至少一项:波束赋形信息、子载波间隔、时间长度、业务类型,所述上行信道至少为两个,所述波束赋形信息在其中至少一个上行信道上传输。
在本实施例中,上行传输的上行信道可以为多个,每个上行信道被一个资源所承载,每个资源对应一个子载波间隔。各资源对应的子载波间隔可以相同,也可以不同。
该波束赋形信息可以被承载在一个上行信道上,也可以被承载在多个上行信道上,即波束赋形信息可以被分散在多个上行信道上。例如,该波束赋形信息包括Beam ID(波束标识)、BFI、CQI等,其中,Beam ID和CQI信息被承载在上行控制信道PUCCH,BFI信息被承载在上行数据信道PUSCH。
S302、终端根据功率控制影响因素,确定至少两个上行信道中各所述上行信道的发射功率。
终端可以根据波束赋形信息确定至少两个上行信道各自的发射功率。本领域技术人员可以理解,终端可以根据每个上行信道上承载的针对波束赋形信息的比特数,通过上行控制信息比特函数来计算每个上行信道的发射功率。当有至少两个上行信道时,承载波束赋形信息的上行信道的优先级较高,优先保证承载波束赋形信息的上行信道的发射功率。
终端根据至少两个资源各自对应的子载波间隔,确定各上行信道的发射功率。终端确定每个子载波间隔对应的上行信道的发射功率的具体实现方式,可参见上述的根据第一映射关系确定发射功率的实现方式,本实施例此处不再赘述。
终端根据波束赋形信息和至少两个资源各自对应的子载波间隔,确定上行信道的发射功率的实现方式具体可以为:终端根据波束赋形信息确定上行控制信息函数,终端根据子载波间隔确定功控信息,然后终端根据上行控制信息函数和功率信息确定每个信道的上行功率。具体可参见图2所示的实施例,此处不再赘述。
终端根据时间长度确定至少两个上行信道各自的发射功率。本领域技术人员可以理解,当多个信道同时传输时,时间长度不同的信道发射功率不同。
S303、终端判断各所述上行信道的发射功率的总和是否大于上行最大发射功率;若否,则执行S304,若是,则执行S305。
S304、终端以各所述上行信道的发射功率发送各所述上行信道。
S305、终端根据各所述上行信道各自对应的功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级。
在功率控制影响因素为一个类型时,根据该类型下的多个功率控制因素来确定至少两个上行信道在功率控制中的优先级。例如,针对多个子载波间隔,则子载波间隔越长,则对应的上行信道的优先级越高。
在功率控制影响因素为多个时,可以对各个功率控制影响因素进行优先级排序,例如优先级从高到低的顺序为子载波间隔、波束赋形信息、时间长度、业务类型,则优先以子载波间隔来确定至少两个上行信道在功率控制中的优先级,若子载波间隔相同,则再以波束赋形信息来确定上行信道在功率控制中的优先级,以此类推。
S306、终端根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
在终端确定各上行信道的发射功率之后,终端对各上行信道的发射功率求和,得到各上行信道的发射功率的总和。然后,终端判断该总和是否大于最大发射功率,若否,则以各上行信道的发射功率发送各上行信道;若是,则根据各上行信道各自对应的功率控制影响因素,确定至少两个上行信道在功率控制中的优先级。具体地,子载波间隔越长,则对应的上行信道的优先级越高,时间长度越短,则对应的上行信道的优先级越高。业务类型对应的业务越紧急,则对应的上行信道的优先级越高。
当至少两个上行信道对应的子载波间隔相同时,由上行信道类型确定上行信道在功率控制中的优先级。上行信道类型与优先级的关系,可以为基站配置给终端的,该关系可以为静态的,也可以为半静态的。例如,如果一个终端在同一子帧需要同时发送PBFCH,PUCCH,PUSCH,SRS,PRACH,功率缩放的优先级可以为:PBFCH>PRACH>PUCCH>PUSCH>SRS,也可以有其它的可能性,对于优先级的排布方式,本实施例此处不做限制。
最后,终端根据至少两个上行信道在功率控制中的优先级,对至少两个上行信道的发射功率进行缩放处理。
在一种可行的实现方式中,可以对每个上行信道的发射功率进行缩放,在缩放过程中,可以将每个信道的发射功率乘以缩放因子进行缩放。其中缩放因子大于0小于1。可选地,上行信道的优先级越高,则对应的缩放因子越大。
在另一种可行的实现方式中,可以将总功率减去优先级最高的信道对应的发射功率,然后将剩余发送功率减去次高级的信道对应的发射功率,依次类推,直至剩余发送功率为零。在此种情况下,存在上行信道的发射功率为零,即不发送该上行信道。
图5为本申请实施例提供的上行功率控制的方法流程图四。如图5所示,该方法包括:
S401、终端获取功率控制影响因素,所述功率控制影响因素包括下述至少一项:波束赋形信息、子载波间隔、时间长度、业务类型,所述上行信道至少为两个,所述波束赋形信息在其中至少一个上行信道上传输;
S402、终端根据功率控制影响因素,确定至少两个上行信道中各所述上行信道的发射功率。
S401与S402的实现方式与S301与S302的实现方式类似,本实施例此处不再赘述。
S403、终端判断各所述上行信道的发射功率的总和是否大于上行最大发射功率;若否,则执行S404,若是,则执行S405;
S404、终端以各所述上行信道的发射功率发送各所述上行信道;
S405、终端根据各所述上行信道各自对应的上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由功率控制影响因素确定上行信道在功率控制中的优先级;具体可参见S305的描述。
S406、终端根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
本实施例与图4实施例所不同的是,本实施例先根据上行信道各自对应的上行信道类型确定至少两个上行信道在功率控制中的优先级。若上行信道对应的上行信道类似相同时,再由功率控制影响因素确定上行信道在功率控制中的优先级。例如,根据子载波间隔或时间长度确定上行信道在功率控制中的优先级。在确定优先级之后,功率控制的过程与图4实施例类似,本实施例此处不再赘述。
下面以PBFCH为例,给出一种PBFCH功率缩放的可能的实现方式,如果终端在同一子帧需要同时发送PBFCH,PUCCH,PUSCH,SRS,PRACH,可能出现功率受限;当功率受限时,需要对信道功率进行缩放。
功率缩放的优先级可以考虑:PBFCH>PRACH>PUCCH>PUSCH>SRS
也可以有其他可能性,如PBFCH的优先级介于PUCCH和PUSCH之间,本申请实施例不作限制。
本实施例此处以PBFCH的优先级介于PUCCH和PUSCH之间为例,进行说明。
在一种可能的情况中,PBFCH只出现在终端的一个载波上,如主载波,则
Figure PCTCN2017116578-appb-000017
其中,
Figure PCTCN2017116578-appb-000018
代表PBFCH的发射功率,
Figure PCTCN2017116578-appb-000019
代表最大发射功率,
Figure PCTCN2017116578-appb-000020
代表PUCCH的发射功率。
在另一种可能的情况中,PBFCH可能出现在多个载波,多个载波上的PBFCH功率等比例缩放,具体可以通过如下公式14实现。
Figure PCTCN2017116578-appb-000021
其中,
Figure PCTCN2017116578-appb-000022
代表PBFCH在每个载波上的发射功率,
Figure PCTCN2017116578-appb-000023
代表最大发射功率,
Figure PCTCN2017116578-appb-000024
代表PUCCH的发射功率,w(i)为缩放因子。
即对每个载波上的PBFCH的功率进行缩放,缩放后的功率和小于等于最大发射功率与PUCCH发射功率的差值。
本实施例仅示意性的给出了功率缩放的处理过程,对于其它方式的功率缩放实现方式,都可以应用到本实施例中,本实施例此处不再一一赘述。
本实施例通过对上行信道的发射功率进行缩放处理,保证了在功率受限的情况下,也可以满足优先级高的上行信道得到发送。
上述针对终端所实现的功能,对本申请实施例提供的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请实施例中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实 现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图6为本申请实施例提供的终端的结构示意图。如图6所示,该终端10包括:获取模块11、处理模块12、发送模块13和功控模块14。其中,功控模块14为可选地模块。
获取模块11,用于获取功率控制影响因素,所述功率控制影响因素包括下述至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;
处理模块12,用于根据所述功率控制影响因素,确定所述上行信道的发射功率;
发送模块13,用于以所述上行信道的发射功率发送所述上行信道。
可选地,所述处理模块12,具体用于:
根据所述功率控制影响因素确定功控信息,所述功控信息包括如下中的至少一个信息:缩放系数、偏移值以及功控参数的属性;
根据所述功控信息,确定所述上行信道的发射功率。
可选地,若所述功率控制影响因素包括波束赋形信息,所述处理模块12,具体用于:
根据所述波束赋形信息确定功控信息,所述功控信息包括上行控制信息比特函数或上行控制信息格式函数;
根据所述上行控制信息比特函数或上行控制信息格式函数,确定所述上行信道的发射功率。
可选地,若所述功率控制影响因素包括波束赋形信息和子载波间隔,所述处理模块12,具体用于:
根据所述波束赋形信息确定第一功控信息,所述第一功控信息包括上行控制信息比特函数或上行控制信息格式函数;
根据所述子载波间隔确定第二功控信息,所述第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
根据所述第一功控信息和所述第二功控信息,确定所述上行信道的发射功率。
可选地,所述处理模块12,具体用于:
根据预设映射关系确定所述功率控制影响因素对应的功控信息;所述预设映射关系为基站配置给所述终端的,所述预设映射关系包括不同的功率控制影响因素与功控信息的映射关系。
可选地,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,所述功控模块14,用于根据所述功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级;
根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
可选地,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,所述功控模块14,用于根据上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由所述功率控制影响因素,确定上行信道在功率控制中的优先级;
根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
可选地,当所述功率控制影响因素为子载波间隔时,子载波间隔越长,则对应的上行信道的优先级越高。
可选地,所述功率控制影响因素为基站配置给所述终端的。
可选地,所述上行信道包括如下中的至少一种信道:
物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH、侦听参考信号SRS、物理波束赋形信道PBFCH。
可选地,若所述上行信道为物理波束赋形信道PBFCH,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUCCH的偏移值;或者
所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUSCH的偏移值;或者
所述终端的功率余量是根据所述PBFCH的发射功率计算得到的。
可选地,所述PBFCH的优先级最高;和/或
所述PUSCH包括基于调度的PUSCH和免调度的PUSCH,所述基于调度的PUSCH的优先级比所述免调度的PUSCH的优先级高。
前述的终端的具体实现中,发送模块可以被实现为发射器。可选地,在获取模块接收基站配置的功率控制影响因素时,该获取模块可以被实现为接收器。处理模块和功控模块可以被实现为处理器。可选地,在获取模块从配置的功率控制影响因素中选择具体的功率控制影响因素时,则获取模块可以被实现为处理器。数据和程序代码可存储在存储器中,由处理器根据相应的程序指令控制执行。
图7为本申请实施例提供的终端的硬件结构示意图。如图7所示,终端20包括至少一个处理器21、存储器22、发射器23和接收器24。所述存储器22存储计算机执行指令;所述至少一个处理器21执行所述存储器22存储的计算机执行指令,使得所述终端20能够执行如上图1至图4所示的方法实施例。
在一个示例中,接收器24接收基站配置的功率控制影响因素或者预设映射关系。处理器21调用存储器22存储的计算机执行指令,处理器21执行上述图2中的S102、图3中的S202和S203、图4中的S302、S303、S305、S306以及图5中的S402、S403、S405、S406的步骤。发射器23执行图2中的S103、图4中的S304以及图5中的S305。
本实施例提供的终端,可执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
此外,本申请实施例里还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当终端的至少一个处理器执行该计算机执行指令时,终端执行上述各种可能设计提供的上行功率控制方法。
本申请实施例里还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中。终端的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得终端实施前述方法实施例中的各种可能设计提供的上行功率控制方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (26)

  1. 一种上行功率控制方法,其特征在于,包括:
    终端获取功率控制影响因素,所述功率控制影响因素包括如下中的至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;
    所述终端根据所述功率控制影响因素,确定上行信道的发射功率;
    所述终端以所述上行信道的发射功率发送所述上行信道。
  2. 根据权利要求1所述的方法,其特征在于,所述终端根据所述功率控制影响因素,确定上行信道的发射功率,包括:
    所述终端根据所述功率控制影响因素确定功控信息,所述功控信息包括如下中的至少一个信息:缩放系数、偏移值以及功控参数的属性;
    所述终端根据所述功控信息,确定所述上行信道的发射功率。
  3. 根据权利要求1所述的方法,其特征在于,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率,包括:
    所述终端根据所述波束赋形信息确定功控信息,所述功控信息包括上行控制信息比特函数或上行控制信息格式函数;
    所述终端根据所述上行控制信息比特函数或上行控制信息格式函数,确定所述上行信道的发射功率。
  4. 根据权利要求1所述的方法,其特征在于,若所述功率控制影响因素包括波束赋形信息和子载波间隔,所述终端根据所述功率控制影响因素,确定所述上行信道的发射功率,包括:
    所述终端根据所述波束赋形信息确定第一功控信息,所述第一功控信息包括上行控制信息比特函数或上行控制信息格式函数;
    所述终端根据所述子载波间隔确定第二功控信息,所述第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
    所述终端根据所述第一功控信息和所述第二功控信息,确定所述上行信道的发射功率。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述终端根据所述功率控制影响因素,确定功控信息,包括:
    所述终端根据预设映射关系确定所述功率控制影响因素对应的功控信息;所述预设映射关系为基站配置给所述终端的,所述预设映射关系包括不同的功率控制影响因素与功控信息的映射关系。
  6. 根据权利要求1所述的方法,其特征在于,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,所述方法还包括:
    所述终端根据所述功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级;
    所述终端根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
  7. 根据权利要求1所述的方法,其特征在于,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,所述方法还包括:
    所述终端根据上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由所述功率控制影响因素,确定上行信道在功率控制中的优先级;
    所述终端根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
  8. 根据权利要求6或7所述的方法,其特征在于,当所述功率控制影响因素为子载波间隔时,子载波间隔越长,则对应的上行信道的优先级越高。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述功率控制影响因素为基站配置给所述终端的。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述上行信道包括如下中的至少一种信道:
    物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH、侦听参考信号SRS、物理波束赋形信道PBFCH。
  11. 根据权利要求2或4所述的方法,其特征在于,若所述上行信道为物理波束赋形信道PBFCH,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUCCH的偏移值;或者
    所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUSCH的偏移值;或者
    所述终端的功率余量是根据所述PBFCH的发射功率计算得到的。
  12. 根据权利要求10所述的方法,其特征在于,所述PBFCH的优先级最高;和/或
    所述PUSCH包括基于调度的PUSCH和免调度的PUSCH,所述基于调度的PUSCH的优先级比所述免调度的PUSCH的优先级高。
  13. 一种终端,其特征在于,包括:
    获取模块,用于获取功率控制影响因素,所述功率控制影响因素包括下述至少一项:波束赋形信息、子载波间隔、时间长度、业务类型;
    处理模块,用于根据所述功率控制影响因素,确定所述上行信道的发射功率;
    发送模块,用于以所述上行信道的发射功率发送所述上行信道。
  14. 根据权利要求13所述的终端,其特征在于,所述处理模块,具体用于:
    根据所述功率控制影响因素确定功控信息,所述功控信息包括如下中的至少一个信息:缩放系数、偏移值以及功控参数的属性;
    根据所述功控信息,确定所述上行信道的发射功率。
  15. 根据权利要求13所述的终端,其特征在于,若所述功率控制影响因素包括波束赋形信息,所述处理模块,具体用于:
    根据所述波束赋形信息确定功控信息,所述功控信息包括上行控制信息比特函数或上行控制信息格式函数;
    根据所述上行控制信息比特函数或上行控制信息格式函数,确定所述上行信道的 发射功率。
  16. 根据权利要求13所述的终端,其特征在于,若所述功率控制影响因素包括波束赋形信息和子载波间隔,所述处理模块,具体用于:
    根据所述波束赋形信息确定第一功控信息,所述第一功控信息包括上行控制信息比特函数或上行控制信息格式函数;
    根据所述子载波间隔确定第二功控信息,所述第二功控信息包括如下中的至少一个信息:缩放系数、偏移值、功控参数的属性;
    根据所述第一功控信息和所述第二功控信息,确定所述上行信道的发射功率。
  17. 根据权利要求14至16任一项所述的终端,其特征在于,所述处理模块,具体用于:
    根据预设映射关系确定所述功率控制影响因素对应的功控信息;所述预设映射关系为基站配置给所述终端的,所述预设映射关系包括不同的功率控制影响因素与功控信息的映射关系。
  18. 根据权利要求13所述的终端,其特征在于,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,还包括:功控模块:
    所述功控模块,用于根据所述功率控制影响因素,确定至少两个所述上行信道在功率控制中的优先级;
    根据至少两个所述上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
  19. 根据权利要求13所述的终端,其特征在于,若有至少两个不同的所述上行信道同时发送,且上行发射功率受限,还包括:功控模块:
    所述功控模块,用于根据上行信道类型确定至少两个上行信道在功率控制中的优先级;其中,在上行信道对应的上行信道类型相同时,由所述功率控制影响因素,确定上行信道在功率控制中的优先级;
    根据所述至少两个上行信道在功率控制中的优先级,对所述至少两个上行信道的发射功率进行功率控制。
  20. 根据权利要求18或19所述的终端,其特征在于,当所述功率控制影响因素为子载波间隔时,子载波间隔越长,则对应的上行信道的优先级越高。
  21. 根据权利要求13至20任一项所述的终端,其特征在于,所述功率控制影响因素为基站配置给所述终端的。
  22. 根据权利要求13至21任一项所述的终端,其特征在于,所述上行信道包括如下中的至少一种信道:
    物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH、侦听参考信号SRS、物理波束赋形信道PBFCH。
  23. 根据权利要求14或16所述的终端,其特征在于,若所述上行信道为物理波束赋形信道PBFCH,若所述功率控制影响因素包括波束赋形信息,所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUCCH的偏移值;或者
    所述终端根据所述波束赋形信息确定的偏移值为所述PBFCH与PUSCH的偏移值;或者
    所述终端的功率余量是根据所述PBFCH的发射功率计算得到的。
  24. 根据权利要求22所述的终端,其特征在于,所述PBFCH的优先级最高;和/或
    所述PUSCH包括基于调度的PUSCH和免调度的PUSCH,所述基于调度的PUSCH的优先级比所述免调度的PUSCH的优先级高。
  25. 一种终端,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述终端执行如权利要求1至12任一项所述的上行功率控制方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1至12任一项所述的方法。
PCT/CN2017/116578 2017-01-06 2017-12-15 上行功率控制方法及终端 WO2018126874A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780080593.9A CN110115070A (zh) 2017-01-06 2017-12-15 上行功率控制方法及终端
EP17890398.5A EP3550896B1 (en) 2017-01-06 2017-12-15 Uplink power control method and terminal
US16/503,078 US11356957B2 (en) 2017-01-06 2019-07-03 Uplink power control method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011398.2 2017-01-06
CN201710011398.2A CN108282855A (zh) 2017-01-06 2017-01-06 上行功率控制方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/503,078 Continuation US11356957B2 (en) 2017-01-06 2019-07-03 Uplink power control method and terminal

Publications (1)

Publication Number Publication Date
WO2018126874A1 true WO2018126874A1 (zh) 2018-07-12

Family

ID=62789049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116578 WO2018126874A1 (zh) 2017-01-06 2017-12-15 上行功率控制方法及终端

Country Status (4)

Country Link
US (1) US11356957B2 (zh)
EP (1) EP3550896B1 (zh)
CN (2) CN108282855A (zh)
WO (1) WO2018126874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910431B2 (en) 2018-09-19 2024-02-20 Vivo Mobile Communication Co., Ltd. Transmission method and related devices

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034096A1 (zh) * 2018-08-14 2020-02-20 Oppo广东移动通信有限公司 一种终端功率等级控制方法及装置、终端
CN111263428B (zh) * 2019-01-30 2021-12-24 维沃移动通信有限公司 一种数据处理方法及用户设备
EP3920634A4 (en) * 2019-02-15 2022-04-27 LG Electronics Inc. METHOD OF TRANSMITTING UPLINK DATA VIA A PRECONFIGURED UPLINK RESOURCE IN A WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
US11729723B2 (en) 2019-11-21 2023-08-15 Qualcomm Incorporated Power control indication for multiple services
BR112020010870A2 (pt) 2020-05-07 2022-11-29 Ericsson Telecomunicacoes Sa Método implementado por computador, e, nó de rede
CN113612595B (zh) * 2021-09-07 2023-12-08 中信科移动通信技术股份有限公司 上行控制信息传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038548A1 (zh) * 2009-09-30 2011-04-07 上海贝尔股份有限公司 基于载波聚合的通信系统中上行功率控制的方法和装置
CN104812029A (zh) * 2014-01-24 2015-07-29 北京三星通信技术研究有限公司 Lte系统中的功率控制方法及用户设备ue
CN105009652A (zh) * 2013-02-27 2015-10-28 高通股份有限公司 更新基准功率以实现高速数据恢复
CN105122900A (zh) * 2012-12-27 2015-12-02 三星电子株式会社 在基于波束成形的无线通信系统中的上行链路功率控制方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882236B1 (en) * 2008-01-07 2017-01-25 Telefonaktiebolaget LM Ericsson (publ) Uplink Power Control for Power Limited Terminals
ES2552801T3 (es) * 2009-03-16 2015-12-02 Huawei Technologies Co., Ltd. Método, aparato y dispositivo de red para control de potencia
LT2760241T (lt) * 2010-04-01 2018-09-10 Sun Patent Trust Perduodamos galios valdymas fiziniams atsitiktinės prieigos kanalams
JP4850296B2 (ja) * 2010-04-07 2012-01-11 三菱電機株式会社 基地局および伝送制御方法
US8908592B2 (en) * 2011-01-28 2014-12-09 Clearwire Ip Holdings Llc System and method for uplink power control
CN106102150B (zh) * 2011-08-17 2019-08-13 华为技术有限公司 终端发射上行信号的方法和终端
US9538410B2 (en) * 2012-03-22 2017-01-03 Lg Electronics Inc. Method for transmitting or receiving uplink signal
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
WO2015034299A1 (en) * 2013-09-04 2015-03-12 Lg Electronics Inc. Method and apparatus for controlling uplink power in wireless communication system
EP3054730B1 (en) * 2013-09-30 2020-02-19 Sony Corporation Communication control device, communication control method, terminal device, and information processing device
CN104619000B (zh) * 2013-11-01 2020-01-31 中兴通讯股份有限公司 一种上行功率控制方法、系统和相关设备
US20160105886A1 (en) * 2014-10-09 2016-04-14 Qualcomm Incorporated Memory based power and timing control in a cellular internet of things system
US10149255B2 (en) * 2015-05-01 2018-12-04 Qualcomm Incorporated Low latency uplink power control
EP3335480B1 (en) * 2015-08-12 2019-09-18 Telefonaktiebolaget LM Ericsson (PUBL) System and method providing optimizations for reduced transmit power control frequency operation
WO2017039397A1 (ko) * 2015-09-03 2017-03-09 엘지전자(주) 무선 통신 시스템에서 동기 신호를 송수신하기 위한 방법 및 이를 위한 장치
US20180049164A1 (en) * 2016-01-11 2018-02-15 Mediatek Singapore Pte. Ltd. Transmission method based on physical downlink channel, user equipment, and base station
CN107197524B (zh) * 2016-03-15 2021-06-22 株式会社Kt 用于发送窄带物联网用户设备上行数据的方法及装置
US10117188B2 (en) * 2016-04-01 2018-10-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
EP3823371A1 (en) * 2016-07-01 2021-05-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for signal detection
JP2020503805A (ja) * 2017-01-04 2020-01-30 ノキア テクノロジーズ オサケユイチア 多入力多出力無線システムのためのサウンディング基準信号の電力制御

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038548A1 (zh) * 2009-09-30 2011-04-07 上海贝尔股份有限公司 基于载波聚合的通信系统中上行功率控制的方法和装置
CN105122900A (zh) * 2012-12-27 2015-12-02 三星电子株式会社 在基于波束成形的无线通信系统中的上行链路功率控制方法和装置
CN105009652A (zh) * 2013-02-27 2015-10-28 高通股份有限公司 更新基准功率以实现高速数据恢复
CN104812029A (zh) * 2014-01-24 2015-07-29 北京三星通信技术研究有限公司 Lte系统中的功率控制方法及用户设备ue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550896A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910431B2 (en) 2018-09-19 2024-02-20 Vivo Mobile Communication Co., Ltd. Transmission method and related devices

Also Published As

Publication number Publication date
CN108282855A (zh) 2018-07-13
US20190327686A1 (en) 2019-10-24
EP3550896A1 (en) 2019-10-09
EP3550896B1 (en) 2022-09-21
US11356957B2 (en) 2022-06-07
EP3550896A4 (en) 2019-11-27
CN110115070A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2018126874A1 (zh) 上行功率控制方法及终端
US11924772B2 (en) System and method for wireless power control
US20230156617A1 (en) Apparatus and method in wireless communication system, and computer readable storage medium
EP3614750B1 (en) Power headroom reporting
US11284353B2 (en) Uplink power control method, apparatus and storage medium
CN107277908B (zh) 一种功率控制方法及设备
CN103124428B (zh) 一种上行功率控制方法及装置
JP2019533938A (ja) アップリンク電力制御方法及び装置
WO2020030038A1 (zh) 功率控制方法和装置、确定目标接收功率的方法和装置
CN106465285B (zh) 无线通信系统中传输功率控制方法及装置
WO2018171761A1 (zh) 一种上行发射功率控制的方法和设备
CN104301979A (zh) 一种ue的上行发射功率控制方法、装置、ue及基站
CN109151979A (zh) 功率余量的确定方法及网络设备
JP2011151778A (ja) 無線通信システムにおける送信電力制御装置及び方法
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
EP2770658A1 (en) Method and system for sending control signaling
CN102625429B (zh) 物理上行控制信道的功率控制方法和设备
CN102396270A (zh) 一种多载波系统发射功率的控制方法和装置
WO2022206652A1 (zh) 信息指示的方法与装置
CN104080157A (zh) 集群终端的上行功率控制方法
CN112399538B (zh) 一种功率控制方法和装置
CN108401283A (zh) 通信节点之间的信息交互方法及装置
WO2020056686A1 (zh) 一种通信方法及装置
AU2022323499A1 (en) Information transmission method, apparatus, node, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890398

Country of ref document: EP

Effective date: 20190704