KR101144279B1 - Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it - Google Patents

Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it Download PDF

Info

Publication number
KR101144279B1
KR101144279B1 KR1020100060167A KR20100060167A KR101144279B1 KR 101144279 B1 KR101144279 B1 KR 101144279B1 KR 1020100060167 A KR1020100060167 A KR 1020100060167A KR 20100060167 A KR20100060167 A KR 20100060167A KR 101144279 B1 KR101144279 B1 KR 101144279B1
Authority
KR
South Korea
Prior art keywords
bacillus
fish
germanium
bacillus subtilis
feed
Prior art date
Application number
KR1020100060167A
Other languages
Korean (ko)
Other versions
KR20110140006A (en
Inventor
정철연
송영보
이영돈
Original Assignee
(주)창조바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)창조바이오텍 filed Critical (주)창조바이오텍
Priority to KR1020100060167A priority Critical patent/KR101144279B1/en
Publication of KR20110140006A publication Critical patent/KR20110140006A/en
Application granted granted Critical
Publication of KR101144279B1 publication Critical patent/KR101144279B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Abstract

본 발명은 신규미생물 바실러스 서브틸러스 CJ1021를 포함하고 있는 어류용 사료첨가제에 관한 것이다.
본 발명의 어류용 사료첨가제는 게르마늄 축적능이 높은 신규미생물 바실러스 서브틸러스 CJ1021균주(Bacillus subtilis CJ1021, 수탁번호 : KCTC 11547BP)를 유효성분으로 포함하여 구성된다.
본 발명에 의해, 게르마늄 축적능이 높은 신규미생물 바실러스 서브틸러스 CJ1021을 포함하고 있는 어류용 사료첨가제가 제공되며, 이를 이용해 어류를 생산 할 시 미네랄이 축적된 어류를 생산할 수 있게 된다.
The present invention relates to a feed additive for fish containing a novel microbial Bacillus subtilis C # 1021.
The feed additive for fish of the present invention is a novel microbial Bacillus subtilis CJ1021 strain having high germanium accumulation capacity ( Bacillus subtilis CJ1021, Accession No .: KCTC 11547BP) as an active ingredient.
According to the present invention, there is provided a fish feed additive comprising a novel microbial Bacillus subtilis CJ1021 having a high germanium accumulation capacity, by which it is possible to produce fish in which minerals are accumulated when producing fish.

Description

신규미생물 바실러스 서브틸러스 CJ1021 및 이를 포함하고 있는 어류용 사료첨가제{NOVEL MICROORGANISM BACILLUS SUBTILIS CJ1021 AND ADDITIVES FOR FISH FEEDS CONTAINING IT}NOVEL MICROORGANISM BACILLUS SUBTILIS CJ1021 AND ADDITIVES FOR FISH FEEDS CONTAINING IT}

본 발명은 신규미생물 바실러스 서브틸러스 CJ1021 및 이를 포함하고 있는 어류용 사료첨가제에 관한 것이다.The present invention relates to a novel microbial Bacillus subtilis C1022 and a feed additive for fish containing the same.

어류의 사료효율을 개선시키기 위하여 사용되는 사료첨가제로는 항생제, 비타민제, 아미노산 공급제, 광물질 공급제, 효소제, 호르몬제 등이 있다. Feed additives used to improve feed efficiency of fish include antibiotics, vitamins, amino acid feed, mineral feed, enzymes and hormones.

또한, 바실러스(bacillus)와 같은 미생물의 급여는 장내 미생물 균총의 균형을 유지하고, 병원성 대장균의 증식을 억제하며, 돌연변이 유발요인 및 발암물질억제, 면역반응 증진 및 콜레스테롤 수준의 감소효과가 있다고 보고되었다. In addition, the feeding of microorganisms such as bacillus has been reported to balance the intestinal microflora, inhibit the growth of pathogenic Escherichia coli, inhibit mutagen and carcinogens, enhance immune responses, and reduce cholesterol levels. .

게르마늄(Germanium, '이하, Ge'이라 명명한다.)의 의학적 효능이 처음 발견된 것은 1930년 프랑스와 스페인의 국경인 Lourdes의 샘물이 여러 가지 질병치료에 큰 효과가 있다는 보고서가 발표된 이후 계속된 샘물의 성분분석결과 게르마늄의 함량이 매우 높다는 사실이 알려지면서부터이다.The medical benefits of Germanium (hereinafter referred to as Ge) were first discovered after the publication of a report in 1930 that the springs of Lourdes, the French-Spanish border, were very effective in treating various diseases. The analysis of the spring waters revealed that the germanium content was very high.

그 후 체내에 잔류하지 않고 약리작용을 할 수 있는 유기게르마늄에 대한 연구가 진행되어 인삼, 마늘, 영지, 명일엽 등과 같은 보양, 강장의 작용이 있는 약초에 비교적 많은 양의 유기게르마늄이 함유되어 있다는 것이 밝혀졌고, 유기게르마늄을 암, 간염, 류마티스 관절염, 피부질환, 노화 등과 같은 난치성 성인병 치료에 이용하려는 연구가 계속되고 있다. After that, research on organic germanium that can act pharmacologically without remaining in the body has been carried out. Research into the use of organo germanium in the treatment of refractory adult diseases such as cancer, hepatitis, rheumatoid arthritis, skin diseases, and aging is ongoing.

지금까지 알려진 생체 내에서 유기게르마늄의 역할은 세포내 산소공급증진(1), 혈액의 정화(2), 체내중금속의 배출촉진(3), NK세포와 대식세포(macrophage)의 활성화(4), 인터페론 분비 유도(5), cytotoxic T-Lymphocyte의 생산 조절(Kobayashi 1992) 등이다. The role of organogermanium in the living body known to date is to promote intracellular oxygen supply (1), to purify blood (2), to promote the release of heavy metals in the body (3), to activate NK cells and macrophage (4), Induction of interferon secretion (5) and regulation of cytotoxic T-Lymphocyte production (Kobayashi 1992).

그동안 고농도의 안전한 유기게르마늄을 식물체를 이용하지 않고, 미생물을 이용해서 짧은 시간에 대량생산 하려는 노력을 경주해 왔다.In the meantime, efforts have been made to mass-produce high concentrations of safe organic germanium in a short time using microorganisms without using plants.

그 결과, Nobuhiro등은 게르마늄을 함유하는 효모의 생산가능성을 제시하였고, Slawson등과 Hung 등은 게르마늄이 미생물에 대하여 독성을 보이지만 미생물의 균체 내에 energy independent passive binding 또는 energy dependent mechanism 모두에 의해서 축적될 수 있음을 발표하였다. As a result, Nobuhiro et al. Proposed the possibility of producing yeast containing germanium, and Slawson et al. Hung et al. Show that germanium is toxic to microorganisms but can be accumulated by both energy independent passive binding or energy dependent mechanisms in microbial cells. Announced.

미생물 cell 내의 유기게르마늄의 축적은 Klapcinska등이 Pseudomonas putida cell내에서 게르마늄의 축적은 주로 soluble fraction에서 이루어지고, 이중 대다수가 nucleic acid와 protein에 결합되어 있다는 것을 전자현미경 사진 분석을 통해 확인하였다. The accumulation of organic germanium in the microbial cell was confirmed by electron microscopic analysis that Klapcinska et al. In the Pseudomonas putida cell, the germanium accumulation mainly in the soluble fraction, the majority of which is bound to nucleic acid and protein.

미생물균체를 이용하는 연구는 SCP (single-cell-protein)용 효모를 중심으로 이루어졌고, 이 효모를 이용한 유기게르마늄 생산가능성은 VanDyke등이 배양액의 GeO2 농도가 1.0 mg/ml에 이르렀을 때 Saccharomyces cerevisiae의 생장이 완전히 저해됨과 미생물이 고농도 GeO2 에 적응할 수 있음을 보고하면서 시작되었다. The study using microbial cells was focused on yeast for SCP (single-cell-protein), and the possibility of organo germanium production using this yeast was confirmed by VanDyke et al. When Saccharomyces concentration of GeO 2 in culture medium reached 1.0 mg / ml It began by reporting that the growth of cerevisiae is completely inhibited and that microorganisms can adapt to high concentrations of GeO 2 .

Wei는 효모가 고농도의 생게르마늄을 흡수할 수 있으며 효모균체 내에 축적된 게르마늄의 95% 이상이 유기게르마늄임을 밝히고, 효모가 무기게르마늄을 유기게르마늄으로 전환하는 능력이 있음을 보고하였다. Wei found that yeast can absorb high concentrations of raw germanium, and that more than 95% of the germanium accumulated in yeast cells is organic germanium, and that yeast has the ability to convert inorganic germanium to organic germanium.

그러나, 현재 이러한 게르마늄의 축적능이 높은 미생물 및 이를 포함하고 있는 어류용 사료첨가제에 대해서는 보고된 바가 없다.However, there are currently no reports on microorganisms having high accumulation capacity of germanium and feed additives for fish containing them.

본 발명에서는 상기의 문제점을 해결하기 위해, 게르마늄 축적능이 높은 신규미생물을 제공하려는 목적이 있다.In the present invention, in order to solve the above problems, there is an object to provide a novel microorganism with a high germanium accumulation capacity.

또한, 상기 신규미생물을 포함하고 있는 어류용 사료첨가제를 제공하여 미네랄이 축적된 어류를 생산하려는 목적도 있다.In addition, there is also an object to produce fish accumulated minerals by providing a feed additive for fish containing the new microorganisms.

본 발명의 어류용 사료첨가제는 게르마늄 축적능이 높은 신규미생물 바실러스 서브틸러스 CJ1021균주(Bacillus subtilis CJ1021, 수탁번호 : KCTC 11547BP)를 유효성분으로 포함하여 구성된다.The feed additive for fish of the present invention is a novel microbial Bacillus subtilis CJ1021 strain having high germanium accumulation capacity ( Bacillus subtilis CJ1021, Accession No .: KCTC 11547BP) as an active ingredient.

또한, 상기 신규미생물 바실러스 서브틸러스 CJ1021균주는 미생물의 균체, 농축물, 배양액 또는 그 건조물로 이루어진다.In addition, the novel microbial Bacillus subtilis CJ1021 strain is composed of microorganism cells, concentrates, culture or dried products thereof.

또한, 상기 신규미생물 바실러스 서브틸러스 CJ1021균주는 유기 게르마늄이 첨가된 배지에 접종한 후, 배양되어 구성된다.In addition, the novel microbial Bacillus subtilis CJ1021 strain is inoculated in a medium to which organic germanium is added, and then cultured.

본 발명에 의해, 게르마늄 축적능이 높은 신규미생물 바실러스 서브틸러스 CJ1021 및 이를 포함하고 있는 어류용 사료첨가제가 제공되며, 이를 이용해 어류를 생산할 시 미네랄이 축적된 어류를 생산할 수 있게 된다.According to the present invention, there is provided a novel microbial Bacillus subtilis CJ1021 having a high germanium accumulation capacity and a feed additive for fish containing the same, and when producing the fish, it is possible to produce fish in which minerals are accumulated.

도 1은 기능성 미네랄인 게르마늄의 생산과정 모식도.
도 2는 사육수조내 수온(Water temperature) 및 염분농도(Salinity) 변화를 나타낸 그래프
도 3은 사육수조내 용존산소(DO) 및 pH변화
도 4는 기능성 미네랄을 넙치에 공급하였을 때 소화기관내 배상세포 변화를 나타낸 그래프.
1 is a schematic diagram illustrating the production process of germanium which is a functional mineral.
Figure 2 is a graph showing the change in water temperature (Salinity) in the breeding water tank (Water temperature)
3 is dissolved oxygen (DO) and pH change in breeding tank
Figure 4 is a graph showing the changes in goblet cells in the digestive tract when supplied to the flounder functional minerals.

본 발명에 대하여 보다 상세히 설명하면 다음과 같다.When described in more detail with respect to the present invention.

본 발명에서는 bacillus를 이용하여 유기게르마늄을 생산하기 위해서 bacillus배지에 훈양(adaption)시킨 후 발효 조건을 최적화하여 유기게르마늄을 고농도로 함유한 bacillus를 생산하는 실험을 실시하였다. In the present invention, it was carried out an experiment that after using a bacillus which hunyang (adaption) the bacillus medium in order to produce an organic germanium by optimizing the fermentation conditions producing bacillus containing an organic germanium in high concentration.

그리고 이 생산된 유기게르마늄(Ge-bacillus)을 어류용 사료첨가제에 첨가하여 넙치에 축적되는지 여부와 그로인한 성장과 그 외 어류에 미치는 영향을 조사하였으며, 이를 통해 기능성 미네랄이 축적된 넙치를 생산하고자 실험을 진행하였다.
In addition, the produced organic germanium (Ge- bacillus ) was added to fish feed additives to investigate whether it was accumulated on the flounder and its effects on the growth and other fish. The experiment was conducted.

여기서, 미생물에 의한 금속의 축적은 아래의 3가지 메카니즘에 의해 이루어진다.Here, the accumulation of metal by microorganisms is achieved by the following three mechanisms.

1) Metabolism-independent binding or adsorption1) Metabolism-independent binding or adsorption

세포외 다당류, capsule, 점액층에서 빠르게 일어난다. It occurs rapidly in extracellular polysaccharides, capsules, and mucus layers.

박테리아의 세포벽과 envelops, 조류와 이스트, 곰팡이의 세포벽이 금속량의 증가로 인해 유발되는 하전된 그룹(group)과 결합하는 금속흡착제로 작용한다. Bacterial cell walls, envelops, algae, yeast, and fungal cell walls act as metal adsorbents that bind to charged groups caused by increased metal levels.

이 과정은 pH, ion competition과 같은 환경 인자에 영향을 받는다. This process is affected by environmental factors such as pH and ion competition.

2) Metabolism-dependent intracellular uptake2) Metabolism-dependent intracellular uptake

Metabolism-dependent intracellular uptake는 낮은 온도, metabolic inhibitor, 에너지원의 고갈 등에 의해 저해된다. Metabolism-dependent intracellular uptake is inhibited by low temperatures, metabolic inhibitors, and depletion of energy sources.

금속 uptake 속도는 세포의 physiological state, nature 와 growth medium의 환경인자의 조성 등에 영향을 받는다. The rate of metal uptake is influenced by the physiological state of the cell, the nature and the composition of environmental factors in the growth medium.

3) Ion-binding siderphores 과 유기질(organic substance)을 가지는 메탈(metals)의 공동수송(cotransport)
3) Cotransport of metals with ion-binding siderphores and organic substances

위의 3가지 금속 축적 시스템을 참조로 하여 본 발명에서는 우선 토양, 청국장, 누룩 등에서 bacillus 균주를 분리한 후 축적하고자하는 금속을 배양액에 첨가하여 훈양을 실시하였다. In the present invention with reference to the above three metal accumulation system, the bacillus strains were first isolated from soil, Cheonggukjang, Nuruk, and the like, and metals to accumulate were added to the culture solution, followed by culturing.

그 과정을 통해 게르마늄을 잘 축적하는 균주를 선발하였다. Through this process, strains that accumulate well germanium were selected.

그 후 배지 최적화를 위해 RSM (response surface method)를 사용하여 탄소원과 질소원의 최적화를 실시하였고 추가로 pH와 배양온도, 미량원소의 최적화 실시하였다. Afterwards, the optimization of the carbon and nitrogen sources was carried out using RSM (response surface method) to optimize the medium, and further optimization of pH, incubation temperature and trace elements.

그 후 실제 대량 배양에서는 에너지 고갈을 방지하기 위해 포도당을 첨가하였으며 카테콜(catechol)을 배지에 첨가하여 Ge축적에 미치는 영향을 조사하였다
Then, in the actual mass culture, glucose was added to prevent energy depletion, and catechol was added to the medium to investigate the effect on Ge accumulation.

이하, 본 발명에 대하여 실시예를 통하여 상세히 설명하나, 이들이 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but these are not intended to limit the scope of the present invention.

<실시예 1 > 균주 스크리닝화(screening)Example 1 Strain Screening

1. 실험방법1. Experimental Method

균주 분리를 위하여 청국장, 토양, 누룩에서 bacillus균주를 분리하였다. The bacillus strain was isolated from soybean, soil, yeast for strains.

시중에서 구매한 청국장에서 균주를 분리하였다. Strains were isolated from commercially purchased Cheonggukjang.

2 g의 청국장에 18 ml의 증류수를 첨가한 후 믹서기(mixer)로 분쇄한 후 배지에 계열희석(serial dilution)으로 희석하였다. 18 ml of distilled water was added to 2 g of Cheonggukjang, pulverized with a mixer, and diluted with serial dilution in the medium.

bacillus는 LB agar (beef extract 3.0 g, peptone 5.0 g, agar 15.0 g, distilled water 1.0 L, pH 6.8)에 도말 35 ℃에서 배양 후 분리하였다. The bacillus was isolated after incubation at 35 ° C. in LB agar (beef extract 3.0 g, peptone 5.0 g, agar 15.0 g, distilled water 1.0 L, pH 6.8).

누룩은 시중에 판매되고 있는 누룩을 구매하여 2g의 누룩에 18ml의 증류수를 첨가한 후 mixer기로 분쇄한 후 배지에 serial dilution으로 희석하였다. Nuruk was purchased from commercially available Nuruk, and 2 g of Nuruk was added to 18 ml of distilled water, pulverized with a mixer, and diluted with serial dilution.

bacillus는 LB agar (beef extract 3.0 g, peptone 5.0 g, agar 15.0 g, distilled water 1.0 L, pH 6.8)에 도말 35℃에서 배양 후 분리하였다. The bacillus was isolated after incubation at 35 ° C. in LB agar (beef extract 3.0 g, peptone 5.0 g, agar 15.0 g, distilled water 1.0 L, pH 6.8).

Ge함량이 높은 토양과 식물로부터 세균을 분리하기 위해 제주도 마늘밭, 제주도 회사 근처 풀밭에서 토양을 채취 후 bacillus를 분리하였다. In order to separate bacteria from soil and plants with high Ge content, bacillus was isolated after collecting soil from garlic field in Jeju Island and grass near company in Jeju Island.

토양 시료의 경우 80 ℃에서 30분간 열처리를 실시한 후 호기적 조건하에서 순수분리 하였다. Soil samples were heat-treated at 80 ° C. for 30 minutes and then purely separated under aerobic conditions.

순수 분리한 균주는 Gram staining을 실시하여 G +인 rod shaped된 균을 확인한 후 16Sr rna분석을 (주)solgent에 의뢰하여 균주 분석을 실시하였다.
Pure isolates were Gram stained to identify rod shaped bacteria that were G +, and then 16Sr rna analysis was commissioned to Solgent for strain analysis.

2. 실험결과2. Experimental results

위 실험 방법에 따라 순수 분리한 후 균주를 확인한 결과 다음과 같은 결과를 얻었다(표 1-실험에 사용된 균주와 균주명).The strain was isolated after pure separation according to the above experimental method, and the following results were obtained (Table 1-Strains and strain names used in the experiment).

번호number 균주Strain 균주명Strain name 1.One. HS-01HS-01 BacillusBacillus licheniformislicheniformis 22 HS-03HS-03 BacillusBacillus pumiruspumirus 33 HS-09HS-09 BacillusBacillus spsp .. 44 HS-10HS-10 BacillusBacillus megateriummegaterium 55 CJ-1012CJ-1012 BacillusBacillus cereuscereus 66 CJ-1014CJ-1014 BacillusBacillus cereuscereus 77 CJ-1015CJ-1015 BacillusBacillus coagulanscoagulans 88 CJ-1021CJ-1021 BacillusBacillus subtilissubtilis 99 CJ-1022CJ-1022 BacillusBacillus subtilissubtilis 1010 CJ-1028CJ-1028 BacillusBacillus subtilissubtilis 1111 CJ-1021CJ-1021 BacillusBacillus subtilissubtilis 1212 CJ-1666CJ-1666 BacillusBacillus subtilissubtilis 1313 CJ-3015CJ-3015 BacillusBacillus subtilissubtilis 1414 CJ-3135CJ-3135 BacillusBacillus subtilissubtilis 1515 CJ-3625CJ-3625 BacillusBacillus coagulanscoagulans 1616 CJ-13241CJ-13241 BacillusBacillus subtilissubtilis 1717 CJ-102CJ-102 BacillusBacillus subtilissubtilis 1818 CJ-102(2)CJ-102 (2) BacillusBacillus licheniformislicheniformis 1919 CJ-103CJ-103 BacillusBacillus thuringiensisthuringiensis 2020 CJ-109CJ-109 BacillusBacillus cereuscereus 2121 CJ-109(2)CJ-109 (2) BacillusBacillus megateriummegaterium 2222 CJ-110CJ-110 BacillusBacillus thuringiensisthuringiensis 2323 CJ-118CJ-118 BacillusBacillus sphaericussphaericus 2424 CJ-118(2)CJ-118 (2) BacillusBacillus sphaericussphaericus 2525 CJ-119CJ-119 BacillusBacillus sphaericussphaericus 2626 CJ-136CJ-136 BacillusBacillus megateriummegaterium 2727 CJ-150CJ-150 BacillusBacillus thuringiensisthuringiensis 2828 CJ-165CJ-165 MethylbacillusMethylbacillus glycogenesglycogenes 2929 CJ-166CJ-166 BacillusBacillus amyloliquefaciensamyloliquefaciens 3030 CJ-176CJ-176 BacillusBacillus circulanscirculans 3131 CJ-210CJ-210 BacillusBacillus amyloliquefaciensamyloliquefaciens 3232 CJ-304CJ-304 BacillusBacillus licheniformislicheniformis 3333 BNN-21BNN-21 BacillusBacillus subtilissubtilis 3434 SH-20SH-20 BacillusBacillus amyloliquefaciensamyloliquefaciens 3535 HS-25HS-25 BacillusBacillus subtilissubtilis 3636 HS-30HS-30 BacillusBacillus licheniformislicheniformis 3737 HS-23HS-23 BacillusBacillus subtilissubtilis

상기 표 1과 같이 총 37종의 Bacillus를 얻을 수 있었으며, 이 균주를 대상으로 게르마늄 축적에 대한 실험을 실시하였다.
A total of 37 kinds of Bacillus were obtained as shown in Table 1, and the strains were tested for germanium accumulation.

<실시예 2> 미생물의 게르마늄 축적실험Example 2 Germanium Accumulation Experiment

1) Ge 가용화 확인1) Check Ge solubilization

미생물이 metal을 체내에 축적하기 위해서는 미네랄이 물에 용해된 상태여야 하기 때문에 게르마늄을 가용화 시키는 실험을 진행하였다(도 1).In order for the microorganisms to accumulate metal in the body, an experiment was performed to solubilize germanium because minerals must be dissolved in water (FIG. 1).

게르마늄 함유 화합물 중에 물에 잘 녹는 화합물은 Germanium dioxide이기에 이 화합물을 이용하여 검토하였다.Germanium-containing compounds, which are well soluble in water, are Germanium dioxide and were investigated using these compounds.

Germanium dioxide의 가용화 방법으로 기존 특허에서 알려진 방법과 직접 물에 녹이는 방법을 실시하였다. As a method of solubilizing Germanium dioxide, a method known in the existing patent and a method of directly dissolving in water were performed.

cf-1) 기존 특허의 방법은 5N NaOH 50 ml에 Germanium dioxide를 녹인 후 중화한 후 배지에 투여하여 미생물에 축적하는 방법으로 기존방법으로 5N NaOH 50 ml에 Germanium dioxide를 90 ℃에서 magnetic stirrer로 교반하면서 첨가한 결과 7g 까지 녹일 수 있었다. cf-1) The method of the existing patent is to dissolve Germanium dioxide in 50 ml of 5N NaOH, neutralize it, and then to accumulate it in the microorganism. While adding as a result it was able to melt up to 7g.

하지만 5N HCl로 중화한 결과 다시 석출하였다. However, neutralization with 5N HCl precipitated again.

cf-2) 증류수에 가열 후 직접 녹이는 방법으로 실험을 실시한 결과, 90 ℃에서 magnetic stirrer로 교반하면서 첨가한 결과 0.2 g 까지 녹일 수 있었다. cf-2) As a result of experiment by melting directly after distilled water, it was able to melt up to 0.2 g as a result of adding by stirring with magnetic stirrer at 90 ℃.

1 L를 기준으로 할 때 4 g을 녹일 수 있었다.
4 g could be dissolved based on 1 L.

2) 적응균주 선별2) Selection of Adaptive Strains

고농도 유기 게르마늄으로 전환시키는 능력을 가진 bacillus균주 선발을 위해 다음과 같이 순양배양을 하였다. For the selection of bacillus strain having the ability to convert to high concentration organic germanium, the cultivation was carried out as follows.

게르마늄의 경우 500 mg/L의 Germanium dioxide을 함유한 액체배지에 접종한 후 1,000 mg/L로 24시간 후 농도를 증가하며 배양하였다. Germanium was inoculated into a liquid medium containing 500 mg / L of Germanium dioxide and then incubated at 1,000 mg / L with increasing concentration after 24 hours.

1,000 mg/L이후의 농도에서는 자라는 균주가 급격히 줄어들어 1,000 mg/L에서 적응 균주를 선별하였다.
At concentrations after 1,000 mg / L, the strains growing rapidly decreased, and the adaptive strains were selected at 1,000 mg / L.

3) 산업용 배지 최적화 확인3) Confirmation of industrial medium optimization

① 탄소원 선정① Carbon source selection

일반 미생물에서 탄소원은 세포구성성분이나 에너지원으로 이용된다. In general microorganisms, carbon sources are used as cell components or energy sources.

일반적으로 가장 미생물이 잘 이용하는 당은 포도당, 프락토스(fructose), 만노스(mannose), 갈락토스(galactose)와 같은 6탄당 또는 슈크로스(sucrose), 말토스(maltose), 전분(starch)등을 많이 사용하고 있다.In general, the most microbial sugars are glucose, fructose, mannose and galactose, such as hexose or sucrose, maltose and starch. I use it.

배지 중에 2종류 이상의 당이 존재할 때에는 이용하기 쉬운 것부터 사용하게 된다. When two or more kinds of sugars are present in the medium, they are used first.

이에, 본 실험에서 탄소원은 2%(wt)의 고과당, 자당, 포도당을 대상으로 탄소원 선정 실험을 진행하였다.
Therefore, in this experiment, the carbon source was a carbon source selection experiment targeting 2% (wt) of high fructose, sucrose, and glucose.

② 질소원의 선정② Selection of nitrogen source

질소원은 미생물의 단백질, 핵산 등의 합성에 필요로 하는 주요한 배지 성분이다. The nitrogen source is a major medium component necessary for the synthesis of proteins, nucleic acids, and the like of microorganisms.

이에, 본 실험에서는 산업 현장에서 주로 사용되고 있는 soy peptone, yeast extract를 사용하였다.
Thus, in this experiment, soy peptone and yeast extract, which are mainly used in industrial sites, were used.

③ 산업용 배지의 농도 최적화③ Concentration Optimization of Industrial Medium

이전 실험에서 선정된 고과당과 C.S.L.의 농도를 독립변수로 하여 이들 변수들 간의 상호작용을 관찰하고, bacillus의 게르마늄 축적을 최대로하기 위하여 반응표면 분석법(RSM; Response Surface Methodology)을 이용하여 산업용배지의 농도를 최적화하였다.In order to observe the interaction between these variables using the concentrations of high fructose and CSL selected in the previous experiments, and to maximize bacillus germanium accumulation, industrial medium was prepared using Response Surface Methodology (RSM). The concentration of was optimized.

실험계획은 아래의 표 2에서처럼 2변수 3수준 분류인자 설계(23-fractional factorial design에 따라 4 스타포인트와 4 중심점 반복실험을 포함하여 12가지 조건에서 실험을 실시하였다.The design of the experiment was carried out under 12 conditions including 4 starpoint and 4 center point replicates according to the 23-fractional factorial design as shown in Table 2 below.

배지최적화의 주요성분인 탄소원과 질소원을 각각 독립변수 X1, X2로 하고, 이때 각 독립변수의 수준은 -1.414 ~ +1.414범위에서 수행하였다. The carbon and nitrogen sources, which are the main components of the medium optimization, were set as independent variables X1 and X2, respectively, and the level of each independent variable was performed in the range of -1.414 to +1.414.

또한, 48시간 배양 후 각 미네랄 축적량을 종속변수(Y)로하여 아래 표 2의 실험계획에 따라 수행하였다. In addition, after 48 hours of incubation, each mineral accumulation was performed as a dependent variable (Y) according to the experimental plan of Table 2 below.

이 실험계획은 적은 실험 횟수로 각각의 독립 변수에 대하여 5개의 수준에서 실험을 할 수 있는 장점을 가지고 있으며 그 결과는 2차 다항회귀모형을 적합시키는데 적절하게 사용할 수 있다(표 2).This design has the advantage of being able to experiment at five levels for each independent variable with a small number of experiments, and the results can be used to fit a second order polynomial regression model (Table 2).

variablesvariables coded valuecoded value -1.414-1.414 -1-One 00 +1+1 +1.414+1.414 Carbonsource concentration (X1)Carbonsource concentration (X1) 1.171.17 22 44 66 6.836.83 Nitrogen source concentration(X2)Nitrogen source concentration (X2) 0.60.6 1One 22 33 3.43.4

④ 배양온도, pH최적화④ Culture temperature, pH optimization

온도와 pH의 변화는 미생물의 성장에 있어서 중요한 인자로 작용한다. Changes in temperature and pH are important factors in the growth of microorganisms.

일반적으로 미생물은 광범위한 범위의 온도 조건하에서도 생존이 가능하지만, 미생물마다 각기 다른 최적발육 온도를 가지고 있으며, 그 온도에서 최대 증식이 이루어진다. In general, microorganisms can survive under a wide range of temperature conditions, but each microorganism has a different optimal growth temperature, and the maximum growth occurs at that temperature.

최적발육온도 이상의 온도에서는 미생물들은 대사효소계의 불활성화를 초래하여 성장이 저해 받게 된다. At temperatures above the optimum growth temperature, microorganisms cause inactivation of metabolic enzymes and growth is inhibited.

pH의 경우 일반적으로 중성 또는 약 염기성(pH 6.8 - 7.4)에서 증식이 가장 잘되는 것으로 알려져 있지만, 균의 특성에 따라 다양한 최적의 pH를 가지고 있음으로 최적점을 유지하도록 pH를 잘 관리하여야 한다.
In the case of pH, it is generally known that the growth is best at neutral or weak basic pH (pH 6.8-7.4), but the pH should be well managed to maintain the optimum point because it has various optimal pH depending on the characteristics of the bacteria.

⑤ 미량원소 최적화⑤ Optimization of trace elements

mineral은 필수영양소로서 필요하며 K는 효소활성, Ca는 다양한 기능, 내성 포자 내열성에 관여, Fe는 시토크롬의 구성성분으로 작용하며 앞에 성분은 macronutrient로 분류되며 micronutrient로는 Mn, Zn, Co, Mo, Ni, Cu등이 있으며 주로 생체반응의 촉매나 단백질 구조 유지에 필요하다.
Minerals are required as essential nutrients, K is enzymatic activity, Ca is involved in various functions, resistant spore heat resistance, Fe acts as a constituent of cytochrome, the former is classified as macronutrient, and micronutrients are Mn, Zn, Co, Mo, Ni , Cu, etc., and are mainly necessary for maintaining a catalyst or protein structure of a bioreaction.

4) 실험방법4) Experiment Method

bacillus는 LB broth(beef extract 3.0 g, peptone 5.0 g, distilled water 1.0 L, pH 6.8)에서 게르마늄의 경우 Germanium dioxide를 1,000 mg/L를 첨가한 배지에서 37 ℃, 150 rpm, 48시간 배양하여 축적 실험을 실시하였다. bacillus was accumulated in LB broth (beef extract 3.0 g, peptone 5.0 g, distilled water 1.0 L, pH 6.8) in germanium at 37 ℃, 150 rpm, 48 hours in a medium containing 1,000 mg / L of Germanium dioxide Was carried out.

LB broth 의 경우 수득되는 균체량이 적어 다음 분석이 곤란하여 BHI (brain heart infusion)으로 배지를 바꾸어 사용하였다.In the case of LB broth, the amount of the obtained cells was small, which made it difficult to analyze the following. Therefore, the medium was changed to BHI (brain heart infusion).

BHI (Brain heart infusion 37.0 g, Agar 15.0g, Distilled water 1.0L) 배지를 사용하여, 1차 배양은 20 ml volume의 시험관에 10 ml사용의 배지를 첨가하여 배양하였고, 2차 배양은 500 ml flask에 350 ml를 working volume으로 배양하였다. Using BHI (Brain heart infusion 37.0 g, Agar 15.0 g, Distilled water 1.0 L) medium, the primary culture was incubated by adding 10 ml of medium to a 20 ml volume of test tube, and the secondary culture was a 500 ml flask. 350 ml was incubated with working volume.

배양은 37 ℃ , 150 rpm으로 48시간 동안 배양하였다.The culture was incubated for 48 hours at 37 ℃, 150 rpm.

배양액 1,000 ml를 획득한 후, Hanil SUPRA22K 원심분리기를 사용하여, 7,000g에서 15분간 4 ℃ 에서 원심 분리하였다. After 1,000 ml of the culture was obtained, the resultant was centrifuged at 7,000 g for 15 minutes at 4 ° C. using a Hanil SUPRA22K centrifuge.

원심분리한 균체는 수득 후 식염수로 2회, 증류수로 2회 세척 후 60 ℃에서 48시간 건조하였다. The obtained cells were centrifuged, washed twice with brine, twice with distilled water, and dried at 60 ° C. for 48 hours.

60 ℃에서 48시간 건조 후 3회 1차 증류수로 세척 후 다시 건조하였다. After drying for 48 hours at 60 ℃ washed three times with primary distilled water and dried again.

건조 중량 측정 후 샘표식품 식품안전연구소에 의뢰하여 Ge의 축적량을 확인하였다.After the dry weight measurement, the request was made to the Sampyo Food Safety Institute to confirm the accumulation of Ge.

검출한계는 0.6 ppm이며 최소 희석배수는 60배였다.
The detection limit was 0.6 ppm and the minimum dilution factor was 60 times.

5) 실험결과5) Experiment result

상기 실험결과 아래의 표 3(Bacillus 균주별 성장여부, 게르마늄 축적량 및 건조 균체량)과 같이 나타났다.The results of the experiment are shown in Table 3 (growth of Bacillus strains, germanium accumulation and dry cell weight).

균주번호Strain number 균주명Strain name 성장여부Growth 건조 균체량(g)Dry cell weight (g) Ge 함량(mg/kg)Ge content (mg / kg) HS-01HS-01 BacillusBacillus licheniformislicheniformis 0.1450.145 6,131.806,131.80 HS-03HS-03 Bacillus pumirusBacillus pumirus 0.1950.195 6,844.926,844.92 HS-09HS-09 Bacillus sp.Bacillus sp. 0.1690.169 5,060.735,060.73 HS-10HS-10 BacillusBacillus megateriummegaterium 0.4450.445 3,466.113,466.11 CJ-1012CJ-1012 BacillusBacillus cereuscereus ×× CJ-1014CJ-1014 BacillusBacillus cereuscereus ×× CJ-1015CJ-1015 BacillusBacillus coagulanscoagulans 0.2550.255 5,197.325,197.32 CJ-1021CJ-1021 BacillusBacillus subtilissubtilis 0.3710.371 11,536.0911,536.09 CJ-1022CJ-1022 BacillusBacillus subtilissubtilis ×× CJ-1028CJ-1028 BacillusBacillus subtilissubtilis 0.3880.388 7,443.187,443.18 CJ-1661CJ-1661 BacillusBacillus subtilissubtilis ×× CJ-1666CJ-1666 BacillusBacillus subtilissubtilis 0.2050.205 3,353.443,353.44 CJ-3015CJ-3015 BacillusBacillus subtilissubtilis ×× CJ-3135CJ-3135 BacillusBacillus subtilissubtilis 0.2340.234 9,577.689,577.68 CJ-3625CJ-3625 BacillusBacillus coagulanscoagulans ×× CJ-13241CJ-13241 BacillusBacillus subtilissubtilis 0.1710.171 3,872.463,872.46 CJ-102CJ-102 BacillusBacillus subtilissubtilis 0.1270.127 CJ-102(2)CJ-102 (2) BacillusBacillus licheniformislicheniformis 0.3420.342 CJ-103CJ-103 BacillusBacillus thuringiensisthuringiensis 0.3360.336 CJ-109CJ-109 BacillusBacillus cereuscereus 0.3420.342 CJ-109(2)CJ-109 (2) BacillusBacillus megateriummegaterium 0.6000.600 CJ-110CJ-110 BacillusBacillus thuringiensisthuringiensis 0.3130.313 CJ-118CJ-118 BacillusBacillus sphaericussphaericus 0.3450.345 CJ-118(2)CJ-118 (2) BacillusBacillus sphaericussphaericus 0.3250.325 CJ-119CJ-119 BacillusBacillus sphaericussphaericus 0.2040.204 CJ-136CJ-136 BacillusBacillus megateriummegaterium 0.4730.473 6,417.676,417.67 CJ-150CJ-150 BacillusBacillus thuringiensisthuringiensis 0.1570.157 CJ-165CJ-165 MethybacillusMethybacillus glycogenesglycogenes ×× CJ-166CJ-166 BacillusBacillus amyloliquefaciensamyloliquefaciens 0.4880.488 CJ-176CJ-176 BacillusBacillus circulanscirculans ×× CJ-210CJ-210 BacillusBacillus amyloliquefaciensamyloliquefaciens 0.160.16 CJ-304CJ-304 BacillusBacillus licheniformislicheniformis 0.140.14 CJ-136CJ-136 BacillusBacillus megateriummegaterium 0.4380.438 BNN-21BNN-21 BacillusBacillus subtilissubtilis SH-20SH-20 BacillusBacillus amyloliquefaciensamyloliquefaciens HS-25HS-25 BacillusBacillus subtilissubtilis HS-30HS-30 BacillusBacillus licheniformislicheniformis HS-23HS-23 BacillusBacillus subtilissubtilis

상기 표 3에 나타나 있듯이, CJ-1021(Bacillus subtilis)의 경우 건조 균체량은 0.371 g/L, 게르마늄 축적량은 11,536.09 ppm으로 기존에 보고된 게르마늄 축적 균주에 비해 축적 능력이 월등함을 확인하였다.As shown in Table 3, CJ-1021 ( Bacillus subtilis ) The dry cell mass was 0.371 g / L and the germanium accumulation was 11,536.09 ppm, which was confirmed to be superior to the previously reported germanium accumulation strain.

이에, 최적의 균주인 CJ-1021번 균주는 한국생명공학연구원의 KCTC(Korean Collection for Type Culture)에 특허균주 기탁을 실시하였다(기탁번호 : KCTC 11547BP).
Thus, strain CJ-1021, the optimal strain, was deposited with the patent strain in KCTC (Korean Collection for Type Culture) of Korea Research Institute of Bioscience and Biotechnology (Accession Number: KCTC 11547BP).

<실시예 3> 기능성 미네랄의 어류의 사료 첨가제로서 효능검사Example 3 Efficacy Test as a Feed Additive of Fishes of Functional Minerals

1. 실험방법1. Experimental Method

(1) 실험어 및 사육환경(1) Experimental fish and breeding environment

본 발명에 이용된 넙치 치어는 제주도내 종묘배양장에서 중간 육성한 치어를 구입하여 제주대학교 해양과환경연구소 실내 사육동에서 1주일간 순치 사육후 실험에 이용하였다. The halibut fry used in the present invention was purchased for mid-term fry at the seedling culture center in Jeju-do and used for experiments after pure breeding for one week in the indoor breeding dong of the Institute of Marine Science and Environment, Cheju National University.

실험 시작시 실험어 평균 전장은 19.4±0.1 cm , 체중은 118.0±0.6 g 이었다. At the beginning of the experiment, the average fish length was 19.4 ± 0.1 cm and body weight was 118.0 ± 0.6 g.

사육수조는 원뿔형 중앙 배수 장치를 한 FRP원형수조(지름 150 cm×90 cm ) 16개를 이용하였고, 각 수조당 넙치 치어 40마리/2반복를 수용하였다. The breeding tank used 16 FRP round tanks (150 cm × 90 cm in diameter) with a conical central drainage system, and each flounder was equipped with 40 flounder fry.

사육 수량은 1톤으로 1일 15~18회 환수시켰으며, 충분한 산소 공급을 위하여 통기하였다. Breeding yield was returned to 1 ton 15-18 times a day, and aeration for sufficient oxygen supply.

실험 기간 중의 수온, 용존산소(dissolved oxygen, DO), pH, 비중을 매일 측정하였으며, DO는 DO meter (YSI-85), pH는 pH meter (Mettlero toledo), 염분은 염분계(YSI-85)를 사용하였다. The water temperature, dissolved oxygen (DO), pH, and specific gravity were measured every day during the experiment, DO was DO meter (YSI-85), pH was pH meter (Mettlero toledo), and salinity was salinity meter (YSI-85). Was used.

(2) 기능성 미네랄 첨가사료 및 성장(2) functional mineral feed and growth

기능성 미네랄로는 게르마늄(Ge)을 사용하였으며, 미네랄의 유기 상태 또는 무기 상태(미네랄을 미생물에 축적시켜 유기화 제품 1종과 미네랄을 아미노산과 공유결합 유기화 제품 1종 제품을 농도별로 처리하였을 때 어류의 성장 및 건강도에 미치는 영향을 조사하였다.Germanium (Ge) is used as a functional mineral, and the organic or inorganic state of minerals (minerals are accumulated in microorganisms. The effects on growth and health were investigated.

기능성 미네랄 종류 및 농도에 따른 영향을 조사하기 위하여 게르마늄 실험구는 Ge-bacillus 0.1 mg/kg diet 그리고 Ge-bacillus 1.0 mg/kg diet, Germanium dioxide 1.0 mg/kg diet의 3개의 실험구로 구분하였다In order to investigate the effects of functional mineral types and concentrations, the germanium experimental groups were divided into three groups: Ge bacillus 0.1 mg / kg diet, Ge bacillus 1.0 mg / kg diet and Germanium dioxide 1.0 mg / kg diet.

그리고 미네랄을 첨가하지 않고 사료만을 공급한 것을 대조구로 하였다. And the control was supplied only feed without adding minerals.

기능성 미네랄의 첨가방법은 각각의 농도별로 배합사료에 침적하여 흡착시킨 후 2회/day 공급하였다. The method of adding functional minerals was supplied twice a day after immersion in adsorbed feed for each concentration.

실험에 사용한 배합사료는 고압팽창사료(extruded pellet, EP)였다. The compound feed used in the experiment was an extruded pellet (EP).

(3) 성장(3) growth

실험어의 어체 측정은 3주마다 체장과 체중을 전수 측정하였으며, 측정 전날 오후 및 당일 날은 절식하였다. Body weight and body weight of experimental fish were measured every three weeks, and the afternoon and the day before the measurement were fasted.

체중은 전자저울로 1.0 g까지 측정하였으며, 체장은 자체 제작한 측정판으로 1 까지 측정하였다.Body weight was measured up to 1.0 g by electronic balance, and the body length was measured up to 1 by a self-made measuring plate.

어체 측정 후에는 모든 실험구의 실험어를 HCl-Oxytetracline 100 ppm으로 1시간 약욕하였다. After the measurement of the fish, the experimental fish were bathed in 100 ppm of HCl-Oxytetracline for 1 hour.

사육 중 사망한 개체는 매일 수시로 제거하였으며, 매 3주 후 어체 측정시 마다 생존한 개체에 대한 백분율로 생존율을 나타내었다. Individuals who died during breeding were removed from time to time, and the survival rate was expressed as a percentage of the surviving individuals every 3 weeks after fish body measurement.

총 증중량(total weight gain), 그리고 일간성장률(daily growth rate), 일간섭이율(daily feeding rate), 사료계수(feed coefficient)를 계산하여 각 실험구간의 값을 비교하였다. Total weight gain, daily growth rate, daily feeding rate and feed coefficient were calculated to compare the values of each experiment.

총 증중량, 그리고 일간 성장률, 일간 섭이율, 사료계수는 다음과 같은 공식으로 계산하였다.Total weight gain, daily growth rate, daily feed rate and feed coefficient were calculated by the following formula.

total weight gain (TWG) = IW - FWtotal weight gain (TWG) = IW-FW

daily growth rate (DGR) = {(ln FW - ln IW)/t} ×100daily growth rate (DGR) = {(ln FW-ln IW) / t} × 100

daily feeding rate (DFR) = (TF × 100)/{(IW + FW) ×day fed/2}daily feeding rate (DFR) = (TF × 100) / {(IW + FW) × day fed / 2}

feed coefficient (FC) = TF/WGfeed coefficient (FC) = TF / WG

BW : 체중(body weight) FW: 마지막 무게(final weight)BW: body weight FW: final weight

lW: 처음 무게(inital weight) TF: 총사료무게(total feed)lW: initial weight TF: total feed

TL: 총길이(total length) t: 사육시간(rearing time)TL: total length t: breeding time

WG: 증체량(weight gain)WG: weight gain

(4) 소화기관(4) digestive system

소화기관 조직상 관찰을 위해 실험 시작시와 매 측정시 마다 각 실험구별로 3마리씩 표본 추출하여 Bouin's solution에 고정하였고, 상법인 paraffin 절편법에 의해 5 ㎛두께로 절편하였다. For the observation of the digestive organs, three specimens of each experimental group were sampled and fixed in Bouin's solution at the beginning of each experiment and measured.

Harry's hematoxylin과 0.5% eosin의 비교염색 후 광학 현미경으로 표본을 관찰하였다. After comparative staining of Harry's hematoxylin and 0.5% eosin, the specimens were observed under an optical microscope.

소화기관의 조직학적 관찰은 장(intestine)의 중장(mid intestine)의 점막주름에 나타나는 배상세포(goblet cell)의 분포 및 수를 검경하였다.Histological observations of the digestive tract examined the distribution and number of goblet cells in the intestine's mid intestine.

(5) 혈액분석(5) blood analysis

어체의 건강도 등을 조사하기 위한 혈액분석은 매 측정시 마다 각 실험구별로 6마리씩 무작위로 선별하여 조사하였다. The blood analysis to check the health of the fish, etc. was randomly selected by six animals in each experiment at each measurement.

실험어는 2-페녹시에탄올(Phenoxyethanol) 용액으로 마취 후 미부 동맥에서 일회용 주사기를 이용하여 채혈하였다. Experimental fish were anesthetized with 2-phenoxyethanol solution, and blood was collected using a disposable syringe in the tail artery.

혈액 채취 후 원심분리(5,000 rpm, 15분)하여 혈장 내의 ALT (alanine aminotransferase), AST (aspartate aminotransferase)의 활성 및 단백질(protein) 그리고 glucose, phosphorus, cholesterol 농도를 혈액생화학분석기(Express plus system, Bayer, USA)를 이용하여 분석하였다.After blood collection, centrifugation (5,000 rpm, 15 minutes) was performed to determine the activity of ALT (alanine aminotransferase) and AST (aspartate aminotransferase), protein, glucose, phosphorus, and cholesterol concentrations in blood plasma (Express plus system, Bayer). , USA).

모든 자료의 통계 분석은 SPSS (Version 12.0)프로그램을 이용하여 ANOVA-test를 실시한 후 Duncan's multiple range test로 평균간의 유의성을 검정하였다.
For statistical analysis of all data, ANOVA-test was performed using the SPSS (Version 12.0) program and Duncan's multiple range test was used to test the significance between the means.

2. 실험결과2. Experimental results

(1) 사육환경(1) Breeding environment

실험기간 중 실험구의 환경 요인 중 주간 평균 수온과 염분, DO, pH 변화를 조사하였다. During the experimental period, weekly average water temperature, salinity, DO, pH change among environmental factors in the experimental group were investigated.

실험기간 중 사육 수온은 20.0 ~ 25.8 ℃의 범위였으며, 평균 수온은 22.5 ℃ 이었다. During the experiment, the breeding water temperature ranged from 20.0 ℃ to 25.8 ℃ and the average water temperature was 22.5 ℃.

염분농도는 30.2~33.3 ppt 내외였다(도 2).Salinity concentration was about 30.2 ~ 33.3 ppt (Fig. 2).

실험기간 동안 사육수의 DO는 5.6~6.9 mg/ℓ 범위 내외였으며, pH는 8.2~8.5 범위였다(도 3).
During the experimental period, the DO ranged from 5.6 to 6.9 mg / L and the pH ranged from 8.2 to 8.5 (Fig. 3).

(2) 성장 및 생존율 변화(2) growth and survival rate changes

① 1차 조사- 아래의 표 4(1차 측정시 기능성 미네랄을 넙치(Paralichthys olivaceus)에 공급하였을 때 체장 그리고 체중, 총 증중량 변화 및 생존율 변화)에 1차 조사 결과를 나타내었다.① First survey – The results of the first survey are shown in Table 4 below (when fed the functional minerals to the flounder ( Paralichthys olivaceus ) at the first measurement, body length, body weight, total weight change and survival rate).

Experimental groupExperimental group InitialInitial FinalFinal Survival rate(%)Survival rate (%) Number
of fish
Number
of fish
TL
(cm)
TL
(cm)
BW
(g)
BW
(g)
Number of fishNumber of fish TL
(cm)
TL
(cm)
BW
(g)
BW
(g)
W.gain
(g)
W.gain
(g)
ControlControl 8080 19.4±0.119.4 ± 0.1 118.4±1.7118.4 ± 1.7 8080 19.3±0.119.3 ± 0.1 142.4±2.0142.4 ± 2.0 19191919 100.0100.0 Ge-Bacillus 0.1Ge- Bacillus 0.1 8080 19.4±0.119.4 ± 0.1 120.2±1.7120.2 ± 1.7 8080 19.7±0.119.7 ± 0.1 152.6±2.2152.6 ± 2.2 25912591 100.0100.0 Ge-Bacillus 1.0Ge- Bacillus 1.0 8080 19.4±0.119.4 ± 0.1 117.9±1.7117.9 ± 1.7 7979 19.8±0.119.8 ± 0.1 153.6±2.0153.6 ± 2.0 27062706 98.7598.75 Germanium dioxide 1.0Germanium dioxide 1.0 8080 19.4±0.119.4 ± 0.1 117.1±1.7117.1 ± 1.7 8080 19.5±0.119.5 ± 0.1 147.4±2.0147.4 ± 2.0 24272427 100.0100.0

상기 표 4에 나타나 있듯이, 실험 시작시 체장은 19.4±0.1 cm 이었으며, 1차 측정시 대조구에서 19.3±0.1 cm 이었다. As shown in Table 4, the body length at the start of the experiment was 19.4 ± 0.1 cm, 19.3 ± 0.1 cm in the control at the first measurement.

게르마늄 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구 19.7±0.1 cm 그리고 Ge-bacillus 1.0 mg/kg diet 실험구 19.8±0.1 cm , Germanium dioxide 1.0 mg/kg diet 실험구 19.5±0.1 cm로 성장하였다.Ge- bacillus 0.1 mg / kg diet showed 19.7 ± 0.1 cm and Ge- bacillus 1.0 mg / kg diet showed 19.8 ± 0.1 cm and Germanium 1.0 mg / kg diet showed 19.5 ± 0.1 cm. .

즉, 1차 측정시 대조구와 기능성 미네랄 첨가 실험구간에는 유의한 성장 차이가 없었다(P>0.05).In other words, there was no significant growth difference between the control and the functional mineral supplementation in the first measurement (P> 0.05).

실험 시작시 체중은 118.0±0.1 g이었으며, 1차 측정시 대조구에서 142.4±2.0 g로 성장하였다. The body weight was 118.0 ± 0.1 g at the start of the experiment, and it grew to 142.4 ± 2.0 g in the control group at the first measurement.

게르마늄 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구 152.6±2.2 g 그리고 Ge-bacillus 1.0 mg/kg diet 실험구 153.6±2.0 g, Germanium dioxide 1.0 mg/kg diet 실험구 147.4±2.0 g로 성장하였다. Germanium was grown to 152.6 ± 2.2 g of Ge- bacillus 0.1 mg / kg diet, 153.6 ± 2.0 g of Ge- bacillus 1.0 mg / kg diet, and 147.4 ± 2.0 g of Germanium dioxide 1.0 mg / kg diet. .

대조구와 기능성 미네랄 첨가 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구, Ge-bacillus 1.0 mg/kg diet 실험구간에는 유의한 성장 차이를 나타내었다(P<0.05).In the control and functional mineral supplementation groups, there was a significant growth difference between the Ge- bacillus 0.1 mg / kg diet and Ge- bacillus 1.0 mg / kg diet groups (P <0.05).

1차 측정시 실험구별 생존율은 대조구에서 100%이었고, 기능성 미네랄 첨가 실험구의 생존율은 97.5-100%로 대조구와 비슷한 값이었다.Survival rate was 100% in the control group at the first measurement, and the survival rate of the functional mineral-added test group was 97.5-100%, similar to the control.

총 증중량(total weight gain)에서는 다른 실험구가 대조구의 증중량 보다 높은 증증량을 보였다.
At total weight gain, the other groups showed higher gain than the control.

② 2차 조사 - 아래의 표 5(2차 측정시 기능성 미네랄을 넙치에 공급하였을 때 체장 그리고 체중, 총 증중량 변화 및 생존율 변화)에 2차 조사 결과를 나타내었다.② Secondary Survey-The results of the Secondary Survey are shown in Table 5 below (the body length, body weight, total weight change and survival rate when the flounder was supplied with functional minerals during the second measurement).

Experimental groupExperimental group InitialInitial FinalFinal Survival rate(%)Survival rate (%) Number
of fish
Number
of fish
TL
(cm)
TL
(cm)
BW
(g)
BW
(g)
Number of fishNumber of fish TL
(cm)
TL
(cm)
BW
(g)
BW
(g)
W.gain
(g)
W.gain
(g)
ControlControl 7474 19.3±0.119.3 ± 0.1 142.4±2.0142.4 ± 2.0 7272 22.2±0.122.2 ± 0.1 185.7±2.9185.7 ± 2.9 2878.62878.6 97.397.3 Ge-Bacillus 0.1Ge- Bacillus 0.1 7474 19.7±0.119.7 ± 0.1 152.6±2.2152.6 ± 2.2 7373 22.8±0.122.8 ± 0.1 196.9±3.1196.9 ± 3.1 3107.63107.6 98.698.6 Ge-Bacillus 1.0Ge- Bacillus 1.0 7373 19.8±0.119.8 ± 0.1 153.6±2.0153.6 ± 2.0 6969 23.2±0.123.2 ± 0.1 204.9±3.1204.9 ± 3.1 3028.33028.3 94.594.5 Germanium dioxide 1.0Germanium dioxide 1.0 7474 19.5±0.119.5 ± 0.1 147.4±2.0147.4 ± 2.0 7474 22.6±0.122.6 ± 0.1 191.7±3.3191.7 ± 3.3 3274.63274.6 100.0100.0

상기 표 5에 나타나 있듯이, 2차 측정시 대조구의 체장은 22.2±0.1 이었다.As shown in Table 5, the body length of the control at the second measurement was 22.2 ± 0.1.

게르마늄 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구 22.8±0.1 cm 그리고 Ge-bacillus 1.0 mg/kg diet 실험구 23.2±0.1 cm, Germanium dioxide 1.0 mg/kg diet 실험구 22.6±0.1 cm로 성장하였다. In the germanium experiment, Ge- bacillus 0.1 mg / kg diet showed 22.8 ± 0.1 cm, Ge- bacillus 1.0 mg / kg diet showed 23.2 ± 0.1 cm and Germanium dioxide 1.0 mg / kg diet showed 22.6 ± 0.1 cm. .

2차 측정시 대조구와 기능성 미네랄 첨가 실험구 중 Ge-bacillus 1.0 mg/kg diet 실험구, Germanium dioxide 1.0 mg/kg diet 실험구 간에는 유의한 성장 차이가 있었다(P<0.05).There was a significant difference in growth between the control and Ge- bacillus 1.0 mg / kg diet and Germanium 1.0 mg / kg diet groups (P <0.05).

2차 측정시 대조구의 체중은 185.7±2.9 g이었다. The control body weight was 185.7 ± 2.9 g at the second measurement.

게르마늄 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구 196.9±3.1 g 그리고 Ge-bacillus 1.0 mg/kg diet 실험구 204.9±3.1 g, Germanium dioxide 1.0 mg/kg diet 실험구 191.7±3.3 g로 성장하였다. Germanium was grown to 196.9 ± 3.1 g of Ge- bacillus 0.1 mg / kg diet, 204.9 ± 3.1 g of Ge- bacillus 1.0 mg / kg diet, and 191.7 ± 3.3 g of Germanium dioxide 1.0 mg / kg diet. .

대조구와 기능성 미네랄 첨가 실험구 중 Ge-bacillus 0.1 mg/kg diet 실험구, Ge-bacillus 1.0 mg/kg diet 실험구간에는 유의한 성장 차이를 나타내었다(P<0.05)Ge- bacillus in control and functional mineral supplementation There was a significant difference in growth between the 0.1 mg / kg diet and Ge- bacillus 1.0 mg / kg diet groups (P <0.05).

2차 측정시 실험구별 생존율은 대조구에서 97.3%이었고, 기능성 미네랄 첨가 실험구의 생존율은 94.5~100%로 대조구와 비슷한 값이었다.Survival rate was 97.3% in the control group and the survival rate of the functional mineral-added test group was 94.5 ~ 100%, similar to the control.

총 증중량(total weight gain)은 2차 측정시 대조구에서는 2.9 kg 증가하였고, 다른 실험구에서도 대조구의 증중량 보다 유사하거나 높은 증증량을 보였다.
Total weight gain increased by 2.9 kg in the control at the second measurement, and was similar or higher than that in the control.

(3) 사료계수, 일간성장률 및 일간섭이율(3) feed coefficient, daily growth rate and daily feed rate

① 1차 조사- 아래의 표 6(1차 측정시 기능성 미네랄을 넙치에 공급하였을 때 사료계수(Feed coefficient), 일간성장률(Daily growth rate), 일간섭이율(Daily feeding rate))에 1차 조사 결과를 나타내었다.① 1st investigation-The 1st investigation in Table 6 (Feed coefficient, Daily growth rate, Daily feeding rate) when the functional minerals were supplied to the flounder during the 1st measurement. The results are shown.

Experimental groupExperimental group Feed coefficientFeed coefficient Daily growth rate(%)Daily growth rate (%) Daily feeding rate(%)Daily feeding rate (%) ControlControl 0.940.94 1.151.15 1.081.08 Ge-bacillus 0.1Ge- bacillus 0.1 1.031.03 1.481.48 1.531.53 Ge-bacillus 1.0Ge- bacillus 1.0 1.021.02 1.581.58 1.601.60 Germanium dioxide 1.0Germanium dioxide 1.0 1.031.03 1.431.43 1.471.47

상기 표 6에 나타나 있듯이, 사료계수(feed coefficient)는 대조구에서 0.94였고, 다른 실험구에서는 대조구와 비슷한 0.94~1.03으로 대조구와 비슷한 값이었다.As shown in Table 6, the feed coefficient was 0.94 in the control, 0.94 ~ 1.03 similar to the control in the other control was similar to the control.

일간성장률(daily growth rate)은 대조구에서 1.15%였고, 다른 실험구에서도 1.16~1.58%로 대조구보다 높은 경향을 보였다.The daily growth rate was 1.15% in the control and 1.16 ~ 1.58% in the other experiments, which was higher than the control.

일간섭이율(daily feeding rate)은 Ge-bacillus 0.1 mg/kg diet 실험구 그리고 Ge-bacillus 1.0 mg/kg diet 실험구에서 각각 1.53%와 1.60%로 대조구보다 높은 값을 나타내었다. The daily feeding rate of Ge- bacillus 0.1 mg / kg diet and Ge- bacillus The 1.0 mg / kg diet showed 1.53% and 1.60%, respectively, higher than the control.

나머지 다른 실험구에서도 대조구보다 높은 1.12~1.47%를 나타내었다.
The rest of the experimental groups showed 1.12 ~ 1.47% higher than the control.

② 2차 조사- 아래의 표 7(2차 측정시 기능성 미네랄을 넙치에 공급하였을 때 사료계수(Feed coefficient), 일간성장률(Daily growth rate), 일간섭이율(Daily feeding rate))에 2차 조사 결과를 나타내었다.② Secondary survey-Secondary survey in Table 7 (Feed coefficient, Daily growth rate, Daily feeding rate) when the functional minerals were supplied to the flounder during the second measurement. The results are shown.

Experimental groupExperimental group Feed coefficientFeed coefficient Daily growth rate(%)Daily growth rate (%) Daily feeding rate(%)Daily feeding rate (%) ControlControl 1.231.23 1.451.45 1.781.78 Ge-bacillus 0.1Ge- bacillus 0.1 1.211.21 1.461.46 1.771.77 Ge-bacillus 1.0Ge- bacillus 1.0 1.341.34 1.441.44 1.921.92 Germanium dioxide 1.0Germanium dioxide 1.0 1.151.15 1.581.58 1.811.81

상기 표 7에 나타나 있듯이, 사료계수(feed coefficient)는 대조구에서 1.23였고, Germanium dioxide 1.0 mg/kg diet 실험구에서 1.15로 사료효율이 양호하였다.As shown in Table 7, the feed coefficient was 1.23 in the control, and the feed efficiency was 1.15 in the Germanium dioxide 1.0 mg / kg diet.

다른 실험구에서는 대조구와 비슷한 1.21~1.35로 대조구와 비슷한 값이었다.In other experiments, the values of 1.21 ~ 1.35 were similar to those of the control.

일간성장률(daily growth rate)은 대조구에서 1.45%였고, 다른 실험구에서도 1.39~1.58%로 대조구와 비슷한 경향을 보였다. The daily growth rate was 1.45% in the control and 1.39 ~ 1.58% in the other experiments, showing a similar trend with the control.

일간섭이율(daily feeding rate)은 대조구에서 1.78%이었고, Ge-bacillus 0.1 mg/kg diet 실험구에서 1.92%로 대조구보다 높은 값을 나타내었다.The daily feeding rate was 1.78% in the control and 1.92% in the Ge bacillus 0.1 mg / kg diet, which was higher than the control.

나머지 다른 실험구에서는 대조구와 비슷한 1.77~1.89%이었다.
The rest of the experimental groups were 1.77 ~ 1.89% similar to the control.

(4) 소화기관 변화 (4) changes in the digestive system

소화기관의 조직학적 관찰은 장(intestine)의 중장(mid intestine) 부분을 중심으로 소화기관의 점막주름에 배상세포(goblet cell)의 분포를 검경 하였다. Histological observations of the digestive tract were examined for the distribution of goblet cells in the mucosal folds of the digestive tract, centering on the mid intestine of the intestine.

그 결과, 도 4와 같이 나타났으며, 중장 점막주름의 배상세포는 시작시 196.7±58.7개 였으며, 1차 측정시 212.3±81.3개이었다. As a result, it was shown in Figure 4, the number of goblet cells of the midgut mucosa was 196.7 ± 58.7 at the start, 212.3 ± 81.3 at the first measurement.

실험구별 배상세포의 수는 128.7±23.5 ~ 222.7±35.2개 내외로 분포하였으며, 대조구와 실험구간에 유의적인 차이는 없었다.
The number of goblet cells in each experiment ranged from 128.7 ± 23.5 to 222.7 ± 35.2, and there was no significant difference between the control and experimental groups.

(5) 혈액분석(5) blood analysis

실험결과, 아래의 표 8(기능성 미네랄을 넙치에 공급하였을 때 혈장내 AST, 그리고 ALT, Protein, Glucose, Phosphorus, Cholesterol 변화)과 같이 나타났다.As a result of the experiment, Table 8 (plasma AST, ALT, Protein, Glucose, Phosphorus, Cholesterol changes when functional minerals were supplied to flounder) was shown.

Experimental groupExperimental group AST
(U/L)
AST
(U / L)
ALT
(U/L)
ALT
(U / L)
Protein
(g/dL)
Protein
(g / dL)
Glucose
(mg/dL)
Glucose
(mg / dL)
Phosphorus
(mg/dL)
Phosphorus
(mg / dL)
Cholesterol
(mg/dL)
Cholesterol
(mg / dL)
ControlControl 25.5±2.325.5 ± 2.3 17.2±6.117.2 ± 6.1 3.9±0.53.9 ± 0.5 71.2±13.371.2 ± 13.3 26.1±2.326.1 ± 2.3 193.3±31.9193.3 ± 31.9 Ge-bacillus 0.1Ge- bacillus 0.1 43.1±12.943.1 ± 12.9 42.0±22.442.0 ± 22.4 4.7±0.24.7 ± 0.2 81.1±10.981.1 ± 10.9 20.9±1.220.9 ± 1.2 248.4±28.6248.4 ± 28.6 Ge-bacillus 1.0Ge- bacillus 1.0 27.5
±8.1
27.5
± 8.1
78.4±19.678.4 ± 19.6 5.0±0.15.0 ± 0.1 89.6±18.789.6 ± 18.7 25.4±1.125.4 ± 1.1 219.5±31.2219.5 ± 31.2
Germanium dioxide 1.0Germanium dioxide 1.0 20.3
±1.6
20.3
± 1.6
57.5±17.257.5 ± 17.2 4.3±0.34.3 ± 0.3 86.1±23.986.1 ± 23.9 23.5±1.223.5 ± 1.2 212.4±37.2212.4 ± 37.2

상기 표 8에 나타나 있듯이, 1차 측정시 혈액분석 결과 AST 값은 대조구에서 25.5±2.3 U/L이었고, 기능성 미네랄 첨가 실험구에서는 20.3±1.6 ~ 57.9±7.7 U/L로서 대조구와 실험구간에 유의차는 없었다(P>0.05).As shown in Table 8, the AST value was 25.5 ± 2.3 U / L in the control group at the first measurement, and 20.3 ± 1.6 ~ 57.9 ± 7.7 U / L in the experimental group containing functional minerals. There was no difference (P> 0.05).

ALT 값은 대조구에서 17.2±6.2 U/L이었고, 기능성 미네랄 첨가 실험구에서는 34.3±16.7 ~ 98.4±53.7 U/L로서 대조구와 실험구간에 유의차는 없었다(P>0.05).The ALT value was 17.2 ± 6.2 U / L in the control group and 34.3 ± 16.7 ~ 98.4 ± 53.7 U / L in the functional mineral supplementation group (P> 0.05).

단백질(Protein) 값은 대조구에서 3.88±0.47 g/dL이었고, 기능성 미네랄 첨가 실험구에서는 3.5±0.3 ~ 5.0±0.1 g/dL로서 대조구와 실험구간에 유의차는 없었다(P>0.05).Protein (Protein) value was 3.88 ± 0.47 g / dL in the control group, 3.5 ± 0.3 ~ 5.0 ± 0.1 g / dL in the functional mineral added experimental group was not significantly different between the control and the experimental section (P> 0.05).

글루코스(Glucose) 값은 대조구에서 71.2±13.3 mg/dL이었고, 기능성 미네랄 첨가 실험구에서는 43.1±3.8 ~ 111.1±12.3 mg/dL로서 대조구와 실험구간에 유의차는 없었다(P>0.05).Glucose value was 71.2 ± 13.3 mg / dL in the control group and 43.1 ± 3.8 to 111.1 ± 12.3 mg / dL in the experimental group with functional minerals (P> 0.05).

인(Phosphorus) 값은 대조구에서 26.1±2.3 mg/dL이었고, 기능성 미네랄 첨가 실험구에서는 19.2±1.5 ~ 28.2±1.8 mg/dL로서 대조구와 실험구간에 유의차는 없었다(P>0.05).Phosphorus value was 26.1 ± 2.3 mg / dL in the control and 19.2 ± 1.5 ~ 28.2 ± 1.8 mg / dL in the experimental group with functional minerals, and there was no significant difference between the control and the experimental group (P> 0.05).

콜레스테롤(Cholesterol) 값은 대조구에서 193.4±31.9 mg/dL이었고, 기능성 미네랄 첨가 실험구에서는 212.4±37.2 ~ 330.0±44.3 mg/dL로서 대조구와 실험구간에 유의차는 없었다(P>0.05).
Cholesterol value was 193.4 ± 31.9 mg / dL in the control group and 212.4 ± 37.2 ~ 330.0 ± 44.3 mg / dL in the experimental group containing functional minerals (P> 0.05).

(6) 게르마늄 축적량 결과(6) Germanium Stock Result

상기 실험을 진행한 사료와 넙치를 대상으로 게르마늄 축적량을 한국기초과학지원센터에 의뢰하여 게르마늄의 어체내 축적 농도를 확인하였다. The concentration of germanium in the feed and flounder conducted in the experiment was requested to the Korea Basic Science Center to check the concentration of germanium in the fish body.

실험결과는 아래의 표 9와 같다.The experimental results are shown in Table 9 below.

Experimental groupExperimental group 사료(ppm)Feed (ppm) 어체(ppm)Body (ppm) ControlControl 0.0170.017 0.0610.061 Ge-bacillus 0.1Ge- bacillus 0.1 0.0920.092 0.090.09 Ge-bacillus 1.0Ge- bacillus 1.0 0.780.78 0.270.27 Germanium dioxide 1.0Germanium dioxide 1.0 0.830.83 0.180.18

상기 표 9에 나타나 있듯이, Ge-bacillus가 미네랄 자체보다 축적이 잘 되었음을 확인하였으며, 아울러 어체의 근육조직내에 게르마늄이 축적됨을 알 수 있다.As shown in Table 9, it was confirmed that Ge- bacillus accumulated better than the mineral itself, and also germanium accumulated in the muscle tissue of the body.

이와 같이, 본 발명에서는, 기존에 효모에 게르마늄의 축적방법에 비해 높은 축적량(<10,000 mg/kg)에 도달할 수 있었으며 효과 면에서도 동등한 효과가 나타나 미네랄이스트 제품의 대체와 더불어 어류 현장 테스트에서도 긍정적인 경향을 이끌어 냄을 알 수 있었다.As described above, in the present invention, a higher accumulation amount (<10,000 mg / kg) can be reached in the yeast compared with the conventional method of accumulating germanium, and the effect is equivalent in terms of effects, and it is positive in the field test with the replacement of mineral yeast products. Elicited a tendency to be.

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC11547BPKCTC11547BP 2009081420090814

서열목록 전자파일 첨부Attach an electronic file to a sequence list

Claims (6)

게르마늄 축적능을 갖는 신규미생물 바실러스 서브틸러스 CJ1021균주(Bacillus subtilis CJ1021, 수탁번호 : KCTC 11547BP) Bacillus subtilis CJ1021, Accession No .: KCTC 11547BP, New Microorganism Bacillus subtilis CJ1021 제1항의 게르마늄 축적능을 갖는 신규미생물 바실러스 서브틸러스 CJ1021균주(Bacillus subtilis CJ1021, 수탁번호 : KCTC 11547BP)를 유효성분으로 포함한 것을 특징으로 하는, 어류용 사료첨가제.The novel microbial Bacillus subtilis CJ1021 strain ( Bacillus subtilis CJ1021, Accession No .: KCTC 11547BP) having a germanium accumulation ability according to claim 1, comprising a feed additive for fish. 제2항에 있어서,
상기 신규미생물 바실러스 서브틸러스 CJ1021균주는 미생물의 균체, 농축물, 배양액 또는 그 건조물로 이루어진 것임을 특징으로 하는,
어류용 사료첨가제.
The method of claim 2,
The novel microbial Bacillus subtilis CJ1021 strain is characterized in that consisting of the microbial cells, concentrates, culture or dried products thereof,
Feed additives for fish.
제2항에 있어서,
상기 신규미생물 바실러스 서브틸러스 CJ1021균주는 유기게르마늄이 첨가된 배지에 접종한 후, 배양된 것임을 특징으로 하는,
어류용 사료첨가제.
The method of claim 2,
The novel microbial Bacillus subtilis CJ1021 strain is inoculated in a medium to which the organic germanium is added, characterized in that the culture,
Feed additives for fish.
제2항에 있어서,
상기 게르마늄은 어류의 근육조직내에 축적됨을 특징으로 하는,
어류용 사료첨가제.
The method of claim 2,
The germanium is characterized in that the accumulation in the muscle tissue of fish,
Feed additives for fish.
제2항의 어류용 사료첨가제가 사료 전체 중량에 대하여 0.1 ~ 1.0 % 함유되어 있는 것을 특징으로 하는,
어류용 사료.
The fish feed additive of claim 2 is characterized in that it contains 0.1 to 1.0% based on the total weight of the feed,
Fish feed.
KR1020100060167A 2010-06-24 2010-06-24 Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it KR101144279B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100060167A KR101144279B1 (en) 2010-06-24 2010-06-24 Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100060167A KR101144279B1 (en) 2010-06-24 2010-06-24 Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it

Publications (2)

Publication Number Publication Date
KR20110140006A KR20110140006A (en) 2011-12-30
KR101144279B1 true KR101144279B1 (en) 2012-05-11

Family

ID=45505299

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100060167A KR101144279B1 (en) 2010-06-24 2010-06-24 Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it

Country Status (1)

Country Link
KR (1) KR101144279B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070096099A (en) * 2005-12-21 2007-10-02 김경미 Manufacturing method of germanium
KR20090021844A (en) * 2007-08-28 2009-03-04 영어조합법인보전수산 Additive for fishes feed using photosynthetic bacteria and feed comprising it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070096099A (en) * 2005-12-21 2007-10-02 김경미 Manufacturing method of germanium
KR20090021844A (en) * 2007-08-28 2009-03-04 영어조합법인보전수산 Additive for fishes feed using photosynthetic bacteria and feed comprising it

Also Published As

Publication number Publication date
KR20110140006A (en) 2011-12-30

Similar Documents

Publication Publication Date Title
Oh et al. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49
CN101691550B (en) Microbial inoculum for improving water body and structure of biological intestinal colony, and preparation method and application thereof
KR100356672B1 (en) Novel Lactobacillus sp. Strain And Using The Same
CN101643709B (en) Bacterial strain and method for producing antibiotic avilamycin special for animal
CN106754551A (en) A kind of bacterium amount lactobacillus preparation high and preparation method and application
CN101935624B (en) Bacillus subtillis and method for preparing raw powder of each gram of bacillus subtillis with 1 trillion live germs
CN101649298B (en) Bdellovibrio bacteriovorus bacterial strain eliminating aquatic product Gram-positive pathogenic bacterium and application thereof
HUE030268T2 (en) Microbial fermentation methods and compositions
CN101921710B (en) Repairing agent for microbes in water bodies of excessive culture zones
CN105524855B (en) A kind of bacillus coagulans and its application with aquatic pathogenic bacterium antagonistic properties
CN113040390B (en) Probiotic salt-tolerant lactobacillus johnsonii and application thereof in preventing and treating pathogenic bacteria in livestock and poultry aquiculture
KR20130096879A (en) Novel bacillus aryabhattailks28 comprising solubility upon insoluble salts
CN102994419B (en) Bacillus pumilus LNXM12 and application thereof
CN101775360B (en) Preparation method of Bacillus licheniformis and raw materials
CN101619298B (en) Preparation method of raw powder of each gram of bacillus subtillis with five hundred billion of live germs
KR101451272B1 (en) Pichia kurdriavzevii LA30 STRAIN CELLS ACCUMULATING RARE EARTH ELEMENTS, AND METHOD FOR PREPARATION THEREOF
CN114921385A (en) Bacillus subtilis and application thereof in feed addition and antibiotic-free culture
CN111484967B (en) Propagation method of dinoflagellates such as globes
JP6785324B2 (en) Bacillus licheniformis NY1505 strain that mass-produces α-glucosidase inhibitors
KR101175293B1 (en) Additives for fish feeds containing novel microorganism bacillus subtilis cj1661
KR101665334B1 (en) Rhodobacter sphaeroides CB 8521 strain, having the effect of reducing malodor and immune activity in livestock industry, and microbial agent using it
KR101144279B1 (en) Novel microorganism bacillus subtilis cj1021 and additives for fish feeds containing it
KR101409332B1 (en) Lactobacillus parabuchneri LA15 STRAIN CELLS ACCUMULATING RARE EARTH ELEMENTS, AND METHOD FOR PREPARATION THEREOF
CN106244486B (en) The bacillus of one high-efficiency degradation nitrogen pollutant and its composite bacteria preparation
CN115197885A (en) Lactococcus garvieae LGM15, microbial inoculum and application

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150217

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170407

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 8