WO2022269920A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022269920A1
WO2022269920A1 PCT/JP2021/024192 JP2021024192W WO2022269920A1 WO 2022269920 A1 WO2022269920 A1 WO 2022269920A1 JP 2021024192 W JP2021024192 W JP 2021024192W WO 2022269920 A1 WO2022269920 A1 WO 2022269920A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
information
layers
pusch
layer
Prior art date
Application number
PCT/JP2021/024192
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
祐輝 松村
春陽 越後
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/024192 priority Critical patent/WO2022269920A1/ja
Priority to EP21947202.4A priority patent/EP4362343A1/en
Publication of WO2022269920A1 publication Critical patent/WO2022269920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately perform power control for each layer/port.
  • a terminal based on at least one of configuration information and downlink control information notified by higher layer signaling, a control unit that performs control to apply different power ratios to multiple layers, a transmitting unit that applies different power ratios to transmit the uplink shared channels of the plurality of layers.
  • power control for each layer/port can be appropriately implemented.
  • FIG. 2 is a diagram showing an example of correspondence between TPMI indexes and precoding matrix W.
  • FIG. 3 is a diagram illustrating an example of mapping between CWs and layers according to the first embodiment.
  • FIG. 4 is a diagram showing another example of mapping between CWs and layers according to the first embodiment.
  • FIG. 5 is a diagram showing another example of mapping between CWs and layers according to the first embodiment.
  • FIG. 6 is a diagram showing an example of mapping according to Embodiment 2-1.
  • FIG. 7 is a diagram illustrating an example of power distribution ratios that are set.
  • FIG. 8 is a diagram showing an example of mapping according to the embodiment 2-2.
  • FIG. 9 is a diagram showing an example of mapping according to Embodiment 4-1.
  • FIG. 10 is a diagram showing an example of mapping according to Embodiment 4-2.
  • FIG. 11 is a diagram showing an example of information on power distribution according to the embodiment 5-2.
  • 12A and 12B are diagrams showing an example of a power ratio changing method according to the embodiment 5-3.
  • 13A and 13B are diagrams showing an example of correspondence between DCI codepoints and power ratios according to Embodiment 5-5.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 17 is a diagram illustrating an example of hardware configurations of a base station and user
  • a user terminal may support Codebook (CB)-based transmission and/or Non-Codebook (NCB)-based transmission.
  • CB Codebook
  • NCB Non-Codebook
  • the UE uses at least a Sounding Reference Signal (SRS) resource index (SRS Resource Index (SRI)) to use at least one of the CB-based and NCB-based Physical Uplink Shared Channel (PUSCH) ) may determine a precoder (precoding matrix) for transmission.
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal Resource Index
  • the UE receives information (SRS configuration information, e.g., parameters in "SRS-Config" of the RRC control element) used for transmission of measurement reference signals (e.g., Sounding Reference Signal (SRS))).
  • SRS configuration information e.g., parameters in "SRS-Config" of the RRC control element
  • measurement reference signals e.g., Sounding Reference Signal (SRS)
  • the UE receives information on one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet” of the RRC control element) and information on one or more SRS resources (SRS resource information, eg, "SRS-Resource” of the RRC control element).
  • SRS resource set information e.g., "SRS-ResourceSet” of the RRC control element
  • SRS resource information e.g. "SRS-Resource” of the RRC control element
  • One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped together).
  • Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and SRS usage information.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • SRS usage information SRS usage information
  • usage of RRC parameter, "SRS-SetUse” of L1 (Layer-1) parameter) is, for example, beam management (beamManagement), codebook (CB), noncodebook (noncodebook ( NCB)), antenna switching, and the like.
  • SRS for codebook or non-codebook applications may be used for precoder determination for codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmission based on SRI.
  • PUSCH Physical Uplink Shared Channel
  • the UE selects a precoder for PUSCH transmission based on SRI, Transmitted Rank Indicator (TRI) and Transmitted Precoding Matrix Indicator (TPMI), etc. may be determined.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for NCB-based transmission.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or the parameter "srs-ResourceIndicator” included in the RRC information element "Configured GrantConfig" of the configured grant PUSCH (configured grant PUSCH). ” may be specified by
  • TRI and TPMI may be specified by DCI precoding information and number of layers field ("Precoding information and number of layers" field).
  • Precoding information and number of layers may be specified by DCI precoding information and number of layers field.
  • precoding information and layer number field is also simply referred to as the "precoding field”.
  • the maximum number of layers (maximum rank) for UL transmission may be set in the UE by the RRC parameter "maxRank”.
  • the UE may report UE capability information regarding the precoder type, and the base station may configure the precoder type based on the UE capability information through higher layer signaling.
  • the UE capability information may be precoder type information (which may be represented by the RRC parameter “pusch-TransCoherence”) that the UE uses in PUSCH transmission.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB), a system information block (SIB), or the like.
  • the UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH configuration information ("PUSCH-Config" information element of RRC signaling) notified by higher layer signaling, A precoder to be used for PUSCH transmission may be determined.
  • the UE may be configured with a subset of codebooks specified by TPMI with codebookSubset.
  • the precoder type is either full coherent, fully coherent, coherent, partial coherent, non coherent, or a combination of at least two of these (for example, “complete and fullyAndPartialAndNonCoherent”, “partialAndNonCoherent”, etc.).
  • Perfect coherence may mean that all antenna ports used for transmission are synchronized (it may be expressed as being able to match the phase, applying the same precoder, etc.). Partial coherence may mean that some of the antenna ports used for transmission are synchronized, but some of the antenna ports are not synchronized with other ports. Non-coherent may mean that each antenna port used for transmission is not synchronized.
  • a UE that supports fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports a partially coherent precoder type may be assumed to support a non-coherent precoder type.
  • the precoder type may be read as coherency, PUSCH transmission coherence, coherence type, coherence type, codebook type, codebook subset, codebook subset type, or the like.
  • the UE obtains the TPMI index from the DCI (e.g., DCI format 0_1, etc.) that schedules the UL transmission from multiple precoders (which may be referred to as precoding matrices, codebooks, etc.) for CB-based transmissions. may determine a precoding matrix corresponding to .
  • DCI e.g., DCI format 0_1, etc.
  • precoders which may be referred to as precoding matrices, codebooks, etc.
  • the UE uses a non-codebook SRS resource set with a maximum of 4 SRS resources configured by RRC, and the maximum of 4 may be indicated by the DCI (2-bit SRI field).
  • the UE may determine the number of layers (transmission rank) for PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for PUSCH. Also, the UE may calculate a precoder for the SRS resource.
  • the transmission beam of the PUSCH is configured may be calculated based on (a measurement of) the associated CSI-RS. Otherwise, the PUSCH transmit beam may be designated by the SRI.
  • the UE may set whether to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission by a higher layer parameter "txConfig" indicating the transmission scheme.
  • the parameter may indicate a "codebook” or “nonCodebook” value.
  • codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may mean PUSCH when the UE is configured with "codebook” as the transmission scheme.
  • non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may refer to PUSCH when the UE is configured with "non-codebook" as the transmission scheme.
  • enabling transform precoding may mean using Discrete Fourier Transform spread OFDM (DFT-s-OFDM), and disabling it means using CP-OFDM. may mean.
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • CP-OFDM CP-OFDM
  • Rel. 15 NR shows the relationship (table) between the DCI precoding field (shown as "bit field mapped to index” in the figure; the same applies to subsequent similar drawings) and TPMI (TPMI index).
  • FIG. 2 is a diagram showing an example of the correspondence relationship between the TPMI index and the precoding matrix W.
  • FIG. 2 shows the precoding matrix W for 2-layer transmission with 2 antenna ports with transform precoding disabled.
  • W is specified by the TPMI indicated by the precoding field as described above, while for non-codebook-based transmission, W is the identity matrix. is stipulated.
  • layer 1 (first column column vector) and layer 2 (second column column vector) have the same power.
  • TPMI 0
  • the power ratio between layer 1 and layer 2 will be 1:1.
  • uplink transmission e.g, PUSCH
  • downlink transmission e.g, Physical Downlink Shared Channel (PDSCH)
  • MIMO Multi Input Multi Output
  • precoding based on singular value decomposition SMD
  • E-SDM Eugenbeam Space Division Multiplexing
  • water injection theorem etc. will be used to channel between ports It is conceivable to maximize the channel capacity by distributing power in descending order of singular values.
  • may be a diagonal matrix.
  • UL H may be a matrix obtained by Hermitian transposing UL (adjoint matrix).
  • Eigenmode transmission may be a method of treating a channel as multiple (ie, number of ranks) independent channels by using UL and VLH as transmit weights and receive weights, respectively.
  • the water-filling theorem may indicate how to distribute the power of each stream to achieve channel capacity maximization during E-SDM.
  • the optimal power distribution for each stream i may be expressed by the following equations.
  • the inventors came up with a method for appropriately distributing power between layers/ports. More specifically, in channel/signal transmission using spatial multiplexing in MIMO, a method of varying power distribution between layers/ports was conceived.
  • A/B may mean “at least one of A and B”.
  • A/B/C may mean “at least one of A, B and C.”
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • Panel, Beam, Panel Group, Beam Group, Uplink (UL) transmitting entity TRP, Spatial Relationship Information (SRI), Spatial Relationship, Control Resource Set (COntrol Resource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport block (TB), base station, predetermined antenna port (e.g., demodulation reference signal (DeModulation Reference Signal (DMRS)) port), predetermined antenna port group (e.g., DMRS port group), predetermined group (e.g. Code Division Multiplexing (CDM) group, predetermined reference signal group, CORESET group), predetermined resource (e.g.
  • SRI Spatial Relationship Information
  • COntrol Resource SET CORESET
  • PDSCH Physical Downlink Shared Channel
  • CW codeword
  • TB transport block
  • predetermined antenna port e.g., demodulation Reference Signal (DeModulation Reference Signal (DMRS)
  • predetermined antenna port group e.g., DMRS port group
  • predetermined group
  • predetermined reference signal resource predetermined resource set (for example, a predetermined reference signal resource set), CORESET pool, PUCCH group (PUCCH resource group), spatial relationship group, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, QCL, etc. may be read interchangeably.
  • the spatial relationship information Identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read interchangeably.
  • “Spatial relationship information” may be read interchangeably as “a set of spatial relationship information”, “one or more spatial relationship information”, and the like.
  • the TCI state and TCI may be read interchangeably.
  • indexes, IDs, indicators, and resource IDs may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • spatial relation information SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH SRI
  • spatial relation information for PUSCH spatial relation
  • UL beam UL beam
  • UE transmission beam UL TCI
  • UL TCI state UL TCI state
  • spatial relationship of UL TCI state SRS Resource Indicator
  • SRI SRS Resource Indicator
  • layers, ports (antenna ports), SRS ports, DMRS ports, streams, etc. may be read interchangeably.
  • the power ratio between layers may be read as the power ratio between ports.
  • a layer may also be read as a group of one or more layers (layer group), a group of one or more ports (port group), and the like.
  • layers 1 and 2 may be treated as belonging to layer group 1 and layer 3 as belonging to layer group 2 .
  • layer i (i is an integer) of the present disclosure may be replaced with layer i-1, may be replaced with layer i+1, or may be replaced with another layer number (that is Any layer number may be substituted).
  • channel and signal may be read interchangeably.
  • spatial multiplexing of a channel/signal means that the channel/signal is transmitted on the same time resource and frequency resource, and that the channel/signal transmits different layers on the same time resource and frequency resource. It may also mean transmitted using, etc.
  • PUSCH in the following embodiments may be replaced with other UL channels/UL signals (eg, PUCCH, DMRS, SRS).
  • PUCCH Physical Uplink Control Channel
  • DMRS Downlink Reference Signal
  • PDSCH in the following embodiments may be read as other DL channels/DL signals (eg, PDCCH, DMRS, CSI-RS).
  • Power in the following embodiments may be read interchangeably with transmission power, and may mean PUSCH transmission power, PDSCH transmission power, and the like.
  • the power is the absolute value of the precoding vector/matrix, the sum of squares of all elements in a specific column (or row) of the vector/matrix, the sum of squares of all the elements of the vector/matrix, etc. may be replaced with at least one of
  • a correspondence relationship (mapping) between TBs and layers may be defined/configured. Mapping between TBs and layers may be referred to as TB-to-layer mapping.
  • TB and CW may be read interchangeably.
  • layers, ports, layer groups, port groups, etc. may be read interchangeably.
  • mapping may be classified into multiple mappings (or mapping types).
  • mapping 1 and mapping 2 are taken as examples, but the present invention is not limited to this.
  • a specific layer (e.g., layers from 1 to N (N is an integer equal to or greater than 1)) is mapped to the first TB, and layers other than the specific layer (e.g., N+1 or more layers/ports) are mapped to the second (Mapping 1).
  • a specific layer (for example, layers from 1 to N) corresponds to the first TB, and layers other than the specific layer (for example, N+1 or more layers) correspond to the second TB.
  • Up to N layers may be mapped to one TB (Mapping 2).
  • one TB may correspond to up to N layers.
  • the number of layers that can be mapped between different TBs may be determined independently based on specific conditions.
  • the specific condition may be a condition based on (the maximum value of) the number of layers that can be multiplexed per transmission opportunity.
  • the specific condition may be a condition based on the TB/CW size (payload/number of bits). For example, up to four layers can be multiplexed, and when multiplexing two CWs (eg, CW#A and CW#B),
  • TB-to-layer mapping is considered as an example: • 1 TB with N layers, total N layers (only 1 TB is transmitted). - One TB corresponds to N layers, for a total of M*N layers (M TBs are (multiplexed) transmitted, each TB having spatial diversity in N layers). • One TB to one layer, for a total of M layers (M TBs are (multiplexed) transmitted, each TB without spatial diversity).
  • FIG. 3 is a diagram showing an example of mapping between CWs and layers according to the first embodiment.
  • four CWs are transmitted using four layers, one CW corresponding to one layer.
  • FIG. 4 is a diagram showing another example of mapping between CWs and layers according to the first embodiment.
  • two CWs are transmitted using four layers, one CW corresponding to two layers.
  • FIG. 5 is a diagram showing another example of mapping between CWs and layers according to the first embodiment.
  • two CWs are transmitted using four layers, one layer (Layer #0) corresponds to codeword #0, and three layers (Layers #1 to #3) are coded.
  • Word #1 corresponds.
  • the UE may determine the TB-to-layer mapping based on certain conditions.
  • the specified condition may be at least one of the following: ⁇ TB size. • Received power (eg, RSRP)/received quality (eg, RSRQ/SINR) of DL/UL RSs transmitted per layer. A parameter indicating the importance (priority) of the TB.
  • RSRP Received power
  • RSRQ/SINR Received quality
  • the UE may determine that a relatively large number of layers corresponds to a relatively large TB among multiple TBs. Also, for example, the UE may determine that a relatively large number of layers correspond to a TB with a relatively high priority among multiple TBs.
  • the UE may report information on the determined/determined TB-to-layer mapping to the network (NW, eg, base station).
  • NW eg, base station
  • the feedback may be done periodically or in response to notifications/triggers from the NW.
  • the relationship between the power ratio and the layer is semi-statically fixed/set, such as matching the order of the power ratio in each layer to the order of the layer number, and the mapping between the TB and the layer is variable. Therefore, it is possible to flexibly control the power ratio according to the characteristics of the TB while suppressing an increase in notification overhead.
  • the UE may be set/instructed/notified of TB-to-layer mapping from the NW.
  • the setting/instruction/notification may be performed by at least one of higher layer signaling and physical layer signaling.
  • the UE may be notified/instructed of the number of layers per TB using DCI.
  • TBs e.g., PUSCH
  • information about the number of layers per TB may be included in the one DCI. good.
  • each DCI may be included in a particular DCI.
  • the specific DCI may be at least one of the last (recently) received DCI by the UE, the last (recently) transmitted DCI in the time direction, and the last (recently) DCI for the monitoring occasion.
  • the UE may be configured with a plurality of information (candidates) regarding TB-to-layer mapping using RRC signaling/MAC CE, and may be instructed to map from the plurality of information using DCI.
  • the spatial diversity effect and spatial multiplexing effect of MIMO can be appropriately used according to multiplexed TB/CW.
  • the second embodiment relates to power control based on Transport Block Size (TBS).
  • TBS Transport Block Size
  • the power distribution of the transmission channels/signals may be variable.
  • the UE may determine power allocation for multiplexed transmission channels/signals based on the TBS of the transmission channels/signals.
  • the UE may determine the power distribution ratio for the PUSCHs based on the ratio of TBSs among the four PUSCHs.
  • power distribution may be determined according to steps 1 to 3 described below.
  • Four PUSCHs (PUSCH #0 to #3) will be described below as an example, but the number of PUSCHs is not limited to this, and the channel/signal to be transmitted may be any channel/signal.
  • TBS #0 to #3 TBS #0 to #3
  • PUSCH #0 to #3 PUSCH #0 to #3
  • FIG. 6 shows a case where PUSCH #0 to #3 are mapped to layers #0 to #3, respectively.
  • FIG. 6 shows a case where the transmission powers of PUSCHs # 0 to # 3 are P0 to P3, respectively.
  • P Total may be transmission power determined by open loop power control/closed loop power control.
  • the power based on the TBS ratio may be set for the power Pi at each port using higher layer signaling (step 3').
  • mapping 1 above is applied (mapping 1 is assumed)
  • the UE may control power distribution according to steps 1 to 3 (3') above.
  • mapping 2 when the above mapping 2 is applied (mapping 2 is assumed), the UE determines that the layers/ports corresponding to the same TB/CW are one layer group/port group. good.
  • the power distribution ratio determination method described in Embodiment 2-1 may be applied to determine the power ratio between the layer group/port group.
  • the power ratios between multiple layers/ports within a group may be equal or unequal.
  • the UE may, for example, determine equal/unequal power ratios (values) based on the CSI information of each layer/port within a group.
  • the power ratio signaling can be omitted as appropriate, and the signaling overhead for the UE can be reduced.
  • Embodiment 2-2 based on the configured (pre-configured) power distribution ratio and the TBS assigned to each of the multiple transmission channels/signals (eg, PUSCH) of different TBs, the multiple transmission channels/signals may be controlled.
  • PUSCHs of different TBSs are spatially multiplexed
  • the UE uses information on the preset power distribution ratio and the size of the TBSs allocated to the four PUSCHs. , PUSCH may be determined.
  • power distribution may be determined according to steps 1 and 2 described below.
  • Four PUSCHs (PUSCH #0 to #3) will be described below as an example, but the number of PUSCHs is not limited to this, and the channel/signal to be transmitted may be any channel/signal.
  • TBS#0 to #3 TBS (TBS#0 to #3) of each of the four PUSCHs (PUSCH#0 to #3) to be spatially multiplexed, and perform ordering/re-ordering of the four PUSCHs (step 1) .
  • Step 2 Mapping is performed between the PUSCH and the port so that the power distribution ratio based on the TBS is set (step 2).
  • FIG. 7 is a diagram showing an example of power distribution ratios that are set. As shown in FIG. 7, the power ratio corresponding to each port (ports #0 to #3) is set in the UE in advance. In the present disclosure, information on the power distribution ratio may be set/notified to the UE using higher layer signaling (eg, RRC signaling/MAC CE).
  • higher layer signaling eg, RRC signaling/MAC CE
  • the UE orders the TBSs of the four PUSCHs in order of size (or size) (for example, PUSCH#2, PUSCH#1, PUSCH#3, and PUSCH#0 in order of size). assumed).
  • step 2 above the UE performs PUSCH and port mapping so that a higher power distribution ratio is set for PUSCH with a large (or small) TBS.
  • the UE determines that PUSCH #0 and port #3, PUSCH #1 and port #1, PUSCH #2 and port #0, and PUSCH #3 and port #2 respectively correspond. (See FIG. 8).
  • mapping 1 above is applied (mapping 1 is assumed)
  • the UE may control power distribution according to steps 1 and 2 above.
  • mapping 2 when the above mapping 2 is applied (mapping 2 is assumed), the UE determines that the layers/ports corresponding to the same TB/CW are one layer group/port group. good.
  • the power distribution ratio determination method described in Embodiment 2-2 may be applied to determine the power ratio between layer groups/port groups.
  • the power ratios between multiple layers/ports within a group may be equal or unequal.
  • the UE may, for example, determine equal/unequal power ratios (values) based on the CSI information of each layer/port within a group.
  • Embodiment 2-2 it is possible to control the power ratio more flexibly.
  • optimal coverage compensation can be achieved by performing TBS-based power distribution control.
  • a third embodiment relates to power control based on the payload size of uplink shared channels (eg, UL-SCH/PUSCH).
  • uplink shared channels eg, UL-SCH/PUSCH.
  • power distribution for the uplink shared channel may be determined based on the payload size of the uplink shared channel.
  • the payload size of the uplink shared channel may be the MAC-PDU payload size set/notified from the upper layer.
  • the UE may determine power distribution for the uplink shared channel based on the MAC-PDU payload size set/notified from the higher layer.
  • power distribution to multiple transmission channels/signals may be controlled based on payload ratios among the multiple transmission channels/signals.
  • the UE may determine the power distribution ratio for the PUSCHs based on the payload ratio among the four PUSCHs.
  • power distribution may be determined according to steps 1 to 3 described below.
  • An example of four PUSCHs (PUSCHs #0 to #3) will be described below, but the number of PUSCHs is not limited to this.
  • the power at each port, Pi is determined based on the payload ratio (step 3).
  • the power P i in step 3 above may be calculated by the following formula.
  • the payload size is, for example, the number of bits (also denoted as A) in one transport block delivered to layer 1 (or the total number of bits of the bit string of the transport block). There may be.
  • the power based on the payload ratio may be set for P i at each port using higher layer signaling (step 3′).
  • mapping 1 above is applied (mapping 1 is assumed)
  • the UE may control power distribution according to steps 1 to 3 (3') above.
  • mapping 2 when the above mapping 2 is applied (mapping 2 is assumed), the UE determines that the layers/ports corresponding to the same TB/CW are one layer group/port group. good.
  • the method of determining the power distribution ratio described in Embodiment 3-1 may be applied to determine the power ratio between layer groups/port groups.
  • the power ratios between multiple layers/ports within a group may be equal or unequal.
  • the UE may, for example, determine equal/unequal power ratios (values) based on the CSI information of each layer/port within a group.
  • the power ratio signaling can be omitted as appropriate, and the signaling overhead for the UE can be reduced.
  • the plurality of transmission channels / signal may be controlled for power distribution.
  • PUSCHs of different TBS are spatially multiplexed
  • the UE based on the information on the preset power distribution ratio and the size of the payload allocated to the four PUSCHs , PUSCH may be determined.
  • power distribution may be determined according to steps 1 and 2 described below.
  • Four PUSCHs (PUSCH #0 to #3) will be described below as an example, but the number of PUSCHs is not limited to this, and the channel/signal to be transmitted may be any channel/signal.
  • Step 1 Determining/calculating the payloads (payloads #0 to #3) of the four PUSCHs (PUSCH #0 to #3) to be spatially multiplexed, and ordering/re-ordering the four PUSCHs (step 1) .
  • Mapping is performed between the PUSCH and the port so that the power distribution ratio based on the payload is set (step 2).
  • the UE orders the payloads of the four PUSCHs in order of size (or size) (for example, PUSCH #2, PUSCH #1, PUSCH #3, and PUSCH #0 are ordered in order of size). assumed).
  • step 2 above the UE performs PUSCH and port mapping so that a higher power distribution ratio is set for PUSCH with a large (or small) payload.
  • the UE determines that PUSCH #0 and port #3, PUSCH #1 and port #1, PUSCH #2 and port #0, and PUSCH #3 and port #2 respectively correspond. You may
  • mapping 1 above is applied (mapping 1 is assumed)
  • the UE may control power distribution according to steps 1 and 2 above.
  • mapping 2 when the above mapping 2 is applied (mapping 2 is assumed), the UE determines that the layers/ports corresponding to the same TB/CW are one layer group/port group. good.
  • the power distribution ratio determination method described in Embodiment 3-2 may be applied to determine the power ratio between layer groups/port groups.
  • the power ratios between multiple layers/ports within a group may be equal or unequal.
  • the UE may, for example, determine equal/unequal power ratios (values) based on the CSI information of each layer/port within a group.
  • Embodiment 3-2 it is possible to control the power ratio more flexibly.
  • optimal coverage compensation can be achieved by performing payload-based power distribution control.
  • the fourth embodiment relates to power control based on (type/content of) transmission channel/signal.
  • FIG. 9 shows an example in which UL channels/UL signals #1 to #4 are mapped to layers #0 to #3, respectively. Based on which transmission channel/signal to transmit, the UE may determine the transmit power (eg, P0 to P3) or power distribution for that transmission channel/signal.
  • the transmit power eg, P0 to P3
  • the transmission channel/signal may be of at least one of the following types/content: ⁇ PUSCH only. • PUSCH with UCI (as content: HARQ-ACK info/SR/CSI report). - PUCCH. • Physical Sidelink Shared Channel (PSSCH). • Physical Sidelink Control Channel (PSCCH). • PRACH. - SRS.
  • PUSCH uplink data channel
  • uplink shared channel uplink data, etc.
  • UCI PUCCH
  • uplink control information may be read interchangeably.
  • a priority may be defined for each transmission channel/signal (type/content) (Embodiment 4-1-1).
  • the UE may control power distribution based on the priority.
  • the UE may allocate higher power ratios in descending order of priority transmission channels/signals (types/contents).
  • the priority may be an existing priority (defined up to Rel.16).
  • the following may be defined in order of priority: • PRACH transmission on the PCell. - PUCCH or PUSCH transmission with higher (smaller) priority index.
  • a PUSCH transmission that does not contain HARQ-ACK information or CSI is a PUSCH transmission for a random access procedure (e.g., type 2 random access procedure), and in the PCell Send PUSCH.
  • a random access procedure e.g., type 2 random access procedure
  • new priorities for each channel/signal may be defined for MIMO multiplexing (spatial division multiplexing (SDM)).
  • SDM spatial division multiplexing
  • the new priorities may be defined in the following order of priority: - PUSCH transmission in which UCI is multiplexed. - PUSCH transmission in which UCI is not multiplexed. - PUCCH transmission with HARQ-ACK information/SR. • PUCCH transmissions containing only CSI reports.
  • the power ratio between layers may be determined according to at least one of the following embodiments 4-1-2 to 4-1-4.
  • the PUSCH and PUCCH may be spatially multiplexed (embodiment 4-1-2).
  • the channel (type/content) priority may be set higher in the following order: - PUSCH with UCI (including at least HARQ-ACK), ⁇ PUSCH, - PUCCH containing at least HARQ-ACK, • PUCCH without HARQ-ACK.
  • one or more layers may correspond to each channel (type/content thereof).
  • the configuration may be such that two layers correspond to PUSCH, and one layer different from the layer corresponding to PUSCH corresponds to PUCCH.
  • the PUSCH and PSSCH may be spatially multiplexed (embodiment 4-1-3).
  • the priority of the channel may be set in the following order (Embodiment 4-1-3-1): ⁇ PUSCH, - PSSCH.
  • the power of PUSCH transmission or PSSCH transmission is defined by the specifications regardless of the transmission power set/instructed for PUSCH transmission/PSSCH transmission. Alternatively, it may be set by higher layer signaling (RRC signaling/MAC CE) (Embodiment 4-1-3-2).
  • the specific condition may be, for example, the presence or absence of precoding settings used for spatial multiplexing of PUSCH and PSSCH. For example, if precoding to be used for spatial multiplexing of PUSCH and PSSCH is not configured, the UE may determine the PSSCH power ratio to be a specific value (eg, 0). At this time, the power ratio of PUSCH may be 1-(specific value).
  • each channel may correspond to one or more layers.
  • the configuration may be such that two layers correspond to PUSCH, and one layer different from the layer corresponding to PUSCH corresponds to PSSCH.
  • the PUSCH and PRACH may be spatially multiplexed (embodiment 4-1-4).
  • the priority of the channel may be set in the following order (Embodiment 4-1-3-1): (if PRACH is ordered on PDCCH) ⁇ PUSCH, • PRACH. (if not) ⁇ PRACH, ⁇ PUSCH.
  • the power of PUSCH transmission or PRACH transmission is defined in the specifications regardless of the transmission power set/instructed for PUSCH transmission/PRACH transmission. Alternatively, it may be set by higher layer signaling (RRC signaling/MAC CE) (Embodiment 4-1-4-2).
  • the specific condition may be, for example, the presence or absence of precoding settings used for spatial multiplexing of PUSCH and PRACH. For example, if precoding to be used for spatial multiplexing of PUSCH and PRACH is not configured, the UE may determine the power ratio of PUSCH to be a specific value (eg, 0). At this time, the PRACH power ratio may be 1-(specific value).
  • the specific condition may be, for example, whether or not the PRACH is set to correspond to the reception of SSB.
  • the UE may determine the power ratio of the PUSCH to be a specific value (eg, 0). At this time, the PRACH power ratio may be 1-(specific value).
  • each channel may correspond to one or more layers.
  • the configuration may be such that two layers correspond to PUSCH, and one layer different from the layer corresponding to PUSCH corresponds to PSSCH.
  • mapping 1 the UE may control power distribution according to the above embodiment 4-1.
  • mapping 2 may consider that the same TB/CW/channel/signal (RS)/sequence and corresponding layer/port are in one layer group/ It may be determined that it is a port group.
  • RS channel/signal
  • the power distribution ratio determination method described in Embodiments 2-2/3-2 may be applied to determine the power ratio between layer groups/port groups.
  • the power ratios between multiple layers/ports within a group may be equal or unequal.
  • the UE may, for example, determine equal/unequal power ratios (values) based on the CSI information of each layer/port within a group.
  • the power ratio of a particular channel with lower priority may be determined to be zero. In other words, certain channels with lower priority may be dropped when different channels/signals are spatially multiplexed.
  • the UE may drop the PUSCH (may decide to set the power ratio of the PUSCH to 0).
  • Embodiment 4-1 power distribution can be appropriately controlled for each transmitted channel/signal.
  • Channels/signals other than PUSCH may be spatially multiplexed using multiple layers/ports.
  • PUCCH may be spatially multiplexed in multiple layers/ports.
  • FIG. 10 shows an example in which PUCCHs #1 to #4 are mapped to layers #0 to #3, respectively.
  • determination/control of the power ratio in each layer may be performed according to at least one of the first to third embodiments described above.
  • determination/control of the power ratio in each layer may be performed based on uplink control information multiplexed on PUCCH (or transmitted using PUCCH). For example, when HARQ-ACK is mapped to PUCCH #1 and CSI is mapped to PUCCH #2 (HARQ-ACK is not mapped), the transmission power of PUCCH #1 is set higher than the transmission power of PUCCH #2. good too. Note that one piece of uplink control information may be mapped to multiple layers.
  • the PRACH may be spatially multiplexed in multiple layers/ports. At this time, determination/control of the power ratio in each layer may be performed according to at least one of the first to third embodiments described above.
  • Embodiment 4-2 it is possible to appropriately perform power distribution in spatial multiplexing of channels/signals other than PUSCH.
  • the fifth embodiment relates to power control based on control information.
  • power distribution (power ratio) between layers/ports may be determined based on control information (eg, DCI) received from the base station.
  • the UE may determine the power distribution (power ratio) between layers/ports based on (specific fields contained in) the DCI.
  • the UE may be notified/instructed of the power ratio in each layer/port according to the number of layers/ports supported by the UE.
  • the UE may report UE capability information regarding the number of layers/ports supported by the UE to the network (NW, base station).
  • the UE may determine the power ratio in each layer/port according to the number of layers/ports based on a specific field included in DCI.
  • the power ratio in each layer/port may be determined based on the CSI feedback/SRS reception quality for each layer/port.
  • the UE signals/ Directing control information may be received.
  • a first period of time eg, x symbols
  • the UE signals/ Directing control information may be received.
  • Embodiment 5-1 after the UE receives the control information for notifying/instructing the power ratio, in slots / symbols after the second period (eg, y1 symbol / slot), the UE controls An informed/indicated power ratio may be applied.
  • Embodiment 5-1 after the UE receives the control information for notifying/indicating the power ratio, in a slot / symbol before the third period (eg, y2 symbol / slot), the UE is the control An informed/indicated power ratio may be applied.
  • Embodiment 5-2 information on power distribution (information on power ratio) as described in Embodiments 2-2 and 3-2 above may be preset in the UE.
  • the UE may be indicated in (a specific field included in) control information (DCI) the power ratios corresponding to multiple layers/ports included in the information on the power distribution to be configured.
  • DCI control information
  • a granularity (for example, 0.1) of each power ratio value may be defined. Also, the sum of each power ratio in multiple layers/ports corresponding to one codepoint of a specific field included in DCI may be a specific value (eg, 1).
  • FIG. 11 is a diagram showing an example of information on power distribution according to Embodiment 5-2.
  • multiple power ratios of layer #0 to layer #3 are set for the UE as information on power distribution.
  • the UE determines the power ratio to apply from Layer #0 to Layer #3 based on (codepoints of) specific fields included in the DCI. In the example shown in FIG. 11, if the DCI codepoint indicates 01, the UE determines that the power ratio of each layer is 0.25.
  • information on power distribution (information on power ratio) as described in embodiments 2-2 and 3-2 above may be preset in the UE.
  • the UE may be notified/instructed using control information (eg, DCI) about the power ratio value in a specific period among the multiple power ratio values included in the information on the power distribution to be set.
  • control information eg, DCI
  • the specific period may be notified/configured/instructed to the UE using higher layer signaling/physical layer signaling, or may be specified in the specification.
  • the specific period may be a period from slot N+a1 to slot N+a2.
  • a1 and a2 may be set/indicated to the UE in higher layer signaling/physical layer signaling, or may be defined in the specification.
  • the specific period may be a period after N+a3 slots.
  • a3 may be set/indicated to the UE in higher layer signaling/physical layer signaling, or may be specified in the specification.
  • the specific period may be a period from the reception of the control information (DCI) to the n-th (n is an integer equal to or greater than 1) UL transmission.
  • DCI control information
  • Embodiment 5-3 information on power distribution (information on power ratio) as described in Embodiments 2-2 and 3-2 above may be preset in the UE.
  • the UE may be notified/instructed using control information (eg, DCI) to change one or more power ratio values included in the information on power distribution to be set to specific values.
  • control information eg, DCI
  • the specific value may be 0.
  • the UE increments the value of the power ratio in the layer / port other than the layer / port instructed to change to 0 in the control information (DCI) so that their sum is 1 by the same value. may be (may be increased).
  • the specific value may be 1.
  • the UE may change the value of the power ratio to 0 in layers/ports other than the layer/port instructed to change to 1 in the control information (DCI).
  • Information about the specific value may be set/indicated to the UE using higher layer signaling/control information (DCI).
  • DCI higher layer signaling/control information
  • the information about the specific value may be information indicating that the specific value is 0 or 1.
  • 12A and 12B are diagrams showing an example of a power ratio changing method according to Embodiment 5-3.
  • 12A and 12B show a method of using DCI to indicate that the power ratio of a specific layer should be changed to zero.
  • the UE may be instructed with DCI one layer to change the power ratio to 0 (FIG. 12A).
  • the UE may also be instructed with DCI one or more layers to change the power ratio to 0 (FIG. 12B).
  • Embodiment 5-4 information on power distribution for each TB/CW (information on power ratio) may be preset in the UE.
  • the power ratio corresponding to a plurality of TB / CW, which is included in the information on the power distribution to be set, may be indicated by (a specific field included in) the control information (DCI) (Embodiment 5- 4-1).
  • a granularity (for example, 0.1) of each power ratio value may be defined. Also, the sum of the power ratios in multiple TB/CWs corresponding to one codepoint of a specific field included in DCI may be a specific value (eg, 1).
  • the power ratios of multiple layers/ports corresponding to the same TB/CW are set/controlled according to at least one of the second to fifth embodiments described above. good too.
  • the power ratios corresponding to multiple TB/CWs are determined as described in this embodiment, and the power ratios of multiple layers/ports corresponding to the same TB/CW are determined according to the above embodiment 5-2 or 5- 3 may be determined.
  • power ratios corresponding to a plurality of TB/CWs are determined as described in this embodiment, and power ratios of a plurality of layers/ports corresponding to the same TB/CW are determined according to Embodiment 2-2 above. It may therefore be determined.
  • information on power distribution for each TB/CW may be preset in the UE.
  • the UE may be notified/instructed using control information (e.g., DCI) about the value of the power ratio in a specific period, among the values of a plurality of power ratios included in the information on the power distribution to be set ( Embodiment 5-4-2).
  • control information e.g., DCI
  • the specific period may be notified/configured/instructed to the UE using higher layer signaling/physical layer signaling, or may be specified in the specification.
  • the specific period may be a period from slot N+a1 to slot N+a2.
  • a1 and a2 may be set/indicated to the UE in higher layer signaling/physical layer signaling, or may be defined in the specification.
  • the specific period may be a period after N+a3 slots.
  • a3 may be set/indicated to the UE in higher layer signaling/physical layer signaling, or may be specified in the specification.
  • the specific period may be a period from the reception of the control information (DCI) to the n-th (n is an integer equal to or greater than 1) UL transmission.
  • DCI control information
  • Embodiment 5-4 information on power distribution for each TB/CW (information on power ratio) may be preset in the UE.
  • the UE may be notified/instructed using control information (e.g., DCI) to change the value of one or more power ratios included in the information on power distribution to be set to a specific value ( Embodiment 5-4-3).
  • control information e.g., DCI
  • the specific value may be 0.
  • the UE increments the value of the power ratio in the layer / port other than the layer / port instructed to change to 0 in the control information (DCI) so that their sum is 1 by the same value. may be (may be increased).
  • the specific value may be 1.
  • the UE may change the value of the power ratio to 0 in layers/ports other than the layer/port instructed to change to 1 in the control information (DCI).
  • Information about the specific value may be set/indicated to the UE using higher layer signaling/control information (DCI).
  • DCI higher layer signaling/control information
  • the information about the specific value may be information indicating that the specific value is 0 or 1.
  • the power ratio of multiple layers/ports corresponding to the same TB/CW is at least one of the second to fifth embodiments described above. It may therefore be set/controlled.
  • the power ratios corresponding to multiple TB/CWs are determined as described in this embodiment, and the power ratios of multiple layers/ports corresponding to the same TB/CW are determined according to the above embodiment 5-2 or 5- 3 may be determined.
  • power ratios corresponding to a plurality of TB/CWs are determined as described in this embodiment, and power ratios of a plurality of layers/ports corresponding to the same TB/CW are determined according to Embodiment 2-2 above. It may therefore be determined.
  • the UE may use one DCI field (codepoint) to determine power ratios corresponding to multiple layers/ports (embodiment 5-5-1).
  • the correspondence relationship between the DCI field (codepoint) and the power ratio may be defined in advance in the specification, or may be notified to the UE using higher layer signaling.
  • FIG. 13A is a diagram showing an example of correspondence between DCI code points and power ratios according to Embodiment 5-5. As shown in FIG. 13A, a correspondence relationship is defined/set such that power ratios (power setting values) of a plurality of layers correspond to one DCI codepoint. From this correspondence, the UE determines the power ratio corresponding to one codepoint indicated by DCI.
  • the UE may use multiple DCI fields (codepoints) to determine power ratios corresponding to multiple layers/ports (embodiment 5-5-2).
  • the correspondence relationship between the DCI field (codepoint) and the power ratio may be defined in advance in the specification, or may be notified to the UE using higher layer signaling.
  • the UE may receive DCI fields (codepoints) for the number of layers/ports/TB/CW.
  • FIG. 13B is a diagram showing another example of the correspondence between DCI codepoints and power ratios according to Embodiment 5-5. As shown in FIG. 13B, for a specific TB, a correspondence relationship is defined/set such that power ratios of a plurality of layers correspond to one DCI codepoint. From this correspondence, the UE determines the power ratio corresponding to the codepoints indicated by DCI for each TB.
  • the association between the channel/signal priority (for example, the priority described in the fourth embodiment) and the layer/port index may be defined.
  • higher priority channels/signals may be defined with lower (or higher) layer/port indices and corresponding associations. According to this, for example, by associating channels and layers, it is possible to reduce the number of bits of the DCI field that changes the power ratio.
  • the fifth embodiment it is possible to appropriately and flexibly control power distribution corresponding to layers/ports/TBs/CWs using control information.
  • the layer/port power ratio is set/instructed/notified using higher layer signaling (RRC information element/MAC CE)/physical layer signaling (DCI). good too.
  • RRC information element/MAC CE higher layer signaling
  • DCI physical layer signaling
  • the layer/port power ratio may be determined in the precoding matrix.
  • the power ratio between layers may be the same or different.
  • power ratios may be read as amplitude ratios (in the precoding matrix).
  • the power at each port may be determined according to at least one of the results of singular value decomposition of the channel matrix using SVD and the water-filling theorem.
  • the water-filling theorem may be expressed in Equation 1 above.
  • the power control in each embodiment of the present disclosure may be applied to repetition transmission.
  • the UE may determine/apply the same power ratio across multiple repeated transmissions.
  • the UE may also determine/apply the power ratio independently for each repeated transmission (per transmission). For example, the UE is preconfigured/informed of candidate layer/port power ratios for each repeated transmission (per transmission) and informed of one power ratio from these candidates in the DCI that triggers the repeated transmission. good too.
  • power control in the present disclosure may be applied to retransmission control.
  • the UE may determine/apply the same power ratio as the initial transmission/last retransmission when retransmitting a channel/signal.
  • the UE may also determine/apply the power ratio independently for each retransmission (e.g., set the transmit power of only a particular layer to a particular value (e.g., 1 or 0) may be determined).
  • the specific UE capabilities may indicate at least one of the following: whether to support PUSCH power control per layer/port/TRP; Whether or not to support spatial multiplexing using at least one of a specific number (e.g., 4) or more of layers/ports and a specific number (e.g., 2) or more of CWs; - whether spatial multiplexing of different channels/signals is supported; • Whether to support spatial multiplexing of channels/signals other than PUSCH (eg PUCCH/PRACH).
  • the specific UE capability may be a capability for CB-based PUSCH, a capability for NCB-based PUSCH, or a capability that does not distinguish between them.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (eg, cell, band, BWP). , the capability per frequency range (eg, FR1, FR2), or the capability per subcarrier interval.
  • the specific UE capability may be a capability that is applied across all duplex systems (commonly regardless of the duplex system), or may be a duplex system (for example, Time Division Duplex (Time Division Duplex ( (TDD)), or the capability for each Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • At least one of the above embodiments may be applied if the UE is configured by higher layer signaling with specific information related to the above embodiments (if not configured, e.g. Rel. 15/ 16 operations apply).
  • the specific information may be information indicating to enable PUSCH power per layer/port/TRP, any RRC parameters for a specific release (eg, Rel.18), and the like.
  • the UE may be configured using higher layer parameters as to which embodiment/case/condition described above is used to control the PHR.
  • the “layers” of the present disclosure are "TRP", "RS (e.g., SRS, reference RS corresponding to TCI state)", "PUSCH transmission corresponding to RS”, “PDSCH transmission/reception corresponding to RS”, “ PUSCH”, “PDSCH”, “group formed by PUSCH transmission corresponding to one or more RSs (group including PUSCH transmission corresponding to one or more RSs)", “PDSCH corresponding to one or more RSs
  • a group configured by transmission/reception (a group including PDSCH transmission/reception corresponding to one or more RSs)" or the like may be read as at least one.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 15 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 receives information for determining the number of layers corresponding to each of a plurality of different transport blocks (TB) for each TB, and controlling the association between each of the plurality of TBs and layers. You can send it to your terminal.
  • the transceiver 120 may receive each of the plurality of different TBs transmitted on the same time and frequency resources using one or more layers (first embodiment).
  • the transmitting/receiving unit 120 transmits information for performing control to apply different power ratios to the plurality of uplink shared channels, based on at least one of the transport block size and the payload size of the plurality of uplink shared channels, to the terminal. may be sent to The transmitting/receiving unit 120 may receive the plurality of uplink shared channels to which the different power ratios are applied (second and third embodiments).
  • the transmitting/receiving unit 120 transmits to the terminal information for applying different power ratios to one or more layers corresponding to each of the plurality of channels, based on the priority corresponding to each of the plurality of channels. good too.
  • the transmitting/receiving unit 120 may receive the plurality of channels to which the different power ratios are applied using the same time resource and frequency resource (fourth embodiment).
  • the transmitting/receiving unit 120 may transmit information for applying different power ratios to multiple layers to the terminal.
  • the transmitting/receiving unit 120 may receive the multi-layer uplink control channel and random access channel transmitted by the terminal applying the different power ratios based on the information (fourth embodiment).
  • the transmitting/receiving section 120 may transmit setting information and downlink control information notified using higher layer signaling for performing control to apply different power ratios to multiple layers.
  • the transmitting/receiving unit 120 may receive the uplink shared channels of the plurality of layers to which the different power ratios are applied (fifth embodiment).
  • FIG. 16 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on the settings of the transform precoder. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if the transform precoder is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the control unit 210 may determine the number of layers corresponding to each of a plurality of different transport blocks (TB) for each TB, and control the association between each of the plurality of TBs and layers.
  • the transmitting/receiving unit 220 may transmit each of the plurality of different TBs on the same time resource and frequency resource using one or more layers (first embodiment).
  • the control unit 210 determines the number of layers and the plurality of layers based on at least one of the size of each of the plurality of TBs, at least one of a downlink reference signal and an uplink reference signal, and the priority of the TB.
  • a layer corresponding to each TB may be determined (first embodiment).
  • the control unit 210 may use at least one of higher layer signaling and downlink control information to determine the number of layers corresponding to each of the plurality of different TBs (first embodiment).
  • the number of layers may be the maximum number of layers that can be multiplexed for one transmission opportunity (first embodiment).
  • the control unit 210 may perform control to apply different power ratios to the plurality of uplink shared channels based on at least one of the transport block size and payload size of the plurality of uplink shared channels.
  • the transmitting/receiving unit 220 may transmit the plurality of uplink shared channels by applying the different power ratios (second and third embodiments).
  • the control unit 210 may determine the different power ratios based on the transport block ratios of the plurality of uplink shared channels (second embodiment).
  • the control unit 210 may determine the different power ratios based on the payload size ratio of the plurality of uplink shared channels of the Medium Access Control Protocol Data Unit (MAC-PDU) (third embodiment). .
  • MAC-PDU Medium Access Control Protocol Data Unit
  • the transmitting/receiving unit 220 may receive the information on the different power ratios using higher layer signaling.
  • the control unit 210 may perform control to apply the different power ratios based on the information about the different power ratios and at least one of the transport block size and the payload size (second and third power ratios). embodiment).
  • the control unit 210 may perform control to apply different power ratios to one or more layers corresponding to each of the plurality of channels based on the priority corresponding to each of the plurality of channels.
  • the transmitting/receiving unit 220 may apply the different power ratios to transmit the plurality of channels on the same time and frequency resources (fourth embodiment).
  • the plurality of channels may be at least two of a physical uplink shared channel, a physical uplink control channel, a physical sidelink shared channel, a physical sidelink control channel, a physical random access channel, a sounding reference signal (the 4).
  • a channel including Hybrid Automatic Repeat reQuest ACKnowledgement may have a higher priority than a channel not including HARQ-ACK (fourth embodiment).
  • the control unit 210 may determine that the power ratio in the layer corresponding to at least one of the low-priority channels and signals among at least one of the different types of channels and signals is 0 (fourth implementation form).
  • the control unit 210 may perform control to apply different power ratios to multiple layers.
  • the transmitting/receiving unit 220 may apply the different power ratios to transmit at least one of the uplink control channel and the random access channel of the multiple layers (fourth embodiment).
  • the control unit 210 may determine that multiple layers correspond to different uplink control information included in the uplink control channel (fourth embodiment).
  • the control unit 210 When transmitting the uplink control channel of the plurality of layers, the control unit 210 gives priority to the layer transmitting the Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) information included in the uplink control channel with the different power ratios. (fourth embodiment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • the control unit 210 may perform control to apply different power ratios to multiple layers based on at least one of configuration information and downlink control information notified by higher layer signaling.
  • the transmitting/receiving unit 220 may transmit the uplink shared channels of the plurality of layers by applying the different power ratios (fifth embodiment).
  • the different power ratios may be based on at least one of channel state information reporting and sounding reference signal reception quality (fifth embodiment).
  • the control unit 210 may change the power ratio of at least one of a specific layer and TB in the setting information to a specific value based on the downlink control information (fifth embodiment).
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given channel/signal outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、上位レイヤシグナリングによって通知される設定情報及び下りリンク制御情報の少なくとも一方に基づいて、複数レイヤに対して異なる電力比を適用する制御を行う制御部と、前記異なる電力比を適用して前記複数レイヤの上りリンク共有チャネルの送信を行う送信部と、を有する。本開示の一態様によれば、レイヤ/ポートごとの電力制御を適切に実施できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 Rel.15/16 NRにおいては、複数のアンテナポートを用いるチャネル/信号の送受信について、アンテナポート間では等電力になるように、またレイヤ間で等電力を適用するように制御される。
 しかしながら、さらなる将来の無線通信システム(6Gなど)においては、Multi Input Multi Output(MIMO)環境においてより高速な通信を実現することが求められている。しかしながら、どのようにして高速通信を実現するかについては、まだ検討が進んでいない。これについて明確にしなければ、通信品質の劣化のおそれがある。
 そこで、本開示は、レイヤ/ポートごとの電力制御を適切に実施できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、上位レイヤシグナリングによって通知される設定情報及び下りリンク制御情報の少なくとも一方に基づいて、複数レイヤに対して異なる電力比を適用する制御を行う制御部と、前記異なる電力比を適用して前記複数レイヤの上りリンク共有チャネルの送信を行う送信部と、を有する。
 本開示の一態様によれば、レイヤ/ポートごとの電力制御を適切に実施できる。
図1A及び図1Bは、トランスフォームプリコーディングが無効かつ最大ランク=2を設定される、2アンテナポートのための送信を行うUEに対するTPMI通知の一例を示す図である。 図2は、TPMIインデックスとプリコーディング行列Wとの対応関係の一例を示す図である。 図3は、第1の実施形態に係る、CWとレイヤのマッピングの一例を示す図である。 図4は、第1の実施形態に係る、CWとレイヤのマッピングの他の例を示す図である。 図5は、第1の実施形態に係る、CWとレイヤのマッピングの他の例を示す図である。 図6は、実施形態2-1に係るマッピングの一例を示す図である。 図7は、設定される電力分配比率の一例を示す図である。 図8は、実施形態2-2に係るマッピングの一例を示す図である。 図9は、実施形態4-1に係るマッピングの一例を示す図である。 図10は、実施形態4-2に係るマッピングの一例を示す図である。 図11は、実施形態5-2に係る電力分配に関する情報の一例を示す図である。 図12A及び図12Bは、実施形態5-3に係る電力比の変更方法の一例を示す図である。 図13A及び図13Bは、実施形態5-5に係るDCIコードポイントと電力比との対応関係の一例を示す図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(PUSCHプリコーダ)
 NRでは、ユーザ端末(user terminal、User Equipment(UE))は、コードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートしてもよい。
 例えば、UEは少なくともサウンディング参照信号(Sounding Reference Signal(SRS))リソースインデックス(SRS Resource Index(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断してもよい。
 UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
 具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook(CB))、ノンコードブック(noncodebook(NCB))、アンテナスイッチングなどであってもよい。コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 UEは、CBベース送信の場合、SRI、送信ランクインディケーター(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRI、TRI、TPMIなどは、下りリンク制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラント(設定グラント)PUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。
 TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。なお、以降では、簡単のため、「プリコーディング情報及びレイヤ数フィールド」を単に「プリコーディングフィールド」とも呼ぶ。
 なお、UL送信の最大レイヤ数(最大ランク)は、RRCパラメータ「maxRank」によってUEに設定されてもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))などであってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるコードブックのサブセットを設定されてもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
 具体的には、Rel.15/16 NRでは、PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、最大4個のSRSリソースを有する用途がノンコードブックのSRSリソースセットを、RRCによって設定され、当該最大4個のSRSリソースの1つ以上をDCI(2ビットのSRIフィールド)によって指示されてもよい。
 UEは、上記SRIフィールドに基づいて、PUSCHのためのレイヤ数(送信ランク)を決定してもよい。例えば、UEは、上記SRIフィールドによって指定されるSRSリソースの数が、PUSCHのためのレイヤ数と同じであると判断してもよい。また、UEは、上記SRSリソースのプリコーダを算出してもよい。
 当該SRSリソース(又は当該SRSリソースが属するSRSリソースセット)に関連するCSI-RS(associated CSI-RSと呼ばれてもよい)が上位レイヤで設定されている場合、PUSCHの送信ビームは当該設定された関連するCSI-RS(の測定)に基づいて算出されてもよい。そうでない場合、PUSCHの送信ビームはSRIによって指定されてもよい。
 なお、UEは、コードブックベースPUSCH送信を用いるかノンコードブックベースPUSCH送信を用いるかを、送信スキームを示す上位レイヤパラメータ「txConfig」によって設定されてもよい。当該パラメータは、「コードブック(codebook)」又は「ノンコードブック(nonCodebook)」の値を示してもよい。
 本開示において、コードブックベースPUSCH(コードブックベースPUSCH送信、コードブックベース送信)は、UEに送信スキームとして「コードブック」を設定された場合のPUSCHを意味してもよい。本開示において、ノンコードブックベースPUSCH(ノンコードブックベースPUSCH送信、ノンコードブックベース送信)は、UEに送信スキームとして「ノンコードブック」を設定された場合のPUSCHを意味してもよい。
 図1A及び図1Bは、トランスフォームプリコーディングが無効かつ最大ランク=2を設定される、2アンテナポートのための送信を行うUEに対するTPMI通知の一例を示す図である。
 なお、トランスフォームプリコーディング(transform precoding)が有効であることはDiscrete Fourier Transform spread OFDM(DFT-s-OFDM)を用いることを意味してもよく、無効であることはCP-OFDMを用いることを意味してもよい。
 本例では、Rel.15 NRにおける、DCIのプリコーディングフィールド(図では「インデックスにマップされるビットフィールド」と示されている。以降の類似する図面でも同じ。)とTPMI(TPMIインデックス)との関係(テーブル)が示されている。なお、図1Aの「codebookSubset=fullyAndPartialAndNonCoherent」と記載されているのは完全コヒーレントUEが参照するテーブルであることを示し、図1Bの「codebookSubset=nonCoherent」と記載されているのはノンコヒーレントUEが参照するテーブルであることを示す。
 UEは、DCIに含まれるプリコーディングフィールドの値及び図1A/図1Bのテーブルに基づいて、送信に適用するレイヤ数と、プリコーディング行列のためのTPMIと、を決定する。例えば、プリコーディングフィールド=2を指定される完全コヒーレントUEは、図1Aに基づいて、レイヤ数=2とTPMI=0とをPUSCH送信に用いると決定する。なお、「reserved」は将来的に定義される予定である値に対応している。
 図2は、TPMIインデックスとプリコーディング行列Wとの対応関係の一例を示す図である。図2は、トランスフォームプリコーディングが無効な2アンテナポートを用いる2レイヤ送信のためのプリコーディング行列Wが示されている。
 図1Aに従ってレイヤ数=2とTPMI=0とをPUSCH送信に用いると決定したUEは、図2のTPMI=0に対応するWをPUSCH送信に適用する。
 なお、UEは、リソース(例えば、リソースエレメント)にマップする各アンテナポートについての複素数シンボルのベクトルのブロックZを、W及びトランスフォームプリコーディング後(又はレイヤマッピング後)の各レイヤについての複素数シンボルのベクトルのブロックYに基づいて算出してもよい。例えば、Z=WYで求められてもよい。
 Rel.15/16 NRの既存の仕様では、コードブックベース送信については、Wは上述のようにプリコーディングフィールドが示すTPMIによって指定される一方で、ノンコードブックベース送信については、Wは単位行列であると規定されている。
 図2のWについて、レイヤ1(1列目の列ベクトル)とレイヤ2(2列目の列ベクトル)とは、それぞれ同じ電力である。例えば、TPMI=0について、レイヤ1の列ベクトルの各成分の二乗和及びレイヤ2の列ベクトルの各成分の二乗和は、それぞれ1/2(=(1/√2)^2)であり、レイヤ1及びレイヤ2間の電力比は1:1となる。
 ここまで示したように、既存のRel.15/16 NRにおいては、複数のアンテナポートを用いるチャネル/信号の送信について、アンテナポート間では等電力になるように、またレイヤ間で等電力/同じ変調及び符号化方式(Modulation and coding scheme(MCS))を適用するように制御される。
 なお、上りリンクの送信(例えば、PUSCH)だけではなく、下りリンクの送信(例えば、Physical Downlink Shared Channel(PDSCH))についても同様の制御が適用されている。
 このように、既存のRel.15/16 NRにおいては、電力の設定はSRIで指示されるビームごとに決定される。また、あるビームについて、複数のポート(ストリーム)を用いて送信される場合、複数のポートにおけるそれぞれのポートの電力は等配分となる。プリコーディング(例えば、レイヤ-ポートマッピング)の適用時においても、ポート間において電力(振幅)の差は発生しない。
 ところで、さらなる将来の無線通信システム(6Gなど)においては、Multi Input Multi Output(MIMO)環境においてより高速な通信を実現することが求められている。
 より具体的には、上りリンク(UL)の通信容量の向上に向け、MIMOランク数を拡張することによる空間多重容量を拡張することが検討されている。これによれば、より多い複数送信を空間方向に多重して同時送信を行うことが可能になる。
 将来の無線通信システムにおいて、特異値分解(Singular Value Decomposition(SVD))に基づくプリコーディング、固有モード伝送(E-SDM(Eugenbeam Space Division Multiplexing))、注水定理等を利用して、ポート間でチャネル特異値の大きい順に電力配分を行うことで、チャネル容量を最大化することが考えられる。
 チャネル行列Hの特異値分解は、V及びUを直交行列とし、H=VΣU Hと分解することであってもよい。このとき、Σは対角行列であってもよい。U Hは、Uをエルミート転置した行列(随伴行列)であってもよい。
 固有モード伝送は、送信ウェイト及び受信ウェイトとしてU及びV Hをそれぞれ用いることで、チャネルを複数(すなわち、ランク数)の独立な通信路とみなす方法であってもよい。
 注水定理は、E-SDM時における、チャネル容量最大化を達成するための各ストリームの電力分配方法を示してもよい。各ストリームiの最適電力分配は以下の数式で表されてもよい。
Figure JPOXMLDOC01-appb-M000001
 なお、(式1)において、各パラメータの係数は異なっていてもよい。
 しかしながら、MIMOランク数の拡張を行う場合、MIMOレイヤごとの電力配分をどのようにするかについて、まだ検討が進んでいない。より具体的には、ポート(ストリーム)間の電力分配比率は、その送信ビームで達成可能であるチャネル容量(通信路容量)に影響するが、電力分配比率の最適化については、Rel.15/16 NRにおいては、検討が進んでいない。これについて明確にしなければ、通信スループットの増大が抑制されるおそれがある。
 そこで、本発明者らは、レイヤ/ポート間の電力配分を適切に行うための方法を着想した。より具体的には、MIMOにおける空間多重を利用したチャネル/信号の送信において、レイヤ/ポート間の電力分配を可変とする方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示において、「A/B」は、「A及びBの少なくとも一方」を意味してもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。
 本開示において、パネル、ビーム、パネルグループ、ビームグループ、Uplink(UL)送信エンティティ、TRP、空間関係情報(SRI)、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(CW)、トランスポートブロック(TB)、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)、所定のリソース(例えば、所定の参照信号リソース)、所定のリソースセット(例えば、所定の参照信号リソースセット)、CORESETプール、PUCCHグループ(PUCCHリソースグループ)、空間関係グループ、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、QCLなどは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。また、本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 以下の実施形態の説明において、「空間関係情報(Spatial Relation Information(SRI))」、「PUSCHのための空間関係情報」、「空間関係」、「ULビーム」、「UEの送信ビーム」、「UL TCI」、「UL TCI状態」、「UL TCI状態の空間関係」、SRSリソースインディケーター(SRS Resource Indicator(SRI))、SRSリソース、プリコーダ、などは、互いに読み換えられてもよい。
 本開示において、レイヤ、ポート(アンテナポート)、SRSポート、DMRSポート、ストリームなどは、互いに読み替えられてもよい。例えば、レイヤ間の電力比は、ポート間の電力比で読み替えられてもよい。
 また、レイヤは、1つ以上のレイヤのグループ(レイヤグループ)、1つ以上の上記ポートのグループ(ポートグループ)などと互いに読み替えられてもよい。例えば、レイヤ1及び2がレイヤグループ1に属し、レイヤ3がレイヤグループ2に属するように扱われてもよい。
 なお、本開示の「レイヤi」(iは整数)は、レイヤi-1で読み替えられてもよいし、レイヤi+1で読み替えられてもよいし、その他のレイヤ番号で読み替えられてもよい(つまり任意のレイヤ番号で読み替えられてもよい)。
 本開示において、チャネルと信号とは互いに読み替えられてもよい。また、本開示において、チャネル/信号が空間多重されることは、チャネル/信号が同一の時間リソース及び周波数リソースにおいて送信されること、チャネル/信号が同一の時間リソース及び周波数リソースにおいて、異なるレイヤを用いて送信されること、などを意味してもよい。
 以下の実施形態の「PUSCH」は、他のULチャネル/UL信号(例えば、PUCCH、DMRS、SRS)で読み替えられてもよい。
 以下の実施形態の「PDSCH」は、他のDLチャネル/DL信号(例えば、PDCCH、DMRS、CSI-RS)で読み替えられてもよい。
 以下の実施形態の「電力」は、送信電力と互いに読み替えられてもよく、PUSCH送信電力、PDSCH送信電力などを意味してもよい。また、本開示において、電力は、プリコーディングベクトル/行列の絶対値、当該ベクトル/行列の特定の列(又は行)の全要素の2乗和、当該ベクトル/行列の全要素の2乗和などの少なくとも1つで読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 TBとレイヤとの間の対応関係(マッピング)が規定/設定されてもよい。TBとレイヤとの間のマッピングは、TB-レイヤ間マッピングと呼ばれてもよい。本開示の各実施形態において、TB、CWは互いに読み替えられてもよい。また、レイヤ、ポート、レイヤグループ、ポートグループ等は互いに読み替えられてもよい。
 当該マッピングは、複数のマッピング(又は、マッピングタイプ)に分類されてもよい。以下の説明では、マッピング1及びマッピング2を例に挙げるが、これに限られない。
 特定のレイヤ(例えば、1からN(Nは1以上の整数)までのレイヤ)が第1のTBにマッピングされ、当該特定のレイヤ以外のレイヤ(例えば、N+1以上のレイヤ/ポート)が第2のTBにマッピングされてもよい(マッピング1)。言い換えれば、特定のレイヤ(例えば、1からNまでのレイヤ)と第1のTBとが対応し、当該特定のレイヤ以外のレイヤ(例えば、N+1以上のレイヤ)と第2のTBとが対応してもよい。
 最大N個のレイヤが1つのTBにマッピングされてもよい(マッピング2)。言い換えれば、1つのTBが、最大N個のレイヤと対応してもよい。
 異なるTB間においてマッピング可能なレイヤ数は、特定の条件に基づいて、独立に決定されてもよい。
 当該特定の条件は、1つの送信機会あたりに多重可能なレイヤ数(の最大値)に基づく条件であってもよい。
 また、当該特定の条件は、TB/CWのサイズ(ペイロード/ビット数)に基づく条件であってもよい。例えば、最大4つのレイヤが多重可能であり、2つのCW(例えば、CW#A及びCW#B)を多重するとき、|size(CW♯A)-size(CW♯B)|≧X(Xは特定の値)、かつ、size(CW♯A)-size(CW♯B)>0を満たすならば、CW#Aに3レイヤが、CW#Bに1レイヤが、それぞれマッピングされてもよい。
 なお、以下に記載するTB-レイヤ間マッピングが例として考えられる:
 ・1つのTBとN個のレイヤが対応、合計Nレイヤ(1つのTBのみが送信される)。
 ・1つのTBとN個のレイヤが対応、合計M*Nレイヤ(M個のTBが(多重)送信され、各TBは、N個のレイヤにおいて空間ダイバーシチをとる)。
 ・1つのTBと1つのレイヤが対応、合計Mレイヤ(M個のTBが(多重)送信され、各TBは、空間ダイバーシチをとらない)。
 図3は、第1の実施形態に係る、CWとレイヤのマッピングの一例を示す図である。図3に示す例では、4つのCWが4つのレイヤを用いて送信され、1つのレイヤに対し、1つのCWが対応する。
 図4は、第1の実施形態に係る、CWとレイヤのマッピングの他の例を示す図である。図4に示す例では、2つのCWが4つのレイヤを用いて送信され、2つのレイヤに対し、1つのCWが対応する。
 図5は、第1の実施形態に係る、CWとレイヤのマッピングの他の例を示す図である。図5に示す例では、2つのCWが4つのレイヤを用いて送信され、1つのレイヤ(レイヤ#0)にコードワード#0が対応し、3つのレイヤ(レイヤ#1から#3)にコードワード#1が対応する。
 UEは、特定の条件に基づいてTB-レイヤ間マッピングを判断してもよい。
 当該特定の条件は、以下の少なくとも1つであってもよい:
 ・TBのサイズ。
 ・レイヤごとに送信されるDL/UL RSの受信電力(例えば、RSRP)/受信品質(例えば、RSRQ/SINR)。
 ・TBの重要度(優先度)を示すパラメータ。
 例えば、UEは、複数のTBのうち、サイズが相対的に大きいTBに、相対的に多い数のレイヤが対応すると判断してもよい。また、例えば、UEは、複数のTBのうち、優先度が相対的に高いTBに、相対的に多い数のレイヤが対応すると判断してもよい。
 UEは、判断/決定したTB-レイヤ間マッピングに関する情報を、ネットワーク(NW、例えば、基地局)に報告してもよい。当該フィードバックは、周期的に、又は、NWからの通知/トリガに応じて行われてもよい。
 これによれば、例えば、各レイヤにおける電力比のオーダーを、レイヤ番号のオーダーに合わせるなど、電力比とレイヤ間の関係をセミスタティックに固定/設定したうえでのTB-レイヤ間のマッピングが可変となり、TBの特徴に応じた電力比の柔軟な制御を、通知オーバヘッド増大を抑制しながら行うことができる。
 また、UEは、NWからTB-レイヤ間マッピングが設定/指示/通知されてもよい。当該設定/指示/通知は、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも1つで行われてもよい。
 例えば、UEは、DCIを用いて、TBごとのレイヤ数を通知/指示されてもよい。
 例えば、異なるレイヤを用いて送信される複数のTB(例えば、PUSCH)が、1つのDCIでスケジュール/アクティブ化される場合、TBごとのレイヤ数に関する情報が、当該1つのDCIに含まれてもよい。
 また、例えば、異なるレイヤを用いて送信される複数のTB(例えば、PUSCH)が、それぞれ異なるDCIでスケジュール/アクティブ化される場合、TBごとのレイヤ数に関する情報が、それぞれのDCIに含まれてもよいし、特定のDCIに含まれてもよい。当該特定のDCIは、UEが最後(最近)に受信したDCI、時間方向で最後(最近)に送信されたDCI、モニタリングオケージョンが最後(最近)のDCI、の少なくとも1つであってもよい。
 また、例えば、UEは、RRCシグナリング/MAC CEを用いてTB-レイヤ間マッピングに関する複数の情報(候補)を設定され、DCIを用いてその複数の情報からマッピングを指示されてもよい。
 以上第1の実施形態によれば、MIMOによる空間ダイバーシチ効果及び空間多重効果を、多重するTB/CWに応じて適切に利用できる。
<第2の実施形態>
 第2の実施形態は、トランスポートブロックのサイズ(Transport Block Size(TBS))に基づく電力制御に関する。
 第2の実施形態において、多重される送信チャネル/信号のTBSに基づいて、当該送信チャネル/信号の電力分配を可変としてもよい。UEは、多重される送信チャネル/信号のTBSに基づいて、当該送信チャネル/信号の電力分配を判断してもよい。
《実施形態2-1》
 実施形態2-1において、異なるTBの複数の送信チャネル/信号(例えば、PUSCH)間のTBSの比に基づいて、当該複数の送信チャネル/信号に対する電力分配が制御されてもよい。
 例えば、異なるTBSのX個(例えば、X=4)のPUSCHが空間多重されるとき、UEは、4つのPUSCH間のTBSの比に基づいて、PUSCHに対する電力分配比率を決定してもよい。
 実施形態2-1では以下に記載するステップ1から3にしたがって、電力分配が決定されてもよい。以下では、4つのPUSCH(PUSCH#0から#3)を例に説明するが、PUSCHの数はこれに限られず、また、送信されるチャネル/信号は任意のチャネル/信号であってもよい。
 空間多重する4つのPUSCH(PUSCH#0から#3)のそれぞれのTBS(TBS#0から#3)を決定/算出(ステップ1)。
 それぞれのPUSCHをレイヤにマッピング(ステップ2)。図6では、PUSCH#0から#3をそれぞれレイヤ#0から#3にマッピングする場合を示している。
 レイヤとポートとの対応付け(マッピング)の際に、各ポートにおける電力をPを、TBSの比に基づいて決定(ステップ3)。図6では、PUSCH#0から#3の送信電力をそれぞれPからPとする場合を示している。
 上記ステップ3におけるポートi(ここでは、i=0から3)に対応する電力Pは、以下の数式で算出されてもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、PTotalは、開ループ電力制御/閉ループ電力制御によって決定される送信電力であってもよい。
 また、レイヤとポートとの対応付け(マッピング)の際に、各ポートにおける電力Pについて、TBSの比に基づく電力が、上位レイヤシグナリングを用いて設定されてもよい(ステップ3´)。
 上述のマッピング1が適用される(マッピング1が想定される)場合、UEは、上記ステップ1から3(3´)に従って電力分配を制御してもよい。
 また、上述のマッピング2が適用される(マッピング2が想定される)場合、UEは、同一のTB/CWと対応するレイヤ/ポートが、1つのレイヤグループ/ポートグループであると判断してもよい。
 このとき、レイヤグループ/ポートグループ間の電力比の決定に、実施形態2-1に記載される電力分配比率の決定方法が適用されてもよい。1つのグループ内の複数のレイヤ/ポート間の電力比は等分であってもよいし、非等分であってもよい。UEは、例えば、1つのグループ内の各レイヤ/ポートのCSI情報に基づいて、等分/非等分な電力比(値)を決定してもよい。
 実施形態2-1によれば、電力比のシグナリングを適宜省略可能となり、UEに対するシグナリングオーバヘッドを削減することができる。
《実施形態2-2》
 実施形態2-2において、設定される(configured/pre-configured)電力分配比率と、異なるTBの複数の送信チャネル/信号(例えば、PUSCH)のそれぞれに割り当てられるTBSと、に基づいて、当該複数の送信チャネル/信号に対する電力分配が制御されてもよい。
 例えば、異なるTBSのX個(例えば、X=4)のPUSCHが空間多重されるとき、UEは、予め設定される電力分配比率に関する情報と、4つのPUSCHに割り当てられるTBSの大きさに基づいて、PUSCHに対する電力分配比率を決定してもよい。
 実施形態2-2では以下に記載するステップ1及び2にしたがって、電力分配が決定されてもよい。以下では、4つのPUSCH(PUSCH#0から#3)を例に説明するが、PUSCHの数はこれに限られず、また、送信されるチャネル/信号は任意のチャネル/信号であってもよい。
 空間多重する4つのPUSCH(PUSCH#0から#3)のそれぞれのTBS(TBS#0から#3)を決定/算出し、4つのPUSCHの順序付け(ordering/re-ordering)を行う(ステップ1)。
 TBSに基づく電力分配比率が設定されるように、PUSCHとポートとのマッピングを行う(ステップ2)。
 図7は、設定される電力分配比率の一例を示す図である。図7に示すように、各ポート(ポート#0から#3)に対応する電力比が、予めUEに設定される。本開示において、電力分配比率に関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング/MAC CE)用いてUEに設定/通知されてもよい。
 上記ステップ1において、UEは、4つのPUSCHのTBSの大きい(又は、小さい)順に順序付けを行う(例えば、大きい順に、PUSCH#2、PUSCH#1、PUSCH#3、PUSCH#0と順序付けが行われたとする)。
 上記ステップ2において、UEは、TBSの大きい(又は、小さい)PUSCHに対して、より高い電力分配比率が設定されるように、PUSCHとポートとのマッピングを行う。このとき、UEは、PUSCH#0とポート#3とが、PUSCH#1とポート#1とが、PUSCH#2とポート#0とが、PUSCH#3とポート#2とが、それぞれ対応すると決定してもよい(図8参照)。
 なお、上述のマッピング1が適用される(マッピング1が想定される)場合、UEは、上記ステップ1及び2に従って電力分配を制御してもよい。
 また、上述のマッピング2が適用される(マッピング2が想定される)場合、UEは、同一のTB/CWと対応するレイヤ/ポートが、1つのレイヤグループ/ポートグループであると判断してもよい。
 このとき、レイヤグループ/ポートグループ間の電力比の決定に、実施形態2-2に記載される電力分配比率の決定方法が適用されてもよい。1つのグループ内の複数のレイヤ/ポート間の電力比は等分であってもよいし、非等分であってもよい。UEは、例えば、1つのグループ内の各レイヤ/ポートのCSI情報に基づいて、等分/非等分な電力比(値)を決定してもよい。
 実施形態2-2によれば、電力比をより柔軟に制御することが可能になる。
 以上第2の実施形態によれば、TBSに基づく電力分配制御を行うことで、最適なカバレッジ補償を達成することができる。
<第3の実施形態>
 第3の実施形態は、上りリンク共有チャネル(例えば、UL-SCH/PUSCH)のペイロードサイズに基づく電力制御に関する。
 第3の実施形態において、上りリンク共有チャネルのペイロードサイズに基づいて、当該上りリンク共有チャネルの電力分配が決定されてもよい。
 上りリンク共有チャネルのペイロードサイズは、上位レイヤから設定/通知される、MAC-PDUのペイロードサイズであってもよい。UEは、上位レイヤから設定/通知される、MAC-PDUのペイロードサイズに基づいて、当該上りリンク共有チャネルの電力分配を判断してもよい。
《実施形態3-1》
 実施形態3-1において、複数の送信チャネル/信号(例えば、PUSCH)間のペイロードの比に基づいて、当該複数の送信チャネル/信号に対する電力分配が制御されてもよい。
 例えば、異なるTBSのX個(例えば、X=4)のPUSCHが空間多重されるとき、UEは、4つのPUSCH間のペイロードの比に基づいて、PUSCHに対する電力分配比率を決定してもよい。
 実施形態3-1では以下に記載するステップ1から3にしたがって、電力分配が決定されてもよい。以下では、4つのPUSCH(PUSCH#0から#3)を例に説明するが、PUSCHの数はこれに限られない。
 空間多重する4つのPUSCH(PUSCH#0から#3)のそれぞれのペイロード(ペイロード#0から#3)を決定/算出(ステップ1)。
 それぞれのPUSCHをレイヤにマッピング(ステップ2)。
 レイヤとポートとの対応付け(マッピング)の際に、各ポートにおける電力をPを、ペイロードの比に基づいて決定(ステップ3)。
 上記ステップ3における電力Pは、以下の数式で算出されてもよい。
Figure JPOXMLDOC01-appb-M000003
 上記ペイロードサイズ(payloadsize)は、例えば、レイヤ1に伝送される(delivered)1つのトランスポートブロックにおけるビット数(Aとも表される)(又は、当該トランスポートブロックのビット列のトータルのビット数)であってもよい。
 また、レイヤとポートとの対応付け(マッピング)の際に、各ポートにおける電力をPについて、ペイロードの比に基づく電力が、上位レイヤシグナリングを用いて設定されてもよい(ステップ3´)。
 なお、上述のマッピング1が適用される(マッピング1が想定される)場合、UEは、上記ステップ1から3(3´)に従って電力分配を制御してもよい。
 また、上述のマッピング2が適用される(マッピング2が想定される)場合、UEは、同一のTB/CWと対応するレイヤ/ポートが、1つのレイヤグループ/ポートグループであると判断してもよい。
 このとき、レイヤグループ/ポートグループ間の電力比の決定に、実施形態3-1に記載される電力分配比率の決定方法が適用されてもよい。1つのグループ内の複数のレイヤ/ポート間の電力比は等分であってもよいし、非等分であってもよい。UEは、例えば、1つのグループ内の各レイヤ/ポートのCSI情報に基づいて、等分/非等分な電力比(値)を決定してもよい。
 実施形態3-1によれば、電力比のシグナリングを適宜省略可能となり、UEに対するシグナリングオーバヘッドを削減することができる。
《実施形態3-2》
 実施形態3-2において、設定される(configured/pre-configured)電力分配比率と、複数の送信チャネル/信号(例えば、PUSCH)のそれぞれに割り当てられるペイロードと、に基づいて、当該複数の送信チャネル/信号に対する電力分配が制御されてもよい。
 例えば、異なるTBSのX個(例えば、X=4)のPUSCHが空間多重されるとき、UEは、予め設定される電力分配比率に関する情報と、4つのPUSCHに割り当てられるペイロードの大きさに基づいて、PUSCHに対する電力分配比率を決定してもよい。
 実施形態3-2では以下に記載するステップ1及び2にしたがって、電力分配が決定されてもよい。以下では、4つのPUSCH(PUSCH#0から#3)を例に説明するが、PUSCHの数はこれに限られず、また、送信されるチャネル/信号は任意のチャネル/信号であってもよい。
 空間多重する4つのPUSCH(PUSCH#0から#3)のそれぞれのペイロード(ペイロード#0から#3)を決定/算出し、4つのPUSCHの順序付け(ordering/re-ordering)を行う(ステップ1)。
 ペイロードに基づく電力分配比率が設定されるように、PUSCHとポートとのマッピングを行う(ステップ2)。
 図7を用いて、上記ステップ1及び2を説明する。
 上記ステップ1において、UEは、4つのPUSCHのペイロードの大きい(又は、小さい)順に順序付けを行う(例えば、大きい順に、PUSCH#2、PUSCH#1、PUSCH#3、PUSCH#0と順序付けが行われたとする)。
 上記ステップ2において、UEは、ペイロードの大きい(又は、小さい)PUSCHに対して、より高い電力分配比率が設定されるように、PUSCHとポートとのマッピングを行う。このとき、UEは、PUSCH#0とポート#3とが、PUSCH#1とポート#1とが、PUSCH#2とポート#0とが、PUSCH#3とポート#2とが、それぞれ対応すると決定してもよい。
 なお、上述のマッピング1が適用される(マッピング1が想定される)場合、UEは、上記ステップ1及び2に従って電力分配を制御してもよい。
 また、上述のマッピング2が適用される(マッピング2が想定される)場合、UEは、同一のTB/CWと対応するレイヤ/ポートが、1つのレイヤグループ/ポートグループであると判断してもよい。
 このとき、レイヤグループ/ポートグループ間の電力比の決定に、実施形態3-2に記載される電力分配比率の決定方法が適用されてもよい。1つのグループ内の複数のレイヤ/ポート間の電力比は等分であってもよいし、非等分であってもよい。UEは、例えば、1つのグループ内の各レイヤ/ポートのCSI情報に基づいて、等分/非等分な電力比(値)を決定してもよい。
 実施形態3-2によれば、電力比をより柔軟に制御することが可能になる。
 以上第3の実施形態によれば、ペイロードに基づく電力分配制御を行うことで、最適なカバレッジ補償を達成することができる。
<第4の実施形態>
 第4の実施形態は、送信チャネル/信号(の種別/コンテンツ)に基づく電力制御に関する。
《実施形態4-1》
 複数のレイヤを利用して異なる送信チャネル/信号が送信(又は、空間多重)される場合、送信チャネル/信号(の種別/コンテンツ)に基づいて、当該送信チャネル/信号の電力分配が決定されてもよい。
 図9は、レイヤ#0から#3にそれぞれULチャネル/UL信号#1-#4がマッピングされる場合の一例を示している。UEは、どの送信チャネル/信号を送信するかに基づいて、当該送信チャネル/信号の送信電力(例えば、P0からP3)又は電力分配を判断してもよい。
 当該送信チャネル/信号は、以下の種別/コンテンツの少なくとも1つであってもよい:
 ・PUSCHのみ。
 ・UCI(コンテンツとして、HARQ-ACK情報/SR/CSI報告)を含むPUSCH。
 ・PUCCH。
 ・物理サイドリンク共有チャネル(Physical Sidelink Shared Channel(PSSCH))。
 ・物理サイドリンク制御チャネル(Physical Sidelink Control Channel(PSCCH))。
 ・PRACH。
 ・SRS。
 本開示において、PUSCH、上りリンクデータチャネル、上りリンク共有チャネル、上りリンクデータ、などは互いに読み替えられてもよい。また、UCI、PUCCH、上りリンク制御情報は互いに読み替えられてもよい。
 送信チャネル/信号(の種別/コンテンツ)ごとに、優先度が規定されてもよい(実施形態4-1-1)。UEは、当該優先度に基づいて電力分配を制御してもよい。
 例えば、UEは、優先度の高い送信チャネル/信号(の種別/コンテンツ)の順に、大きい電力比を割り当ててもよい。
 例えば、優先度は、既存の(Rel.16までに規定される)優先度であってもよい。例えば、以下に記載する順に優先度が高く規定されてもよい:
 ・PCellにおけるPRACH送信。
 ・より高い(小さい)優先度インデックスのPUCCH又はPUSCH送信。
 ・同じ優先度インデックスのPUCCH及びPUSCH送信の場合、HARQ-ACK情報/SR/link recovery request(LRR)を含むPUCCH送信、又は、HARQ-ACK情報を含むPUSCH送信。
 ・同じ優先度インデックスのPUCCH及びPUSCH送信の場合、CSIを含むPUCCH送信、又は、CSIを含むPUSCH送信。
 ・同じ優先度インデックスのPUCCH及びPUSCH送信の場合、HARQ-ACK情報又はCSIを含まないPUSCH送信であって、ランダムアクセス手順(例えば、タイプ2ランダムアクセス手順)のためのPUSCH送信であり、PCellにおけるPUSCH送信。
 ・セミパーシステント/周期的SRSより高い優先度をもつ非周期的SRSのSRS送信、又は、PCell以外のサービングセルにおけるPRACH送信。
 また、MIMO多重(空間分割多重(SDM))用に、新たな各チャネル/信号の優先度が規定されてもよい。
 例えば、当該新たな優先度について、以下に記載する順に優先度が高く規定されてもよい:
 ・UCIが多重されるPUSCH送信。
 ・UCIが多重されないPUSCH送信。
 ・HARQ-ACK情報/SRを含むPUCCH送信。
 ・CSI報告のみを含むPUCCH送信。
 なお、本開示の各実施形態において記載されるチャネル/信号(の種類/コンテンツ)の優先度に関する順序はあくまで一例であり、記載される優先度内の任意のチャネル/信号(の種類/コンテンツ)を入れ替えた優先度の順序であってもよい。
 異なる種類の送信チャネル/信号が空間多重されてもよい。このとき、以下の実施形態4-1-2から4-1-4の少なくとも1つにしたがって、レイヤ間の電力比が決定されてもよい。
 PUSCHとPUCCHが空間多重されてもよい(実施形態4-1-2)。
 このとき、チャネル(の種別/コンテンツ)の優先度が以下の順に高く設定されてもよい:
 ・(少なくともHARQ-ACKを含む)UCIを含むPUSCH、
 ・PUSCH、
 ・少なくともHARQ-ACKを含むPUCCH、
 ・HARQ-ACKを含まないPUCCH。
 実施形態4-1-2において、各チャネル(の種別/コンテンツ)に、1つ以上のレイヤが対応してもよい。例えば、PUSCHに2つのレイヤが対応し、PUCCHに、PUSCHに対応するレイヤとは別の1つのレイヤが対応するような構成であってもよい。
 PUSCHとPSSCHが空間多重されてもよい(実施形態4-1-3)。
 実施形態4-1-3において、チャネル(の種別/コンテンツ)の優先度が以下の順に高く設定されてもよい(実施形態4-1-3-1):
 ・PUSCH、
 ・PSSCH。
 また、実施形態4-1-3において、特定の条件を満たす場合、PUSCH送信又はPSSCH送信の電力が、PUSCH送信/PSSCH送信に対し設定/指示される送信電力によらず、仕様で規定されてもよいし、上位レイヤシグナリング(RRCシグナリング/MAC CE)で設定されてもよい(実施形態4-1-3-2)。
 当該特定の条件は、例えば、PUSCH及びPSSCHの空間多重に対し用いるプリコーディングの設定の有無であってもよい。例えば、PUSCH及びPSSCHの空間多重に対し用いるプリコーディングが設定されない場合、UEは、PSSCHの電力比を特定の値(例えば、0)と決定してもよい。このとき、PUSCHの電力比は、1-(特定の値)となってもよい。
 実施形態4-1-3において、各チャネル(の種別/コンテンツ)に、1つ以上のレイヤが対応してもよい。例えば、PUSCHに2つのレイヤが対応し、PSSCHに、PUSCHに対応するレイヤとは別の1つのレイヤが対応するような構成であってもよい。
 PUSCHとPRACHが空間多重されてもよい(実施形態4-1-4)。
 実施形態4-1-4において、チャネル(の種別/コンテンツ)の優先度が以下の順に高く設定されてもよい(実施形態4-1-3-1):
 (PRACHがPDCCHでオーダーされる場合)
 ・PUSCH、
 ・PRACH。
 (そうでない場合)
 ・PRACH、
 ・PUSCH。
 また、実施形態4-1-4において、特定の条件を満たす場合、PUSCH送信又はPRACH送信の電力が、PUSCH送信/PRACH送信に対し設定/指示される送信電力によらず、仕様で規定されてもよいし、上位レイヤシグナリング(RRCシグナリング/MAC CE)で設定されてもよい(実施形態4-1-4-2)。
 当該特定の条件は、例えば、PUSCH及びPRACHの空間多重に対し用いるプリコーディングの設定の有無であってもよい。例えば、PUSCH及びPRACHの空間多重に対し用いるプリコーディングが設定されない場合、UEは、PUSCHの電力比を特定の値(例えば、0)と決定してもよい。このとき、PRACHの電力比は、1-(特定の値)となってもよい。
 また、当該特定の条件は、例えば、PRACHがSSBの受信に対応して設定されるか否かであってもよい。例えば、PRACHがSSBの受信に対応して設定される場合、UEは、PUSCHの電力比を特定の値(例えば、0)と決定してもよい。このとき、PRACHの電力比は、1-(特定の値)となってもよい。
 実施形態4-1-3において、各チャネル(の種別/コンテンツ)に、1つ以上のレイヤが対応してもよい。例えば、PUSCHに2つのレイヤが対応し、PSSCHに、PUSCHに対応するレイヤとは別の1つのレイヤが対応するような構成であってもよい。
 なお、上述のマッピング1が適用される(マッピング1が想定される)場合、UEは、上記実施形態4-1に従って電力分配を制御してもよい。
 また、上述のマッピング2が適用される(マッピング2が想定される)場合、UEは、同一のTB/CW/チャネル/信号(RS)/系列と対応するレイヤ/ポートが、1つのレイヤグループ/ポートグループであると判断してもよい。
 このとき、レイヤグループ/ポートグループ間の電力比の決定に、実施形態2-2/3-2に記載される電力分配比率の決定方法が適用されてもよい。1つのグループ内の複数のレイヤ/ポート間の電力比は等分であってもよいし、非等分であってもよい。UEは、例えば、1つのグループ内の各レイヤ/ポートのCSI情報に基づいて、等分/非等分な電力比(値)を決定してもよい。
[実施形態4-1の変形例]
 異なるチャネル/信号が空間多重されるとき、優先度の低い特定のチャネルの電力比が0に決定されてもよい。言い換えれば、異なるチャネル/信号が空間多重されるとき、優先度の低い特定のチャネルがドロップされてもよい。
 例えば、PUSCHとPRACHとが空間多重されるとき、UEは、PUSCHをドロップしてもよい(PUSCHの電力比を0にすると判断してもよい)。
 実施形態4-1によれば、送信されるチャネル/信号ごとに適切に電力分配を制御することができる。
《実施形態4-2》
 PUSCH以外のチャネル/信号が、複数のレイヤ/ポートを用いて空間多重されてもよい。
 例えば、複数のレイヤ/ポートにおいて、PUCCHが空間多重されてもよい。図10は、レイヤ#0から#3にそれぞれPUCCH#1-#4がマッピングされる場合の一例を示している。このとき、各レイヤにおける電力比の決定/制御は、上述の第1の実施形態から第3の実施形態の少なくとも1つにしたがって行われてもよい。
 また、各レイヤにおける電力比の決定/制御は、PUCCHに多重される(又は、PUCCHを利用して送信する)上りリンク制御情報に基づいて行われてもよい。例えば、PUCCH#1にHARQ-ACKがマッピングされ、PUCCH#2にCSIがマッピングされる(HARQ-ACKはマッピングされない)場合、PUCCH#1の送信電力がPUCCH#2の送信電力より高く設定されてもよい。なお、1つの上りリンク制御情報が、複数のレイヤにマッピングされてもよい。
 また、例えば、複数のレイヤ/ポートにおいて、PRACHが空間多重されてもよい。このとき、各レイヤにおける電力比の決定/制御は、上述の第1の実施形態から第3の実施形態の少なくとも1つにしたがって行われてもよい。
 実施形態4-2によれば、PUSCH以外のチャネル/信号の空間多重における電力分配を適切に行うことが可能になる。
<第5の実施形態>
 第5の実施形態は、制御情報に基づく電力制御に関する。
 第5の実施形態において、基地局から受信する制御情報(例えば、DCI)に基づいて、レイヤ/ポート間の電力分配(電力比)が決定されてもよい。UEは、DCI(に含まれる特定のフィールド)に基づいて、レイヤ/ポート間の電力分配(電力比)を判断してもよい。
《実施形態5-1》
 実施形態5-1において、UEに対し、UEがサポートするレイヤ数/ポート数に応じて各レイヤ/ポートにおける電力比が通知/指示されてもよい。UEは、UEがサポートするレイヤ数/ポート数に関するUE能力情報を、ネットワーク(NW、基地局)に報告してもよい。
 例えば、UEは、DCIに含まれる特定のフィールドに基づいて、レイヤ数/ポート数に応じて各レイヤ/ポートにおける電力比を決定してもよい。
 実施形態5-1において、レイヤ/ポートごとのCSIフィードバック/SRS受信品質に基づいて、各レイヤ/ポートにおける電力比が決定されてもよい。
 また、実施形態5-1において、UEによるレイヤ/ポートごとのCSIフィードバック/SRS送信(NWによるこれらの受信)から、第1の期間(例えば、xシンボル)後に、UEは、電力比を通知/指示する制御情報を受信してもよい。
 また、実施形態5-1において、UEが電力比を通知/指示する制御情報を受信してから、第2の期間(例えば、y1シンボル/スロット)以降のスロット/シンボルにおいて、UEは、当該制御情報で通知/指示される電力比が適用されてもよい。
 また、実施形態5-1において、UEが電力比を通知/指示する制御情報を受信してから、第3の期間(例えば、y2シンボル/スロット)以前のスロット/シンボルにおいて、UEは、当該制御情報で通知/指示される電力比が適用されてもよい。
《実施形態5-2》
 実施形態5-2において、UEに対し、上記実施形態2-2及び3-2に記載したような、電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる、複数のレイヤ/ポートに対応する電力比を、制御情報(DCI)(に含まれる特定のフィールド)で指示されてもよい。
 各電力比の値の粒度(例えば、0.1)が規定されてもよい。また、DCIに含まれる特定のフィールドの1つのコードポイントに対応する複数のレイヤ/ポートにおける各電力比の合計は、特定の値(例えば、1)であってもよい。
 図11は、実施形態5-2に係る電力分配に関する情報の一例を示す図である。図11に示すように、UEに対し、電力分配に関する情報として、レイヤ#0からレイヤ#3の電力比が複数設定される。UEは、DCIに含まれる特定のフィールド(のコードポイント)に基づいて、レイヤ#0からレイヤ#3に適用する電力比を決定する。図11に示す例において、DCIコードポイントが01を示す場合、UEは、各レイヤの電力比が0.25であると決定する。
 なお、図11に示すような本開示におけるDCIによる指示を例示する図面において、DCIコードポイントのビット数、レイヤ/ポート数、電力比の値、TB/CW数はあくまで一例であり、記載する例に限られない。
《実施形態5-3》
 実施形態5-3において、UEに対し、上記実施形態2-2及び3-2に記載したような、電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる複数の電力比の値のうち、特定の期間における電力比の値について、制御情報(例えば、DCI)を用いて通知/指示されてもよい。
 当該特定の期間は、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに通知/設定/指示されてもよいし、仕様で規定されてもよい。
 例えば、制御情報(DCI)の受信スロットをNとするとき、当該特定の期間は、N+a1スロットから、N+a2スロットまでの期間であってもよい。a1及びa2は、上位レイヤシグナリング/物理レイヤシグナリングでUEに設定/指示されてもよいし、仕様で規定されてもよい。
 また、制御情報(DCI)の受信スロットをNとするとき、当該特定の期間は、N+a3スロット以降の期間であってもよい。a3は、上位レイヤシグナリング/物理レイヤシグナリングでUEに設定/指示されてもよいし、仕様で規定されてもよい。
 また、当該特定の期間は、制御情報(DCI)の受信から、n回目(nは1以上の整数)のUL送信までの期間であってもよい。
 このように、適切な期間においてのみ電力比を設定することを可能にすることで、時間変動が想定される要素(例えば、チャネル品質)を考慮した設定が可能になる。
 また、実施形態5-3において、UEに対し、上記実施形態2-2及び3-2に記載したような、電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる1つ以上の電力比の値を、特定の値に変更することを、制御情報(例えば、DCI)を用いて通知/指示されてもよい。
 当該特定の値は、0であってもよい。このとき、UEは、制御情報(DCI)で0に変更するよう指示されるレイヤ/ポート以外のレイヤ/ポートにおける電力比の値を、それらの合計が1になるよう、同じ値ずつインクリメントしてもよい(増加させてもよい)。
 また、当該特定の値は、1であってもよい。このとき、UEは、制御情報(DCI)で1に変更するよう指示されるレイヤ/ポート以外のレイヤ/ポートにおける電力比の値を0に変更してもよい。
 UEに対し、上位レイヤシグナリング/制御情報(DCI)を用いて、当該特定の値に関する情報が設定/指示されてもよい。当該特定の値に関する情報は、当該特定の値が0又は1であることを示す情報であってもよい。
 このように、設定される複数の電力比の値を変更可能にすることで、瞬間的にチャネル品質の悪化したチャネルに対応するレイヤ/ポートが存在する場合、適切な電力制御を行うことが可能になる。
 図12A及び図12Bは、実施形態5-3に係る電力比の変更方法の一例を示す図である。図12A及び図12Bは、特定のレイヤの電力比を0に変更することをDCIを用いて指示する方法を示している。UEは、電力比を0に変更する1つのレイヤを、DCIを用いて指示されてもよい(図12A)。また、UEは、電力比を0に変更する1つ以上のレイヤを、DCIを用いて指示されてもよい(図12B)。
《実施形態5-4》
 実施形態5-4において、UEに対し、TB/CWごとの電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる、複数のTB/CWに対応する電力比を、制御情報(DCI)(に含まれる特定のフィールド)で指示されてもよい(実施形態5-4-1)。
 各電力比の値の粒度(例えば、0.1)が規定されてもよい。また、DCIに含まれる特定のフィールドの1つのコードポイントに対応する複数のTB/CWにおける各電力比の合計は、特定の値(例えば、1)であってもよい。
 実施形態5-4-1において、同じTB/CWに対応する複数のレイヤ/ポートの電力比は、上述した第2の実施形態から第5の実施形態の少なくとも1つにしたがって設定/制御されてもよい。例えば、本実施形態に記載されるように複数のTB/CWに対応する電力比が決定され、同じTB/CWに対応する複数のレイヤ/ポートの電力比が上記実施形態5-2又は5-3にしたがって決定されてもよい。また、例えば、本実施形態に記載されるように複数のTB/CWに対応する電力比が決定され、同じTB/CWに対応する複数のレイヤ/ポートの電力比が上記実施形態2-2にしたがって決定されてもよい。
 また、実施形態5-4において、UEに対し、TB/CWごとの電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる複数の電力比の値のうち、特定の期間における電力比の値について、制御情報(例えば、DCI)を用いて通知/指示されてもよい(実施形態5-4-2)。
 当該特定の期間は、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに通知/設定/指示されてもよいし、仕様で規定されてもよい。
 例えば、制御情報(DCI)の受信スロットをNとするとき、当該特定の期間は、N+a1スロットから、N+a2スロットまでの期間であってもよい。a1及びa2は、上位レイヤシグナリング/物理レイヤシグナリングでUEに設定/指示されてもよいし、仕様で規定されてもよい。
 また、制御情報(DCI)の受信スロットをNとするとき、当該特定の期間は、N+a3スロット以降の期間であってもよい。a3は、上位レイヤシグナリング/物理レイヤシグナリングでUEに設定/指示されてもよいし、仕様で規定されてもよい。
 また、当該特定の期間は、制御情報(DCI)の受信から、n回目(nは1以上の整数)のUL送信までの期間であってもよい。
 また、実施形態5-4において、UEに対し、TB/CWごとの電力分配に関する情報(電力比に関する情報)が、UEに予め設定されてもよい。UEは、設定される電力分配に関する情報に含まれる1つ以上の電力比の値を、特定の値に変更することを、制御情報(例えば、DCI)を用いて通知/指示されてもよい(実施形態5-4-3)。
 当該特定の値は、0であってもよい。このとき、UEは、制御情報(DCI)で0に変更するよう指示されるレイヤ/ポート以外のレイヤ/ポートにおける電力比の値を、それらの合計が1になるよう、同じ値ずつインクリメントしてもよい(増加させてもよい)。
 また、当該特定の値は、1であってもよい。このとき、UEは、制御情報(DCI)で1に変更するよう指示されるレイヤ/ポート以外のレイヤ/ポートにおける電力比の値を0に変更してもよい。
 UEに対し、上位レイヤシグナリング/制御情報(DCI)を用いて、当該特定の値に関する情報が設定/指示されてもよい。当該特定の値に関する情報は、当該特定の値が0又は1であることを示す情報であってもよい。
 実施形態5-4-2及び5-4-3において、同じTB/CWに対応する複数のレイヤ/ポートの電力比は、上述した第2の実施形態から第5の実施形態の少なくとも1つにしたがって設定/制御されてもよい。例えば、本実施形態に記載されるように複数のTB/CWに対応する電力比が決定され、同じTB/CWに対応する複数のレイヤ/ポートの電力比が上記実施形態5-2又は5-3にしたがって決定されてもよい。また、例えば、本実施形態に記載されるように複数のTB/CWに対応する電力比が決定され、同じTB/CWに対応する複数のレイヤ/ポートの電力比が上記実施形態2-2にしたがって決定されてもよい。
《実施形態5-5》
 実施形態5-5では、電力比に関する通知に用いるDCIのフィールドの例を説明する。
 UEは、1つのDCIフィールド(コードポイント)を用いて、複数のレイヤ/ポートに対応する電力比を決定してもよい(実施形態5-5-1)。
 当該DCIフィールド(コードポイント)と電力比との対応関係が、予め仕様で規定されてもよいし、上位レイヤシグナリングを用いてUEに対し通知されてもよい。
 図13Aは、実施形態5-5に係るDCIコードポイントと電力比との対応関係の一例を示す図である。図13Aに示すように、1つのDCIコードポイントに対し複数のレイヤの電力比(電力設定値)が対応するような対応関係が規定/設定される。UEは、この対応関係から、DCIで指示される1つのコードポイントに対応する電力比を決定する。
 また、UEは、複数のDCIフィールド(コードポイント)を用いて、複数のレイヤ/ポートに対応する電力比を決定してもよい(実施形態5-5-2)。
 当該DCIフィールド(コードポイント)と電力比との対応関係が、予め仕様で規定されてもよいし、上位レイヤシグナリングを用いてUEに対し通知されてもよい。
 UEは、レイヤ/ポート/TB/CWの数のDCIフィールド(コードポイント)を受信してもよい。
 図13Bは、実施形態5-5に係るDCIコードポイントと電力比との対応関係の他の例を示す図である。図13Bに示すように、特定のTBについて、1つのDCIコードポイントに対し複数のレイヤの電力比が対応するような対応関係が規定/設定される。UEは、この対応関係から、各TBについて、DCIで指示されるコードポイントに対応する電力比を決定する。
 なお、実施形態5-5において、チャネル/信号の優先度(例えば、第4の実施形態に記載される優先度)と、レイヤ/ポートのインデックスと、の関連付けが規定されてもよい。例えば、優先度が高いチャネル/信号が、小さい(又は、大きい)レイヤ/ポートのインデックスと対応する関連付けが規定されてもよい。これによれば、例えば、チャネルとレイヤの関連付けがなされることで、電力比を変更するDCIフィールドのビット数を削減することができる。
 以上第5の実施形態によれば、レイヤ/ポート/TB/CWに対応する電力分配を、制御情報を用いて適切かつ柔軟に制御することができる。
<その他>
 なお、上述の実施形態において、TBS/ペイロードの大きさに比例して電力分配比率を設定する例を示したが、TBS/ペイロードの大きさに反比例して電力分配比率を設定してもよい。
 上記各実施形態の少なくとも1つにおける電力分配比率について、上位レイヤシグナリング(RRC情報要素/MAC CE)/物理レイヤシグナリング(DCI)を用いて、レイヤ/ポート間電力比が設定/指示/通知されてもよい。
 上記各実施形態の少なくとも1つにおける電力分配比率について、プリコーディング行列においてレイヤ/ポート間電力比が決定されてもよい。このとき、レイヤ間の電力比が同じであってもよいし、異なっていてもよい。本開示において、電力比は、(プリコーディング行列における)振幅比と読み替えられてもよい。
 電力比について、SVDを用いるチャネル行列の特異値分解の結果、及び、注水定理の少なくとも一方にしたがって、各ポートにおける電力が決定されてもよい。注水定理は、上述の式1で表されてもよい。
 本開示の各実施形態における電力制御は、繰り返し送信(repetition)に適用されてもよい。UEは、複数の繰り返し送信を通して、同じ電力比を決定/適用してもよい。また、UEは、繰り返し送信ごと(1回の送信ごと)に独立して電力比を決定/適用してもよい。例えば、UEは、繰り返し送信ごと(1回の送信ごと)のレイヤ/ポート間電力比の候補を予め設定/通知され、当該繰り返し送信をトリガするDCIにおいて当該候補から1つの電力比を通知されてもよい。
 また、本開示における電力制御は、再送制御に適用されてもよい。UEは、チャネル/信号の再送時、初回送信/前回の再送と同じ電力比を決定/適用してもよい。また、UEは、再送信ごと(1回の送信ごと)に独立して電力比を決定/適用してもよい(例えば、特定レイヤのみの送信電力を、特定の値(例えば、1又は0)と決定してもよい)。
 なお、上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・レイヤ/ポート/TRPごとのPUSCHの電力制御をサポートするか否か、
 ・特定数(例えば、4)以上のレイヤ/ポート、及び、特定数(例えば、2)以上のCWの少なくとも一方を利用する空間多重をサポートするか否か、
 ・異なる複数のチャネル/信号の空間多重をサポートするか否か、
 ・PUSCH以外のチャネル/信号(例えば、PUCCH/PRACH)の空間多重をサポートするか否か。
 なお、上記特定のUE能力は、CBベースPUSCHのための能力であってもよいし、NCBベースPUSCHのため能力であってもよいし、これらを区別しない能力であってもよい。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、FR1、FR2)ごとの能力であってもよいし、サブキャリア間隔ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい(設定されない場合は、例えばRel.15/16の動作を適用する)。例えば、当該特定の情報は、レイヤ/ポート/TRPごとのPUSCHの電力を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。また、上述のどの実施形態/ケース/条件に基づいてPHRの制御を行うかについて、UEは上位レイヤパラメータを用いて設定されてもよい。
 本開示の「レイヤ」は、「TRP」、「RS(例えば、SRS、TCI状態に対応するリファレンスRS)」、「RSに対応するPUSCH送信」、「RSに対応するPDSCH送信/受信」、「PUSCH」、「PDSCH」、「1つ以上のRSに対応するPUSCH送信によって構成されるグループ(1つ以上のRSに対応するPUSCH送信を含むグループ)」、「1つ以上のRSに対応するPDSCH送信/受信によって構成されるグループ(1つ以上のRSに対応するPDSCH送信/受信を含むグループ)」などの少なくとも1つで読み替えられてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、複数の異なるトランスポートブロック(TB)のそれぞれに対応するレイヤ数のTBごとの判断と、前記複数のTBのそれぞれとレイヤとの対応付けの制御と、を行うための情報を端末に送信してもよい。送受信部120は、1以上のレイヤを用いて、同一の時間リソース及び周波数リソースにおいて送信される前記複数の異なるTBのそれぞれを受信してもよい(第1の実施形態)。
 送受信部120は、複数の上りリンク共有チャネルのトランスポートブロックサイズ及びペイロードサイズの少なくとも一方に基づく、前記複数の上りリンク共有チャネルに対して異なる電力比を適用する制御を行うための情報を、端末に送信してもよい。送受信部120は、前記異なる電力比が適用される前記複数の上りリンク共有チャネルの受信を行ってもよい(第2、第3の実施形態)。
 送受信部120は、複数のチャネルそれぞれに対応する優先度に基づく、前記複数のチャネルのそれぞれに対応する1つ以上のレイヤに対して異なる電力比を適用するための情報を、端末に送信してもよい。送受信部120は、前記異なる電力比が適用された、前記複数のチャネルを同一の時間リソース及び周波数リソースにおいて受信してもよい(第4の実施形態)。
 送受信部120は、複数レイヤに対して異なる電力比を適用するための情報を端末に送信してもよい。送受信部120は、前記情報に基づいて前記端末によって前記異なる電力比を適用して送信される前記複数レイヤの上りリンク制御チャネル及びランダムアクセスチャネルを受信してもよい(第4の実施形態)。
 送受信部120は、複数レイヤに対して異なる電力比を適用する制御を行うための、上位レイヤシグナリングを用いて通知する設定情報及び下りリンク制御情報を送信してもよい。送受信部120は、前記異なる電力比が適用された前記複数レイヤの上りリンク共有チャネルの受信を行ってもよい(第5の実施形態)。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーダの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーダが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 制御部210は、複数の異なるトランスポートブロック(TB)のそれぞれに対応するレイヤ数をTBごとに判断し、前記複数のTBのそれぞれとレイヤとの対応付けの制御を行ってもよい。送受信部220は、前記複数の異なるTBのそれぞれを、1以上のレイヤを用いて、同一の時間リソース及び周波数リソースにおいて送信してもよい(第1の実施形態)。
 制御部210は、前記複数のTBのそれぞれのサイズと、下りリンク参照信号及び上りリンク参照信号の少なくとも一方と、TBの優先度と、の少なくとも1つに基づいて、前記レイヤ数及び前記複数のTBのそれぞれに対応するレイヤを判断してもよい(第1の実施形態)。
 制御部210は、上位レイヤシグナリング及び下りリンク制御情報の少なくとも一方を用いて、前記複数の異なるTBのそれぞれに対応するレイヤ数を判断してもよい(第1の実施形態)。
 前記レイヤ数は、1つの送信機会について多重可能なレイヤ数の最大値であってもよい(第1の実施形態)。
 制御部210は、複数の上りリンク共有チャネルのトランスポートブロックサイズ及びペイロードサイズの少なくとも一方に基づいて、前記複数の上りリンク共有チャネルに対して異なる電力比を適用する制御を行ってもよい。送受信部220は、前記異なる電力比を適用して前記複数の上りリンク共有チャネルの送信を行ってもよい(第2、第3の実施形態)。
 制御部210は、前記複数の上りリンク共有チャネルのトランスポートブロックの比に基づいて、前記異なる電力比を決定してもよい(第2の実施形態)。
 制御部210は、Medium Access Control Protocol Data Unit(MAC-PDU)の前記複数の上りリンク共有チャネルのペイロードサイズの比に基づいて、前記異なる電力比を決定してもよい(第3の実施形態)。
 送受信部220は、前記異なる電力比に関する情報を上位レイヤシグナリングを用いて受信してもよい。制御部210は、前記異なる電力比に関する情報と、前記トランスポートブロックサイズ及び前記ペイロードサイズの少なくとも一方と、に基づいて、前記異なる電力比を適用する制御を行ってもよい(第2、第3の実施形態)。
 制御部210は、複数のチャネルそれぞれに対応する優先度に基づいて、前記複数のチャネルのそれぞれに対応する1つ以上のレイヤに対して、異なる電力比を適用する制御を行ってもよい。送受信部220は、前記異なる電力比を適用して、前記複数のチャネルを同一の時間リソース及び周波数リソースにおいて送信してもよい(第4の実施形態)。
 前記複数のチャネルは、物理上りリンク共有チャネル、物理上りリンク制御チャネル、物理サイドリンク共有チャネル、物理サイドリンク制御チャネル、物理ランダムアクセスチャネル、サウンディング参照信号、の少なくとも2つであってもよい(第4の実施形態)。
 Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)を含むチャネルは、HARQ-ACKを含まないチャネルより、前記優先度が高くてもよい(第4の実施形態)。
 制御部210は、前記異なる種類のチャネル及び信号の少なくとも一方のうち、優先度の低いチャネル及び信号の少なくとも一方に対応するレイヤにおける電力比が0であると判断してもよい(第4の実施形態)。
 制御部210は、複数レイヤに対して異なる電力比を適用する制御を行ってもよい。送受信部220は、前記異なる電力比を適用して前記複数レイヤの上りリンク制御チャネル及びランダムアクセスチャネルの少なくとも一方の送信を行ってもよい(第4の実施形態)。
 制御部210は、前記上りリンク制御チャネルに含まれる異なる上りリンク制御情報ごとに、複数のレイヤが対応すると判断してもよい(第4の実施形態)。
 前記複数レイヤの上りリンク制御チャネルを送信する場合、制御部210は、前記異なる電力比を、前記上りリンク制御チャネルに含まれるHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)情報を送信するレイヤに優先して決定してもよい(第4の実施形態)。
 制御部210は、上位レイヤシグナリングによって通知される設定情報及び下りリンク制御情報の少なくとも一方に基づいて、複数レイヤに対して異なる電力比を適用する制御を行ってもよい。送受信部220は、前記異なる電力比を適用して前記複数レイヤの上りリンク共有チャネルの送信を行ってもよい(第5の実施形態)。
 前記異なる電力比は、チャネル状態情報の報告及びサウンディング参照信号の受信品質の少なくとも一方に基づいてもよい(第5の実施形態)。
 制御部210は、前記下りリンク制御情報に基づいて、前記設定情報における特定のレイヤ及びTBの少なくとも1つの電力比を、特定の値に変更してもよい(第5の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定のチャネル/信号を送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  上位レイヤシグナリングによって通知される設定情報及び下りリンク制御情報の少なくとも一方に基づいて、複数レイヤに対して異なる電力比を適用する制御を行う制御部と、
     前記異なる電力比を適用して前記複数レイヤの上りリンク共有チャネルの送信を行う送信部と、を有する端末。
  2.  前記異なる電力比は、チャネル状態情報の報告及びサウンディング参照信号の受信品質の少なくとも一方に基づく、請求項1に記載の端末。
  3.  前記制御部は、前記下りリンク制御情報に基づいて、前記設定情報における特定のレイヤ及びTBの少なくとも1つの電力比を、特定の値に変更する、請求項1に記載の端末。
  4.  上位レイヤシグナリングによって通知される設定情報及び下りリンク制御情報の少なくとも一方に基づいて、複数レイヤに対して異なる電力比を適用する制御を行うステップと、
     前記異なる電力比を適用して前記複数レイヤの上りリンク共有チャネルの送信を行うステップと、を有する端末の無線通信方法。
  5.  複数レイヤに対して異なる電力比を適用する制御を行うための、上位レイヤシグナリングを用いて通知する設定情報及び下りリンク制御情報を送信する送信部と、
     前記異なる電力比が適用された前記複数レイヤの上りリンク共有チャネルの受信を行う受信部と、を有する基地局。
PCT/JP2021/024192 2021-06-25 2021-06-25 端末、無線通信方法及び基地局 WO2022269920A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024192 WO2022269920A1 (ja) 2021-06-25 2021-06-25 端末、無線通信方法及び基地局
EP21947202.4A EP4362343A1 (en) 2021-06-25 2021-06-25 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024192 WO2022269920A1 (ja) 2021-06-25 2021-06-25 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022269920A1 true WO2022269920A1 (ja) 2022-12-29

Family

ID=84544421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024192 WO2022269920A1 (ja) 2021-06-25 2021-06-25 端末、無線通信方法及び基地局

Country Status (2)

Country Link
EP (1) EP4362343A1 (ja)
WO (1) WO2022269920A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506494A (ja) * 2006-10-03 2010-02-25 インターデイジタル テクノロジー コーポレーション E−utra用の干渉緩和を伴う結合型開ループ/閉ループ(cqiベース)アップリンク送信電力制御
JP2010520711A (ja) * 2007-03-07 2010-06-10 インターデイジタル テクノロジー コーポレーション 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法
JP2013524584A (ja) * 2010-04-01 2013-06-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信システムにおけるアップリンクマルチアンテナ電力制御のためのシステムおよび方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506494A (ja) * 2006-10-03 2010-02-25 インターデイジタル テクノロジー コーポレーション E−utra用の干渉緩和を伴う結合型開ループ/閉ループ(cqiベース)アップリンク送信電力制御
JP2010520711A (ja) * 2007-03-07 2010-06-10 インターデイジタル テクノロジー コーポレーション 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法
JP2013524584A (ja) * 2010-04-01 2013-06-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信システムにおけるアップリンクマルチアンテナ電力制御のためのシステムおよび方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)

Also Published As

Publication number Publication date
EP4362343A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP7237994B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7244633B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022070361A1 (ja) 端末、無線通信方法及び基地局
WO2021064962A1 (ja) 端末及び無線通信方法
WO2022153395A1 (ja) 端末、無線通信方法及び基地局
WO2022029933A1 (ja) 端末、無線通信方法及び基地局
WO2023007670A1 (ja) 端末、無線通信方法及び基地局
WO2022070360A1 (ja) 端末、無線通信方法及び基地局
WO2023002611A1 (ja) 端末、無線通信方法及び基地局
JP7562651B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022029979A1 (ja) 端末、無線通信方法及び基地局
WO2023002609A1 (ja) 端末、無線通信方法及び基地局
WO2023281680A1 (ja) 端末、無線通信方法及び基地局
JP7480282B2 (ja) 端末、無線通信方法及びシステム
JP7562650B2 (ja) 端末、無線通信方法、基地局およびシステム
WO2022029934A1 (ja) 端末、無線通信方法及び基地局
WO2020194743A1 (ja) ユーザ端末及び無線通信方法
WO2022269920A1 (ja) 端末、無線通信方法及び基地局
WO2022269918A1 (ja) 端末、無線通信方法及び基地局
WO2022269919A1 (ja) 端末、無線通信方法及び基地局
WO2022269916A1 (ja) 端末、無線通信方法及び基地局
WO2022269917A1 (ja) 端末、無線通信方法及び基地局
WO2023002610A1 (ja) 端末、無線通信方法及び基地局
WO2022254547A1 (ja) 端末、無線通信方法及び基地局
WO2022254549A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947202

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947202

Country of ref document: EP

Effective date: 20240125

NENP Non-entry into the national phase

Ref country code: JP