KR101152586B1 - 연료 개질 장치 - Google Patents

연료 개질 장치 Download PDF

Info

Publication number
KR101152586B1
KR101152586B1 KR1020100019477A KR20100019477A KR101152586B1 KR 101152586 B1 KR101152586 B1 KR 101152586B1 KR 1020100019477 A KR1020100019477 A KR 1020100019477A KR 20100019477 A KR20100019477 A KR 20100019477A KR 101152586 B1 KR101152586 B1 KR 101152586B1
Authority
KR
South Korea
Prior art keywords
fuel
oxidation reaction
reaction unit
unit
oxidation
Prior art date
Application number
KR1020100019477A
Other languages
English (en)
Other versions
KR20110100459A (ko
Inventor
손인혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020100019477A priority Critical patent/KR101152586B1/ko
Priority to US12/939,993 priority patent/US8690976B2/en
Publication of KR20110100459A publication Critical patent/KR20110100459A/ko
Application granted granted Critical
Publication of KR101152586B1 publication Critical patent/KR101152586B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus

Abstract

내구성 및 성능을 향상시킬 수 있는 연료 개질 장치가 제공된다. 연료 개질 장치는 이중관 형태의 제1 산화반응부 및 제2 산화반응부와, 제1 및 제2 산화반응부들에서 생성되는 열에 의해 가열되는 개질반응부와, 제1 산화반응부 내부에 노즐부를 구비하며 장치 외부에서 제1 산화반응부로 제2 산화연료를 공급하는 연료공급부를 포함한다. 여기서, 제1 개구부로 유입된 제1 산화연료는 제1 산화반응부를 제1 방향으로, 제2 산화반응부를 제1 방향과 반대 방향인 제3 방향으로 유동한다. 노즐부는 제2 산화연료를 제1 방향과 교차하는 제2 방향으로 제1 산화반응부 내에 방출한다.

Description

연료 개질 장치{Fuel Reformer}
본 발명은 연료 프로세서에 관한 것으로, 보다 상세하게는, 내구성 및 성능을 향상시킬 수 있는 연료 개질 장치에 관한 것이다.
연료 개질 장치는 메탄올 등의 알코올류, 메탄, 부탄 등의 탄화수소류, 나프타, 액화천연가스 등의 화석 연료 등의 원료를 개질하여 수소가 풍부한 가스를 발생시키는 장치이다..
연료 개질 장치는 개질연료를 개질하여 리포메이트를 생성하는 개질반응부와 이 개질반응부의 개질반응에 필요한 열을 공급하는 열원부로 구성될 수 있다. 열원부는 버너 등을 사용하는 직접 가열 방식이나 산화촉매를 사용하는 산화촉매 방식 등으로 제조될 수 있다.
연료 개질 장치는 연료전지 시스템에 탑재되어 연료전지 스택에 리포메이트를 공급하도록 사용될 수 있다. 그 경우, 연료전지 시스템의 성능 및 효율은 연료전지 스택, 연료 개질 장치, 및 소위 BOP(Balance of plant)로 불리는 주변 장치 각각의 성능 및 효율에 따라 주로 결정되지만, 그것들은 시스템 내의 열, 물, 미반응 연료 등의 효율적인 처리에 의해서도 큰 차이를 가질 수 있다.
본 발명의 목적은 산화반응부의 배압 상승 억제와 완전 연소에 의해 내구성 및 효율을 향상시킬 수 있는 연료 개질 장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 친환경 그리고 고효율 연료전지 시스템에 적합한 연료 개질 장치를 제공하는 데 있다.
상기 기술적 과제를 해결하기 위하여 본 발명의 일 측면에 따르면, 제1a 단부, 제2a 단부, 및 제1a 단부에 제1 개구부를 구비하는 원통형 제1 산화반응부; 제1b 단부, 제2b 단부, 및 제1b 단부에 제2 개구부를 구비하며 제1 산화반응부를 이중관 형태로 둘러싸고 제2b 단부가 제2a 단부에 유체소통 가능하게 연결되는 제2 산화반응부; 제1 및 제2 산화반응부들에서 생성되는 열에 의해 가열되는 개질반응부; 및 제1 산화반응부 내부에 노즐부를 구비하며 장치 외부에서 제1 산화반응부로 제2 산화연료를 공급하는 연료공급부를 포함하는 연료 개질 장치가 제공된다. 여기서, 제1 개구부로 유입된 제1 산화연료는 제1 산화반응부를 제1 방향으로, 제2 산화반응부를 제1 방향과 반대 방향인 제3 방향으로 유동한다. 그리고, 노즐부는 연료공급부로 유입되는 제2 산화연료를 제1 방향과 교차하는 제2 방향으로 분사한다.
일 실시예에서, 노즐부는 한쪽 말단이 막힌 파이프 형태의 연료공급부의 일단부에 구비된다.
일 실시예에서, 노즐부는 파이프 형태의 노즐부 몸체에 방사상으로 배치된 복수의 노즐 구멍들을 구비한다.
일 실시예에서, 복수의 노즐 구멍들은 파이프 형태의 노즐부의 길이 방향에서 서로 일정 간격 이격된 복수의 열들로 배치된다.
일 실시예에서, 노즐부는 제1 산화반응부의 내벽 또는 제2a 단부로부터 일정 간격 이격되어 배치된다.
일 실시예에서, 제1 산화반응부는 셀 밀도가 400 내지 600 CPSI(cell per square inch)인 제1 메탈 모노리스를 구비한다.
일 실시예에서, 연료 개질 장치는 제1 메탈 모노리스에 도포된 산화촉매를 더 포함한다.
일 실시예에서, 제2 산화반응부는 셀 밀도가 제1 산화반응부의 셀 밀도의 약 1/3 내지 약 1/2인 제2 메탈 모노리스를 구비한다. 제2 메탈 모노리스의 셀 밀도는 100 내지 200 CPSI일 수 있다.
일 실시예에서, 제2 메탈 모노리스는 크롬계 스테인리스를 포함한다.
일 실시예에서, 제2 메탈 모노리스에 도포된 산화촉매를 더 포함한다.
일 실시예에서, 산화촉매는 Pd, Pt, Co3O4, PdO, Cr2O3, Mn2O3, CuO, Fe2O3, V2O3, NiO, MoO3, TiO2로 이루어진 그룹에서 선택되는 적어도 어느 하나를 포함한다.
일 실시예에서, 제2 메탈 모노리스는 서로 일정 간격 이격된 2단 형태의 제2a 및 제2b 메탈 모노리스들을 구비한다.
일 실시예에서, 제1 메탈 모노리는 제1 산화반응부 내에서 제1a 단부보다 제2a 단부에 인접하게 배치된다.
일 실시예에서, 연료 개질 장치는 제1 개구부와 제1 메탈 모노리스 사이에 연료분배부를 더 포함한다.
일 실시예에서, 연료분배부는 복수의 구멍들을 구비한 원판 형태로서, 제1 개구부로 유입된 제1 산화연료를 제1 산화반응부의 내벽에 인접한 제1 메탈 모노리스의 주변부로 분배한다.
일 실시예에서, 연료 개질 장치는 연료분배부와 제1 메탈 모노리스 사이에 화염방지부를 더 포함한다.
일 실시예에서, 화염방지부의 셀 밀도는 제1 메탈 모노리스의 셀 밀도와 실질적으로 동일하다.
일 실시예에서, 제2 산화연료는 연료전지 스택에서 방출되는 애노드 오프 가스(anode off gas)를 포함한다.
일 실시예에서, 애노드 오프 가스는 4 SLPM(standard liter per minute) 이하로 공급된다.
일 실시예에서, 개질반응부는 개질연료를 수증기 개질하는 수증기 개질반응부를 포함한다.
일 실시예에서, 개질반응부는 제1 및 제2 산화반응부들을 3중관 형태로 둘러싼다.
일 실시예에서, 연료 개질 장치는 제1 및 제2 산화반응부들 및 개질반응부를 4중관 형태로 둘러싸는 시프트반응부를 더 포함한다.
일 실시예에서, 연료 개질 장치는 제2a 단부에 일단이 연결되는 점화관; 및 점화관의 타단에 배치된 점화기를 더 포함한다.
본 발명에 따르면, 2차 연소 연료로서 애노드 오프 가스(AOG)를 사용하고, AOG의 산화 열을 이용하여 개질 연료를 효율적으로 개질함으로써, 연료 개질 장치의 효율을 약 90% 이상으로 향상시킬 수 있다.
또한, AOG의 노즐 구멍을 산화 연료의 흐름 방향에 대하여 대략 직교하는 방향 즉 횡 방향으로 배치함으로써 2차 연소부에서의 열점(hot spot) 발생을 크게 감소시킬 수 있다. 또한, 횡 방향의 복수의 노즐 구멍을 통해 1차 및 2차 연소부들 사이의 소정 체적(예컨대, 5×5×5π㎤)의 공간에 균일하게 분사함으로써 대량의 AOG(예컨대, 약 2~3 SLPM(standard liter per minite)의 수소 가스를 함유한 AOG)가 공급되는 경우에도 연소부의 열화를 크게 감소시켜 내구성을 향상시킬 수 있다.
또한, 2차 산화부에 대한 1차 산화 연료와 AOG의 공간속도가 일정 범위로 조절되도록 2차 산화부의 구조를 변경(예컨대, 메탈 모노리스의 셀 밀도를 조정)함으로써, 연소부의 배압 상승을 방지하여 AOG 및 산화 연료의 실질적인 완전 연소를 유도하고, 그에 의해 친환경 고효율 연료 개질 장치를 제공할 수 있다. 일정 범위는 예컨대 1차 산화부에 대한 1차 산화 연료의 공간속도(GHSV: gas hourly space velocity)보다 크거나 약 10,000hr- 1이상, 바람직하게는, 약 10,000hr-1 내지 약 22,000hr-1의 공간속도를 갖는 것이 좋다.
또한, 연료 개질 장치를 연료전지 시스템에 채용하는 경우, 연료전지 스택의 애노드 오프가스를 이용하여 연료 개질 장치의 효율과 시스템 효율을 모두 증대시킬 수 있고, 애노드 오프가스를 통해 산화연료를 완전 연소시킴으로써 연료 개질 장치의 배가스 내 미연 가스의 함량을 청정 수준으로 낮출 수 있다.
도 1은 본 발명의 일 실시예에 따른 연료 개질 장치의 개략적인 종단면도.
도 2a는 도 1의 연료 개질 장치에 채용된 노즐부의 개략적인 사시도.
도 2b는 도 2a의 노즐부의 횡단면도.
도 2c는 도 2a의 노즐부의 작동원리를 설명하기 위한 평면도.
도 3a은 본 발명의 다른 실시예에 따른 연료 개질 장치의 개략적인 종단면도.
도 3b은 본 발명의 다른 실시예에 따른 연료 개질 장치의 개략적인 종단면도.
도 4는 도 3의 연료 개질 장치의 Ⅳ-Ⅳ선에 의한 단면에 대응하는 횡단면도.
도 5는 도 1의 연료 개질 장치의 운전 시간 및 배압에 대한 그래프.
도 6은 도 1의 연료 개질 장치의 운전 시간 및 효율에 대한 그래프.
도 7은 비교예에 따른 연료 개질 장치의 운전 시간 및 배압에 대한 그래프.
도 8은 또 다른 비교예에 따른 연료 개질 장치의 운전 시간 및 배압에 대한 그래프.
도 9는 본 발명의 일 실시예에 따른 연료 개질 장치를 채용한 연료전지 시스템에 대한 개략적인 블록도.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 또한, 도면에서 동일하거나 유사한 요소들은 동일한 참조부호로 나타낸다. 도면에서 각 구성요소의 두께나 크기는 설명의 편의성 및 명확성을 위하여 과장될 수 있다.
도 1은 본 발명의 일 실시예에 따른 연료 개질 장치의 개략적인 단면도이다.
도 1을 참조하면, 연료 개질 장치(100)는 제1 산화반응부(10), 제2 산화반응부(20), 개질반응부(30), 연료공급부(42)의 일단부에 설치되는 노즐부(40), 및 점화관(50)을 통해 제1 산화반응부(10)에 연결되는 점화기(40)를 구비한다.
제1 산화반응부(10) 및 제2 산화반응부(20)는 제2 산화반응부(20)가 제1 산화반응부(10)를 둘러싸는 이중관 형태를 구비한다. 본 실시예에서 개질반응부(30)는 제1 및 제2 산화반응부들을 3중관 형태로 둘러싸도록 구현되지만, 그러한 형태로 한정되는 것이 아니다.
제1 산화반응부(10)와 제2 산화반응부(20)와의 사이에는 원통형 제1 격벽(2)이 배치되고, 제2 산화반응부(20)과 개질반응부(30)와의 사이에는 원통형 제2 격벽(4)이 배치되며, 개질반응부(30)의 외측에는 외벽(6)이 배치될 수 있다.
제1 산화반응부(10)는 원통형 제1 격벽(2)의 서로 마주하는 양단면에 위치하는 제1a 단부(1a)와 제2a 단부(2a)를 구비한다. 제1a 단부(1a)와 제2a 단부(2a)는 실질적으로 제1 격벽(2)에서 연장하는 벽에 의해 막혀 있다. 다만, 제1a 단부(1a)에는 제1 산화연료를 유입하기 위한 제1 개구부(3a)가 구비된다. 제2a 단부(2a)에는 제1 산화반응부(10)를 통과한 유체와 노즐부(40)에서 방출되는 제2 산화연료가 제2 산화반응부(20)로 유동하는 것을 허용하는 통로(5)가 구비된다. 통로(5)는 엄밀히 말해서 제2a 단부(2a)에 형성되거나 제2 단부(2a)에 인접한 제1 격벽(2)에 구비될 수 있다.
제2 산화반응부(20)는 제1 격벽(2)과 제2 격벽(4) 사이에 위치하며, 원통형 제2 격벽(4)의 서로 마주하는 양단면에 위치하는 제1b 단부(1b)와 제2b 단부(2b)를 구비한다. 제1b 단부(1b)와 제2b 단부(2b)는 실질적으로 제2 격벽(4)에서 연장하여 제1 격벽(2)의 제1a 단부(1a) 및 제2a 단부(2a)에 각각 연결되는 벽에 의해 막혀 있다. 다만, 제1b 단부(1b)에는 제2 산화반응부(20)를 통과한 유체를 배출하기 위한 제2 개구부(3b)가 구비된다. 제2 산화반응부(20)를 통과한 유체는 제1 산화연료와 제2 산화연료를 연소시킨 후에 발생하는 배가스이다.
개질반응부(30)는 제2 격벽(4)과 외벽(6) 사이에 위치하며, 원통형 외벽(6)의 서로 마주하는 양단면에 위치하는 제1c 단부 및 제2c 단부를 구비한다 제1c 단부와 제2c 단부는 실질적으로 외벽(6)에서 연장하여 제2 격벽(4)의 제1b 단부(1b) 및 제2b 단부(2b)에 각각 연결되는 벽에 의해 막혀 있다. 다만, 제1c 단부에는 개질연료의 유입을 위한 제3 개구부(7a)가 구비된다. 제2c 단부 또는 제2c 단부에 인접한 외벽(6)에는 개질반응부(30)를 통과한 유체가 배출되는 것을 허용하는 제4 개구부(7b)가 구비된다. 개질반응부(30)를 통과한 유체는 수소가 풍부한 리포메이트A이다.
전술한 제1 격벽(2), 제2 격벽(4), 외벽(6), 제1a 내지 1c 단부들, 및 제2a 내지 2c 단부들은 3중관 구조의 단일 하우징으로 구현될 수 있다.
연료공급부(42)는 제2 산화연료를 제1 산화반응부(10)로 공급하기 위한 구성부 또는 이 구성부를 포함하는 장치를 칭한다. 구성부는 배관을 포함할 수 있다.
제2 산화연료는 수소가스를 포함한다. 일 실시예에서 제2 산화연료로는 연료전지 시스템의 연료전지 스택(도 9의 500 참조, 도 9에서 연료 개질 장치는 참조부호 300에 대응함)에서 방출되는 애노드 유출물에 포함된 애노드 오프 가스(AOG, anode off gas)가 사용할 수 있다. 그 경우, 애노드 오프 가스를 연소시켜 발생하는 산화열을 개질 반응 등에 이용함으로써, 장치의 효율을 향상시킬 수 있다.
애노드 오프 가스(AOG)는 연료전지 시스템 내에서 전기를 발생시키는 장치인 스택에서 사용되고 남아 스택 외부로 방출되는 가스로서, 미사용 수소를 약 50% 정도 함유하고 있는 발화성 기체를 칭할 수 있다.
일 실시예에서 연료공급부(42)는 한쪽 말단이 막히고 다른 쪽 말단이 개방된 파이프 형태를 구비한다. 연료공급부(42)는 말단이 막힌 부분에 위치하는 노즐부(40), 및 말단이 개방된 부분에 위치하는 외부연결부(44)를 구비한다. 외부연결부(44)는 연료전지 스택의 애노드에 연결될 수 있다. 또한, 외부연결부(44)와 연료전지 스택의 애노드 아웃렛 사이에는 애노드 유출물에서 수분을 제거하기 위한 열교환기가 설치될 수 있다.
노즐부(40)는 제1 산화반응부(10)의 내벽과 제2a 단부(2a)에서 일정 간격 이격되어 설치된다. 그 이유는 노즐부(40)에서 방출되는 제2 산화연료가 제1 산화반응부(10)를 통과하여 제2 산화반응부(20) 측으로 유동하는 유체에 잘 섞이면서 연소되기 시작하도록 하기 위한 것이다. 노즐부(40)에 대하여는 아래에서 좀더 상세히 설명될 것이다.
점화관(50)은 점화기(40)를 제1 산화반응부(10)의 제2a 단부(2a)에 연결하기 위한 구성부이다. 점화기(40)는 장치의 기동시 제1 산화반응부(10)에 공급된 제1 산화연료를 점화시키는 구성부 또는 이 구성부를 포함하는 장치를 칭한다.
일 실시예에서 점화관(50)은 굴곡된 파이프 형태를 구비할 수 있다. 점화관(50)이 굴곡된 파이프 형태를 구비하면, 예컨대 장치가 직립식으로 세워졌을 때, 제1a 단부(1a) 측에서 제2a 단부(2a) 측으로 떨어져 제2a 단부(2a) 부근에 쌓이는 박리 가루에 의해 점화기(40)가 덮이거나 점화기(40)의 작동 불량을 방지할 수 있다. 또한, 장치의 작동 정지시 장치 내부에 수분이 응축하는 경우, 제2a 단부(2a) 측으로 흘러내리는 물에 의해 점화기(40)가 잠기는 것을 방지하여 점화기(40)의 작동 불량을 방지할 수 있다.
본 실시예에서는 제1 산화반응부(10)와 제2 산화반응부(20)를 장치의 안쪽에 배치하고 그 바깥쪽에 개질반응부(30)를 배치함으로써 장치의 중심으로부터 밖으로 향하여 열이 낮아지는 형태의 열 구배를 형성한다. 이러한 이중 산화 구조에 따르면, 제2 산화반응부(20)에서 산화되는 가스의 흐름에 의해 제1 산화반응부(10)의 산화 온도를 실질적으로 균일하게 유지함으로써 제1 산화반응부(10)에서 원하지 않는 큰 열점(hot spot)이 발생하는 것을 방지할 수 있다.
이하, 본 실시예에 따른 연료 개질 장치(100)의 작동과정을 설명한다.
제1 산화연료는 제1 개구부(3a)를 통해 제1 산화반응부(10)로 공급되고, 점화기(60)에 의해 점화된 후 제1 산화반응부(10)를 통과하면서 산화촉매(12)에 의해 대부분 산화되며 열을 발생시킨다. 제1 산화반응부(10)에서 나오는 산화된 배가스와 산화되지 않은 일부 제1 산화연료는 통로(5) 측으로 즉 제1 방향(D1)으로 유동한다.
산화촉매(12)는 광의적으로 금속성 벌집형 지지체나 세라믹 벌집형 지지체와 이 지지체에 결합된 활성물질로 구성될 수 있다. 활성물질은 플라티늄, 백금, 또는 다른 귀금속을 포함할 수 있으며, 지지체는 메탈 모노리스로 언급될 수 있다.
제1 산화연료로는 메탄올 등의 알코올류, 메탄, 부탄 등의 탄화수소류, 나프타, 액화천연가스 등의 화석 연료, 바이오매스, 매립지 가스 등이 단독 또는 조합으로 사용될 수 있다.
제2 산화연료는 연료공급부(42)의 노즐부(40)를 통해 제1 산화반응부(10)로 공급된다. 이때, 제2 산화연료는 제1 산화연료가 유동하는 제1 방향(D1)과 교차하는 제2 방향(D2)으로 방출되며, 제1 방향(D1)으로 유동하던 유체와 혼합된다. 제2 산화연료는 본 실시예의 연료 개질 장치가 탑재된 연료전지 시스템의 경우, 연료전지 스택의 애노드에서 방출되는 애노드 오프 가스인 것이 바람직하다.
제1 산화반응부(10)를 통과한 유체와 제2 산화연료는 통로(5)를 통해 제2 산화반응부(20)로 이동하고, 제2 산화반응부(20)를 거치면서 산화된다. 제2 산화반응부(20)를 통과한 가스는 배가스로서 제2 개구부(3b)를 통해 외부로 배출된다.
개질연료는 제3 개구부(7a)를 통해 개질반응부(30)로 공급되고, 개질반응부(30)에서 제1 산화연료와 제2 산화연료의 연소시 발생하는 열에 의해 개질된다. 일 실시예에서 개질연료는 개질반응부(30)에서 수증기 개질되어 풍부한 수소를 함유한 리포메이트A로 전환될 수 있다. 리포메이트A는 제4 개구부(7b)를 통해 외부로 방출된다. 리포메이트A는 연료전지 스택의 애노드 인렛으로 공급될 수 있다.
본 실시예에 따르면, 애노드 오프 가스를 산화반응부 내에 적절히 공급하여 산화시키고, 이 산화 열을 연료 개질 장치에서 이용함으로써 시스템 전반의 효율을 향상시킬 수 있다. 또한, 제2 산화반응부에서 애노드 오프 가스를 산화시켜 제1 산화연료의 배가스에 함유된 미연 가스를 재차 연소시킴으로써 연료 개질 장치의 배가스에 함유된 미연 가스의 농도를 낮출 수 있다.
도 2a는 도 1의 연료 개질 장치에 채용된 노즐부의 개략적인 사시도이고, 도 2b는 도 2a의 노즐부의 횡단면도이다. 도 2c는 도 2a의 노즐부의 작동원리를 설명하기 위한 평면도이다.
도 2a 및 도 2b를 참조하면, 노즐부(40)는 연료공급부의 일단부에 위치하며 말단(43)이 폐쇄된 파이프 형태를 구비한다. 노즐부(40)는 파이프 형태의 노즐부 몸체(41)와, 이 몸체(41)에 복수의 노즐 구멍들을 구비할 수 있다.
복수의 노즐 구멍들은 파이프 형태의 몸체(41)의 길이 방향에서 서로 일정 간격 이격된 복수의 열들로 배치될 수 있다. 본 실시예에서 복수의 노즐 구멍들은 제1 열의 노즐 구멍들(45a)과 제1 열의 노즐 구멍들(45a)로부터 일정 간격(45c) 이격된 제2 열의 노즐 구멍들(45b)로 구현되어 있다.
또한, 각 열의 노즐 구멍들(45a; 45b)은 파이프 형태의 노즐부 몸체(41)에 방사상으로 배치될 수 있다. 각 노즐 구멍의 직경은 예컨대 노즐부(40)의 파이프 내경이 1/4인치일 때, 약 3㎜로 구현될 수 있다.
전술한 노즐부(40)의 구성에 의하면, 몸체(41) 내부(47)로 전달된 제2 산화연료는 복수의 노즐 구멍들(45a, 45b)을 통해 제1 산화반응부(10) 내부로 균일하게 방출될 수 있다. 더욱이, 제2 산화연료는 제1 산화반응부(10)를 통과하여 제1 방향(x방향)으로 유동하는 유체에 대하여 제1 방향과 대략 직교하는 제2 방향(y방향)으로 공급되므로 상기 유체와 잘 혼합되면서 상기 유체와 함께 제2 산화반응부(20)으로 유동하여 산화될 수 있다.
여기서, 제1 방향(D1)은 파이프 형태의 노즐부(40)에 있어서 대략적으로 노즐부(40)의 길이 방향과 나란한 방향 예컨대 도 2c에 도시한 바와 같이 지면 밖에서 지면 속으로 진행하는 방향이 되고, 제2 방향(D2)은 제1 산화반응부의 내벽(11)의 중심부에 위치한 노즐부(40)에서 내벽(11)을 향하여 방사상으로 진행하는 방향이 될 수 있다.
도 3a 및 도 3b는 본 발명의 또 다른 실시예에 따른 연료 개질 장치의 개략적인 횡단면도이다. 도 4는 도 3a의 연료 개질 장치의 Ⅳ-Ⅳ선에 의한 단면에 대응하는 종단면도이다.
도 3a 및 도 4를 참조하면, 연료 개질 장치(100a)는 제1 산화반응부(10), 제2 산화반응부(20a, 20b), 개질반응부(30), 노즐부(40), 점화관(50), 점화기(60), 연료분배부(70), 화염방지부(80), 시프트반응부(90), 및 예열부(95)를 구비한다.
본 실시예의 연료 개질 장치(100a)는 제2 산화반응부(20a, 20b)가 서로 일정 간격 이격된 2단 형태의 제2a 산화반응부(20a)와 제2b 산화반응부(20b)로 구현되는 것과, 제1 산화반응부(10) 내에 연료분배부(70)와 화염방지부(80)가 구비되는 것과, 개질반응부(30)를 동심관 형태로 둘러싸는 시프트반응부(90)가 구비되는 것과, 시프트반응부(90)를 코일 형태로 둘러싸는 예열부(95)가 구비되는 것을 제외하고 도 1 내지 도 2c를 참조하여 앞서 설명한 연료 개질 장치(100)와 실질적으로 동일한다.
제1 산화반응부(10)는 약 400 내지 약 600 CPSI(cell per square inch)의 셀 밀도를 가진 제1 메탈 모노리스(14)를 구비할 수 있다. 제1 메탈 모노리스(14)에는 제1 산화촉매가 도포될 수 있다. 제1 산화촉매가 코팅된 제1 메탈 모노리스(14)는 원통형 제1 격벽(2)과 제1a 단부 및 제2a 단부로 형성되는 공간 내에서 제1 개구부(3a)보다 통로(5)에 인접하게 배치될 수 있다.
제2a 산화반응부(20a)와 제2b 산화반응부(20b)는 원통형 제1 격벽(2)와 제2 격벽(4) 사이에 일정 간격(20c) 이격된 2단 형태로 배치된다. 제2a 및 제2b 산화반응부들(20a, 20b)은 약 100 내지 약 200 CPSI의 셀 밀도를 가진 제2a 메탈 모노리스(24) 및 제2b 메탈 모노리스를 구비할 수 있다. 제2b 메탈 모노리스는 제2a 메탈 모노리스(24)와 실질적으로 동일하다.
제2a 및 제2b 메탈 모노리스들은 수소 가스를 포함하는 제2 산화연료의 연소시 발생하는 고열에 대하여 적절한 내구성을 갖도록 용융점이 높은 금속, 합금, 또는 복합 재료 등으로 구현될 수 있다. 예를 들면, 제2a 및 제2b 메탈 모노리스들 각각은 크롬계 스테인리스(Fe-Cr계)로 구현될 수 있다. 또한, 제2a 및 제2b 메탈 모노리스들은 구성 금속 또는 합금 자체로서 산화촉매능을 구비할 수 있다.
제2a 및 제2b 메탈 모노리스들 각각에는 제2 산화촉매가 코팅될 수 있다. 제2 산화촉매 또는 제1 산화촉매로는 Pd, Pt, Co3O4, PdO, Cr2O3, Mn2O3, CuO, Fe2O3, V2O3, NiO, MoO3, TiO2로 이루어진 그룹에서 선택되는 적어도 어느 하나가 사용될 수 있다.
연료분배부(70)는 제1 산화반응부(10)의 제1 메탈 모노리스(14)와 제1 개구부(3a)와의 사이에 설치된다. 연료분배부(70)는 원판 형태로서 원판 형태의 몸체 가장자리를 두께 방향으로 관통하는 복수의 홀들을 구비할 수 있다. 그 경우, 제1 산화연료는 연료분배부(70)에 의해 제1 산화반응부의 내벽에 인접한 주변부로 분배 공급된다. 이러한 연료분배부(70)의 구성에 의하면, 제1 산화연료의 연소가 중심부에 비해 상대적으로 반응온도가 낮은 제1 메탈 모노리스(14)의 주변부 또는 외곽에서 진행되므로 제1 산화반응부(10)의 작동 온도가 더욱 균일하게 형성될 수 있다.
연료분배부(70)의 재질은 제1 산화반응부(10)의 작동 온도에 대하여 내구성을 갖는 금속, 합금 또는 복합 재료 등이 사용가능하다. 제1 산화반응부(10)의 작동 온도는 제1 산화연료의 종류에 따라 다르게 설정될 수 있다.
화염방지부(80)는 제1 산화반응부(10)의 제1 메탈 모노리스(도 4의 14 참조)와 연료분배부(70) 사이에 설치된다. 화염방지부(80)는 제1 산화촉매가 코팅된 제1 메탈 모노리스에서 산화 반응이 가장 활발한 상류측에서 열점이 발생하여 제1 개구부(3a)에까지 역류하는 것을 방지한다. 여기서, 제1 메탈 모노리스의 상류측은 연료분배부(70)에 인접한 부분을 가리킨다.
화염방지부(80)는 원통형 다공성 부재 또는 메탈 모노리스로 구현될 수 있다. 화염방지부(80)는 제1 메탈 모노리스와 동일한 셀 밀도를 구비할 수 있다. 예컨대, 화염방지부(80)는 약 400 내지 약 600 CPSI의 메탈 모노리스로 구현될 수 있다.
시프트반응부(90)는 제3 격벽(6a)에 설치된 통로(9a)를 통해 개질반응부(30)로부터 유입되는 리포메이트A를 수성가스 시프트 반응을 시켜 리포메이트A 내의 일산화탄소 함량을 감소시킨다. 여기서, 제3 격벽(6a)은 개질반응부(30)의 작동 온도에 비해 상당히 낮은 시프트반응부(90)의 작동 온도를 고려하여 다른 격벽들(2, 4)보다 두껍게 형성될 수 있다. 시프트반응부(90)를 통과하며 일산화탄소가 저감된 리포메이트B는 제5 개구부(9b)를 통해 외부로 방출된다.
시프트반응부(90)는 시프트촉매(92)를 구비한다. 시프트촉매는 담체 또는 지지체와 이 담체 또는 지지체에 담지되는 활성물질을 구비할 수 있다. 시프트촉매로는 Cu-Zn 촉매가 사용될 수 있다. 또한, 시프트반응부(90)는 약 300~500℃의 작동 온도 범위를 갖는 고온 WGS(water gas shift) 반응부와 약 150~250℃의 작동 온도 범위를 갖는 저온 WGS 반응부로 구현될 수 있다.
예열부(95)는 원통형의 시프트반응부(90)의 외벽(8)을 코일 형태로 둘러싸며, 액상 또는 기상의 유체가 유동하도록 허용하는 나선형 배관을 포함할 수 있다. 예열부(95)를 통과하는 유체는 제1 및 제2 산화반응부의 연소 열에 의해 예열된다. 유체는 개질연료와 함께 개질반응부(30)로 공급되는 수증기이거나 제1 산화연료와 함께 제1 산화반응부(10)로 공급되는 공기일 수 있다.
한편, 또 다른 실시예로서 상술한 제3 격벽(6a)는 열전도율의 조절 등의 목적을 위하여 [도 3b]에 도시된 것과 같이 이중 벽으로 형성될 수 있다.
본 실시예에 따른 연료 개질 장치(100a)의 작동과정을 설명한다.
제1 산화연료는 제1 개구부(3a)를 통해 제1 산화반응부(10)로 공급되고, 점화기(60)에 의해 점화된 후 제1 산화촉매가 코팅된 제1 메탈 모노리스(14)를 통과하면서 대부분 산화되며 열을 발생시킨다. 제1 산화반응부(10)에서 나오는 산화된 배가스와 산화되지 않은 일부 제1 산화연료는 통로(5) 측으로 유동한다.
제2 산화연료는 연료공급부(42)의 노즐부(40)를 통해 제1 산화반응부(10)로 공급된다. 이때, 제2 산화연료는 제1 산화연료가 유동하는 제1 방향과 교차하는 제2 방향으로 방출된다.
제1 산화반응부(10)를 통과한 유체와 제2 산화연료는 통로(5)를 통해 제2 산화반응부(20a, 20b)로 이동하고, 제2 산화반응부(20a, 20b)를 거치면서 산화된다. 이때, 제1 산화반응부(10)를 통과한 유체와 제2 산화연료는 제2 산화반응부(20a, 20b)에 설치된 제2 메탈 모노리스를 통과하게 되는데, 본 실시예에서 제2 메탈 모노리스가 제1 메탈 모노리스보다 낮은 셀 밀도를 가지므로 제1 산화반응부(10) 내의 배압은 거의 일정하게 유지되고, 개질반응부(30) 내의 배압도 거의 일정하게 유지될 수 있다. 이것은 제2 산화연료로서 수소가스를 다량 함유한 애노드 오프 가스를 사용하는데 있어서 노즐부(40)의 구조와 제2 메탈 모노리스의 구조를 특정함으로써 장치의 효율을 향상시키면서 만족할만한 내구성을 얻을 수 있음을 나타낸다. 제2 산화반응부(20)를 통과한 가스는 배가스로서 제2 개구부(3b)를 통해 외부로 배출된다.
개질연료는 제3 개구부(7a)를 통해 개질반응부(30)로 공급되고, 개질반응부(30)에서 제1 산화연료와 제2 산화연료의 연소시 발생하는 열에 의해 개질된다. 즉, 개질연료는 개질반응부(30)에서 개질되어 풍부한 수소를 함유한 리포메이트A로 전환된다.
리포메이트A는 통로(9a)를 통해 시프트반응부(90)로 이동하고, 시프트반응부(90)를 통과하면서 수성가스 시프트 반응과정을 거친다. 리포메이트A는 시프트반응부(90)를 통과한 후 일산화탄소가 저감된 리포메이트B가 된다. 리포메이트B는 제5 개구부(9b)를 통해 외부로 방출된다. 리포메이트B는 연료전지 스택의 애노드 인렛으로 공급될 수 있다. 또 다른 실시예에서, 리포메이트B는 필요에 따라 리포메이트B에 함유된 일산화탄소를 10ppm 이하로 감소시키기 위하여 선택적 산화 반응을 수행하는 PROX(preferential oxidation) 반응부를 경유하여 연료전지 스택에 공급될 수 있다.
본 실시예에 따르면, 연료 개질 장치 내의 배압이 증가하지 않도록 하면서 시스템 자체에서 AOG를 연소함으로 인하여 연료전지 시스템의 효율 증대 및 폭발 위험성 가스인 수소의 발생을 근본적으로 차단하는 두 가지 효과를 기대할 수 있다. 또한, 제2 산화반응부에서 애노드 오프 가스를 효율적으로 산화시키면서 제1 산화연료의 배가스에 함유된 미연 가스를 재차 연소시킴으로써 연료 개질 장치의 배가스에 함유된 미연 가스의 농도를 0.3% 이하의 수소 가스, 및 0.1% 이하의 일산화탄소로 관리할 수 있다.
도 5는 도 1의 연료 개질 장치의 운전 시간 및 배압에 대한 그래프이다. 도 6은 도 1의 연료 개질 장치의 운전 시간 및 효율에 대한 그래프이다.
본 실시예에서는 가스 분석기로 리포메이트B의 특성을 분석하면서 연료전지 시스템의 기동 구간, 정상 상태 구간, 배터리 완충 구간, 및 작동 종료 구간에서의 연료 개질 장치의 운전 시간에 대한 배압을 측정하였다.
기동 시간은 15분이며 개질 가스 내 CO는 20ppm 미만으로 유지하였다. 다만, 기동시에는 잠시 약 30ppm 까지 상승하였다.
도 5에 도시한 바와 같이, 약 2 SLPM(standard liter per minute)의 수소 가스를 포함한 AOG로 10시간 운전시 연료 개질 장치의 산화기(Burner, 2중 구조의 산화반응부에 상응함)의 배압(ΔP)은 약 5㎪ 내지 약 6㎪ 범위의 저압을 유지하였다. 또한, 연료 개질 장치의 개질반응부의 인렛(reformer inlet, 제3 개구부(7a)에 대응함)에서의 배압도 약 21kPa 근처에서 안정적으로 유지되었다.
도 6에 도시한 바와 같이, 약 2 SLPM(standard liter per minute)의 수소 가스를 포함한 AOG로 10시간 운전시 연료 개질 장치의 효율(Reformer efficiency)은 발전효율(LHV, lower heating value) 기준으로 약 90%를 조금 상회하는 수준을 나타내었다. 또한, 배가스에 포함된 수소 가스도 약 0.045% 정도의 농도를 나타내었다.
특히, 본 실시예에서 연료 개질 장치의 효율은 AOG 연료를 사용함에 따라 90% 이상을 안정적으로 유지할 수 있었다. 배가스 내 미연가스 또한 정상상태에서 일산화탄소 2ppm 미만, 수소가스 0.06% 미만을 발생시켜 친환경적 연료 개질 장치의 기준에 부합되었다.
이와 같이, 본 실시예에 따르면, 다량의 수소 가스를 함유한 AOG를 사용하는 연료 개질 장치 및 이를 채용한 연료전지 시스템에 있어서, 운전 전 영역에서 개질 가스 특성의 안정성을 확인할 수 있다.
한편, 본 실시예에 따른 노즐부 구조를 채용하지 않거나, 제2 산화반응부 구조를 채용하지 않는 경우, 전술한 효과를 얻을 수 없었다.
도 7은 비교예에 따른 연료 개질 장치의 운전 시간 및 배압에 대한 그래프이다.
본 비교예의 연료 개질 장치는 말단이 개방된 파이프 형태의 노즐부를 사용하여 AOG를 공급하는 구조를 구비하도록 준비되었다. 그러한 경우, 제1 산화반응부에서 나오는 유체와의 혼합은 문제가 될 것이 없지만, 노즐부에서 방출되는 AOG에 의해 노즐부와 마주하는 제1 산화반응부 또는 제1 산화촉매가 코팅된 제1 메탈 모노리스의 대응 부분에서 산화 반응이 과도하게 증가되어 노즐부가 1000℃ 이상으로 상승하여 효율이 향상되지 않고 내구성에 문제가 발생하였다.
도 7에 도시한 바와 같이, 본 비교예의 연료 개질 장치에 의하면, 개질반응부(reformer)의 배압과 산화반응부(Burner)의 배압은 연속 운전시와, 운전정지 및 기동(On-Off)시 모두에서 상승하고 있으며, 특히 기동시보다 연속 운전시에 배압이 더욱 크게 상승하는 것을 알 수 있다. 이러한 경우, 기동시보다 정상 상태에서 제2 산화반응부의 열화가 큼을 예상할 수 있다.
도 8은 또 다른 비교예에 따른 연료 개질 장치의 운전 시간 및 배압에 대한 그래프이다.
본 비교예의 연료 개질 장치는 본 실시예에 따른 노즐부(도 1 및 도 2a의 40 참조)를 구비하되, 제2 산화반응부에 채용된 제2 메탈 모노리스의 셀 밀도를 제1 산화반응부에 채용된 제1 메탈 모노리스의 1/3 내지 1/2로 감소시키지 않고 제1 메탈 모노리스와 동일하게 구성한 경우이다. 본 비교예에서는 제1 메탈 모노리스의 셀 밀도를 600 CSPI로, 제2 메탈 모노리스의 셀 밀도를 400 CSPI로 준비하였다.
도 8에 도시한 바와 같이, 본 실시예의 노즐부 채택에 의해 On-Off 사이클에서 압력의 증가 경향이 완화되었다. 하지만, 기동시 풀(full) AOG 단계에서 제2 산화반응부의 열화에 의해 On-Off 사이클에 의한 압력 상승이 증가하였다.
이와 같은 문제는 기본적으로 제2 메탈 모노리스의 셀 밀도를 200 CSPI로 변경함으로써 해결될 수 있다. 제1 메탈 모노리스의 셀 밀도를 600 CSPI로, 제2 메탈 모노리스의 셀 밀도를 200 CSPI로 적용한 경우는 본 실시예에 따른 도 5의 연료 개질 장치에 해당한다.
이상에서와 같이 상세한 설명과 도면을 통해 본 발명의 최적 실시예를 개시하였다. 용어들은 단지 본 발명을 설명하기 위한 목적에서 사용된 것이며, 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 본 명세서로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
10: 제1 산화반응부 20, 20a, 20b: 제2 산화반응부
30: 개질반응부 40: 노즐부
50: 점화관 60: 점화기
70: 연료분배부 80: 화염방지부
90: 시프트반응부

Claims (23)

  1. 제1a 단부, 제2a 단부, 및 상기 제1a 단부에 제1 개구부를 구비하는 원통형 제1 산화반응부;
    제1b 단부, 제2b 단부, 및 상기 제1b 단부에 제2 개구부를 구비하며 상기 제1 산화반응부를 이중관 형태로 둘러싸고 상기 제2b 단부가 상기 제2a 단부에 유체소통 가능하게 연결되는 제2 산화반응부;
    상기 제1 및 제2 산화반응부들에서 생성되는 열에 의해 가열되는 개질반응부; 및
    상기 제1 산화반응부 내부에 노즐부를 구비하며 장치 외부에서 상기 제1 산화반응부로 제2 산화연료를 공급하는 연료공급부를 포함하며,
    상기 제1 개구부로 유입된 제1 산화연료는 상기 제1 산화반응부를 제1 방향으로, 상기 제2 산화반응부를 상기 제1 방향과 반대 방향인 제3 방향으로 유동하며,
    상기 제2 산화연료는 상기 노즐부에서 상기 제1 방향과 교차하는 제2 방향으로 방출되는 연료 개질 장치.
  2. 제1항에 있어서,
    상기 노즐부는 한쪽 말단이 막힌 파이프 형태의 상기 연료공급부의 일단부에 설치되는 연료 개질 장치.
  3. 제2항에 있어서,
    상기 노즐부는 상기 파이프 형태의 노즐부 몸체에 방사상으로 배치된 복수의 노즐 구멍들을 구비하는 연료 개질 장치.
  4. 제3항에 있어서,
    상기 복수의 노즐 구멍들은 상기 파이프 형태의 노즐부의 길이 방향에서 서로 일정 간격 이격된 복수의 열들로 배치되는 연료 개질 장치.
  5. 제1항에 있어서,
    상기 노즐부는 상기 제1 산화반응부의 내벽 또는 상기 제2a 단부로부터 일정 간격 이격되어 배치되는 연료 개질 장치.
  6. 제1항에 있어서,
    상기 제1 산화반응부는 셀 밀도가 400 내지 600 CPSI(cell per square inch)인 제1 메탈 모노리스를 구비하는 연료 개질 장치.
  7. 제6항에 있어서,
    상기 제1 메탈 모노리스에 도포된 산화촉매를 더 포함하는 연료 개질 장치.
  8. 제6항에 있어서,
    상기 제2 산화반응부는 셀 밀도가 100 내지 200 CPSI(cell per square inch)인 제2 메탈 모노리스를 구비하는 연료 개질 장치.
  9. 제8항에 있어서,
    상기 제2 메탈 모노리스는 크롬계 스테인리스를 포함하는 연료 개질 장치.
  10. 제8항에 있어서,
    상기 제2 메탈 모노리스에 도포된 산화촉매를 더 포함하는 연료 개질 장치.
  11. 제10항에 있어서,
    상기 산화촉매는 Pd, Pt, Co3O4, PdO, Cr2O3, Mn2O3, CuO, Fe2O3, V2O3, NiO, MoO3, TiO2로 이루어진 그룹에서 선택되는 적어도 어느 하나를 포함하는 연료 개질 장치.
  12. 제8항에 있어서,
    상기 제2 메탈 모노리스는 서로 일정 간격 이격된 2단 형태의 제2a 및 제2b 메탈 모노리스들을 구비하는 연료 개질 장치.
  13. 제8항에 있어서,
    상기 제1 메탈 모노리스는 상기 제1 산화반응부 내에서 상기 제1a 단부보다 상기 제2a 단부에 인접하게 배치되는 연료 개질 장치.
  14. 제13항에 있어서,
    상기 제1 개구부와 상기 제1 메탈 모노리스 사이에 연료분배부를 더 포함하는 연료 개질 장치.
  15. 제14항에 있어서,
    상기 연료분배부는 복수의 구멍들을 구비한 원판 형태로서, 상기 제1 개구부로 유입된 상기 제1 산화연료를 상기 제1 산화반응부의 내벽에 인접한 상기 제1 메탈 모노리스의 주변부로 분배하는 연료 개질 장치.
  16. 제14항에 있어서,
    상기 연료분배부와 상기 제1 메탈 모노리스 사이에 화염방지부를 더 포함하는 연료 개질 장치.
  17. 제16항에 있어서,
    상기 화염방지부의 셀 밀도는 상기 제1 메탈 모노리스의 셀 밀도와 동일한 연료 개질 장치.
  18. 제1항에 있어서,
    상기 제2 산화연료는 연료전지 스택에서 방출되는 애노드 오프 가스를 포함하는 연료 개질 장치.
  19. 제18항에 있어서,
    상기 애노드 오프 가스는 4 SLPM(standard liter per minute) 이하로 공급되는 연료 개질 장치.
  20. 제1항에 있어서,
    상기 개질반응부는 개질연료를 수증기 개질하는 수증기 개질반응부를 포함하는 연료 개질 장치.
  21. 제20항에 있어서,
    상기 개질반응부는 상기 제1 및 제2 산화반응부들을 3중관 형태로 둘러싸는 연료 개질 장치.
  22. 제21항에 있어서,
    상기 제1 및 제2 산화반응부들 및 상기 개질반응부를 4중관 형태로 둘러싸는 시프트반응부를 더 포함하는 연료 개질 장치.
  23. 제1항에 있어서,
    상기 제2a 단부에 일단이 연결되는 점화관; 및 상기 점화관의 타단에 배치된 점화기를 더 포함하는 연료 개질 장치.

KR1020100019477A 2009-12-24 2010-03-04 연료 개질 장치 KR101152586B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100019477A KR101152586B1 (ko) 2010-03-04 2010-03-04 연료 개질 장치
US12/939,993 US8690976B2 (en) 2009-12-24 2010-11-04 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100019477A KR101152586B1 (ko) 2010-03-04 2010-03-04 연료 개질 장치

Publications (2)

Publication Number Publication Date
KR20110100459A KR20110100459A (ko) 2011-09-14
KR101152586B1 true KR101152586B1 (ko) 2012-06-01

Family

ID=44187805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100019477A KR101152586B1 (ko) 2009-12-24 2010-03-04 연료 개질 장치

Country Status (2)

Country Link
US (1) US8690976B2 (ko)
KR (1) KR101152586B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120047545A (ko) * 2010-11-04 2012-05-14 삼성에스디아이 주식회사 연료 개질 장치
DE102011109105B3 (de) * 2011-08-02 2013-01-31 Enymotion Gmbh Brennstoffzellensystem
EP4127562A1 (en) * 2020-03-31 2023-02-08 Technip Energies France SAS Flameless combustion burner for an endothermic reaction process

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1980424A (en) * 1933-07-07 1934-11-13 Leigh F Morgan Water heater
US3822987A (en) * 1973-01-29 1974-07-09 Morse Boulger Inc Thermal sterilizer for contaminated air
US3822991A (en) * 1973-10-09 1974-07-09 American Air Filter Co Gas-fired furnace
US4099488A (en) * 1975-06-09 1978-07-11 Hunter Investment Company Diesel fueled engine coolant heater
US4247282A (en) * 1978-05-26 1981-01-27 Dowa Co., Ltd. Liquid fuel burner for burning liquid fuel in gasified form
JPH0649870B2 (ja) 1985-09-27 1994-06-29 株式会社日立製作所 燃料改質装置
DE3621914A1 (de) * 1986-06-30 1988-01-07 Bosch Gmbh Robert Vorrichtung zum verbrennen von feststoffteilchen im abgas von brennkraftmaschinen
US5441546A (en) * 1993-11-08 1995-08-15 Moard; David Apparatus and method for decreasing nitrogen oxide emissions from internal combustion power sources
US5546701A (en) * 1994-09-20 1996-08-20 Hydrogen Burner Technology, Inc. Underoxidized burner utilizing improved injectors
JP3281521B2 (ja) 1995-11-29 2002-05-13 三洋電機株式会社 燃料電池用燃料ガス改質装置
US6126908A (en) 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JPH10162850A (ja) 1996-11-27 1998-06-19 Sanyo Electric Co Ltd 燃料電池の未反応ガス燃焼処理装置
JP2002280042A (ja) 2001-03-19 2002-09-27 Aisin Seiki Co Ltd 燃料改質器用オフガス燃焼器
KR101328983B1 (ko) 2006-10-13 2013-11-13 삼성에스디아이 주식회사 수소생성장치 및 그 구동 방법
KR100971743B1 (ko) 2007-12-27 2010-07-21 삼성에스디아이 주식회사 연료 전지 시스템 및 연료 전지 시스템용 개질기
KR101006467B1 (ko) 2008-01-31 2011-01-06 포항공과대학교 산학협력단 고체산화물 연료전지용 전극 지지체와 일체형 단위 셀 및그 제조 방법

Also Published As

Publication number Publication date
KR20110100459A (ko) 2011-09-14
US20110158860A1 (en) 2011-06-30
US8690976B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
RU2539561C2 (ru) Газогенератор для конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ, его применение и способ конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ (его варианты)
US8617269B2 (en) Catalytic combustor and fuel reformer having the same
US7862631B2 (en) Fuel processor primary reactor and combustor startup via electrically-heated catalyst
KR101210127B1 (ko) 개질기용 연소기
JP5152811B2 (ja) 改質装置
EP2810329B1 (en) Fuel cell module
US20030188475A1 (en) Dynamic fuel processor with controlled declining temperatures
EP2158962B1 (en) Method for forming a fuel cell reformer
KR101152586B1 (ko) 연료 개질 장치
KR101240688B1 (ko) 개질 장치
JP5416945B2 (ja) 燃料電池発電システム
JP4045196B2 (ja) 触媒燃焼式バーナおよび燃料電池システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee