KR101128871B1 - 전극 포일 절단 장치 및 방법 - Google Patents
전극 포일 절단 장치 및 방법 Download PDFInfo
- Publication number
- KR101128871B1 KR101128871B1 KR1020110120992A KR20110120992A KR101128871B1 KR 101128871 B1 KR101128871 B1 KR 101128871B1 KR 1020110120992 A KR1020110120992 A KR 1020110120992A KR 20110120992 A KR20110120992 A KR 20110120992A KR 101128871 B1 KR101128871 B1 KR 101128871B1
- Authority
- KR
- South Korea
- Prior art keywords
- scanner
- rotating body
- speed
- electrode foil
- processing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Secondary Cells (AREA)
Abstract
작업 테이블과 수평하도록 지정된 거리 수직 이격되어 설치되는 회전체, 회전체의 중심에 설치되며, 제 1 드라이버에 의해 구동되어 회전체를 지정된 운동 속도로 회전시키는 회전축 및 회전체의 일측 종단에 설치되어, 회전체의 회전 각도, 운동 속도 및 가공 대상물의 가공 사이즈에 기초한 속도 변화율에 따라 레이저 빔을 가공 대상물의 가공 부위로 조사하는 스캐너를 포함하는 전극 포일 절단 장치 및 방법을 제시한다.
Description
본 발명은 절단 장치 및 방법에 관한 것으로, 보다 구체적으로는 전극 포일 절단 장치 및 방법에 관한 것이다.
전 세계적으로 전기 자동차에 대한 관심의 증대와 개발 경쟁 심화로 관련 산업도 크게 성장할 것으로 예상되는데, 특히 2차 전지 시장이 그 중심에 있다.
전기 자동차는 하이브리드 방식인 HEV(Hybrid Electric Vehicle)를 시작으로 PHEV(Plug in Hybrid Electric Vehicle), EV(Electric Vehicle)로 발전하고 있다. 그리고, 동력원인 배터리의 개발이 전기 자동차 시장의 주요 관심 사항이며, 배터리 업체들은 앞 다투어 신 기술을 선점하기 위해 총력을 다하고 있는 실정이다.
이러한 현실적인 배경에서 배터리의 대량 생산을 위한 새로운 공정의 연구 개발은 생산 단가의 하락으로 인한 시장 점유율을 높일 수 있는 기회로 2차 전지 업계에게는 매우 중요한 사항임에 틀림 없다.
특히, 중대형 리튬 이온 배터리(Li Ion Battery) 셀 내에 내장되는 전극(Electrode)의 절단은 배터리의 수명(Lifetime)과 성능에 지대한 영향을 끼칠 수 있는 매우 중요한 공정임과 동시에, 대량 생산을 위해 반드시 공정 시간의 단축이 필요한 공정이다.
전극에는 전류를 모을 수 있는 전극 활물질이 코팅되는데 이 활물질은 절단 시 분진(Particle)으로 발생되어 절단면을 오염시킬 수 있다. 또한 절단 칼날에 의해 전극의 일부가 늘어지면서 버(Burr)로 남을 수도 있다. 전극 절단 공정에 있어 가장 중요한 부분은 절단면에 이러한 버와 분진이 존재하면 안 된다는 것이고, 버와 분진은 배터리의 수명 단축과 전극 내부의 단락을 일으킬 수 있어 중요하게 관리되어야 할 요소이다.
현재에는 기계적인 절단기(Punching)를 이용한 기술이 전극 포일 절단 공정에 이용되고 있다. 이러한 기계적인 절단은 공정 시간이 짧은 장점이 있지만, 절단 품질 면에서는 버와 분진이 생길 수 있는 문제를 안고 있다. 또한 절단 칼날의 마모에 의해 절단 품질이 불균일해 질 수 있어 칼날도 주기적으로 교체하여 관리해야 하며, 이에 따라 공정 비용이 상승하게 된다.
이러한 기계적 절단의 한계를 극복하고자 여러 기술들이 연구 중이며, 그 중 레이저를 이용한 절단 기술의 연구가 가장 활발하게 진행되고 있다. 그러나, 레이저를 이용한 절단 기술이 극복해야 할 가장 큰 과제는 기계적 절단에 비해 공정시간을 획기적으로 단축시킬 수 있는 방안이다. 레이저 절단 공정이 기계적 절단에 비해 의미가 있으려면, 최소 60m/min의 이상의 속도가 보장되어야 한다. 향후 2차 전지의 수요를 감안해서 대량 생산 체제에 적합한 공정 기술의 개발이 필요한 이유에서 이다.
레이저를 응용한 기술로, 일반적인 절단 헤드(Cutting Head)를 이용한 가스 보조 커팅(Gas assisted Cutting) 방식이 있다. 그러나 기계적인 스테이지의 구동으로 인해 공정 시간에서 큰 이득이 없다.
레이저 응용 절단 방식의 다른 예로 스캐너(Scanner)를 이용한 원격 커팅(Remote Cutting) 방식이 있다. 이는 비접촉식 방법으로, 기계적 마모에 의한 가공 품질 불균일에 대한 염려가 없고, 스캐너의 장점인 빠른 구동을 이용할 수 있어 기존에 방식에 비해서 유리한 기술이다.
그러나 스캐너를 고속 구동 시 직선 구간은 일정한 품질을 보장할 수 있지만 사각형의 꼭지점 부분과 같은 코너 구간에서는 고속일수록 품질이 나빠지는 단점이 있다. 이것은 절단 시간 단축에는 치명적인 약점으로 작용한다. 또한 스캐너가 고정되어 있기 때문에 스캐너의 작업 영역(working field)이 넓고, 넓은 단면적의 사이즈를 절단하기 위해서 장초점 렌즈(Long Focal Lens)가 사용되어야 한다. 이는 빔 스폿(Beam Spot) 사이즈의 증가, 레이저 출력을 높이는 결과를 초래하고 결과적으로 시스템의 가격을 상승시킨다.
도 1은 고정식 스캐너를 이용한 경우 스캐너의 작업 영역을 설명하기 위한 도면이다.
2차 전지 전극 포일은 직사각형(a*b)으로 제작되는 것이 일반적이다.
고정식 스캐너는 가로축뿐 아니라 세로축으로 동일한 길이로 빔을 주사하므로, 대상물 즉, 전극 포일(10)의 긴 변(a)의 길이에 따라 작업 영역(a*a)(12)이 결정된다. 일반적으로 전극 포일의 사이즈는 300mm*250mm이며 따라서 고정식 스캐너의 작업 영역이 300mm*300mm으로 넓다. 따라서 장초점 렌즈가 필요할 수 밖에 없고, 장초점 렌즈의 경우 빔의 단면적이 넓으므로 이를 보상하기 위해 레이저 출력을 높여야 한다.
이러한 문제를 해결하기 위해, 최근에 스캐너와 X-Y 스테이지의 조합의 방법이 구상되고 있다. 스캐너 절단의 코너 부분에서의 품질 저하를 보상하기 위해 스테이지 장치를 추가하는 방법이지만 여전히 많은 문제점을 안고 있다. 가장 큰 문제점은 스테이지가 직선 코너를 지날 때 속도의 급격한 변화가 있고, 급격한 속도의 변화는 기계적 장치에 무리를 줄 수 있으며 짧은 구간에서 순간적으로 60m/min의 속도에 도달하기도 어렵다.
본 발명의 실시예는 대상물을 다각형으로 절단할 때 절단 품질을 보장하면서도 고속으로 절단할 수 있는 전극 포일 절단 장치 및 방법을 제공한다.
본 발명의 일 실시예에 의한 전극 포일 절단 장치는 작업 테이블과 수평하도록 지정된 거리 수직 이격되어 설치되는 회전체; 상기 회전체의 중심에 설치되며, 제 1 드라이버에 의해 구동되어 상기 회전체를 지정된 운동 속도로 회전시키는 회전축; 및 상기 회전체의 일측 종단에 설치되어, 상기 회전체의 회전 각도, 운동 속도 및 가공 대상물의 가공 사이즈에 기초한 속도 변화율에 따라 레이저 빔을 상기 가공 대상물의 상기 가공 부위로 조사하는 스캐너;를 포함할 수 있다.
한편, 본 발명의 일 실시예에 의한 전극 포일 절단 방법은 회전축에 의해 지정된 속도로 운동하며, 작업 테이블과 수평하도록 지정된 거리 수직 이격되어 설치되는 회전체; 및 상기 회전체의 일측 종단에 설치되는 스캐너를 포함하는 절단 장치를 이용한 전극 포일 절단 방법으로서, 상기 회전체의 운동 속도, 가공 대상물의 가공 사이즈 및 형태를 포함하는 가공 파라미터를 입력하는 단계; 상기 회전체를 상기 운동 속도에 따라 회전시킴과 동시에, 상기 회전체의 회전 각도, 운동 속도 및 가공 대상물의 가공 부위에 기초한 속도 변화율에 따라 상기 스캐너를 운동시키는 단계; 및 광원으로부터 레이저 빔을 조사하여, 상기 스캐너를 통해 상기 가공 대상물로 조사하는 단계;를 포함할 수 있다.
본 발명에 의하면 다각형, 특히 직사각형 형상의 전극 포일을 레이저를 이용하여 고속, 고품질로 가공할 수 있다. 더욱이 다각형의 꼭지점 부분에서 우수한 가공 품질을 보장할 수 있어 전극 포일의 신뢰성 및 양산성을 향상시킬 수 있다.
나아가, 스캐너가 가공 위치에 근접한 위치에서 전극 포일을 가공하기 때문에, 레이저 가공에 사용되는 스캐너의 작업 영역(working field) 및 시야각(field of view)을 최소화시킬 수 있고, 이에 따라 안정적인 동작이 가능하여 대상물 가공 품질을 향상시킬 수 있다. 또한, 이는 레이저의 출력을 감소시킬 수 있는 결과를 가져와 시스템 구성 단가를 현저히 낮출 수 있게 된다.
도 1은 고정식 스캐너를 이용한 경우 스캐너의 작업 영역을 설명하기 위한 도면,
도 2는 본 발명의 일 실시예에 의한 전극 포일 절단 장치의 구성도,
도 3은 도 2에 도시한 회전체 및 스캐너의 사시도,
도 4는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 운동 속도를 설명하기 위한 도면,
도 5는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 작업 영역을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 의한 전극 포일 절단 장치의 구성도,
도 3은 도 2에 도시한 회전체 및 스캐너의 사시도,
도 4는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 운동 속도를 설명하기 위한 도면,
도 5는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 작업 영역을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 구체적으로 설명한다.
도 2는 본 발명의 일 실시예에 의한 전극 포일 절단 장치의 구성도이다.
도 2를 참조하면, 본 발명의 일 실시예에 의한 전극 포일 절단 장치(100)는 제어부(101), 입력부(103), 출력부(105), 저장부(107), 광원(109), 빔 전송 케이블(111), 회전축(113), 로터리 인코더(114), 회전체(115), 스캐너(117), 빔 전달 통로(119), 제 1 드라이버(121) 및 제 2 드라이버(123)를 포함한다.
회전체(115)는 작업 대상물(200)이 안착되는 작업 테이블과 수평하도록, 지정된 거리 수직 이격되어 설치된다. 그리고, 제어부(101)의 제어에 따라 제 1 드라이버(121)에 의해 구동되는 회전축(113)이 지정된 속도(ω=Δθ/Δt=일정)로 회전함에 따라, 회전체(115) 또한 지정된 속도(ω=Δθ/Δt=일정)로 등속 원운동하게 된다. 이때, 회전체(115)의 길이는 작업 대상물(200)을 다각형(210)으로 가공한 후의 대각선 중 최장 길이 대각선의 길이에 대응하도록 구성할 수 있으나 이에 한정되는 것은 아니다. 아울러, 회전체(115)는 레이저 빔을 투과할 수 있는 재질을 이용하여 형성할 수 있다.
아울러, 회전체(115)의 회전 각도 및 속도는 회전축(113)에 설치된 로터리 인코더(114)에 의해 제어부(101)로 전달된다. 후술하겠지만, 제어부(101)는 로터리 인코더(114)로부터 수신한 회전체(115)의 회전 각도 및 속도에 기초하여 스캐너(117)의 운동 속도를 제어한다.
예를 들어, 작업 대상물(200)을 300mm*250mm의 직사각형으로 가공하고자 할 때, 회전체(115)의 길이는 300mm*250mm 사이즈 직사각형의 대각선 길이와 같거나 크게 형성할 수 있다.
한편, 회전체(115)의 일측 종단에는 스캐너(117)가 설치되어 회전체(115)와 함께 회전하면서 레이저 빔을 작업 대상물(200)로 조사한다. 스캐너(117)는 회전체(115)의 회전 각도, 운동 속도 및 작업 대상물(200)의 가공 부위에 따라 각기 다른 속도로 운동하며, 이에 대한 구체적인 설명은 후술할 것이다.
입력부(103)를 통해서는 가공 파라미터 등이 제공될 수 있고, 출력부(105)는 절단 장치(100)의 가공 과정 및 가공 결과를 출력한다. 저장부(107)에는 절단 장치(100)가 동작하는 데 필요한 각종 어플리케이션, 제어신호, 데이터 등이 저장될 수 있다.
제어부(101)의 제어에 따라 광원(109)으로부터 레이저 빔이 출사되면, 이는 빔 전송 케이블(111)을 통해 회전축(113)으로 전달된다. 회전축(113) 저부에는 제 1 반사부재(M1)가 설치되어, 회전축(113) 내로 전달된 빔을 반사한다.
반사부재(M1)에서 반사된 레이저 빔은 다시 스캐너(117) 내의 제 2 반사부재(M2)로 전달되고, 제 2 반사부재(M2)에서 반사된 빔은 집광렌즈(미도시)에 의해 집광된 후 대상물(200)의 가공 부위(210)에 조사된다.
본 발명의 바람직한 실시예에서, 제 1 반사부재(M1)에서 반사된 레이저 빔은 빔 전달 통로(119)를 통해 스캐너(117) 내로 제공될 수 있다. 빔 전달 통로(119)를 구성하는 경우 외적인 영향으로부터 레이저 빔을 보호할 수 있다.
아울러, 회전축(113), 스캐너(117), 제어부(101) 등 각 구성부에 전원을 공급하기 위한 장치가 추가로 구비될 수 있음은 물론이며, 특히 회전축(113)에 대한 전원 공급은 슬립 링(slip ring)을 통해 이루어질 수 있다.
도 3은 도 2에 도시한 회전체 및 스캐너의 사시도이다.
도 3에 도시한 것과 같이, 회전체(115)는 실질적으로 원판 형상을 갖도록 구성할 수 있으나, 이에 한정되는 것은 아니다.
회전축(113) 내부는 비어 있고, 그 저부에는 제 1 반사부재(M1)가 설치되어 회전축 내로 진입한 레이저 빔을 반사시킨다.
제 1 반사부재(M1)에서 반사된 레이저 빔은 빔 전달 통로(119)를 통해 스캐너(117) 내로 진입하고, 스캐너(117)의 제 2 반사부재(M2)에 의해 다시 반사되어 대상물(200)로 조사될 수 있다.
나아가, 본 발명의 다른 실시예에서, 회전축(113) 내부에는 제어부(101)와 로터리 인코더(114) 및 제 1 드라이버(121)와의 신호 교환을 위한 통신 케이블 연결 통로(125)가 더 구비될 수 있으며, 제어부(101)는 회전체(115)의 타측 종단에 설치될 수도 있다. 미설명 부호 127은 스캐너(117)를 구동하는 제 2 드라이버(123)와 제어부(101) 간의 통신 케이블 연결 통로를 나타낸다.
제어부(101)를 회전체(115)의 타측 종단에 설치하는 경우, 회전체(115)와 함께 제어부(101)가 함께 회전하므로 회전체(115)와 제어부(101) 간의 상대 운동은 없다. 또한, 로터리 인코더(114)/제 1 드라이버(121)와 제어부(101), 또는 스캐너(117)/제 2 드라이버(123)와 제어부(101) 간에 신호 교환에 필요한 케이블이 케이블 연결 통로(125, 127)를 통해 연장되므로 외부에서 로터리 인코더(114)나 스캐너(117)와 케이블을 연결할 필요가 없게 되어 단순하고 견고한 절단 장치를 제공할 수 있다.
뿐만 아니라, 회전체(115)의 일측 종단에 스캐너(117)가 설치되고, 타측 종단에 제어부(101)가 설치되게 되면 회전체(115) 양측의 무게 균형을 이룰 수 있어 가공 신뢰성이 더욱 향상된다.
상술하였듯이, 스캐너(117)는 회전체(115)의 회전 각도, 운동 속도 및 작업 대상물(200)의 가공 부위에 따라 각기 다른 속도로 운동하는데, 이하에서는 작업 대상물(200)을 a*b 사이즈의 직사각형으로 가공하는 경우를 예로 들어 설명한다.
도 4는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 운동 속도를 설명하기 위한 도면이다.
제어부(101)의 제어에 따라 제 1 드라이버(121)에 의해 회전축(113)이 구동되고, 이에 따라 회전체(115)가 ω=Δθ/Δt의 속도로 등속 원운동을 하게 된다(300 참조).
대상물을 도 4의 도면부호 400과 같은 형상 즉, a*b 사이즈의 직사각형으로 가공하고자 할 때, 스캐너(117)에서 반사되는 빔은 부호 400의 궤적을 따라 빔을 조사하여야 한다.
회전체(115)가 ω=Δθ/Δt의 속도로 등속 원운동을 하고 있기 때문에, 스캐너(117)의 운동 속도는 회전체의 운동 속도 및 가공 부위에 따라 다른 속도로 움직이도록 제어된다.
도 4에서 X 방향으로의 변화율과 Y 성분의 변화율은 전혀 다른 양상을 가지며, 이 변화율을 반영할 수 있도록 스캐너의 회전 속도를 결정하여야 할 것이다.
회전체(115)가 ω=Δθ/Δt의 속도로 운동하고, r = √(a*a/4 + b*b/4) 일 때, X = r*cos(ωt) 이므로 X 성분의 시간에 따른 변화율 즉, 속도는 [수학식 1]과 같은 비례 특성을 갖는다.
[수학식 1]
dX/dt = -rω*sin(ωt)
유사하게, r = √(a*a/4 + b*b/4) 일 때, Y = r*sin(ωt) 이므로 Y 성분의 시간에 따른 변화율 즉, 속도는 [수학식 2]와 같은 비례 특성을 갖는다.
[수학식 2]
dY/dt = rω*cos(ωt)
즉, 스캐너(117)는 상기 수학식 1 및 수학식 2와 같은 속도의 양상으로 변하면서 동작할 수 있고, 이 경우 도 4의 400과 같은 형상으로 대상물을 가공할 수 있다.
레이저를 이용한 절단 공정은 렌즈의 초점 위치에서 빔의 스폿(spot) 사이즈(직경)에 의해 레이저의 출력이 결정된다. 그리고, 빔의 스폿 사이즈는 초점 길이가 짧을수록 작아진다.
예를 들어, 초점 길이가 100mm인 렌즈와 300mm인 렌즈를 비교하면, 빔의 스폿 사이즈는 100mm인 렌즈의 경우보다 300mm인 렌즈의 경우 3배 증가하지만 단면적은 9배 증가한다. 이 경우, 동일한 출력밀도를 갖기 위해서는 레이저의 출력(power)을 9배 증가시켜야 한다. 다시 말해, 초점 길이가 짧을수록 빔 스폿을 작게 할 수 있고, 동일한 출력 밀도 (Power Intensity [W/cm2])가 요구될 때 스폿이 작으면 필요한 레이저 출력도 낮아진다.
도 5는 본 발명에 의한 전극 포일 절단 장치에서 스캐너의 작업 영역을 설명하기 위한 도면이다.
본 발명에 의한 절단 장치(100)는 회전체(115)가 회전함과 동시에 스캐너(117)가 함께 회전 및 운동하면서 레이저 빔을 조사하므로 작업 영역을 현저히 좁힐 수 있다.
도 5에 도시한 것과 같이, 대상물의 긴 변(a)측 1/2만큼을 가공할 때, 회전체(115)는 구간(S1)을 회전하고, 이 때 스캐너(117)는 구간(S2)의 작업 영역에서 운동한다.
도 1에 도시한 고정식 스캐너를 이용한 절단 장치와 비교할 때, 작업 영역이 현저히 작은 것을 알 수 있다.
스캐너(117)의 작업 영역이 좁다는 것은, 결국 짧은 초점 길이의 렌즈를 사용할 수 있음을 의미하고, 이는 결국 레이저의 출력을 낮출 수 있어 시스템 구성 단가를 낮출 수 있는 장점으로 작용한다.
이와 같이, 본 발명에서는 스캐너를 이용한 원격 절단 방식을 기반으로 하고, 여기에 스캐너가 안착되어 등속 원운동하는 회전체를 결합하여 절단 장치를 구성하였다. 스캐너는 회전체가 회전함과 동시에 함께 회전하고, 이와 별도의 속도 양상으로 스캐너가 운동하여 원하는 모양으로 대상물(전극 포일)을 절단하게 된다.
따라서, 스캐너의 작업 영역이 작아져 낮은 레이저 출력으로도, 대상물을 다각형 형상으로 고속, 고품질 가공할 수 있다.
더욱이, 회전체의 타측에 제어부를 설치하게 되면, 제어부와 회전체 간의 상대 운동이 없고, 회전체와 스캐너를 제어하기 위한 케이블을 외부에서 연결할 필요가 없을 뿐더러, 회전체 양측의 무게 균형을 유지할 수 있어, 단순하고 견고하며 신뢰성 있는 절단 장치를 제공할 수 있다. 결국, 회전체와 스캐너를 동작시킨 후 광원으로부터 출사되는 레지어 빔을 온(on)시키는 것 만으로 전극 포일을 높은 신뢰성으로 고속 가공할 수 있게 된다.
이러한 전극 포일 절단 장치를 이용하여 전극 포일을 절단하고자 할 때, 먼저 입력부(103)를 통해 가공 파라미터를 입력한다. 가공 파라미터는 예를 들어, 회전체의 회전 속도, 대상물의 가공 사이즈 및 형태, 레이저 출력 등이 될 수 있다.
제어부(101)는 가공 파라미터를 참조하여 제 1 드라이버(121)를 구동하여 회전체(115)를 회전시키는 한편, 회전체(115)의 회전 각도/속도 및 스캐너의 위치에 따라 결정되는 속도 변화율로 제 2 드라이버(123)를 구동하여 스캐너(117)를 운동시킨다. 아울러, 광원(109)으로부터 레이저 빔이 출사되도록 하여 회전축(113) 내로 제공되도록 한다.
이에 따라, 회전체(115)는 지정된 속도(θ=ωt)로 등속 원운동을 개시하고, 스캐너(117)의 제 2 반사부재(M2)는 가공 파라미터 및 회전체(115)의 속도에 따라 상기한 수학식 1 및 2에 따른 속도 양상으로 운동한다.
회전축(113) 저부의 제 1 반사부재(M1)에서 반사된 레이저 빔은 스캐너(117)의 제 2 반사부재(M2)에서 반사된 후 대상물에 조사될 것이다. 이때, 스캐너(117)가 회전체(115)와 함께 회전하면서 수학식 1 및 2의 속도 양상으로 운동하면서 레이저 빔을 반사시키기 때문에, 대상물은 a*b 사이즈의 직사각형으로 가공될 수 있다.
이상에서 설명한 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100 : 전극 포일 절단 장치
101 : 제어부
103 : 입력부
105 : 출력부
107 : 저장부
109 : 광원
111 : 빔 전송 케이블
113 : 회전축
114 : 로터리 인코더
115 : 회전체
117 : 스캐너
119 : 빔 전달 통로
121 : 제 1 드라이버
123 : 제 2 드라이버
125, 127 : 통신 케이블 연결 통로
101 : 제어부
103 : 입력부
105 : 출력부
107 : 저장부
109 : 광원
111 : 빔 전송 케이블
113 : 회전축
114 : 로터리 인코더
115 : 회전체
117 : 스캐너
119 : 빔 전달 통로
121 : 제 1 드라이버
123 : 제 2 드라이버
125, 127 : 통신 케이블 연결 통로
Claims (16)
- 작업 테이블과 수평하도록 지정된 거리 수직 이격되어 설치되는 회전체;
상기 회전체의 중심에 설치되며, 제 1 드라이버에 의해 구동되어 상기 회전체를 지정된 운동 속도로 회전시키는 회전축; 및
상기 회전체의 일측 종단에 설치되어, 상기 회전체의 회전 각도, 운동 속도 및 가공 대상물의 가공 사이즈에 기초한 속도 변화율에 따라 레이저 빔을 상기 가공 대상물의 상기 가공 부위로 조사하는 스캐너;
를 포함하는 전극 포일 절단 장치. - 제 1 항에 있어서,
상기 회전축에 설치되어, 상기 회전체의 회전 각도 및 운동 속도를 제어부로 전송하는 로터리 인코더를 더 포함하는 전극 포일 절단 장치. - 제 2 항에 있어서,
상기 제어부는 상기 회전축의 타측 종단에 설치되는 전극 포일 절단 장치. - 제 3 항에 있어서,
상기 제어부와 상기 로터리 인코더 간의 신호 교환을 위한 통신 케이블 연결 통로를 더 포함하고, 상기 통신 케이블 연결 통로는 상기 회전체 내부를 통해 상기 로터리 인코더로 연장되는 포함하는 전극 포일 절단 장치. - 제 3 항에 있어서,
상기 회전체 상부에 설치되며, 상기 스캐너와 상기 제어부 간의 신호 교환을 위한 통신 케이블 연결 통로를 더 포함하는 전극 포일 절단 장치. - 제 1 항에 있어서,
상기 회전축 내의 저부에 형성되는 반사 부재를 더 포함하고,
상기 레이저 빔은 광원으로부터 상기 반사 부재를 통해 상기 스캐너로 조사되는 전극 포일 절단 장치. - 제 6 항에 있어서,
상기 반사 부재에 의해 반사된 상기 레이저 빔을 상기 스캐너로 전달하기 위한 빔 전달 통로를 더 포함하는 전극 포일 절단 장치. - 제 6 항에 있어서,
상기 회전축 내부에 설치되는 통신 케이블 연결 통로를 더 포함하는 전극 포일 절단 장치. - 제 1 항에 있어서,
상기 회전축은 상기 회전체를 등속 원운동하도록 제어하는 전극 포일 절단 장치. - 제 9 항에 있어서,
상기 가공 대상물은 직사각형으로 가공되며,
상기 스캐너는, 상기 가공 대상물의 긴 변 가공시 상기 회전체의 회전 각도, 운동 속도 및, 시간에 따른 상기 스캐너의 긴 변측 위치에 따라 결정되는 속도로 운동하는 전극 포일 절단 장치. - 제 9 항에 있어서,
상기 가공 대상물은 직사각형으로 가공되며,
상기 스캐너는, 상기 가공 대상물의 짧은 변 가공시 상기 회전체의 회전 각도, 운동 속도 및, 시간에 따른 상기 스캐너의 짧은 변측 위치에 따라 결정되는 속도로 운동하는 전극 포일 절단 장치. - 회전축에 의해 지정된 속도로 운동하며, 작업 테이블과 수평하도록 지정된 거리 수직 이격되어 설치되는 회전체; 및 상기 회전체의 일측 종단에 설치되는 스캐너를 포함하는 절단 장치를 이용한 전극 포일 절단 방법으로서,
상기 회전체의 운동 속도, 가공 대상물의 가공 사이즈 및 형태를 포함하는 가공 파라미터를 입력하는 단계;
상기 회전체를 상기 운동 속도에 따라 회전시킴과 동시에, 상기 회전체의 회전 각도, 운동 속도 및 가공 대상물의 가공 부위에 기초한 속도 변화율에 따라 상기 스캐너를 운동시키는 단계; 및
광원으로부터 레이저 빔을 조사하여, 상기 스캐너를 통해 상기 가공 대상물로 조사하는 단계;
를 포함하는 전극 포일 절단 방법. - 제 12 항에 있어서,
상기 스캐너를 운동시키는 단계는, 상기 회전축에 설치된 로터리 인코더로부터 수신한 상기 회전체의 회전 각도 및 운동 속도에 기초하여 상기 스캐너의 운동 속도를 결정하는 단계를 더 포함하는 전극 포일 절단 방법. - 제 13 항에 있어서,
상기 운동 속도는 상기 회전체를 등속 원운동하도록 제어하는 속도인 전극 포일 절단 방법. - 제 14 항에 있어서,
상기 가공 대상물은 직사각형으로 가공되며,
상기 가공 대상물의 긴 변 가공시 상기 회전체의 회전 각도, 운동 속도 및, 시간에 따른 상기 스캐너의 긴 변측 위치에 따라 결정되는 속도로 상기 스캐너가 운동하는 전극 포일 절단 방법. - 제 14 항에 있어서,
상기 가공 대상물은 직사각형으로 가공되며,
상기 가공 대상물의 짧은 변 가공시 상기 회전체의 회전 각도, 운동 속도 및, 시간에 따른 상기 스캐너의 짧은 변측 위치에 따라 결정되는 속도로 상기 스캐너가 운동하는 전극 포일 절단 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2011/009501 WO2013062173A1 (ko) | 2011-10-24 | 2011-12-09 | 전극 포일 절단 장치 및 방법 |
CN201180074229.4A CN103947014B (zh) | 2011-10-24 | 2011-12-09 | 电极箔切割装置及方法 |
JP2014535633A JP5918375B2 (ja) | 2011-10-24 | 2011-12-09 | 電極フォイル切断装置及び方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110108579 | 2011-10-24 | ||
KR20110108579 | 2011-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101128871B1 true KR101128871B1 (ko) | 2012-03-26 |
Family
ID=46142592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110120992A KR101128871B1 (ko) | 2011-10-24 | 2011-11-18 | 전극 포일 절단 장치 및 방법 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5918375B2 (ko) |
KR (1) | KR101128871B1 (ko) |
CN (1) | CN103947014B (ko) |
WO (1) | WO2013062173A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114585470A (zh) * | 2019-09-06 | 2022-06-03 | Ire波卢斯公司 | 激光光束加工透明脆性材料的方法和实施这种方法的装置 |
WO2024135990A1 (ko) * | 2022-12-22 | 2024-06-27 | 주식회사 엘지에너지솔루션 | 식각 장치 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107790895A (zh) * | 2017-11-01 | 2018-03-13 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | 电极箔的切割装置及其切割方法 |
WO2024210236A1 (ko) * | 2023-04-06 | 2024-10-10 | 주식회사 제이엠씨 | 원형 빔 생성 장치 및 이를 제어하는 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02117791A (ja) * | 1988-09-17 | 1990-05-02 | Philips Gloeilampenfab:Nv | レーザ光加工装置 |
KR100556587B1 (ko) | 2004-08-24 | 2006-03-06 | 주식회사 이오테크닉스 | 폴리곤 미러를 이용한 레이저 가공장치 |
KR100603904B1 (ko) | 2004-08-03 | 2006-07-24 | 주식회사 이오테크닉스 | 폴리곤 미러를 이용한 다중 레이저 가공장치 |
KR20110113077A (ko) * | 2010-04-08 | 2011-10-14 | 기아자동차주식회사 | 차량용 홀 가공장치 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100609831B1 (ko) * | 2004-08-03 | 2006-08-09 | 주식회사 이오테크닉스 | 다중 레이저 가공장치 |
DE102004058263A1 (de) * | 2004-12-03 | 2006-06-08 | Rehau Ag + Co | Einrichtung zur Führung eines Strahles, insbesondere eines Laserstrahles, Vorrichtung zur optischen Bearbeitung, insbesondere zur Laserbearbeitung, und Verfahren zum Führen eines Strahles, insbesondere eines Laserstrahles |
KR20080079828A (ko) * | 2007-02-28 | 2008-09-02 | 주식회사 이오테크닉스 | 레이저 가공 장치 및 방법 |
CN101722370A (zh) * | 2009-12-25 | 2010-06-09 | 奇瑞汽车股份有限公司 | 一种电池极片激光切割装置 |
CN102205469A (zh) * | 2010-03-31 | 2011-10-05 | 深圳市先阳软件技术有限公司 | 一种对电池极片进行激光切割的控制方法及系统 |
-
2011
- 2011-11-18 KR KR1020110120992A patent/KR101128871B1/ko active IP Right Grant
- 2011-12-09 JP JP2014535633A patent/JP5918375B2/ja active Active
- 2011-12-09 WO PCT/KR2011/009501 patent/WO2013062173A1/ko active Application Filing
- 2011-12-09 CN CN201180074229.4A patent/CN103947014B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02117791A (ja) * | 1988-09-17 | 1990-05-02 | Philips Gloeilampenfab:Nv | レーザ光加工装置 |
KR100603904B1 (ko) | 2004-08-03 | 2006-07-24 | 주식회사 이오테크닉스 | 폴리곤 미러를 이용한 다중 레이저 가공장치 |
KR100556587B1 (ko) | 2004-08-24 | 2006-03-06 | 주식회사 이오테크닉스 | 폴리곤 미러를 이용한 레이저 가공장치 |
KR20110113077A (ko) * | 2010-04-08 | 2011-10-14 | 기아자동차주식회사 | 차량용 홀 가공장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114585470A (zh) * | 2019-09-06 | 2022-06-03 | Ire波卢斯公司 | 激光光束加工透明脆性材料的方法和实施这种方法的装置 |
WO2024135990A1 (ko) * | 2022-12-22 | 2024-06-27 | 주식회사 엘지에너지솔루션 | 식각 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN103947014B (zh) | 2016-12-21 |
JP2014534077A (ja) | 2014-12-18 |
WO2013062173A1 (ko) | 2013-05-02 |
JP5918375B2 (ja) | 2016-05-18 |
CN103947014A (zh) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101128871B1 (ko) | 전극 포일 절단 장치 및 방법 | |
CN102248309B (zh) | Ccd装置辅助定位的晶圆激光划片方法 | |
WO2018211594A1 (ja) | 付加加工用ヘッドおよび加工機械 | |
JP6856070B2 (ja) | 移動体及び移動体システム | |
CN110722274B (zh) | 一种激光切割设备 | |
KR20200133942A (ko) | 전극 노칭 장치 | |
CN105301768A (zh) | 振镜式激光扫描系统 | |
US11318559B2 (en) | Laser machining system | |
CN103658975A (zh) | 一种激光分束加工装置 | |
JP6685817B2 (ja) | SiCウエーハの加工方法 | |
CN201702514U (zh) | Ccd装置辅助定位式晶圆加工用激光划片机 | |
CN101992409B (zh) | 轴承内外圈磨削加工超精研一体机 | |
CN104203485B (zh) | 使用超快激光在划线轮的边缘线部分处制造微缺口的设备和方法 | |
CN107931861A (zh) | 激光切割机 | |
US20220016744A1 (en) | Processing device and method for processing a material | |
JP2024040305A (ja) | ビーム加工装置 | |
CN116133783A (zh) | 加工系统 | |
CN112218736B (zh) | 激光加工头和激光加工机 | |
KR20190036872A (ko) | 레이저가공장치용 평탄화모듈 및 레이저가공장치용 스테이지 평탄화방법 | |
KR20130016516A (ko) | 레이저를 이용한 이차전지용 전극 절단방법 | |
CN107414284A (zh) | 一种准分子激光辅助微铣削加工方法与装置 | |
CN106903313B (zh) | 激光选区熔化装置及3d打印机 | |
CN105643158A (zh) | 自适应焊缝激光扫描装置及控制方法 | |
CN111505602A (zh) | 电子装置及三维扫描方法 | |
CN104841951B (zh) | 一种离轴抛物面多镜系统集成加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150223 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160225 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170308 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180626 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190107 Year of fee payment: 10 |