KR101316935B1 - Film heater and manufacturing method of thereof - Google Patents

Film heater and manufacturing method of thereof Download PDF

Info

Publication number
KR101316935B1
KR101316935B1 KR1020120010021A KR20120010021A KR101316935B1 KR 101316935 B1 KR101316935 B1 KR 101316935B1 KR 1020120010021 A KR1020120010021 A KR 1020120010021A KR 20120010021 A KR20120010021 A KR 20120010021A KR 101316935 B1 KR101316935 B1 KR 101316935B1
Authority
KR
South Korea
Prior art keywords
heating element
planar heating
carbon
carbon material
carbon nanotubes
Prior art date
Application number
KR1020120010021A
Other languages
Korean (ko)
Other versions
KR20130088648A (en
Inventor
박영우
노동환
박현기
이영희
Original Assignee
주식회사 대유에이텍
성균관대학교산학협력단
주식회사 대유신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대유에이텍, 성균관대학교산학협력단, 주식회사 대유신소재 filed Critical 주식회사 대유에이텍
Priority to KR1020120010021A priority Critical patent/KR101316935B1/en
Publication of KR20130088648A publication Critical patent/KR20130088648A/en
Application granted granted Critical
Publication of KR101316935B1 publication Critical patent/KR101316935B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Abstract

본 발명은 탄소나노튜브를 이용한 면상발열체 및 이의 제조방법에 관한 것으로 좀 더 상세하게는 (a) 탄소재료를 산성 용액 하에서 초음파 처리하여 탄소재료에 기능기를 부착시키는 단계; 및 (b) 분산된 탄소재료를 고분자 화합물과 혼합시키는 단계를 포함하는 면상발열체의 제조 방법에 관한 것이다. 본 발명에 의하면 탄소나노튜브와 바인더 간의 적절한 혼합비율로 인하여 기존의 것보다 열효율이 높으며 저항 변화가 적은 면상발열체를 제공할 수 있다.The present invention relates to a planar heating element using carbon nanotubes and a method of manufacturing the same. More specifically, (a) attaching a functional group to the carbon material by ultrasonically treating the carbon material under an acidic solution; And (b) mixing the dispersed carbon material with a high molecular compound. According to the present invention, due to an appropriate mixing ratio between the carbon nanotubes and the binder, it is possible to provide a planar heating element having higher thermal efficiency and less resistance change than the conventional one.

Description

면상발열체 및 이의 제조방법{FILM HEATER AND MANUFACTURING METHOD OF THEREOF}Planar heating element and its manufacturing method {FILM HEATER AND MANUFACTURING METHOD OF THEREOF}

본 발명은 탄소나노튜브를 이용한 면상발열체 및 이의 제조방법에 관한 것이다.The present invention relates to a planar heating element using carbon nanotubes and a method of manufacturing the same.

일반적으로 면상 발열체는 통상의 니크롬선을 이용한 선상 발열체가 아닌, 면에서 발열하는 면상 발열체로서, 기존 선상 발열체와는 달리 전체의 면상에서 고른 발열이 발생하므로 발열효과가 높고 안전한 발열체이다. 상기 면상 발열체는 열전도가 높은 구리, 알루미늄, 철, 니켈, 흑연분말 등을 필름형태의 수지(RESIN) 등에 균일하게 분사 또는 인쇄 형성하거나, 또는 도전성이 있는 탄소, 흑연, 카본블랙 및 활성 탄소/섬유 등을 고분자 수지에 코팅시켜 사용하고 있다. 특히 탄소는 열과 내구성이 강하며 열전도가 좋고 열팽창계수가 낮은 가벼운 특징이 있고, 흑연은 금속 발열체를 에칭하는 것보다 제작이 쉽고 가격이 저렴하여 많이 이용되고 있다(한국공개특허 제 10-2009-0023263호; 한국등록특허 제 10-1028843호; 및 한국공개특허 제 10-2011-0042750호 참조).
In general, the planar heating element is not a linear heating element using a nichrome wire, but a planar heating element that generates heat in a plane, unlike the existing linear heating element, an even heating occurs in the entire plane, and thus a high heating effect and a safe heating element. The planar heating element is formed by uniformly spraying or printing copper, aluminum, iron, nickel, graphite powder, etc. having high thermal conductivity into a resin in a film form or the like, or conductive carbon, graphite, carbon black and activated carbon / fiber. Etc. are coated on a polymer resin and used. In particular, carbon is light and strong, has high thermal conductivity and low coefficient of thermal expansion, and graphite has been widely used because it is easier to manufacture and cheaper than etching a metal heating element (Korean Patent Publication No. 10-2009-0023263). Korean Patent No. 10-1028843; and Korean Patent Publication No. 10-2011-0042750).

최근에는 카본블랙 분말을 분산시킨 고분자 발열시트가 면상 발열체의 주종을 이루고 있으나, 상기 카본블랙 분말을 분산시킨 고분자 발열시트가 우수한 발열특성을 나타내기 위해서는 고분자 발열시트 내에서 카본블랙 분말들 간의 연속적인 접촉이 이루어져 높은 전기전도성이 확보되어야 한다. 그러나 카본의 분산 시, 입자 형상의 카본블랙 분말 간에 접촉이 어렵기 때문에 많은 양의 카본블랙을 분산시켜야 하고, 카본블랙 분말의 함량을 변화시킬 수 있는 범위가 제한 받게 된다. 즉 카본블랙은 50 중량% 이상 과량의 탄소입자를 첨가하여야만 원하는 저항과 발열효과를 얻을 수 있어, 이로 인해 성형의 어려움과 함께 기계적 강도가 약하여 제 기능을 발휘하는데 문제점이 있는가 하면, 내 수명에도 문제점이 있다. 또한 탄소나노튜브를 이용한 면상 발열체의 제조시 바인더(polymer)와 탄소나노튜브의 균일한 혼합이 어려웠고, 건조 과정에서 탄소나노튜브의 응집현상이 생기는 문제가 있었으며, 금속 물질을 이용한 발열체는 시간이 지남에 따라 대기중의 산소로 인하여 산화의 가능성이 있고, 열에너지를 주어지는 탄소발열체의 경우 산화의 위험성이 존재하게 된다.
Recently, the polymer heating sheet in which the carbon black powder is dispersed forms the predominant type of the planar heating element. However, in order to show the excellent heating characteristics, the polymer heating sheet in which the carbon black powder is dispersed is continuous. Contact should be made to ensure high electrical conductivity. However, when the carbon is dispersed, it is difficult to contact the particulate carbon black powder, so a large amount of carbon black must be dispersed, and the range in which the content of the carbon black powder can be changed is limited. In other words, carbon black must be added to the carbon particles in excess of 50% by weight or more to obtain the desired resistance and heat generation effect. As a result, the mechanical strength is weak and the mechanical strength is weak. There is this. In addition, it was difficult to uniformly mix the polymer and carbon nanotubes when manufacturing the planar heating element using carbon nanotubes, and there was a problem in that the carbon nanotubes were agglomerated during the drying process, and the heating element using the metal material over time. As a result, there is a possibility of oxidation due to oxygen in the atmosphere, and there is a risk of oxidation in the case of a carbon heating element that is given thermal energy.

이에 본 발명자들은 탄소나노튜브의 기능기를 부여하며, 바인더와의 혼합조절으로 기존의 면상 발열체에 비하여 고효율의 면상 발열체를 발명하기에 이르렀다.Accordingly, the present inventors have provided a functional group of carbon nanotubes, and have come to invent a planar heating element of higher efficiency than the conventional planar heating element by controlling mixing with a binder.

본 발명은 탄소재료를 기능화시키고, 고분자 화합물과 혼합시켜서 면상발열체의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a planar heating element by functionalizing a carbon material and mixing it with a high molecular compound.

또한, 기능화된 탄소재료에 결합된 고분자 화합물을 포함하는 면상발열체를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a planar heating element comprising a high molecular compound bonded to a functionalized carbon material.

상기 목적을 달성하기 위하여, 본 발명의 일 구체예에서 (a) 탄소재료를 산성 용액 하에서 초음파 처리하여 탄소재료의 기능기를 부착시키는 단계; 및 (b) 기능기가 부착된 탄소재료를 고분자 화합물과 혼합시키는 단계를 포함하는 면상발열체의 제조 방법을 제공한다. 또한 상기 (a)단계 이후에 탄소재료를 분쇄시키는 단계를 추가로 포함할 수 있고, 탄소재료는 이에 한정하지 않지만 흑연섬유, 탄소섬유, 탄소나노섬유, 탄소나노튜브로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 상기 탄소재료는 탄소나노튜브일 수 있으며, 상기 탄소나노튜브는 이에 한정하지 않지만 단일벽 탄소나노튜브(single walled carbon nanotube, SWNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWNT), 얇은 다중벽 탄소나노튜브(thin multi-walled carbon nanotube) 및 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWNT)으로 구성된 군에서 선택되는 어느 하나일 수 있으며, 상기 (b) 단계의 혼합은 고분자 화합물을 용제로 분산시켜서 혼합시키는 것을 특징으로 하며, 상기 탄소재료는 직경이 5 내지 20nm, 길이가 10㎛이하인 것을 특징으로 하며, 상기 고분자 화합물은 이에 한정하지 않지만 폴리비닐리덴 플루라이드(polyvinylidene fluoride), 폴리피롤(Polypyrrole), 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐덴플루오라이드, PVP(Polyvinylpyrrolidone) 및 PET(Polyethylene terephthalate)로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 산성 용액은 이에 한정하지 않지만 질산(HNO3)일 수 있으며, 상기 발열체 용액과 고분자 화합물의 비율은 1:0.5 내지 1:1.5일 수 있으며 상기 용제는 N-메틸피롤리돈(NMP)을 이용할 수 있다.
In order to achieve the above object, in one embodiment of the present invention (a) the step of sonicating the carbon material under an acidic solution to attach a functional group of the carbon material; And (b) it provides a method for producing a planar heating element comprising the step of mixing a carbon material with a functional group and a polymer compound. In addition, after the step (a) may further comprise the step of pulverizing the carbon material, the carbon material is not limited to any one selected from the group consisting of graphite fibers, carbon fibers, carbon nanofibers, carbon nanotubes The carbon material may be carbon nanotubes, and the carbon nanotubes may be, but are not limited to, single walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs). ), Thin multi-walled carbon nanotubes (multi-walled carbon nanotubes) and multi-walled carbon nanotubes (MWNT) may be any one selected from the group consisting of, the mixture of step (b) And dispersing the silver polymer compound with a solvent to mix the carbon material. The carbon material has a diameter of 5 to 20 nm and a length of 10 μm or less. Children compounds include, but are not limited to, polyvinylidene fluoride, polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylidene fluoride, polyvinylpyrrolidone (PVP) and PET ( Polyethylene terephthalate) may be any one selected from the group consisting of, but not limited to acidic solution may be nitric acid (HNO 3 ), the ratio of the heating element solution and the polymer compound may be 1: 0.5 to 1: 1.5 The solvent may be used N-methylpyrrolidone (NMP).

일 구체예에서 기능기가 부착된 탄소재료와 고분자 화합물을 포함하는 면상발열체를 제공한다. 상기 탄소재료는 분쇄된 것을 특징으로 하고, 이에 한정하지 않지만 흑연섬유, 탄소섬유, 탄소나노섬유 또는 탄소나노튜브일 수 있으며, 상기 탄소나노튜브는 이에 한정하지 않지만 단일벽 탄소나노튜브(single walled carbon nanotube, SWNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWNT), 얇은 다중벽 탄소나노튜브(thin multi-walled carbon nanotube) 및 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWNT)으로 구성된 군에서 선택되는 어느 하나일 수 있으며, 상기 탄소재료는 직경이 5 내지 20nm이고, 길이가 10㎛이하인 것을 특징으로 하며, 상기 고분자 화합물은 용제로 분산시킨 것을 특징으로 하며, 상기 고분자 화합물은 이에 한정하지 않지만 폴리비닐리덴 플루라이드(polyvinylidene fluoride, PVDF), 폴리피롤(Polypyrrole), 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐덴플루오라이드, PVP(Polyvinylpyrrolidone) 및 PET(Polyethylene terephthalate)로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 상기 탄소재료는 산성 용액하에서 초음파 처리된 것을 특징으로 하며, 상기 탄소재료 및 고분자 화합물의 비율은 1:0.5 내지 1:1.5인 것을 특징으로 하며, 상기 용제는 N-메틸피롤리돈을 이용하는 것을 특징으로 한다.
In one embodiment, a planar heating element including a carbon material and a polymer compound to which a functional group is attached is provided. The carbon material may be pulverized, but is not limited thereto, and may be graphite fiber, carbon fiber, carbon nanofiber, or carbon nanotube, and the carbon nanotube is not limited thereto, but single walled carbon nanotube (single walled carbon) nanotube, SWNT), double-walled carbon nanotube (DWNT), thin multi-walled carbon nanotube, and multi-walled carbon nanotube (MWNT) It may be any one selected from the group, the carbon material is characterized in that the diameter is 5 to 20nm, the length is less than 10㎛, the polymer compound is characterized in that the dispersion with a solvent, the polymer compound is limited thereto Polyvinylidene fluoride (PVDF), polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylamide Nitrile, polyvinylidene fluoride, PVP (Polyvinylpyrrolidone) and PET (Polyethylene terephthalate) may be any one selected from the group consisting of, the carbon material is characterized in that the ultrasonic treatment in an acidic solution, the carbon material and polymer The ratio of the compound is 1: 0.5 to 1: 1.5, characterized in that the solvent is characterized by using N-methylpyrrolidone.

발열량에 관한 식을 살펴보면, Q∝VIt , V=IR 이므로 Q∝I2Rt로 저항과 발열량은 반비례 관계로 저항이 낮을수록 열효율이 높아짐을 알 수 있다. 그러므로 면상발열체의 저항이 적은 값인 경우 열효율이 크다는 것을 알 수 있다.
Looking at the equation for the calorific value, Q, VIt, V = IR, so Q∝I 2 Rt is inversely proportional to the resistance and the calorific value, so the lower the resistance, the higher the thermal efficiency. Therefore, it can be seen that the thermal efficiency is large when the resistance of the planar heating element is small.

본 발명에서 탄소재료의 기능화를 유도하기 위하여 쓰는 산성 용액은 이에 한정하지 않지만 질산(HNO3), 염산(HCl) 및 왕수(HNO3:HCl=3:1)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
In the present invention, the acidic solution used to induce the functionalization of the carbon material is not limited thereto, but any one selected from the group consisting of nitric acid (HNO 3 ), hydrochloric acid (HCl) and aqua regia (HNO 3 : HCl = 3: 1) Can be.

본 발명에서 탄소재료를 70% HNO3 처리를 통하여 탄소나노튜브 포면의 기능기 부착을 유도하여 탄소나노튜브와 고분자화합물 간에 수소결합(H-H)을 이루어 탄소나노튜브의 응집현상과 발열체의 크렉(crack)발생 현상을 막을 수 있다.
In the present invention, the carbonaceous material is 70% HNO 3 Through treatment, induction of functional group adhesion of the carbon nanotube surface forms hydrogen bonds (HH) between the carbon nanotubes and the polymer compound, thereby preventing the agglomeration of the carbon nanotubes and the cracking of the heating element.

본 발명에서 용제로 쓰인 N-메틸피롤리돈은 이에 한정하지 않지만 DCE(Dichloroethene), 톨루엔(Toluene) 및 DMF(N,N-Dimethylformamide)으로 대체될 수 있다.
N-methylpyrrolidone used as a solvent in the present invention is not limited thereto, but may be replaced with DCE (Dichloroethene), toluene (Toluene) and DMF ( N, N -Dimethylformamide).

본 발명에서 면상발열체의 두께가 두꺼워질수록 저항감소율도 증가한다.
In the present invention, as the thickness of the planar heating element becomes thicker, the resistance reduction rate also increases.

본 발명에 의하면 탄소나노튜브와 바인더 간의 적절한 혼합비율로 인하여 기존의 것보다 열효율이 높으며 저항 변화가 적은 면상발열체를 제공할 수 있다.According to the present invention, due to an appropriate mixing ratio between the carbon nanotubes and the binder, it is possible to provide a planar heating element having higher thermal efficiency and less resistance change than the conventional one.

도 1은 탄소나노튜브:PVDF의 혼합비율 및 발열체의 두께와 저항의 관계를 나타내는 그래프이다.
도 2는 고분자화합물 종류에 따른 면상발열체의 저항을 나타내는 그래프이다.
1 is a graph showing the relationship between the mixing ratio of carbon nanotubes: PVDF and the thickness and resistance of the heating element.
2 is a graph showing the resistance of the planar heating element according to the polymer compound type.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실시예Example 1.  One. 면상발열체의Of the surface heating element 제조 Produce

탄소나노튜브와 고분자 화합물간에 결합을 유도하기 위하여 탄소나노튜브(CM95, diameter:5~20nm, length: ~10㎛)에 70%질산(HNO3)을 처리하였다. 산 처리한 탄소나노튜브는 4시간 동안 초음파 처리(350W, 40Hz) 후 필터링을 통해 중화시킨 후 70℃ 오븐에서 건조시켜 탄소나노튜브 외벽에 기능기를 부착시켰다.
In order to induce bonding between the carbon nanotubes and the polymer compound, 70% nitric acid (HNO 3 ) was treated on the carbon nanotubes (CM95, diameter: 5-20 nm, length: 10 μm). The acid treated carbon nanotubes were neutralized by filtering after 4 hours of sonication (350W, 40Hz) and dried in an oven at 70 ° C. to attach functional groups to the outer walls of the carbon nanotubes.

기능화된 탄소나노튜브 질량비 3 wt%를 NMP(N-Methyl-2-pyrrolidone, BIOTECH) 용매에 4시간 동안 초음파 처리(350W, 40Hz)하여 분산하였다. 탄소나노튜브의 질량비 3 wt% 및 초음파 처리시간 4시간 이하의 수치로는 목적하는 탄소나노튜브가 형성이 되지 않았다.
3 wt% functionalized carbon nanotube mass ratio was dispersed by sonication (350 W, 40 Hz) for 4 hours in NMP (N-Methyl-2-pyrrolidone, BIOTECH) solvent. The desired carbon nanotubes did not form at a mass ratio of 3 wt% of the carbon nanotubes and the ultrasonic treatment time of 4 hours or less.

분산된 탄소나노튜브 용액에서도 내부 응집이 생기는 경우가 발생하여 칼날 믹서를 통해 20분 동안 분쇄(200W, 60Hz)하였다. 이를 통하여 탄소나노튜브의 방향성(align)을 유도하여 저항을 낮추는 효과를 가지게 되었다.
Internal agglomeration also occurs in the dispersed carbon nanotube solution, which was pulverized (200 W, 60 Hz) for 20 minutes through a blade mixer. This has the effect of lowering the resistance by inducing the alignment (carbon) of the carbon nanotubes.

고분자 화합물로서 PVDF(Polyvinylidene fluoride)를 질량비 20wt%로 NMP용매에서 교반 (25~30℃, 300rpm, 24h)하여 용해시켰다.
PVDF (Polyvinylidene fluoride) as a polymer compound was dissolved by stirring (25-30 ° C., 300 rpm, 24 h) in an NMP solvent at a mass ratio of 20 wt%.

용해된 PVDF 용액을 상기 탄소나노튜브 용액과 1:1의 비율로 믹서기(paste mixer, 1,300rpm. 30min)를 이용하여 혼합시켰다.
The dissolved PVDF solution was mixed with the carbon nanotube solution at a ratio of 1: 1 using a paste mixer (1,300 rpm. 30 min).

상기의 공정을 거쳐 탄소나노튜브의 균일한 분산이 이루어진 페이스트를 형성시켜서 100㎛두께의 면상발열체를 제조하였다.
Through the above process, a paste in which carbon nanotubes were uniformly dispersed was formed to prepare a planar heating element having a thickness of 100 μm.

실시예Example 2. 혼합 조건에 따른 저항 측정 2. Measurement of resistance according to mixing conditions

2-1. 2-1. PVDFPVDF 와의 혼합 비율에 따른 저항 측정Resistance measurement by mixing ratio with

탄소나노튜브와 PVDF간의 혼합비율이 저항에 끼치는 영향을 알아보기 위하여 각각의 혼합비율을 하기 표 1과 같이 달리하여 실시예 1의 제조방법으로 같은 두께의 면상발열체를 제조한 후 저항을 측정하였다.In order to determine the effect of the mixing ratio between the carbon nanotubes and the PVDF on the resistance, the mixing ratio was changed as shown in Table 1 below to prepare a planar heating element having the same thickness by the manufacturing method of Example 1 and then the resistance was measured.

CNT:PVDFCNT: PVDF 저항값(ohm/sq)Resistance value (ohm / sq) 제조예Manufacturing example 1:11: 1 18.218.2 대조군1Control 1 1:0.51: 0.5 대조군2Control group 2 1:21: 2 150150 대조군3Control group 3 1:31: 3 543543 대조군4Control group 4 1:41: 4 95179517 대조군5Control group 5 1:101:10

표 1에서와 같이, PVDF의 비율이 증가할수록 저항 값도 증가하였고, 1:1 이하의 비율에서는 발열체 건조 시 크렉(crack)이 발생 현상이 증가하여 저항 측정이 불가능하였으며 1:10 비율에서는 저항이 절연체 수준으로 증가함을 알 수 있었다. 또한, 발열체의 형성 두께에 따라 저항 감소를 이룰 수 있었다(도 1참고).
As shown in Table 1, the resistance value also increased as the ratio of PVDF increased, and cracks occurred during drying of the heating element at a ratio of 1: 1 or less, which made resistance measurement impossible. It was found to increase to insulator levels. In addition, the resistance was reduced according to the thickness of the heating element (see FIG. 1).

2-2. 고분자 화합물 종류에 따른 저항 측정2-2. Resistance measurement by polymer type

고분자 화합물로서 PVDF의 효능을 알아보기 위해 표 2와 같이 고분자 화합물의 종류를 달리하여 실시예 1의 방법으로 같은 두께의 면상발열체를 제조한 후 저항 값을 측정하였다.In order to determine the efficacy of PVDF as a high molecular compound, as shown in Table 2, the planar heating element having the same thickness was manufactured by measuring the resistance value after the same method as in Example 1.

고분자 화합물Polymer compound 저항값(ohm/sq)Resistance value (ohm / sq) PVDFPVDF 18.218.2 PVP+PolypyrrolePVP + Polypyrrole 2121 PVPPVP 5959 PDMSPDMS

표 2에서와 같이 PDMS(polydimethylsiloxane)의 경우를 제외하고는 상기 고분자 화합물이 결합된 경우에 저항값이 현저하게 낮음을 알 수 있었다(도 2 참고).
Except in the case of polydimethylsiloxane (PDMS) as shown in Table 2, it was found that the resistance value was significantly lower when the polymer compound was combined (see FIG. 2).

실시예3Example 3 . 최고 온도 및 소비전력 측정. Maximum temperature and power consumption measurement

3-1. 최고 온도 측정3-1. Temperature measurement

실시예 1에서 제조된 면상발열체의 열효율을 알아보기 위하여 최고 온도를 측정하였으며 대조군으로 탄소나노튜브 발열체를 카본블랙 발열체로 교체하여 최고 온도를 측정하였다(표 3).The maximum temperature was measured to determine the thermal efficiency of the planar heating element prepared in Example 1, and the maximum temperature was measured by replacing the carbon nanotube heating element with the carbon black heating element as a control (Table 3).

발열체 종류Heating element type 최고 온도Highest temperature 탄소나노튜브(CNT)Carbon Nanotubes (CNT) 100℃100 ℃ 카본블랙(carbon black)Carbon black 39℃39 ℃

표 3에서 알 수 있듯이 실시예 1에서 제조된 면상발열체의 최고 온도가 카본블랙 발열체로 형성된 면상발열체보다 60℃ 이상 높은 것으로 나타났다.
As can be seen from Table 3, the maximum temperature of the planar heating element prepared in Example 1 was found to be 60 ° C. or more higher than the planar heating element formed of the carbon black heating element.

3-2. 사용 소비전력 측정3-2. Power consumption measurement

실시예 1에서 제조된 면상발열체의 사용 소비전력을 알아보기 위하여 12V의 전압 인가 시의 소비전력을 측정하였으며 대조군으로 탄소나노튜브 발열체를 카본블랙 발열체로 교체하여 같은 전압에서 소비전력을 측정하였다(표 4). In order to determine the power consumption of the planar heating element manufactured in Example 1, the power consumption when the voltage of 12V was applied was measured and the carbon nanotube heating element was replaced with a carbon black heating element as a control to measure the power consumption at the same voltage (Table 4).

발열체 종류Heating element type 소비전력Power Consumption 탄소나노튜브(CNT)Carbon Nanotubes (CNT) 7.2W7.2 W 카본블랙(carbon black)Carbon black 20W20W

상기의 최고온도 및 소비전력 측정을 통하여 탄소나노튜브 발열체의 소비전력이 대조군에 비하여 적음에도 발열효율(최고온도)은 더 높은 것을 알 수 있었다.
Measurement of the maximum temperature and power consumption showed that the heating efficiency (highest temperature) was higher even though the power consumption of the carbon nanotube heating element was smaller than that of the control group.

지금까지 예시적인 실시 태양을 참조하여 본 발명을 기술하여 왔지만, 본 발명의 속하는 기술 분야의 당업자는 본 발명의 범주를 벗어나지 않고서도 다양한 변화를 실시할 수 있으며 그의 요소들을 등가물로 대체할 수 있음을 알 수 있을 것이다. 또한, 본 발명의 본질적인 범주를 벗어나지 않고서도 많은 변형을 실시하여 특정 상황 및 재료를 본 발명의 교시내용에 채용할 수 있다. 따라서, 본 발명이 본 발명을 실시하는데 계획된 최상의 양식으로서 개시된 특정 실시 태양으로 국한되는 것이 아니며, 본 발명이 첨부된 특허청구의 범위에 속하는 모든 실시 태양을 포함하는 것으로 해석되어야 한다.While the present invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. You will know. In addition, many modifications may be made to adapt a particular situation and material to the teachings of the invention without departing from the essential scope thereof. Accordingly, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention be construed as including all embodiments falling within the scope of the appended claims.

Claims (20)

(a) 탄소재료를 산성 용액 하에서 초음파 처리하여 탄소재료에 기능기를 부착시키는 단계; 및 (b) 기능기가 부착된 탄소재료를 고분자 화합물과 혼합시키는 단계를 포함하고,
상기 탄소재료 및 고분자 화합물의 비율은 1:0.5 내지 1:1.5인 것을 특징으로 하는 면상발열체의 제조방법.
(a) sonicating the carbon material under an acidic solution to attach a functional group to the carbon material; And (b) mixing a carbon material having a functional group with the polymer compound,
Method for producing a planar heating element, characterized in that the ratio of the carbon material and the polymer compound is 1: 0.5 to 1: 1.5.
제 1항에 있어서,
(a) 단계 이후에 탄소재료를 분쇄시키는 단계를 추가로 포함하는 것을 특징으로 하는 면상발열체의 제조방법.
The method of claim 1,
(A) after the step of pulverizing the carbon material further comprising the step of producing a planar heating element.
제 1항에 있어서,
탄소재료는 흑연섬유, 탄소섬유, 탄소나노섬유 또는 탄소나노튜브임을 특징으로 하는 면상발열체의 제조방법.
The method of claim 1,
Carbon material is a graphite fiber, carbon fiber, carbon nanofibers or carbon nanotubes manufacturing method of the planar heating element, characterized in that the carbon nanotubes.
제 1항에 있어서,
(b) 단계의 혼합은 고분자 화합물을 용제로 분산시켜서 혼합시키는 것을 특징으로 하는 면상발열체의 제조방법.
The method of claim 1,
(B) mixing the step of producing a planar heating element, characterized in that the polymer compound is dispersed by mixing with a solvent.
제 3항에 있어서,
탄소나노튜브는 단일벽 탄소나노튜브(single walled carbon nanotube, SWNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWNT), 얇은 다중벽 탄소나노튜브(thin multi-walled carbon nanotube) 및 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWNT)으로 구성된 군에서 선택되는 어느 하나임을 특징으로 하는 면상발열체의 제조방법.
The method of claim 3, wherein
Carbon nanotubes include single walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), thin multi-walled carbon nanotubes, and multiwall carbons. Method for producing a planar heating element, characterized in that any one selected from the group consisting of nano-tubes (multi-walled carbon nanotube, MWNT).
제 2항에 있어서,
탄소재료는 직경이 5 내지 20nm이고, 길이가 10㎛이하인 것을 특징으로 하는 면상발열체의 제조방법.
The method of claim 2,
A carbon material has a diameter of 5 to 20nm, the length of the planar heating element, characterized in that less than 10㎛.
제 1항에 있어서,
고분자 화합물은 폴리비닐리덴 플루라이드(polyvinylidene fluoride, PVDF), 폴리피롤(Polypyrrole), 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐덴플루오라이드, PVP(Polyvinylpyrrolidone) 및 PET(Polyethylene terephthalate)로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 면상발열체의 제조방법.
The method of claim 1,
Polymer compounds include polyvinylidene fluoride (PVDF), polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylidene fluoride, polyvinylpyrrolidone (PVP) and polyethylene terephthalate (PET) Method for producing a planar heating element, characterized in that any one selected from the group consisting of.
제 1항에 있어서,
산성 용액은 질산(HNO3)인 것을 특징으로 하는 면상발열체의 제조방법.
The method of claim 1,
Acidic solution is nitric acid (HNO 3 ) The method of producing a planar heating element, characterized in that.
삭제delete 제 4항에 있어서,
상기 용제는 N-메틸피롤리돈을 이용하는 것을 특징으로 하는 면상발열체의 제조방법.
5. The method of claim 4,
The solvent is a method for producing a planar heating element, characterized in that using N-methylpyrrolidone.
기능기가 부착된 탄소재료와 고분자 화합물을 포함하고, 상기 탄소재료 및 고분자 화합물의 비율은 1:0.5 내지 1:1.5인 것을 특징으로 하는 면상발열체.A planar heating element comprising a carbon material and a polymer compound attached with a functional group, wherein the ratio of the carbon material and the polymer compound is 1: 0.5 to 1: 1.5. 제 11항에 있어서,
탄소재료는 분쇄된 것을 특징으로 하는 면상발열체.
12. The method of claim 11,
The planar heating element, characterized in that the carbon material is pulverized.
제 11항에 있어서,
탄소재료는 흑연섬유, 탄소섬유, 탄소나노섬유 또는 탄소나노튜브임을 특징으로 하는 면상발열체.
12. The method of claim 11,
Carbon material is a planar heating element characterized in that the graphite fiber, carbon fiber, carbon nanofibers or carbon nanotubes.
제 11항에 있어서,
고분자 화합물은 용제로 분산시킨 것을 특징으로 하는 면상발열체.
12. The method of claim 11,
A planar heating element, wherein the high molecular compound is dispersed in a solvent.
제 13항에 있어서,
탄소나노튜브는 단일벽 탄소나노튜브(single walled carbon nanotube, SWNT), 이중벽 탄소나노튜브(double-walled carbon nanotube, DWNT), 얇은 다중벽 탄소나노튜브(thin multi-walled carbon nanotube) 및 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWNT)으로 구성된 군에서 선택되는 어느 하나임을 특징으로 하는 면상발열체.
The method of claim 13,
Carbon nanotubes include single walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), thin multi-walled carbon nanotubes, and multiwall carbons. Planar heating element, characterized in that any one selected from the group consisting of nano-tube (multi-walled carbon nanotube, MWNT).
제 12항에 있어서,
탄소재료는 직경이 5 내지 20nm이고, 길이가 10㎛이하인 것을 특징으로 하는 면상발열체.
13. The method of claim 12,
The carbon material has a diameter of 5 to 20nm, the planar heating element, characterized in that the length is 10㎛ or less.
제 11항에 있어서,
고분자 화합물은 폴리비닐리덴 플루라이드(polyvinylidene fluoride, PVDF), 폴리피롤(Polypyrrole), 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐덴플루오라이드, PVP(Polyvinylpyrrolidone) 및 PET(Polyethylene terephthalate)로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 면상발열체.
12. The method of claim 11,
Polymer compounds include polyvinylidene fluoride (PVDF), polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylidene fluoride, polyvinylpyrrolidone (PVP) and polyethylene terephthalate (PET) Planar heating element, characterized in that any one selected from the group consisting of.
제 11항에 있어서,
탄소재료는 산성 용액하에서 초음파 처리된 것을 특징으로 하는 면상발열체.
12. The method of claim 11,
The planar heating element characterized in that the carbon material is ultrasonically treated in an acidic solution.
삭제delete 제 14항에 있어서,
상기 용제는 N-메틸피롤리돈을 이용하는 것을 특징으로 하는 면상발열체.
The method of claim 14,
The solvent is a planar heating element, characterized in that using N-methylpyrrolidone.
KR1020120010021A 2012-01-31 2012-01-31 Film heater and manufacturing method of thereof KR101316935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120010021A KR101316935B1 (en) 2012-01-31 2012-01-31 Film heater and manufacturing method of thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120010021A KR101316935B1 (en) 2012-01-31 2012-01-31 Film heater and manufacturing method of thereof

Publications (2)

Publication Number Publication Date
KR20130088648A KR20130088648A (en) 2013-08-08
KR101316935B1 true KR101316935B1 (en) 2013-10-11

Family

ID=49214947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120010021A KR101316935B1 (en) 2012-01-31 2012-01-31 Film heater and manufacturing method of thereof

Country Status (1)

Country Link
KR (1) KR101316935B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072786A (en) 2017-12-18 2019-06-26 한국세라믹기술원 Manufacturing method of ceramic thin film and device thereof
US10652957B2 (en) 2015-12-09 2020-05-12 Samsung Electronics Co., Ltd. Heating element including nano-material filler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436594B1 (en) * 2013-08-06 2014-09-01 주식회사 대유신소재 Film heater and manufacturing method of thereof
KR101639600B1 (en) * 2014-09-16 2016-07-14 영진기술 주식회사 High conductive Paste composition and producing Method thereof using high temperature heat treatment
KR101694202B1 (en) * 2015-05-14 2017-01-09 주식회사 대화알로이테크 Portable heater
KR101698841B1 (en) * 2015-05-19 2017-01-23 주식회사 대화알로이테크 Drying device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663716B1 (en) * 2005-12-31 2007-01-03 성균관대학교산학협력단 Method for homogeneously dispersing carbon nanotubes in liquid crystal material and liquid crystal material manufactred by the same
KR20090021056A (en) * 2007-08-24 2009-02-27 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
KR20110047404A (en) * 2009-10-30 2011-05-09 인하대학교 산학협력단 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite
KR20110067220A (en) * 2009-12-14 2011-06-22 주식회사 케이디 Method for manufacturing of sheet type heating element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663716B1 (en) * 2005-12-31 2007-01-03 성균관대학교산학협력단 Method for homogeneously dispersing carbon nanotubes in liquid crystal material and liquid crystal material manufactred by the same
KR20090021056A (en) * 2007-08-24 2009-02-27 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
KR20110047404A (en) * 2009-10-30 2011-05-09 인하대학교 산학협력단 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite
KR20110067220A (en) * 2009-12-14 2011-06-22 주식회사 케이디 Method for manufacturing of sheet type heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10652957B2 (en) 2015-12-09 2020-05-12 Samsung Electronics Co., Ltd. Heating element including nano-material filler
KR20190072786A (en) 2017-12-18 2019-06-26 한국세라믹기술원 Manufacturing method of ceramic thin film and device thereof

Also Published As

Publication number Publication date
KR20130088648A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
KR101316935B1 (en) Film heater and manufacturing method of thereof
Zhang et al. Weft‐knitted fabric for a highly stretchable and low‐voltage wearable heater
Ra et al. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper
Erden et al. High-performance thermoelectric materials based on ternary TiO 2/CNT/PANI composites
KR20140138577A (en) Dynamic thermal interface material
KR102166230B1 (en) Conductive filler, method for producing same, conductive paste and method for producing conductive paste
KR101436594B1 (en) Film heater and manufacturing method of thereof
CN107055521A (en) The method and the graphene microballoon of prepare with scale height rule spherical graphite alkene microballoon
KR20130122327A (en) Manufacturing method of calorific pad and thereby heating seat
Lei et al. Flexible high-temperature sheet-type electric heaters using m-aramid/functionalized MWCNTs hybrid nanofiber composites
KR101777691B1 (en) Heating composition having graphene oxide and heater using the same
Kausar Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond
KR101639600B1 (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
Liang et al. Effects of multiwalled carbon nanotubes and reduced graphene oxide of different proportions on the electrothermal properties of cationic cellulose nanofibril-based composites
KR101794079B1 (en) Heating element manufactured using carbon nanotube and polymer
TWI448424B (en) Method for making carbon nanotube composite
JP2016191014A (en) Carbon nanotube-containing functional porous body
Sedaghat et al. Modification of conductive polyaniline with carbon nanomaterials
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
KR101931254B1 (en) Planar heater structure containing carbon
CN108504095A (en) A kind of preparation method of novel high heat-conductivity conducting graphite composite film
Orhun et al. Design of dual‐conductive polyacrylonitrile‐based composite nanofiber: Synergistic effect of copper nanoparticles decorated‐boron nitride and polyaniline
CN113105657A (en) High-orientation and high-power graphene heating film and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171113

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 6