KR101151737B1 - Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite - Google Patents

Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite Download PDF

Info

Publication number
KR101151737B1
KR101151737B1 KR1020090104016A KR20090104016A KR101151737B1 KR 101151737 B1 KR101151737 B1 KR 101151737B1 KR 1020090104016 A KR1020090104016 A KR 1020090104016A KR 20090104016 A KR20090104016 A KR 20090104016A KR 101151737 B1 KR101151737 B1 KR 101151737B1
Authority
KR
South Korea
Prior art keywords
vinylidene fluoride
poly
carbon nanotubes
nanocomposite
treated
Prior art date
Application number
KR1020090104016A
Other languages
Korean (ko)
Other versions
KR20110047404A (en
Inventor
박수진
김기석
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090104016A priority Critical patent/KR101151737B1/en
Publication of KR20110047404A publication Critical patent/KR20110047404A/en
Application granted granted Critical
Publication of KR101151737B1 publication Critical patent/KR101151737B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 화학적 표면 처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법에 관한 것으로, 더욱 상세하게는 화학적 처리에 의해 친수성으로 표면처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법에 관한 것이다. The present invention relates to a poly (vinylidene fluoride) nanocomposite filled with carbon nanotubes chemically treated and a method for preparing the same. More specifically, the present invention relates to a polyfilled carbon nanotube surface-treated hydrophilically by chemical treatment. (Vinylidene fluoride) It relates to a nanocomposite and a method for producing the same.

본 발명의 화학적 처리에 의해 친수성으로 표면처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재는 종래 산처리에 의해 표면처리된 탄소나노튜브를 함유하는 폴리(비닐리덴 플루오라이드) 나노복합재와 비교할 때 전기전도성과 열적 특성이 균일하게 증가할 뿐더러 기계적 특성이 매우 향상되어 우수한 물성을 갖는 탄소나노튜브/고분자 나노복합재 제조가 가능하다.Poly (vinylidene fluoride) nanocomposites filled with carbon nanotubes surface-treated hydrophilically by the chemical treatment of the present invention are conventional poly (vinylidene fluoride) nanoparticles containing carbon nanotubes surface-treated by acid treatment. Compared with the composite material, the electrical conductivity and thermal properties are uniformly increased, and the mechanical properties are greatly improved, thereby enabling the production of carbon nanotubes / polymer nanocomposites having excellent physical properties.

Description

화학적 처리된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법{Method for preparating of chemically treated carbon nanotube/poly(vinylidene fluoride) nanocomposite}Chemically treated carbon nanotubes / poly (vinylidene fluoride) nanocomposites and methods for preparing the same {Method for preparating of chemically treated carbon nanotube / poly (vinylidene fluoride) nanocomposite}

본 발명은 화학적 처리된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법에 관한 것으로, 더욱 상세하게는 화학적 처리에 의해 친수성으로 표면처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법에 관한 것이다. The present invention relates to a chemically treated carbon nanotube / poly (vinylidene fluoride) nanocomposite and a method for preparing the same, and more particularly, to poly (vinylidene) filled with carbon nanotubes surface-treated hydrophilically by chemical treatment. Fluoride) nanocomposites and methods for their preparation.

최근 첨단기술의 진보와 함께 소재의 고기능화에 대한 요구가 절실하게 대두되고 있으며, 이에 따라 기존의 소재 산업에 대한 관심 역시 지속적으로 증가하고 있다.Recently, with the advancement of advanced technology, the demand for high functionalization of materials is urgently raised, and accordingly, interest in the existing material industry is continuously increasing.

그러나, 전통적인 구조의 물질들은 이미 그 성능과 기능에 있어서 많은 문제점과 한계를 드러내고 있기 때문에, 이를 극복하기 위한 효과적인 방안의 하나로 유기-무기 하이브리드 소재와 같이 서로 다른 물질들 복합화 함으로써 각 물질의 기능과 성능으로부터 시너지 효과를 얻으려는 노력이 계속 시도되고 있다. 특히, 기존 소재의 물성을 획기적으로 개선시킬 수 있는 대안으로, 1991년 이이지 마(Iijima)에 의해 발견된 탄소나노튜브를 기존 소재와 복합화 하는 고분자 나노복합재에 대한 연구가 활발히 진행 중이다. However, traditional materials already exhibit many problems and limitations in their performance and function. Thus, one of the effective ways to overcome them is to combine different materials, such as organic-inorganic hybrid materials, to function and perform their functions. Efforts are being made to gain synergies from the company. In particular, as an alternative to significantly improve the physical properties of existing materials, research into polymer nanocomposites that combine carbon nanotubes discovered by Iijima in 1991 with existing materials is being actively conducted.

탄소나노튜브는 일반적으로 수 ㎚ 내지 수십 ㎚의 직경과 수 ㎛에서 수백 ㎛의 길이를 갖는, 종횡비가 수십에서 수천에 달하는 극히 미세한 원통형 재료이다. 다이아몬드의 2배에 가까운 열전도도 및 구리와 비교하여 1,000배가량 높은 전류이송능력 등의 뛰어난 물성으로 인해 나노 스케일의 전기, 전자 디바이스, 나노센서, 광전자 디바이스, 고기능 복합재 등 모든 공학 분야에서의 응용 가능성이 매우 높은 것으로 평가되고 있다. 따라서, 이러한 탄소나노튜브의 혁신적인 성질을 이용하여 탄소나노튜브를 바탕으로 한 고분자 복합재료의 개발에 관심이 집중되고 있다.Carbon nanotubes are extremely fine cylindrical materials with aspect ratios ranging from tens to thousands, generally having diameters of several nm to tens of nm and lengths of several to several hundred micrometers. Thermal conductivity close to twice that of diamond and 1,000 times higher current transfer capability compared to copper, making them suitable for all engineering applications, including nanoscale electrical, electronic devices, nanosensors, optoelectronic devices, and high-performance composites This is estimated to be very high. Therefore, attention has been focused on the development of polymer composite materials based on carbon nanotubes using the innovative properties of such carbon nanotubes.

탄소나노튜브/고분자 복합재료의 제조에 있어서, 고분자 기지 내에 탄소나노큐브의 균일한 분산과 탄소나노튜브와 고분자 기지 간의 침투와 접착력이 탄소나노복합재료의 제조공정에서 중요한 문제이다. 그러나, 탄소나노튜브에는 금속촉매 입자, 비정질 카본, 흑연, 타원체 플러렌(spheroidal fullerene) 등과 같은 불순물이 존재하며, 이는 고분자화 복합화 할 경우 분산특성을 좋지 않게 할뿐만 아니라 기계적, 전기적 물성의 저하를 가져온다. 또한, 기존의 공정으로는 탄소나노튜브의 강한 응집성 때문에 발생하는 기존 소재 내 탄소나노튜브의 불균질한 분산과 혼합문제의 해결이 불가능하여 나노복합재료의 개발이 지연되어 왔다. In the production of carbon nanotube / polymer composite materials, uniform dispersion of carbon nanocubes in the polymer matrix, penetration and adhesion between the carbon nanotubes and the polymer matrix are important problems in the manufacturing process of the carbon nanocomposite material. However, impurities such as metal catalyst particles, amorphous carbon, graphite, spheroidal fullerene, etc. are present in carbon nanotubes, which not only deteriorates the dispersing properties but also deteriorates mechanical and electrical properties when polymerized. . In addition, the development of nanocomposites has been delayed because the existing process cannot solve the problem of heterogeneous dispersion and mixing of carbon nanotubes in existing materials due to the strong cohesion of carbon nanotubes.

이에 본 발명자들은 전술한 탄소나노튜브의 분산성과 고분자 기지와 탄소나노튜브 간의 접착력 증진을 통한 고분자 복합재료의 전도성, 열적 및 기계적 특성이 크게 향상된 고분자 나노복합재를 제조하기 위하여 예의 노력한 결과, 화학적 처리에 의해 친수성으로 표면 처리된 탄소나노튜브와 폴리(비닐리덴 플로라이드)를 사용하여 나노복합재를 제조하고 본 발명을 완성하였다. Accordingly, the present inventors have made diligent efforts to prepare a polymer nanocomposite having significantly improved conductivity, thermal and mechanical properties of the polymer composite material by improving the dispersibility of the carbon nanotubes described above and the adhesion between the polymer matrix and the carbon nanotubes. The nanocomposite was prepared using carbon nanotubes and poly (vinylidene fluoride) surface-treated hydrophilically to complete the present invention.

결국, 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명의 목적은 화학적 처리된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법을 제공함에 있다.After all, the present invention has been made to solve the above problems, an object of the present invention is to provide a chemically treated carbon nanotube / poly (vinylidene fluoride) nanocomposite and a method of manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 화학적 처리된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재 및 그의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a chemically treated carbon nanotube / poly (vinylidene fluoride) nanocomposite and a method of manufacturing the same.

본 발명에 따른 나노복합재는 (1) 화학적 처리에 의해 친수성 관능기를 갖는 탄소나노튜브를 제조하고; (2) 상기 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 용액에 분산하고; 및 (3) 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재를 제조하는; 과정을 포함하여 제조하는 것을 특징으로 한다. Nanocomposites according to the present invention (1) to produce a carbon nanotube having a hydrophilic functional group by chemical treatment; (2) dispersing the carbon nanotubes in a poly (vinylidene fluoride) solution; And (3) preparing carbon nanotubes / poly (vinylidene fluoride) nanocomposites; It characterized in that the manufacturing process including.

이하, 본 발명의 나노복합재의 각 구성성분 및 제조방법을 단계별로 상세히 설명한다.Hereinafter, each component and the preparation method of the nanocomposite of the present invention will be described in detail step by step.

본 발명은 화학적 표면 처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재를 제공한다.The present invention provides a poly (vinylidene fluoride) nanocomposite filled with carbon nanotubes chemically treated.

본 발명에 있어서, 상기 탄소나노튜브는 활성탄, 활성탄소섬유, 피치(pitch) 계 나노섬유, 흑연, 단일벽 탄소나노튜브(Single-walled carbon nanotube) 및 다중벽 탄소나노튜브(multiple-walled carbon nanotube)에서 선택되는 1종 이상을 사용하는 것이 바람직하며, 더욱 바람직하게는 평균 직경의 크기가 10 내지 30 ㎚이고, 길이는 10 내지 50 ㎛인 다중벽 탄소나노튜브를 사용하는 것이 좋다. In the present invention, the carbon nanotubes are activated carbon, activated carbon fibers, pitch-based nanofibers, graphite, single-walled carbon nanotubes (multi-walled carbon nanotubes) It is preferable to use at least one selected from the above, more preferably a multi-walled carbon nanotube having an average diameter of 10 to 30 nm, length of 10 to 50 ㎛.

또한, 상기 탄소나노튜브는 산용액에 침지시켜 12 내지 24시간 동안 60℃에서 교반하여 표면에 카르복실기를 갖는 탄소나노튜브를 제조한 다음, 이를 증류수로 세척한 후 건조시키고, 완전히 건조되면 티오닐클로라이드(SOCl2)에 넣고 70℃에서 24시간 반응하여 아실화 하는 것이 바람직하며, 아실화 된 탄소나노튜브는 테트라하이드로퓨란(THF)과 에탄올을 이용하여 세척 후 상온의 진공오븐에서 건조하고, 건조된 탄소나노튜브는 표면처리 용액에 첨가하여 60℃에서 12시간 반응시킨 후 세척과 건조 과정을 거쳐 최종적으로 친수성으로 표면 처리된(즉, 표면에 친수성 관능기를 갖는) 탄소나노튜브를 제조할 수 있다. 이때, 상기 산용액은 황산(H2SO4), 질산(HNO3), 인산(H3PO4), 염산(HCl), 과산화수소(H2O2) 및 이들의 혼합용액 중에서 선택되는 것이 바람직하며, 더욱 바람직하게는 황산과 질산을 3 : 1 내지 1 : 3의 중량비로 혼합한 혼합용액을 사용하는 것이 좋다. 또한, 상기 표면처리 용액은 친수성과 소수성을 동시에 갖는 에틸렌글리콜, 1,5-펜타디올, 1.6-헥산디올 등을 사용할 수 있으며, 상기와 같이 화학적 표면 처리된 탄소나노튜브의 표면을 일반적인 산처리에 의해 표면 처리된 탄소나노튜브와 비교하여 친수성 관능기가 더욱 증가되며, 양쪽의 수산화기 사이의 탄소길이에 따른 소수성의 고분자와의 상용성의 조절 이 가능하다.In addition, the carbon nanotubes are immersed in an acid solution and stirred at 60 ° C. for 12 to 24 hours to prepare carbon nanotubes having a carboxyl group on the surface thereof, and then washed with distilled water, dried, and completely dried with thionyl chloride. (AcCl 2 ) is preferably acylated by reacting at 70 ℃ for 24 hours, the acylated carbon nanotubes are washed with tetrahydrofuran (THF) and ethanol and dried in a vacuum oven at room temperature, dried Carbon nanotubes may be added to the surface treatment solution and reacted at 60 ° C. for 12 hours, followed by washing and drying to finally prepare carbon nanotubes that have been hydrophilically surface treated (that is, having a hydrophilic functional group on the surface). In this case, the acid solution is preferably selected from sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), hydrogen peroxide (H 2 O 2 ) and a mixed solution thereof. More preferably, it is preferable to use a mixed solution in which sulfuric acid and nitric acid are mixed at a weight ratio of 3: 1 to 1: 3. In addition, the surface treatment solution may use ethylene glycol, 1,5-pentadiol, 1.6- hexanediol having a hydrophilicity and hydrophobicity at the same time, the surface of the carbon nanotubes chemically treated as described above to the general acid treatment Compared to the surface-treated carbon nanotubes, hydrophilic functional groups are further increased, and compatibility with hydrophobic polymers can be controlled according to the carbon length between both hydroxyl groups.

본 발명의 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재는 상기와 같이 화학적 표면 처리된 탄소나노튜브를 충전재로서 폴리(비닐리덴 플루오라이드) 100중량부에 대하여, 0.1 내지 5중량부의 범위로 혼합하여 제조할 수 있다. 이때, 폴리(비닐리덴 플루오라이드)에 탄소나노튜브가 고르게 분산되도록 하기 위해 폴리(비닐리덴 플루오라이드)를 극성용매인 디메틸포름아마이드에 용해시킨 후 1 내지 3시간 동안 초음파 처리하여 용액을 혼합하는 것이 바람직하다.  The carbon nanotube / poly (vinylidene fluoride) nanocomposite of the present invention is a carbon nanotube treated with a chemical surface treatment as described above in a range of 0.1 to 5 parts by weight based on 100 parts by weight of poly (vinylidene fluoride) as a filler. It can be prepared by mixing. In this case, in order to disperse the carbon nanotubes evenly in poly (vinylidene fluoride), dissolving poly (vinylidene fluoride) in dimethylformamide as a polar solvent and sonicating for 1 to 3 hours to mix the solution desirable.

이는 친수성으로 표면처리된 탄소나노튜브의 극성용매에서의 분산성 향상을 위한 것이며, 탄소나노튜브의 응집은 폴리(비닐리덴 플루오라이드)와 탄소나노튜브 간의 계면결합력을 감소시켜 결국 나노복합재의 물성에 커다란 영향을 미칠 수 있기 때문이다. 또한, 본 발명에서는 상기 탄소나노튜브의 함량을 달리함으로써 나노복합재의 전도성, 열적 및 기계적 특성을 용도에 따라 조절할 수도 있다. 또한, 본 발명에서 고분자 기지로 폴리(비닐리덴 플루오라이드)를 사용하였으나, 이에 한정되지 않고 우수한 유전율을 가지며 극성용매에 용해되는 고분자는 모두 적용할 수 있다. This is to improve the dispersibility of the hydrophilic surface-treated carbon nanotubes in the polar solvent, the agglomeration of carbon nanotubes reduces the interfacial bonding force between poly (vinylidene fluoride) and carbon nanotubes, eventually affecting the physical properties of the nanocomposite This can have a big impact. In addition, in the present invention, by changing the content of the carbon nanotubes, the conductivity, thermal and mechanical properties of the nanocomposite may be adjusted according to the application. In addition, although poly (vinylidene fluoride) is used as the polymer base in the present invention, the polymer is not limited thereto and has excellent dielectric constant and is soluble in a polar solvent.

또한, 본 발명에서 화학적 표면 처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재는 필름 캐스팅 방법을 이용하여 간단한 공적으로 필름 형태로 제조될 수 있다. 상기 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름은 잔류 용매의 제거를 위해 60℃의 진공오븐에서 약 2일간 건조하는 것이 바람직하다.In addition, the poly (vinylidene fluoride) nanocomposite filled with the carbon nanotubes chemically treated in the present invention may be manufactured in a film form using a simple film casting method. The carbon nanotube / poly (vinylidene fluoride) film is preferably dried for about two days in a vacuum oven at 60 ℃ to remove the residual solvent.

이렇게 제조된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재는 전기전도도가 3×10-3 내지 5×10-1 S/cm이고, 인장강도는 20 내지 50 MPa인 것이 특징이다. The carbon nanotubes / poly (vinylidene fluoride) nanocomposites thus prepared are characterized by electrical conductivity of 3 × 10 −3 to 5 × 10 −1 S / cm and tensile strength of 20 to 50 MPa.

본 발명은 종래 탄소나노튜브의 산처리 방법에 추가적인 화학적 처리를 통해 탄소나노튜브 표면에 친수성 관능기가 증가된 탄소나노튜브를 제공하는 효과가 있다.The present invention has an effect of providing a carbon nanotube with an increased hydrophilic functional group on the surface of the carbon nanotube through an additional chemical treatment to the acid treatment method of conventional carbon nanotubes.

또한, 상기와 같이 화학적 처리에 의해 친수성으로 표면처리된 탄소나노튜브로 충전된 폴리(비닐리덴 플루오라이드) 나노복합재는 종래 산처리에 의해 표면처리된 탄소나노튜브를 함유하는 폴리(비닐리덴 플루오라이드) 나노복합재와 비교할 때 전기전도성과 열적 특성이 균일하게 증가할 뿐더러 기계적 특성이 매우 향상되어 우수한 물성을 갖는 탄소나노튜브/고분자 나노복합재 제조가 가능하다.In addition, poly (vinylidene fluoride) nanocomposites filled with carbon nanotubes surface-treated hydrophilically by chemical treatment as described above are poly (vinylidene fluorides) containing carbon nanotubes surface-treated by conventional acid treatment. Compared to nanocomposites, the electrical conductivity and thermal properties are increased uniformly, and the mechanical properties are greatly improved, making it possible to manufacture carbon nanotubes / polymer nanocomposites with excellent physical properties.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 표면특성 측정Measurement Example 1. Measurement of Surface Properties

본 발명에 따라 제조된 탄소나노튜브의 표면특성의 변화는 광전자 분광기(X-ray photoelectron spectroscopy; K-Alpha, Thermo Scientific, USA)를 이용하여 측정하였다.Changes in the surface properties of the carbon nanotubes prepared according to the present invention were measured using an X-ray photoelectron spectroscopy (K-Alpha, Thermo Scientific, USA).

측정예 2. 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 전기전도도 측정Measurement Example 2 Measurement of Electrical Conductivity of Carbon Nanotube / Poly (vinylidene Fluoride) Film

본 발명에 따라 제조된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 탄소나노튜브의 함량에 따른 전도성을 확인하기 위하여, 디지털 멀티메타(MCP-T610, Mitsubishi Chem., Japan)를 이용하여 상온에서 전기전도도를 측정하였다.In order to check the conductivity according to the content of carbon nanotubes of the carbon nanotubes / poly (vinylidene fluoride) film prepared according to the present invention, using a digital multi-meter (MCP-T610, Mitsubishi Chem., Japan) at room temperature Electrical conductivity was measured at.

측정예 3. 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 유리전이 용융온도 및 열용량 측정Measurement Example 3 Measurement of Glass Transition Melt Temperature and Heat Capacity of Carbon Nanotube / Poly (vinylidene Fluoride) Film

본 발명에 따라 제조된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 탄소나노튜브의 함량에 따른 열적특성 확인하기 위하여, 시차주사 열량계(Differential Scanning Calorimetry; DSC200F3, NETZSCH, Germany)를 이용하여, 10℃/분의 승온 속도로 질소 분위기 하 30~300℃의 온도범위에서 유리전이 용융 온도(Tm)과 열용량(ΔHm)을 측정하였다. In order to check the thermal properties according to the content of carbon nanotubes of the carbon nanotubes / poly (vinylidene fluoride) film prepared according to the present invention, using differential scanning calorimetry (DSC200F3, NETZSCH, Germany), The glass transition melting temperature (T m ) and heat capacity (ΔH m ) were measured in a temperature range of 30 to 300 ° C. under a nitrogen atmosphere at a temperature rising rate of 10 ° C./min.

측정예 4. 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 인장강도 측정 Measurement Example 4 Measurement of Tensile Strength of Carbon Nanotube / Poly (vinylidene Fluoride) Film

본 발명에 따라 제조된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 탄소나노튜브의 함량에 따른 기계적 특성을 확인하기 위하여, 만능시험기(universal test machine; Lloyd LR5K, LLOYD, UK)를 사용하여 인장강도(Tensile strength)를 측정하였다.In order to check the mechanical properties according to the content of carbon nanotubes of the carbon nanotubes / poly (vinylidene fluoride) films prepared according to the present invention, a universal test machine (Lloyd LR5K, LLOYD, UK) was used. Tensile strength was measured.

실시예 1. Example 1.

1-1. 화학적 표면처리된 탄소나노튜브의 제조1-1. Preparation of Chemical Surface Treated Carbon Nanotubes

다중벽 탄소나노튜브(Nanosolution, 평균 직경: 10~20 ㎚/평균 길이: 50 ㎛)를 황산과 질산의 3 : 1의 중량비로 혼합된 혼합용액에 침지 처리하여 12시간 동안 60℃에서 반응시킨 후 증류수로 세척하여 오븐에서 8시간 동안 건조시켰다. 완전히 건조되면 티오닐클로라이드(SOCl2)에 첨가하여 70℃에서 24시간 반응시킨 후 세척하고, 상온 진공오븐에서 건조시킨 다음, 에틸렌글리콜에 첨가하여 60℃로 12시간 반응시킨 후 세척하고 건조하여 친수성으로 표면처리된 탄소나노튜브를 제조하였다.After multi-walled carbon nanotubes (Nanosolution, average diameter: 10 ~ 20 ㎚ / average length: 50 ㎛) was immersed in a mixed solution mixed with a weight ratio of sulfuric acid and nitric acid 3: 1, and reacted at 60 ℃ for 12 hours Washed with distilled water and dried in an oven for 8 hours. When completely dried, it is added to thionyl chloride (SOCl 2 ) and reacted at 70 ° C. for 24 hours, followed by washing. After drying in a vacuum oven at room temperature, it is added to ethylene glycol and reacted at 60 ° C. for 12 hours, followed by washing and drying. To prepare a carbon nanotube surface treatment.

1-2. 탄소나노튜브/폴리(비닐리덴 플루오라이드) 나노복합재의 제조1-2. Preparation of Carbon Nanotube / Poly (Vinylidene Fluoride) Nanocomposites

그런 다음 폴리(비닐리덴 플루오라이드)를 디메틸포름아마이드에 용해시킨 후 상기 친수성으로 표면처리된 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 100중량부에 대해 0.5중량부를 첨가하고, 탄소나노튜브의 균일한 분산을 위해 탄소나노튜브/폴리(비닐리덴 플루오라이드) 혼합액을 약 3시간 동안 초음파 처리하였다. 상기 혼합액은 필름 캐스팅과 용매 증발 공정을 거쳐 약 70 ㎛ 두께를 갖는 필름으로 제조한 후 60℃ 진공 오븐에서 약 2일간 건조하여 필름 내 잔류 용매를 제거하여 최종 필름을 제조하였다.Then, after dissolving poly (vinylidene fluoride) in dimethylformamide, 0.5 parts by weight of the hydrophilic surface-treated carbon nanotubes were added to 100 parts by weight of poly (vinylidene fluoride), and the uniformity of the carbon nanotubes was The carbon nanotube / poly (vinylidene fluoride) mixture was sonicated for about 3 hours for one dispersion. The mixed solution was prepared into a film having a thickness of about 70 μm through film casting and solvent evaporation, and then dried in a vacuum oven at 60 ° C. for about 2 days to remove residual solvent in the film, thereby preparing a final film.

실시예 2.Example 2.

상기 실시예 1과 동일한 과정으로 제조하되, 화학적 표면처리된 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 100중량부에 대해 1중량부를 첨가하여 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름을 제조하였다.A carbon nanotube / poly (vinylidene fluoride) film was prepared by the same process as in Example 1, but adding 1 part by weight based on 100 parts by weight of the poly (vinylidene fluoride) chemically treated carbon nanotubes. It was.

실시예 3.Example 3.

상기 실시예 1과 동일한 과정으로 제조하되, 화학적 표면처리된 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 100중량부에 대해 2중량부를 첨가하여 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름을 제조하였다.A carbon nanotube / poly (vinylidene fluoride) film was prepared in the same manner as in Example 1, except that 2 parts by weight of carbon nanotubes having chemical surface treatment were added to 100 parts by weight of poly (vinylidene fluoride). It was.

실시예 4.Example 4.

상기 실시예 1과 동일한 과정으로 제조하되, 화학적 표면처리된 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 100중량부에 대해 3중량부를 첨가하여 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름을 제조하였다.A carbon nanotube / poly (vinylidene fluoride) film was prepared in the same manner as in Example 1, except that 3 parts by weight of carbon nanotubes having chemical surface treatment were added to 100 parts by weight of poly (vinylidene fluoride). It was.

비교예 1.Comparative Example 1.

폴리(비닐리덴 플루오라이드)를 디메틸포름아마이드에 용해시킨 후 화학적 표면처리된 탄소나노튜브를 첨가하지 않고 필름 캐스팅과 용매 증발 공정을 거쳐 약 70 ㎛ 두께를 갖는 필름으로 제조한 후 60℃ 진공 오븐에서 약 2일간 건조하여 필름 내 잔류 용매를 제거하여 최종 필름을 제조하였다. After dissolving poly (vinylidene fluoride) in dimethylformamide, it was made into a film having a thickness of about 70 μm through film casting and solvent evaporation without adding chemical surface treated carbon nanotubes, and then in a vacuum oven at 60 ° C. Drying was performed for about 2 days to remove residual solvent in the film to prepare a final film.

비교예 2~5.Comparative Examples 2-5.

다중벽 탄소나노튜브(Nanosolution, 평균 직경: 10~20 ㎚/평균 길이: 50 ㎛)를 황산과 질산의 3 : 1의 중량비로 혼합된 혼합용액으로 표면처리된 탄소나노튜브를 폴리(비닐리덴 플루오라이드) 100중량부에 대해 각각 0.5, 1, 2, 및 3중량부를 첨가하여 상기 실시예 1-2와 동일하게 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름을 제조하였다.Poly (vinylidene fluoride) was prepared by treating carbon nanotubes surface-treated with a mixed solution in which multi-walled carbon nanotubes (Nanosolution, average diameter: 10-20 nm / average length: 50 µm) were mixed at a weight ratio of sulfuric acid and nitric acid 3: 1. 0.5), 1, 2, and 3 parts by weight of 100 parts by weight of each of the compounds were prepared in the same manner as in Example 1-2 to prepare a carbon nanotube / poly (vinylidene fluoride) film.

상기와 같이 제조된 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 전기전도성과 열적 특성을 각각 표 1과 표 2에 나타내었다.The electrical conductivity and thermal properties of the carbon nanotubes / poly (vinylidene fluoride) film prepared as described above are shown in Table 1 and Table 2, respectively.

또한, 도 1은 본 발명에 따른 화학적 처리에 의해 표면처리된 탄소나노튜브와 산처리된 탄소나노튜브의 표면 특성을 광전자 분광기로 관찰한 결과로, 상기에서 보듯이 통상적인 산 처리 후 추가적으로 표면처리된 탄소나노튜브 표면에는 산소 관능기가 증가되었음을 확인할 수 있었다.In addition, Figure 1 is a result of observing the surface characteristics of the carbon nanotubes and acid-treated carbon nanotubes surface-treated by the chemical treatment according to the present invention with an optoelectronic spectrophotometer, as shown above additionally surface treatment after the acid treatment It was confirmed that the oxygen functional group was increased on the surface of the carbon nanotubes.

전도성(S/㎝)Conductivity (S / cm) 실시예 1Example 1 3.7×10-3 3.7 × 10 -3 실시예 2Example 2 3.1×10-2 3.1 × 10 -2 실시예 3Example 3 7.5×10-2 7.5 × 10 -2 실시예 4Example 4 1.4×10-1 1.4 × 10 -1 비교예 1Comparative Example 1 -- 비교예 2Comparative Example 2 1.9×10-3 1.9 × 10 -3 비교예 3Comparative Example 3 6.2×10-2 6.2 × 10 -2 비교예 4Comparative Example 4 2.8×10-1 2.8 × 10 -1 비교예 5Comparative Example 5 4.6×10-1 4.6 × 10 -1

용융온도(℃)Melting temperature (℃) 열용량(J/g)Heat capacity (J / g) 결정화도(%)Crystallinity (%) 실시예 1Example 1 163.3163.3 35.7235.72 34.0234.02 실시예 2Example 2 163.8163.8 38.8338.83 37.1837.18 실시예 3Example 3 164.2164.2 37.56 37.56 35.7735.77 실시예 4Example 4 164.5164.5 36.3136.31 34.5834.58 비교예 1Comparative Example 1 162.4162.4 25.8325.83 24.6024.60 비교예 2Comparative Example 2 162.3 162.3 35.4635.46 33.7733.77 비교예 3Comparative Example 3 162.3 162.3 43.1343.13 41.0741.07 비교예 4Comparative Example 4 162.3 162.3 34.5734.57 32.9332.93 비교예 5Comparative Example 5 162.3 162.3 34.0534.05 32.4332.43

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 통상적인 산처리에 의해 표면 처리된 탄소나노튜브와 본 발명의 화학적 표면 처리된 탄소나노튜브의 표면 특성을 나타낸 것이다. Figure 1 shows the surface properties of the carbon nanotubes surface-treated by conventional acid treatment and the chemical surface-treated carbon nanotubes of the present invention.

도 2a 및 도 2b는 통상적인 산처리에 의해 표면 처리된 탄소나노튜브(a)와 본 발명의 화학적 표면 처리된 탄소나노튜브(b)의 함량에 따른 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 열적 특성을 나타낸 것이다.2A and 2B illustrate carbon nanotubes / poly (vinylidene fluoride) according to the contents of carbon nanotubes (a) surface treated by conventional acid treatment and chemically treated carbon nanotubes (b) of the present invention. It shows the thermal properties of the film.

도 3은 통상적인 산처리에 의해 표면 처리된 탄소나노튜브와 본 발명의 화학적 표면 처리된 탄소나노튜브의 함량에 따른 탄소나노튜브/폴리(비닐리덴 플루오라이드) 필름의 인장강도를 나타낸 것이다.Figure 3 shows the tensile strength of the carbon nanotube / poly (vinylidene fluoride) film according to the content of the carbon nanotube surface-treated by the conventional acid treatment and the chemical surface-treated carbon nanotube of the present invention.

Claims (8)

1,5-텐타디올 또는 1,6-헥산디올 중 어느 하나로 화학적 표면 처리하여, 친수성 관능기를 증가시킨 탄소나노튜브가 충진된 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재.A poly (vinylidene fluoride) nanocomposite characterized by being filled with carbon nanotubes having increased hydrophilic functional groups by chemical surface treatment with 1,5-tendidiol or 1,6-hexanediol. 제 1 항에 있어서,The method of claim 1, 상기 화학적 표면 처리된 탄소나노튜브는 폴리(비닐리덴 플루오라이드) 100중량부에 대해 0.1 내지 5중량부의 범위로 혼합되는 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재.The chemical surface-treated carbon nanotubes are mixed in a range of 0.1 to 5 parts by weight based on 100 parts by weight of poly (vinylidene fluoride) poly (vinylidene fluoride) nanocomposite. 제 1 항에 있어서,The method of claim 1, 상기 폴리(비닐리덴 플루오라이드) 나노복합재는 전기전도도가 3×10-3 내지 5×10-1 S/cm인 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재.The poly (vinylidene fluoride) nanocomposite is a poly (vinylidene fluoride) nanocomposite, characterized in that the electrical conductivity is 3 × 10 -3 to 5 × 10 -1 S / cm. 제 1 항에 있어서,The method of claim 1, 상기 폴리(비닐리덴 플루오라이드) 나노복합재는 인장강도가 20 내지 50 MPa인 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재.The poly (vinylidene fluoride) nanocomposite is a poly (vinylidene fluoride) nanocomposite, characterized in that the tensile strength of 20 to 50 MPa. (1) 1,5-텐타디올 또는 1,6-헥산디올 중 어느 하나로 화학적 표면처리하여, 친수성 관능기를 증가시킨 탄소나노튜브를 제조하는 단계; (1) chemically surface-treating with 1,5-tentadiol or 1,6-hexanediol to prepare carbon nanotubes having increased hydrophilic functional groups; (2) 폴리(비닐리덴 플루오라이드)를 극성용매에 용해시킨 용액에 상기 (1)단계에서 제조된 탄소나노튜브를 혼합하는 단계; 및(2) mixing the carbon nanotubes prepared in step (1) to a solution in which poly (vinylidene fluoride) is dissolved in a polar solvent; And (3) 상기 (2)단계에서 제조된 탄소나노튜브 와 폴리(비닐리덴 플루오라이드) 혼합용액을 초음파로 처리하는 단계;를 포함하는 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재의 제조방법. (3) treating the carbon nanotube and the poly (vinylidene fluoride) mixed solution prepared in step (2) by ultrasonic wave; a method of manufacturing a poly (vinylidene fluoride) nanocomposite comprising the . 제 5 항에 있어서, 상기 (1)단계는The method of claim 5, wherein step (1) (a) 탄소나노튜브를 산용액에 침지시켜 12 내지 24시간 동안, 60℃에서 교반하여 카르복실기(-COOH)를 갖는 탄소나노튜브를 제조하는 단계;(A) immersing the carbon nanotubes in an acid solution for 12 to 24 hours, stirring at 60 ℃ to prepare a carbon nanotube having a carboxyl group (-COOH); (b) 상기 (a)단계에서 제조된 탄소나노튜브를 증류수로 세척하고 건조시킨 후, 티오닐클로라이드(SOCl2)에 넣고 70℃에서 24시간 반응하여 아실화 하는 단계;(b) washing the carbon nanotubes prepared in step (a) with distilled water and drying them, and then placing them in thionyl chloride (SOCl 2 ) for 24 hours at 70 ° C. for acylating; (c) 상기 (b)단계에서 아실화된 탄소나노튜브를 테트라하이드로퓨란(THF)과 에탄올을 이용하여 세척하고 건조시키는 단계; 및(c) washing and drying the acylated carbon nanotubes in step (b) using tetrahydrofuran (THF) and ethanol; And (d) 상기 (c)단계에서 건조된 탄소나노튜브를 1,5-텐타디올 또는 1,6-헥산디올 용액에 첨가하여 60℃에서 12시간 반응시키는 단계;를 포함하는 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재의 제조방법. (d) adding the carbon nanotubes dried in the step (c) to a 1,5-tentadiol or 1,6-hexanediol solution and reacting at 60 ° C. for 12 hours. Vinylidene fluoride) nanocomposites. 제 5 항에 있어서,The method of claim 5, 상기 (2)단계에서 화학적 표면처리된 탄소나노튜브는 폴리(비닐리덴 플루오라이드) 100중량부에 대해 0.1 내지 5중량부로 혼합되는 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재의 제조방법. The carbon nanotubes chemically treated in the step (2) is mixed with 0.1 to 5 parts by weight with respect to 100 parts by weight of poly (vinylidene fluoride). 제 5 항에 있어서,The method of claim 5, 상기 (2)단계에서 사용되는 극성용매는 디메틸포름아마이드인 것을 특징으로 하는 폴리(비닐리덴 플루오라이드) 나노복합재의 제조방법. Method for producing a poly (vinylidene fluoride) nanocomposite, characterized in that the polar solvent used in the step (2) is dimethylformamide.
KR1020090104016A 2009-10-30 2009-10-30 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite KR101151737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090104016A KR101151737B1 (en) 2009-10-30 2009-10-30 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090104016A KR101151737B1 (en) 2009-10-30 2009-10-30 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite

Publications (2)

Publication Number Publication Date
KR20110047404A KR20110047404A (en) 2011-05-09
KR101151737B1 true KR101151737B1 (en) 2012-06-15

Family

ID=44238713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090104016A KR101151737B1 (en) 2009-10-30 2009-10-30 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite

Country Status (1)

Country Link
KR (1) KR101151737B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316935B1 (en) * 2012-01-31 2013-10-11 주식회사 대유에이텍 Film heater and manufacturing method of thereof
KR101294596B1 (en) * 2012-02-09 2013-08-09 한화케미칼 주식회사 Composition and method of carbon nanotube paste for flat heating element device
KR101630645B1 (en) * 2015-05-14 2016-06-15 주식회사 대화알로이테크 Heating device for glass and heating method for the same
KR101971154B1 (en) * 2017-09-19 2019-04-22 키넷 주식회사 Manufacturing method of hollow fiber for oxygen enrichment
KR102100980B1 (en) * 2018-06-19 2020-04-14 경희대학교 산학협력단 Nanocomplex Ultra-filtration Membrane Using Atom Transfer Radical Addition And The Method of Manufacturing Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027438A (en) * 2005-09-06 2007-03-09 주식회사 엘지화학 Composite binder containing carbon nanotube and lithium secondary battery employing the same
KR20070101312A (en) * 2005-01-13 2007-10-16 신벤션 아게 Composite materials containing carbon nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101312A (en) * 2005-01-13 2007-10-16 신벤션 아게 Composite materials containing carbon nanoparticles
KR20070027438A (en) * 2005-09-06 2007-03-09 주식회사 엘지화학 Composite binder containing carbon nanotube and lithium secondary battery employing the same

Also Published As

Publication number Publication date
KR20110047404A (en) 2011-05-09

Similar Documents

Publication Publication Date Title
Alarifi Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads
Fang et al. Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization
Fang et al. Covalently linked polydopamine-modified boron nitride nanosheets/polyimide composite fibers with enhanced heat diffusion and mechanical behaviors
Wang et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
Kang et al. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
Choudhary et al. Polymer/carbon nanotube nanocomposites
Yu et al. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic–inorganic multilayer covalently grafted carbon nanotubes
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
Chen et al. Chemically functionalized multi-walled CNTs induced phase behaviors of poly (vinylidene fluoride) nanocomposites and its dielectric properties
KR101718489B1 (en) Graphene oxide-polyimide composite material and method for manufacturing the same
KR101151737B1 (en) Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite
Zotti et al. Polymer nanocomposites based on Graphite Nanoplatelets and amphiphilic graphene platelets
WO2005056645A9 (en) Method of forming nanocomposite materials
Kausar Polyamide-grafted-multi-walled carbon nanotube electrospun nanofibers/epoxy composites
KR101804577B1 (en) Carbon nanotube fibers and method of preparing the same
Aram et al. Functionalization of graphene nanosheets and its dispersion in PMMA/PEO blend: Thermal, electrical, morphological and rheological analyses
Yang et al. Realizing the full nanofiller enhancement in melt-spun fibers of poly (vinylidene fluoride)/carbon nanotube composites
KR102496995B1 (en) Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof
Kuk et al. Robust and Flexible Polyurethane Composite Nanofibers Incorporating Multi‐Walled Carbon Nanotubes Produced by Solution Blow Spinning
Choi et al. In situ grafting of polybutylene terephthalate onto multi-walled carbon nanotubes by melt extrusion, and characteristics of their composites with polybutylene terephthalate
KR20170001340A (en) Electrically Conductive Polyetherimide Nanofibers and Method for Manufacturing the same
JP2008166641A (en) Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
KR101919658B1 (en) Graphene/polymer composite fiber and the manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 8