KR101109579B1 - Thin film transistor substrate for an x-ray detector and method of manufacturing the same - Google Patents
Thin film transistor substrate for an x-ray detector and method of manufacturing the same Download PDFInfo
- Publication number
- KR101109579B1 KR101109579B1 KR1020090002328A KR20090002328A KR101109579B1 KR 101109579 B1 KR101109579 B1 KR 101109579B1 KR 1020090002328 A KR1020090002328 A KR 1020090002328A KR 20090002328 A KR20090002328 A KR 20090002328A KR 101109579 B1 KR101109579 B1 KR 101109579B1
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- layer
- film transistor
- electrode
- forming
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 76
- 239000000758 substrate Substances 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 62
- 239000010703 silicon Substances 0.000 claims abstract description 62
- 239000010408 film Substances 0.000 claims abstract description 24
- 238000002161 passivation Methods 0.000 claims abstract description 23
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims abstract description 17
- 230000001681 protective effect Effects 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 169
- 238000005229 chemical vapour deposition Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 239000012044 organic layer Substances 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 32
- 239000004065 semiconductor Substances 0.000 description 24
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 229910021417 amorphous silicon Inorganic materials 0.000 description 10
- 239000013078 crystal Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14658—X-ray, gamma-ray or corpuscular radiation imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14665—Imagers using a photoconductor layer
- H01L27/14676—X-ray, gamma-ray or corpuscular radiation imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/115—Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Thin Film Transistor (AREA)
Abstract
광 다이오드의 신뢰성을 향상시킬 수 있는 엑스레이 검출기용 박막 트랜지스터 기판 및 이의 제조 방법이 개시된다. 엑스레이 검출기용 박막 트랜지스터 기판은 게이트 라인, 데이터 라인, 박막 트랜지스터, 광 다이오드, 보호막 및 바이어스 라인을 포함한다. 데이터 라인은 게이트 절연막을 사이에 두고 게이트 라인과 교차되게 형성된다. 박막 트랜지스터는 게이트 라인과 데이터 라인에 둘러싸인 화소 영역에 형성되어 게이트 라인 및 데이터 라인과 연결된다. 광 다이오드는 박막 트랜지스터와 연결되어 화소 영역에 형성되며, 미세결정질 실리콘으로 형성된다. 보호막은 박막 트랜지스터 및 광 다이오드를 덮는다. 바이어스 라인은 보호막 상에 형성되며, 광 다이오드와 전기적으로 연결된다. 이와 같이, 광 다이오드에 형성되는 진성 실리콘층을 미세결정질 실리콘으로 형성함으로써, 소자 열화에 따른 라이프 타임(life time)의 감소를 방지하고 광 다이오드의 신뢰성을 향상시킬 수 있다.
Disclosed are a thin film transistor substrate for an x-ray detector and a method of manufacturing the same that can improve the reliability of a photodiode. The thin film transistor substrate for the x-ray detector includes a gate line, a data line, a thin film transistor, a photodiode, a protective film, and a bias line. The data line is formed to intersect the gate line with the gate insulating film interposed therebetween. The thin film transistor is formed in the pixel area surrounded by the gate line and the data line and connected to the gate line and the data line. The photodiode is connected to the thin film transistor and formed in the pixel region, and is formed of microcrystalline silicon. The protective film covers the thin film transistor and the photodiode. The bias line is formed on the passivation layer and is electrically connected to the photodiode. In this way, by forming the intrinsic silicon layer formed on the photodiode with microcrystalline silicon, it is possible to prevent the reduction of life time due to device degradation and to improve the reliability of the photodiode.
Description
본 발명은 엑스레이(X-ray) 검출기용 박막 트랜지스터 기판 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는, 엑스레이로 피사체를 찍은 영상을 검출하기 위해 사용되는 엑스레이 검출기용 박막 트랜지스터 기판 및 이의 제조 방법에 관한 것이다.The present invention relates to a thin film transistor substrate for an X-ray detector and a method of manufacturing the same. It is about.
종래 의학용으로 널리 사용되고 있는 진단용 엑스레이 검사 방법은 엑스레이 감지 필름을 사용하여 촬영하고, 그 결과를 알기 위해 소정의 필름 인화 시간을 거쳐야 했다. 그러나, 근래에 들어서 반도체 기술의 발전에 힘입어 박막 트랜지스터를 이용한 디지털 엑스레이 검출기가 개발되었다.Diagnostic x-ray examination methods widely used in the prior art had to take a film using an X-ray detection film, and to pass a predetermined film print time to know the results. In recent years, however, with the development of semiconductor technology, digital x-ray detectors using thin film transistors have been developed.
이러한 디지털 엑스레이 검출기는 박막 트랜지스터 어레이 기판을 구비하며, 박막 트랜지스터 어레이 기판에는 복수의 박막 트랜지스터와 광 다이오드(photo diode)가 매트릭스 형상으로 배열되어 있다.The digital x-ray detector includes a thin film transistor array substrate, and a plurality of thin film transistors and photo diodes are arranged in a matrix form on the thin film transistor array substrate.
광 다이오드는 반도체층과 이 반도체층의 양단에 전압을 인가하기 위한 두 전극을 포함하며, 상기 반도체층은 P형의 불순물을 포함하는 P형 반도체층, 불순물을 함유하지 않는 진성 반도체층 및 N형의 불순물을 포함하는 N형 반도체층을 포함한다.The photodiode includes a semiconductor layer and two electrodes for applying a voltage across the semiconductor layer, wherein the semiconductor layer is a P-type semiconductor layer containing P-type impurities, an intrinsic semiconductor layer containing no impurities, and an N-type. An N-type semiconductor layer containing impurities of is included.
이러한 박막 트랜지스터 어레이 기판을 갖는 엑스레이 검출기는 외부로부터 조사되는 엑스레이에 광량에 대응하여 광 다이오드에서 전기적 신호를 변화시킴으로써, 각 화소에 대응하는 이미지를 생성한다.The X-ray detector having the thin film transistor array substrate generates an image corresponding to each pixel by changing an electrical signal in a photodiode in response to the amount of light on the X-ray radiated from the outside.
이러한 박막 트랜지스터 어레이 기판을 갖는 엑스레이 검출기의 특성 향상을 위해 고려되는 핵심인자는 광 다이오드의 광전변환 효율이다. 광 다이오드의 진성 반도체층은 통상 비정질(amorphous) 실리콘으로 형성이 되는데, 비정질 실리콘은 결정 상태가 불안정하고 열적 특성에 열악하여 장시간 사용시 발생되는 열에 의하여 특성이 열화되어 광전변환 효율이 떨어지는 문제점이 있다.A key factor to improve the characteristics of the X-ray detector having such a thin film transistor array substrate is the photoelectric conversion efficiency of the photodiode. The intrinsic semiconductor layer of a photodiode is usually formed of amorphous silicon. The amorphous silicon has a problem in that the crystal state is unstable and inferior in thermal characteristics, so that the characteristics are deteriorated by heat generated during long time use, thereby degrading photoelectric conversion efficiency.
따라서, 본 발명은 이와 같은 문제점을 감안한 것으로써, 본 발명은 광 다이오드의 신뢰성을 향상시킬 수 있는 엑스레이 검출기용 박막 트랜지스터 기판을 제공한다.Accordingly, the present invention has been made in view of such a problem, and the present invention provides a thin film transistor substrate for an X-ray detector capable of improving the reliability of a photodiode.
또한, 본 발명은 상기한 엑스레이 검출기용 박막 트랜지스터 기판의 제조 방법을 제공한다. The present invention also provides a method of manufacturing the thin film transistor substrate for an X-ray detector.
본 발명의 일 특징에 따른 엑스레이 검출기용 박막 트랜지스터 기판은 게이트 라인, 데이터 라인, 박막 트랜지스터, 광 다이오드, 보호막 및 바이어스 라인을 포함한다. 상기 데이터 라인은 게이트 절연막을 사이에 두고 상기 게이트 라인과 교차되게 형성된다. 상기 박막 트랜지스터는 상기 게이트 라인과 상기 데이터 라인에 둘러싸인 화소 영역에 형성되어 상기 게이트 라인 및 상기 데이터 라인과 연결된다. 상기 광 다이오드는 상기 박막 트랜지스터와 연결되어 상기 화소 영역에 형성되며, 미세결정질 실리콘으로 형성된다. 상기 보호막은 상기 박막 트랜지스터 및 상기 광 다이오드를 덮는다. 상기 바이어스 라인은 상기 보호막 상에 형성되며, 상기 광 다이오드와 전기적으로 연결된다.A thin film transistor substrate for an x-ray detector according to an aspect of the present invention includes a gate line, a data line, a thin film transistor, a photodiode, a protective film, and a bias line. The data line is formed to cross the gate line with a gate insulating layer interposed therebetween. The thin film transistor is formed in a pixel region surrounded by the gate line and the data line and connected to the gate line and the data line. The photodiode is connected to the thin film transistor and is formed in the pixel region, and is formed of microcrystalline silicon. The passivation layer covers the thin film transistor and the photodiode. The bias line is formed on the passivation layer and is electrically connected to the photodiode.
상기 광 다이오드는 상기 박막 트랜지스터와 전기적으로 연결된 하부 전극, 상기 하부 전극 상에 형성된 n형 실리콘층, 상기 n형 실리콘층 상에 형성된 상기 진성 실리콘층, 상기 진성 실리콘층 상에 형성된 p형 실리콘층, 및 상기 p형 실리 콘층 상에 형성된 상부 전극을 포함한다. The photodiode includes a lower electrode electrically connected to the thin film transistor, an n-type silicon layer formed on the lower electrode, the intrinsic silicon layer formed on the n-type silicon layer, a p-type silicon layer formed on the intrinsic silicon layer, And an upper electrode formed on the p-type silicon layer.
상기 박막 트랜지스터는, 상기 게이트 라인과 연결된 게이트 전극, 상기 게이트 절연막의 상부에 상기 게이트 전극과 중첩되도록 형성된 액티브층, 상기 데이터 라인과 연결되고 상기 액티브층의 상부까지 연장된 소오스 전극, 및 상기 액티브층 상부에서 상기 소오스 전극과 이격되고 상기 하부 전극과 전기적으로 연결된 드레인 전극을 포함할 수 있다.The thin film transistor may include a gate electrode connected to the gate line, an active layer formed on the gate insulating layer to overlap the gate electrode, a source electrode connected to the data line and extending to an upper portion of the active layer, and the active layer. The upper electrode may include a drain electrode spaced apart from the source electrode and electrically connected to the lower electrode.
상기 하부 전극은 상기 드레인 전극과 동일한 금속층으로부터 형성될 수 있다. The lower electrode may be formed from the same metal layer as the drain electrode.
상기 상부 전극은 투명한 도전성 물질을 포함할 수 있다.The upper electrode may include a transparent conductive material.
상기 박막 트랜지스터 기판은 상기 보호막 상에 형성된 유기막을 더 포함할 수 있다. The thin film transistor substrate may further include an organic layer formed on the passivation layer.
본 발명의 일 특징에 따른 엑스레이 검출기용 박막 트랜지스터 기판의 제조 방법에 따르면, 게이트 라인, 게이트 절연막을 사이에 두고 상기 게이트 라인과 교차하는 데이터 라인, 및 상기 게이트 라인과 상기 데이터 라인에 의해 둘러싸인 화소 영역에 상기 게이트 라인 및 상기 데이터 라인과 연결되는 박막 트랜지스터를 형성한다. 이후, 상기 박막 트랜지스터와 연결되어 상기 화소 영역에 형성되며, 미세결정질 실리콘으로 형성되는 진성 실리콘층을 포함하는 광 다이오드를 형성한다. 이후, 상기 박막 트랜지스터 및 상기 광 다이오드를 덮도록 보호막을 형성한다. 이후, 상기 보호막 상에 상기 광 다이오드와 전기적으로 연결되는 바이어스 라인을 형성한다. According to a method of manufacturing a thin film transistor substrate for an X-ray detector according to an aspect of the present invention, a gate line, a data line intersecting the gate line with a gate insulating layer interposed therebetween, and a pixel region surrounded by the gate line and the data line A thin film transistor is formed on the gate line and the data line. Subsequently, the photodiode is connected to the thin film transistor to form a photodiode formed in the pixel region and including an intrinsic silicon layer formed of microcrystalline silicon. Thereafter, a passivation layer is formed to cover the thin film transistor and the photodiode. Thereafter, a bias line electrically connected to the photodiode is formed on the passivation layer.
상기 광 다이오드의 형성하기 위하여, 상기 박막 트랜지스터와 전기적으로 연결되는 하부 전극을 형성한다. 이후, 상기 하부 전극 상에 n형 실리콘층을 형성하고, 상기 n형 실리콘층 상에 상기 진성 실리콘층을 형성하고, 상기 진성 실리콘층 상에 p형 실리콘층을 형성한다. 이후, 상기 p형 실리콘층 상에 상부 전극을 형성한다. In order to form the photodiode, a lower electrode electrically connected to the thin film transistor is formed. Thereafter, an n-type silicon layer is formed on the lower electrode, the intrinsic silicon layer is formed on the n-type silicon layer, and a p-type silicon layer is formed on the intrinsic silicon layer. Thereafter, an upper electrode is formed on the p-type silicon layer.
상기 게이트 라인, 데이터 라인 및 박막 트랜지스터를 형성하기 위하여, 기판 상에 게이트 라인 및 상기 게이트 라인과 연결된 게이트 전극을 포함하는 게이트 배선을 형성한다. 이후, 상기 게이트 배선 상에 상기 게이트 절연막을 형성한다. 이후, 상기 게이트 절연막 상에 상기 게이트 전극과 중첩되도록 액티브층을 형성한다. 이후, 상기 게이트 절연막 상에, 상기 데이터 라인, 상기 데이터 라인과 연결되고 상기 액티브층의 상부까지 연장된 소오스 전극, 및 상기 액티브층의 상부에서 상기 소오스 전극과 이격되고 상기 하부 전극과 연결되는 드레인 전극을 포함하는 데이터 배선을 형성한다. In order to form the gate line, the data line, and the thin film transistor, a gate line including a gate line and a gate electrode connected to the gate line is formed on a substrate. Thereafter, the gate insulating film is formed on the gate wiring. Thereafter, an active layer is formed on the gate insulating layer to overlap the gate electrode. Then, on the gate insulating layer, a source electrode connected to the data line, the data line and extending to an upper portion of the active layer, and a drain electrode spaced apart from the source electrode and connected to the lower electrode on the active layer. To form a data wiring comprising a.
상기 하부 전극은 상기 드레인 전극과 동일한 금속층으로부터 형성될 수 있다. The lower electrode may be formed from the same metal layer as the drain electrode.
상기 진성 실리콘층은 서로 교대로 배치된 복수의 정전압 전극들과 복수의 부전압 전극들을 포함하는 분할전극 어셈블리를 구비한 플라즈마 화학기상증착 장치에서 형성될 수 있다. The intrinsic silicon layer may be formed in a plasma chemical vapor deposition apparatus having a split electrode assembly including a plurality of constant voltage electrodes and a plurality of negative voltage electrodes disposed alternately with each other.
이와 같은 엑스레이 검출기용 박막 트랜지스터 기판 및 이의 제조 방법에 따 르면, 광 다이오드에 형성되는 진성 실리콘층을 결정 구조가 불안정한 비정질 실리콘 대신 상대적으로 결정 구조가 안정된 미세결정질 실리콘으로 형성함으로써, 소자 열화에 따른 라이프 타임(life time)의 감소를 방지하고 광 다이오드의 신뢰성을 향상시킬 수 있다.According to such a thin film transistor substrate for an X-ray detector and a method of manufacturing the same, the intrinsic silicon layer formed on the photodiode is formed of microcrystalline silicon having a relatively stable crystal structure instead of amorphous silicon having an unstable crystal structure, thereby resulting in life due to device deterioration. It is possible to prevent the reduction of the life time and to improve the reliability of the photodiode.
상술한 본 발명의 특징 및 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명은 하기의 실시예들에 한정되지 않고 다른 형태로 구현될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 보다 완전해질 수 있도록 그리고 당업자에게 본 발명의 기술적 사상과 특징이 충분히 전달될 수 있도록 하기 위해 제공된다. 도면들에 있어서, 각 장치 또는 막(층) 및 영역들의 두께는 본 발명의 명확성을 기하기 위하여 과장되게 도시되었으며, 또한 각 장치는 본 명세서에서 설명되지 아니한 다양한 부가 장치들을 구비할 수 있으며, 막(층)이 다른 막(층) 또는 기판 상에 위치하는 것으로 언급되는 경우, 다른 막(층) 또는 기판 상에 직접 형성되거나 그들 사이에 추가적인 막(층)이 개재될 수 있다. The above-described features and effects of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, and thus, those skilled in the art to which the present invention pertains may easily implement the technical idea of the present invention. Could be. The present invention is not limited to the following embodiments and may be implemented in other forms. The embodiments introduced herein are provided to make the disclosure more complete and to fully convey the spirit and features of the present invention to those skilled in the art. In the drawings, the thickness of each device or film (layer) and regions has been exaggerated for clarity of the invention, and each device may have a variety of additional devices not described herein. When (layer) is mentioned as being located on another film (layer) or substrate, an additional film (layer) may be formed directly on or between the other film (layer) or substrate.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명하고자 한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 엑스레이 검출기용 박막 트랜지스터 기 판을 나타낸 평면도이며, 도 2는 도 1의 Ⅰ-Ⅰ'선을 따라 절단한 단면도이다.1 is a plan view illustrating a thin film transistor substrate for an X-ray detector according to an exemplary embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 엑스레이 검출기용 박막 트랜지스터 기판(100)은 게이트 라인(122), 데이터 라인(152), 박막 트랜지스터(160), 광 다이오드(170), 보호막(180) 및 바이어스 라인(190)을 포함한다.1 and 2, the thin film transistor substrate 100 for an X-ray detector according to an exemplary embodiment of the present invention may include a
게이트 라인(122)은 유리 또는 플라스틱 등의 투명하고 절연성을 갖는 기판(110) 상에 형성된다. 예를 들어, 게이트 라인(122)은 가로 방향으로 연장되어 화소 영역의 상측과 하측을 정의한다.The
데이터 라인(152)은 게이트 절연막(130)을 사이에 두고 게이트 라인(122)과 교차되게 형성된다. 예를 들어, 데이터 라인(152)은 세로 방향으로 연장되어 화소 영역의 좌측과 우측을 정의한다.The
박막 트랜지스터(160)는 게이트 라인(122)과 데이터 라인(152)에 둘러싸인 화소 영역에 형성되며, 게이트 라인(122) 및 데이터 라인(152)과 전기적으로 연결된다.The
박막 트랜지스터(160)는 게이트 라인(122)과 연결된 게이트 전극(124), 게이트 절연막(130) 상부에 게이트 전극(124)과 중첩되도록 형성된 액티브층(140), 데이터 라인(152)과 연결되고 액티브층(140)의 상부까지 연장된 소오스 전극(154), 및 액티브층(140) 상부에서 소오스 전극(154)과 이격되 드레인 전극(156)을 포함한다.The
게이트 전극(124)은 박막 트랜지스터(160)의 게이트 단자를 구성한다. 게이트 전극(124)은 게이트 라인(122)과 동일한 금속층으로부터 형성될 수 있다.The
액티브층(140)은 게이트 절연막(130) 상에 게이트 전극(124)과 적어도 일부가 중첩되도록 형성된다. 액티브층(140)은 게이트 절연막(130) 상에 형성된 반도체층(142) 및 반도체층(142) 상에 형성된 오믹 콘택층(144)을 포함할 수 있다. 반도체층(142)은 박막 트랜지스터(160)에서 실질적으로 전류가 흐르는 채널을 형성하는 층으로, 예를 들어 비정질 실리콘으로 형성된다. 오믹 콘택층(144)은 반도체층(142)과 소오스 전극(154) 및 드레인 전극(156) 사이에 형성된다. 오믹 콘택층(144)은 반도체층(142)과 소오스 전극(154) 및 드레인 전극(156)간의 접촉 저항을 감소시키기 위한 층으로, n형 불순물이 고농도로 도핑된 비정질 실리콘으로 형성된다. 한편, 반도체층(142) 및 오믹 콘택층(144)은 비정질 실리콘 대신 미세결정질 실리콘으로 형성될 수도 있다. The
소오스 전극(154) 및 드레인 전극(156)은 박막 트랜지스터(160)의 채널 영역을 사이에 두고 서로 이격되도록 액티브층(140) 상에 형성된다. 소오스 전극(154)은 데이터 라인(152)과 연결되어 박막 트랜지스터(160)의 소오스 단자를 구성하며, 드레인 전극(156)은 광 다이오드(170)와 연결되어 박막 트랜지스터(160)의 드레인 단자를 구성한다. 소오스 전극(154) 및 드레인 전극(156)은 데이터 라인(152)과 동일한 금속층으로부터 형성될 수 있다.The
광 다이오드(170)는 박막 트랜지스터(160)와 연결되며, 게이트 라인(122)과 데이터 라인(152)에 둘러싸인 화소 영역에 형성된다. 광 다이오드(170)는 박막 트랜지스터(160)가 형성된 영역을 제외하고 화소 영역 전체에 걸쳐 형성된다. The
광 다이오드(170)는 박막 트랜지스터(160)와 전기적으로 연결되는 하부 전 극(171), 하부 전극(171) 상에 형성된 n형 실리콘층(172), n형 실리콘층(172) 상에 형성된 진성 실리콘층(173), 진성 실리콘층(173) 상에 형성된 p형 실리콘층(174) 및 p형 실리콘층(174) 상에 형성된 상부 전극(175)을 포함한다. 즉, 광 다이오드(170)는 하부 전극(171), n형 실리콘층(172), 진성 실리콘층(173), p형 실리콘층(174) 및 상부 전극(175)이 순차적으로 적층된 구조를 갖는다.The
하부 전극(171)은 박막 트랜지스터(160)의 드레인 전극(156)과 전기적으로 연결되어 있다. 하부 전극(171)은 예를 들어, 드레인 전극(156)과 동일한 금속층으로부터 형성된다.The
n형 실리콘층(172)은 하부 전극(171) 상에 형성된다. n형 실리콘층(172)은 인(P), 비소(As), 안티몬(Sb) 등의 n형 불순물이 도핑되어 있는 실리콘 물질로 형성될 수 있다. n형 실리콘층(172)은 비정질 실리콘 또는 미세결정질 실리콘으로 형성될 수 있다.The n-
진성 실리콘층(173)은 n형 실리콘층(172) 상에 형성된다. 진성 실리콘층(173)은 미세결정질(micro-crystalline) 실리콘으로 형성된다. 여기서, 미세결정질 실리콘은 비정질 실리콘과 단결정 실리콘의 경계물질로서 수십 nm에서 수백 nm의 결정크기를 갖는 나노 스케일(nano scale)의 실리콘 결정들이 형성되어 있는 물질을 의미한다.
p형 실리콘층(174)은 진성 실리콘층(173) 상에 형성된다. p형 실리콘층(174)은 붕소(B), 칼륨(K) 등의 p형 불순물이 도핑되어 있는 실리콘 물질로 형성될 수 있다. p형 실리콘층(174)은 비정질 실리콘 또는 미세결정질 실리콘으로 형 성될 수 있다. The p-
상부 전극(175)는 p형 실리콘층(174) 상에 형성된다. 상부 전극(175)은 광이 투과될 수 있도록 투명한 도전성 물질로 형성된다. 예를 들어, 상부 전극(175)은 틴 옥사이드(tin oxide), 징크 옥사이드(zinc oxide), 인듐 틴 옥사이드(indium tin oxide) 또는 인듐 징크 옥사이드(indium zinc oxide) 등으로 형성될 수 있다. The
보호막(180)은 박막 트랜지스터(160) 및 광 다이오드(170)를 덮도록 형성된다. 보호막(180)은 박막 트랜지스터(160) 및 광 다이오드(170)를 보호하고, 절연시키기 위한 막으로써, 예를 들어, 실리콘 나이트라이드(SiNx) 또는 실리콘 옥사이드(SiOx) 등으로 형성될 수 있다.The
한편, 보호막(180) 상부에는 유기막(182)이 더 형성될 수 있다. 유기막(182)은 박막 트랜지스터 기판(100)의 평탄화를 위하여 보호막(180)보다 두꺼운 두께로 형성된다.The
유기막(182) 상에는 바이어스 라인(190)이 형성된다. 바이어스 라인(190)은 광 다이오드(170)에 역바이어스를 인가하기 위한 것으로써, 예를 들어, 데이터 라인(152)과 동일한 방향으로 연장된다. 바이어스 라인(190)은 보호막(180) 및 유기막(182)에 형성된 컨택 홀(CNT)을 통해 광 다이오드(170)의 상부 전극(175)과 전기적으로 연결된다. 한편, 바이어스 라인(190)은 보호막(180) 상에 바로 형성될 수도 있다.The
바이어스 라인(190)은 개구율을 높이기 위하여 데이터 라인(152)과 중첩되게 형성될 수 있으며, 박막 트랜지스터(160)로 광이 유입되는 것을 방지하기 위하여 박막 트랜지스터(160)를 덮도록 형성될 수 있다.The
이러한 구성의 박막 트랜지스터 기판(100)을 갖는 엑스레이 검출기는 외부로부터 조사되는 엑스레이에 의해 광 다이오드(170)에서 생성되는 전자를 바이어스 전압을 인가하여 외부로 전달함으로써 광을 전기적인 신호로 변환하게 된다. 보다 구체적으로, 엑스레이 소오스에서 방출된 엑스레이가 피사체를 투과한 후 박막 트랜지스터 기판(100)의 상부에 형성된 신틸레이터(미도시)에서 가시광으로 변환된다. 신틸레이터에서 변환된 광이 광 다이오드(170)의 진성 실리콘층(173)에 입사되면 실리콘(Si)이 해리되어 전자와 전공으로 분해된다. 이와 같이 해리된 상태에서 p형 실리콘층(174) 상에 형성된 상부 전극(175)에 네가티브 전압으로 바이어스를 걸어주면 전자가 n형 실리콘층(172) 방향으로 이동된다. n형 실리콘층(172)으로 이동된 전자는 박막 트랜지스터(160)의 드레인 전극(156) 측에 축적되며, 이와 같이 드레인 전극(156) 측에 축전된 전하는 박막 트랜지스터(160)의 턴온에 의해 데이터 라인(152)을 따라 리드 아웃(read out)된다. 이러한 방식으로 각 화소별로 리등되는 신호는 광전류 단위의 아날로그 신호이다. 리딩된 아날로그 신호는 화소 단위별로 입사되는 광량에 따라 각각 다르게 나타나게 된다. 즉, 피사체를 투과하는 엑스레이는 피사체의 밀도에 따라 신틸레이터로 입사되는 엑스레이 세기가 각각 다르게 나타난다. 따라서, 화소 별로 다르게 나타나는 아날로그 신호를 AD 컨버터를 통해 디지털화하여 최종적으로 모니터에 디지털 이미지를 구현하게 된다.The X-ray detector having the thin film transistor substrate 100 having such a configuration converts light into an electrical signal by transferring electrons generated in the
이와 같이, 광 다이오드(170)에 형성되는 진성 실리콘층(173)을 결정 구조가 불안정한 비정질 실리콘 대신 상대적으로 결정 구조가 안정된 미세결정질 실리콘으 로 형성함으로써, 소자 열화에 따른 라이프 타임(life time)의 감소를 방지하고 광 다이오드(170)의 신뢰성을 향상시킬 수 있다.As such, the
도 3 내지 도 6은 본 발명의 일 실시예에 따른 엑스레이 검출기용 박막 트랜지스터 기판의 제조 과정을 나타낸 공정도들이다.3 to 6 are process diagrams illustrating a manufacturing process of a thin film transistor substrate for an X-ray detector according to an exemplary embodiment of the present invention.
도 1 및 도 3을 참조하면, 기판(110) 상에 게이트 라인(122) 및 게이트 라인(122)과 전기적으로 연결되어 있는 게이트 전극(124)을 포함하는 게이트 배선을 형성한다. 상기 게이트 배선은 스퍼터링 등의 방법을 통해 기판(110) 상에 게이트 금속막을 증착한 후, 노광 마스크를 이용한 사진식각공정을 통해 상기 게이트 금속막을 패터닝하여 형성할 수 있다. 상기 게이트 배선은 예를 들어, 알루미늄(Al), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 구리(Cu), 은(Ag) 등의 단일 금속 또는 이들의 합금으로 형성될 수 있다. 또한, 상기 게이트 배선은 상기한 단일 금속 또는 합금이 복수의 층으로 적층된 다층 구조로 형성될 수 있다.1 and 3, a gate line including a
도 1 및 도 4를 참조하면, 상기 게이트 배선이 형성된 기판(110) 상에 게이트 절연막(130)을 형성한다. 게이트 절연막(130)은 상기 게이트 배선을 절연시키고 보호하기 위한 절연막으로써, 예를 들어, 실리콘 나이트라이드(SiNx) 또는 실리콘 옥사이드(SiOx)로 형성될 수 있다. 게이트 절연막(130)은 예를 들어, 화학기상증착(Chemical Vapor Deposition : CVD) 공정을 통해 형성된다. 1 and 4, a
이후, 게이트 절연막(130) 상에 게이트 전극(124)과 중첩되도록 액티브층(140)을 형성한다. 게이트 절연막(130) 상에 반도체층(142)을 형성하기 위한 반 도체 박막 및 오믹 콘택층(144)을 형성하기 위한 오믹 콘택 박막을 형성한 후, 이를 패터닝하여 반도체층(142) 및 오믹 콘택층(144)을 포함하는 액티브층(140)을 형성한다. 상기 반도체 박막 및 오믹 콘택 박막은 플라즈마 화학기상증착(PE-CVD) 공정을 통해 형성할 수 있다. Thereafter, the
이후, 게이트 절연막(130) 상에, 데이터 라인(152), 데이터 라인(152)과 연결되고 액티브층(140)의 상부까지 연장된 소오스 전극(154) 및 액티브층(140) 상부에서 소오스 전극(154)과 이격되고 하부 전극(171)과 연결되는 드레인 전극(156)을 포함하는 데이터 배선을 형성한다. 상기 데이터 배선은 스퍼터링 등의 방법을 통해 액티브층(140)이 형성된 기판(110) 상에 데이터 금속막을 증착한 후, 노광 마스크를 이용한 사진식각공정을 통해 상기 데이터 금속막을 패터닝하여 형성할 수 있다. 상기 데이터 배선은 예를 들어, 알루미늄(Al), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 구리(Cu), 은(Ag) 등의 단일 금속 또는 이들의 합금으로 형성될 수 있다. 또한, 상기 데이터 배선은 상기한 단일 금속 또는 합금이 복수의 층으로 적층된 다층 구조로 형성될 수 있다. 한편, 상기 데이터 배선을 패터닝하기 위해 슬릿 마스크 또는 하프톤 마스크를 사용함으로써, 하나의 마스크를 이용하여 상기 데이터 배선과 함께 액티브층(140)도 동시에 패터닝할 수 있다.Subsequently, the
이후, 소오스 전극(154)과 드레인 전극(156) 사이에 해당하는 채널 영역의 오믹 콘택층(144)을 제거하여 채널 영역의 반도체층(142)을 노출시킨다.Thereafter, the
도 1 및 도 5를 참조하면, 박막 트랜지스터(160)를 형성한 후, 박막 트랜지 스터(160)의 드레인 전극(156)과 연결되는 광 다이오드(170)를 형성한다. 1 and 5, after forming the
광 다이오드(170)의 형성을 위하여, 드레인 전극(156)과 전기적으로 연결되는 하부 전극(171)을 형성한다. 광 다이오드(170)의 하부 전극(171)은 도 4에 도시된 바와 같이, 드레인 전극(156)과 동일한 금속층으로부터 형성될 수 있다. 즉, 상기 데이터 배선을 형성하기 위한 상기 데이터 금속막의 패터닝 시, 드레인 전극(156)과 연결된 하부 전극(171)을 동시에 형성할 수 있다.In order to form the
이후, 하부 전극(171) 상에 n형 실리콘층(172), 진성 실리콘층(173) 및 p형 실리콘층(174)을 순차적으로 형성한다. Thereafter, the n-
진성 실리콘층(173)은 미세결정질 실리콘으로 형성된다. 미세결정질 실리콘으로 이루어진 진성 실리콘층(173)은 플라즈마 화학기상증착 공정을 통해 형성될 수 있다. 특히, 미세결정질의 진성 실리콘층(173)을 빠른 증착 속도와 균일한 막 특성을 갖도록 형성하기 위하여, 분할전극 어셈블리를 구비한 플라즈마 화학기상증착 장치를 통해 진성 실리콘층(173)을 형성할 수 있다.The
도 6은 본 발명의 일 실시예에 따른 플라즈마 화학기상증착 장치를 개략적으로 나타낸 도면이며, 도 7은 도 6에 도시된 분할전극 어셈블리를 나타낸 사시도이며, 도 8은 도 7에 도시된 분할전극 어셈블리를 구체적으로 나타낸 단면도이다.6 is a view schematically showing a plasma chemical vapor deposition apparatus according to an embodiment of the present invention, Figure 7 is a perspective view showing the split electrode assembly shown in Figure 6, Figure 8 is a split electrode assembly shown in Figure 7 It is sectional drawing which showed concretely.
도 6 내지 도 8을 참조하면, 플라즈마 화학기상증착 장치(400)는 챔버 몸체(410) 및 챔버 몸체(410) 내부에 플라즈마를 발생시키기 위한 분할 전극 어셈블리(430)를 포함한다.6 to 8, the plasma chemical
분할전극 어셈블리(430)는 기판(110)을 지지하는 기판 지지대(440)와 대향하 도록 설치된다. 분할전극 어셈블리(430)는 챔버 몸체(410) 내부에 플라즈마를 발생시키기 위한 복수의 정전압 전극들(432) 및 복수의 부전압 전극들(434)을 포함한다. 정전압 전극들(432)과 부전압 전극들(434)은 일정한 간격을 두고 서로 교대적으로 배열되는 선형 배열 구조로 설치될 수 있다. 이 외에도, 정전압 전극들(432)과 부전압 전극들(434)은 매트릭스 형태의 배열 구조, 상호 교대적인 나선형 배열 구조, 상호 교대적인 동심원 배열 구조 등의 다양한 배열 구조를 가질 수 있다.The
플라즈마 화학기상증착 장치(400)는 정전압 전극들(432) 및 부전압 전극들(434)에 전원을 인가하기 위한 메인 전원 공급부(450)를 더 포함할 수 있다. 메인 전원 공급부(450)에서 발생된 무선 주파수 전원은 임피던스 정합기(452)와 분배 회로(454)를 거쳐 정전압 전극들(432) 및 부전압 전극들(434)에 공급될 수 있다. 분배 회로(454)는 복수로 분할된 정전압 전극들(432) 및 부전압 전극들(434)이 병렬 구동될 수 있도록 메인 전원 공급부(450)로부터 제공되는 무선 주파수 전원을 정전압 전극들(432) 및 부전압 전극들(434)에 분배하여 공급한다. 바람직하게, 분배 회로(454)는 전류 균형 회로로 구성되어, 정전압 전극들(432) 및 부전압 전극들(434)에 공급되는 전류가 자동적으로 상호 균형을 이루도록 제어한다. 분배 회로(454)로부터 출력되는 정전압은 정전압 전극(432)에 공급되고, 정전압과 다른 위상을 갖는 부전압은 부전압 전극(434)에 공급된다. 이와 달리, 분배 회로(454)로부터 출력되는 정전압은 정전압 전극들(432)에 공급되는 반면, 부전압 전극들(434)은 공통으로 접지될 수 있다. 따라서, 메인 전원 공급부(450)로부터 공급되는 무선 주파수 전원에 의하여 정전압 전극(432)과 부전압 전극(434) 사이에 플라즈마가 발생된다.The plasma chemical
정전압 전극들(432) 및 부전압 전극들(434)은 전극 장착판(436)에 장착될 수 있다. 전극 장착판(436)은 금속, 비금속 또는 이들의 혼합 물질로 형성될 수 있다. 전극 장착판(436)이 금속으로 형성된 경우에는 정전압 전극들(432) 및 부전압 전극들(434)과 전기적으로 절연된 구조가 적용되어야 한다. The
전극 장착판(436)에는 복수의 제1 가스 분사홀들(438)이 형성될 수 있다. 제1 가스 분사홀들(438)은 원, 타원, 사각형, 삼각형, 다각형 등의 다양한 형상으로 형성될 수 있다. 제1 가스 분사홀들(438)은 정전압 전극(432)과 부전압 전극(434) 사이에 길이 방향을 따라 일정한 간격으로 형성될 수 있다. 이와 달리, 제1 가스 분사홀(438)은 정전압 전극(432)과 부전압 전극(434) 사이에 길이 방향을 따라 연장되는 슬릿 형상으로 형성될 수 있다. 또한, 정전압 전극들(432) 및 부전압 전극들(434)에는 복수의 제2 가스 분사홀들(439)이 형성될 수 있다. 제2 가스 분사홀들(439)은 제1 가스 분사홀들(438)과 마찬가지로, 정전압 전극(432) 및 부전압 전극(434)의 길이 방향을 따라 일정한 간격으로 형성되거나, 길이 방향을 따라 연장되는 슬릿 형상으로 형성될 수 있다.A plurality of first gas injection holes 438 may be formed in the
따라서, 플라즈마 화학기상증착 장치(400)는 정전압 전극(432)과 부전압 전극(434) 사이에 형성된 제1 가스 분사홀들(438)을 통해 제1 반응가스를 공급하고, 정전압 전극들(432) 및 부전압 전극들(434)에 형성된 제2 가스 분사홀들(439)을 통해 상기 제1 반응가스와 다른 종류의 제2 반응가스를 챔버 몸체(410) 내부로 공급 한다. 예를 들어, 제1 가스 분사홀들(438)을 통해 수소(H2) 등의 제1 반응가스가 공급되며, 제2 가스 분사홀들(439)을 통해 실란(SiH4) 등의 제2 반응가스가 공급된다.Therefore, the plasma chemical
정전압 전극(432)과 부전압 전극(434) 사이에 형성된 제1 가스분사홀들(438)만을 통해 모든 종류의 반응가스들을 공급할 경우, 정전압 전극(432)과 부전압 전극(434) 사이에 형성되는 플라즈마로 인해 생성되는 라디컬들이 인접한 정전압 전극(432) 및 부전압 전극(434)에 달라붙게 되어 플라즈마 방전 효율 및 박막 증착율을 떨어뜨리는 문제가 발생될 수 있다. 그러나, 본 플라즈마 화학기상증착 장치(400)와 같이 반응 가스들의 공급 경로를 서로 달리하게 되면, 플라즈마로 인해 생성되는 라디컬들이 정전압 전극(432) 및 부전압 전극(434)의 하부 영역에서 생성되므로, 생성되는 라디컬들이 정전압 전극(432) 및 부전압 전극(434)에 증착되는 것을 억제할 수 있으며, 이를 통해, 플라즈마 방전 효율 및 박막 증착율을 향상시킬 수 있다. 한편, 플라즈마 화학기상증착 장치(400)는 전극 장착판(436)에 형성된 제1 가스 분사홀들(438)을 통해서만 반응가스들을 공급할 수도 있다.When all kinds of reaction gases are supplied through only the first gas injection holes 438 formed between the
분할전극 어셈블리(430)의 외측에는 가스공급 어셈블리(420)가 설치될 수 있다. 가스공급 어셈블리(420)는 외부의 가스 공급부(460)와 연결되는 가스 입구(422), 하나 이상의 가스 분배판(424) 및 복수의 가스 주입구들(426)을 포함할 수 있다. 이때, 가스 주입구들(426)은 분할전극 어셈블리(430)에 형성된 제1 및 제2 가스 분사홀들(438, 439)과 대응되게 형성된다. 따라서, 가스 공급부(460)로 부터 가스 입구(422)를 통하여 입력된 반응 가스는 하나 이상의 가스 분배판(424)에 의해 고르게 분배되고, 가스 주입구들(426)과 그에 대응된 제1 및 제2 가스 분사홀들(438, 439)을 통하여 챔버 몸체(410)의 내부로 고르게 분사될 수 있다.The
기판 지지대(440)는 플라즈마 발생 효율을 높이기 위하여 바이어스 전원 공급부(442)에 의해 바이어스될 수 있다. 예를 들어, 바이어스 전원 공급부(442)로부터 출력되는 무선 주파수 전원은 임피던스 정합기(444)를 거쳐 기판 지지대(440)에 바이어스된다. 한편, 기판 지지대(440)는 두 개의 바이어스 전원 공급부로부터 서로 다른 무선 주파수 전원이 바이어스되는 이중 바이어스 구조를 가질 수 있다. 또한, 기판 지지대(440)는 접지와 연결되어 바이어스의 공급 없이 제로 포텐셜(zero potential)로 유지될 수 있다. 기판 지지대(440)는 기판(110)을 가열하기 위한 히터(미도시)를 포함할 수 있다.The
한편, 기판 지지대(440)는 공정 효율을 높이기 위하여 이동 제어부(460)의 제어에 따라 기판(110)과 평행하게 선형 또는 회전 이동이 가능한 구조를 가질 수 있다. 이와 달리, 기판 지지대(440)는 챔버 몸체(410) 내부에 고정된 구조를 가질 수 있다.On the other hand, the
플라즈마 화학기상증착 장치(400)는 가스 공급부(460)와 챔버 몸체(410) 사이에 설치되어, 챔버 몸체(410) 내부에 플라즈마를 공급하기 위한 원격 플라즈마 발생기(Remote Plasma Generator : RPG, 480)를 더 포함할 수 있다. 원격 플라즈마 발생기(480)는 가스 공급부(450)로부터 공급되는 반응 가스에 고주파 전력을 인가하여 플라즈마를 발생시킨다. 원격 플라즈마 발생기(480)에서 발생된 플라즈마 는 가스공급 어셈블리(420)를 통하여 챔버 몸체(410)에 공급될 수 있다. 또한, 플라즈마 화학기상증착 장치(400)는 플라즈마 밀도를 높이기 위하여 레이저를 공급하는 레이저 공급기(미도시)를 더 포함할 수 있다.Plasma chemical
도 6에는 기판 지지대(440)가 챔버 몸체(410)의 하부 영역에 설치되고 분할전극 어셈블리(430)가 챔버 몸체(410)의 상부 영역에 설치된 구조가 도시되어 있으나, 이와 달리, 기판 지지대(440)가 상부에 설치되고 분할전극 어셈블리(430)가 하부에 설치된 구조를 가질 수도 있다.6 illustrates a structure in which the
이러한 구조를 갖는 플라즈마 화학기상증착 장치(400)에 따르면, 플라즈마 방전을 위한 전극을 복수의 정전압 전극들(432)과 복수의 부전압 전극들(434)이 일정한 간격으로 교대로 배열된 분할전극 구조로 형성함으로써, 대면적에 걸쳐 균일한 플라즈마를 발생시킬 수 있으며, 정전압 전극들(432)과 부전압 전극들(434)을 병렬 구동함에 있어서 자동적으로 전류 균형을 이루도록 함으로써, 대면적의 플라즈마를 보다 균일하게 발생 및 유지시킬 수 있다. According to the plasma chemical
도 9 및 10은 각각 도 6 내지 8에 도시된 플라즈마 화학기상증착 장치를 통해서 형성한 진성 반도체층의 상부 및 측면부 SEM 사진이다.9 and 10 are SEM images of upper and side portions of the intrinsic semiconductor layer formed through the plasma chemical vapor deposition apparatus shown in FIGS. 6 to 8, respectively.
도 9 및 도 10을 참조하면, 도 6 및 도 7에 도시된 바와 같은 분할전극 어셈블리(430)를 갖는 플라즈마 화학기상증착 장치(400)를 이용함으로써, 진성 반도체층(173)이 미세결정질으로 형성되는 것을 확인할 수 있었다. 9 and 10, the
일반적인 단일전극을 갖는 플라즈마 화학기상증착 장치를 사용하는 경우, 대면적에 걸쳐 균일한 플라즈마를 형성하기 어려움으로 인해 균일한 두께의 미세결정 질 실리콘을 형성하기 어려운 문제가 있으나, 도 6 및 도 7에 도시된 분할전극 어셈블리(430)를 갖는 플라즈마 화학기상증착 장치(400)를 사용함으로써, 대면적에 걸쳐 균일한 두께의 미세결정질 실리콘으로 이루어진 진성 반도체층(173)을 형성할 수 있으며, 진성 반도체층(173)의 증착 속도를 향상시킬 수 있다.In the case of using a plasma chemical vapor deposition apparatus having a single electrode in general, it is difficult to form a uniform thickness microcrystalline silicon due to the difficulty of forming a uniform plasma over a large area, but in FIG. 6 and FIG. By using the plasma chemical
다시 도 1 및 도 5를 참조하면, p형 실리콘층(174) 상에 상부 전극(175)을 형성한다. 상부 전극(175)은 p형 실리콘층(174)이 형성된 기판(110) 상에 투명한 도전 물질로 이루어진 투명 도전막을 형성한 후, 상기 투명 도전막을 패터닝하여 형성할 수 있다.1 and 5, the
도 1 및 도 11을 참조하면, 광 다이오드(170)가 형성된 기판(110) 상에 박마가 트랜지스터(160) 및 광 다이오드(170)를 덮도록 보호막(180)을 형성한다. 보호막(180)은 박막 트랜지스터(160) 및 광 다이오드(170)를 보호하고, 절연시키기 위한 막으로써, 예를 들어, 실리콘 나이트라이드(SiNx) 또는 실리콘 옥사이드(SiOx) 등으로 형성될 수 있다.1 and 11, the
한편, 보호막(180) 상부에 유기막(182)을 더 형성할 수 있다. 유기막(182)은 박막 트랜지스터 기판(100)의 평탄화를 위하여 보호막(180)보다 두꺼운 두께로 형성된다.The
도 1 및 도 2를 참조하면, 유기막(182)을 형성한 후, 보호막(180) 및 유기막(182)을 패터닝하여 콘택 홀(CNT)을 형성한다. 1 and 2, after forming the
이후, 보호막(180) 및 유기막(182) 상에 광 다이오드(170)와 전기적으로 연결되는 바이어스 라인(190)을 형성한다. 바이어스 라인(190)은 광 다이오드(170) 에 역바이어스를 인가하기 위한 것으로써, 보호막(180) 및 유기막(182)에 형성된 컨택 홀(CNT)을 통해 광 다이오드(170)의 상부 전극(175)과 전기적으로 연결된다. 한편, 바이어스 라인(190)은 보호막(180) 상에 바로 형성될 수도 있다.Thereafter, a
바이어스 라인(190)은 개구율을 높이기 위하여 데이터 라인(152)과 중첩되게 형성될 수 있으며, 박막 트랜지스터(160)로 광이 유입되는 것을 방지하기 위하여 박막 트랜지스터(160)를 덮도록 형성될 수 있다.The
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범상부 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.In the detailed description of the present invention described above with reference to preferred embodiments of the present invention, those skilled in the art or those skilled in the art having ordinary skill in the art will be described later in the claims and the spirit of the present invention It will be appreciated that various modifications and variations can be made in the present invention without departing from the scope of the art.
도 1은 본 발명의 일 실시예에 따른 엑스레이 검출기용 박막 트랜지스터 기판을 나타낸 평면도이다.1 is a plan view illustrating a thin film transistor substrate for an x-ray detector according to an exemplary embodiment of the present invention.
도 2는 도 1의 Ⅰ-Ⅰ'선을 따라 절단한 단면도이다.FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
도 3, 도 4, 도 5 및 도 11은 본 발명의 일 실시예에 따른 엑스레이 검출기용 박막 트랜지스터 기판의 제조 과정을 나타낸 공정도들이다.3, 4, 5 and 11 are process diagrams illustrating a manufacturing process of a thin film transistor substrate for an X-ray detector according to an exemplary embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 플라즈마 화학기상증착 장치를 개략적으로 나타낸 도면이다.6 is a view schematically showing a plasma chemical vapor deposition apparatus according to an embodiment of the present invention.
도 7은 도 6에 도시된 분할전극 어셈블리를 나타낸 사시도이다.FIG. 7 is a perspective view illustrating the split electrode assembly illustrated in FIG. 6.
도 8은 도 7에 도시된 분할전극 어셈블리를 구체적으로 나타낸 단면도이다.8 is a cross-sectional view illustrating in detail the split electrode assembly illustrated in FIG. 7.
도 9 및 10은 각각 도 6 내지 8에 도시된 플라즈마 화학기상증착 장치를 통해서 형성한 진성 반도체층의 상부 및 측면부 SEM 사진이다.9 and 10 are SEM images of upper and side portions of the intrinsic semiconductor layer formed through the plasma chemical vapor deposition apparatus shown in FIGS. 6 to 8, respectively.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100 : 박막 트랜지스터 기판 122 : 게이트 라인100: thin film transistor substrate 122: gate line
124 : 게이트 전극 130 : 게이트 절연막124: gate electrode 130: gate insulating film
140 : 액티브층 152 : 데이터 라인140: active layer 152: data line
154 : 소오스 전극 156 : 드레인 전극154: source electrode 156: drain electrode
160 : 박막 트랜지스터 170 : 광 다이오드160
171 : 하부 전극 172 : n형 실리콘층171: lower electrode 172: n-type silicon layer
173 : 진성 실리콘층 174 : p형 실리콘층173: intrinsic silicon layer 174: p-type silicon layer
175 : 상부 전극 180 : 보호막175: upper electrode 180: protective film
182 : 유기막 190 : 바이어스 라인182: organic film 190: bias line
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090002328A KR101109579B1 (en) | 2009-01-12 | 2009-01-12 | Thin film transistor substrate for an x-ray detector and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090002328A KR101109579B1 (en) | 2009-01-12 | 2009-01-12 | Thin film transistor substrate for an x-ray detector and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100082994A KR20100082994A (en) | 2010-07-21 |
KR101109579B1 true KR101109579B1 (en) | 2012-02-06 |
Family
ID=42642884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090002328A KR101109579B1 (en) | 2009-01-12 | 2009-01-12 | Thin film transistor substrate for an x-ray detector and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101109579B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11261094A (en) * | 1998-03-16 | 1999-09-24 | Canon Inc | Semiconductor element and its manufacture |
KR20050103294A (en) * | 2003-02-14 | 2005-10-28 | 캐논 가부시끼가이샤 | Solid state image pickup apparatus and radiation image pickup apparatus |
KR20080108642A (en) * | 2007-06-11 | 2008-12-16 | 삼성전자주식회사 | Thin film transistor array substrate for x-ray detector |
-
2009
- 2009-01-12 KR KR1020090002328A patent/KR101109579B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11261094A (en) * | 1998-03-16 | 1999-09-24 | Canon Inc | Semiconductor element and its manufacture |
KR20050103294A (en) * | 2003-02-14 | 2005-10-28 | 캐논 가부시끼가이샤 | Solid state image pickup apparatus and radiation image pickup apparatus |
KR20080108642A (en) * | 2007-06-11 | 2008-12-16 | 삼성전자주식회사 | Thin film transistor array substrate for x-ray detector |
Also Published As
Publication number | Publication date |
---|---|
KR20100082994A (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4484440B2 (en) | Imaging array and manufacturing method thereof | |
US6288435B1 (en) | Continuous amorphous silicon layer sensors using doped poly-silicon back contact | |
KR102461817B1 (en) | Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof | |
US7994517B2 (en) | Organic light-emitting display device and method for fabricating the same | |
US7902512B1 (en) | Coplanar high fill factor pixel architecture | |
KR101920770B1 (en) | Organic light emitting display device and method of manufacturing the same | |
JP2010225735A (en) | Photosensor and method of manufacturing the same | |
KR102424552B1 (en) | Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof | |
KR20100082498A (en) | Thin film transistor substrate for an x-ray detector and method of manufacturing the same | |
US6777685B2 (en) | Imaging array and methods for fabricating same | |
CN105140250A (en) | Photoelectric conversion array substrate, manufacture method thereof and photoelectric conversion device | |
TWI573257B (en) | Sensing apparatus | |
US20120181503A1 (en) | Method of Fabricating Silicon Quantum Dot Layer and Device Manufactured Using the Same | |
KR20190028194A (en) | Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof | |
WO2018025820A1 (en) | Imaging panel and method for manufacturing imaging panel | |
WO2016111192A1 (en) | Imaging panel and x-ray imaging device | |
US10964745B2 (en) | Photo detecting apparatus and method of manufacturing the same | |
KR101034471B1 (en) | X-ray detector and method of manufacturing the same | |
KR101109579B1 (en) | Thin film transistor substrate for an x-ray detector and method of manufacturing the same | |
KR101674207B1 (en) | Detector of X-ray | |
US7161640B2 (en) | Shield junction thin film transistor structure | |
US20050082492A1 (en) | Image detector with tandem-gate TFT | |
KR101034468B1 (en) | X-ray detector and method of manufacturing the same | |
KR100961484B1 (en) | Thin film transistor and method for manufacturing the same | |
KR20120001991A (en) | X-ray radiography system and the manufacture method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |