KR101100531B1 - 위성 측위 시스템에서의 유도된 대류층 오차 보정 방법 - Google Patents

위성 측위 시스템에서의 유도된 대류층 오차 보정 방법 Download PDF

Info

Publication number
KR101100531B1
KR101100531B1 KR1020057019681A KR20057019681A KR101100531B1 KR 101100531 B1 KR101100531 B1 KR 101100531B1 KR 1020057019681 A KR1020057019681 A KR 1020057019681A KR 20057019681 A KR20057019681 A KR 20057019681A KR 101100531 B1 KR101100531 B1 KR 101100531B1
Authority
KR
South Korea
Prior art keywords
convective
receiver
data
convective delay
model
Prior art date
Application number
KR1020057019681A
Other languages
English (en)
Other versions
KR20060008899A (ko
Inventor
매튜 던캔 포웨
제임스 부처
존 아이포 류브릿지 오웬
Original Assignee
세크러터리 오브 스테이트 포 디펜스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0308894A external-priority patent/GB0308894D0/en
Priority claimed from GB0309142A external-priority patent/GB0309142D0/en
Application filed by 세크러터리 오브 스테이트 포 디펜스 filed Critical 세크러터리 오브 스테이트 포 디펜스
Publication of KR20060008899A publication Critical patent/KR20060008899A/ko
Application granted granted Critical
Publication of KR101100531B1 publication Critical patent/KR101100531B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Image Processing (AREA)

Abstract

압력, 온도 및 수분함유와 같은 대기측정치로부터 유도된 굴절필드를 통한 광 추적에 의해 대류층지연을 계산하는 격자점의 지역적 또는 글로벌 3차원 맵과 기상학적정보를 이용하여, 서버(200)에 의해 수신기로부터 원격으로 데이터를 유도하는 단계를 포함한 GNSS 또는 위성측위시스템의 수신기에 의해 이용되기위한 데이터를 획득하는 방법이 제시되어 있다. 천정지연을 제공하는 비기상학적, 기후기반모델(130)과 그들을 구체적 경사로 매핑하는 수단(130´)을 포함하는 이용자수신기에 의해 결정되는 위치를 개선하기 위해 이용되는 때, 상기 서버는 또한 그러한 비기상학적 모델(230)의 복사본을 포함하고, 천정지연으로서 그 광선 추적된 지연 값을 제공한다. 해당 격자점에 대한 천정지연 값들의 셋트는 상기 서버(260)와, 상기 비기상학적 지연 값들이 보다 정확하도록 보정을 요구함에 의해 (바람직하게는 아주 작은 형식으로) 전개된 변형에서 비교된다. 상기 보정 셋트는 이미지압축기술(270)에 의해 감소되며, 상기 GNSS의 위성들(1101 등)을 통해 낮은 데이터 비율로 상기 이용자수신기로 전달된다. 상기 수신기는 간단하게 상기 보정을 그 고유모델에 의해 유도된 천정지연으로 적용한다. 이용자 위치가 알려지면, 상기 서버는 직접전송을 위한 상기 수신기 위치에 대한 정확한 대류층 지연 값을 유도할 수 있다.

Description

위성 측위 시스템에서의 유도된 대류층 오차 보정 방법{CORRECTION OF TROPOSPHERE INDUCED ERRORS IN GLOBAL POSITIONING SYSTEMS}
본 발명은 위성을 이용한 글로벌 항법 시스템(GNSS, Global Navigation Satellite Systems)으로부터 얻을 수 있는 정확도를 증가시키기 위한 개선에 관한 것이다.
현재로서, 나브스타(NAVSTAR)로 알려진 미국의 시스템 및 글로나스(GLONASS)로 알려진 러시아 연방의 시스템의, 두 공중에게 활용가능한 GPS 시스템이 있다. 이들은 20년에 걸쳐 존재해왔으나, 가까운 미래에 GPS의 유럽 지역 확장이 갈릴레오(GALILEO)라는 이름의 유럽 시스템에 의해 수 년 이내에 서비스를 제공하기 시작할 것이 요망된다.
기존 시스템들은 점진적으로 정비되어, 2센티미터 이하의 위치 정확도가 1000킬로미터의 기준선에 걸쳐 차별적 단계 구현을 이용하여 위치를 결정하는데 소요된 시간 및 계산에의 비용과 함께 잠재적으로 구현될 수 있다. 실시간 또는 거의 실시간인 측정은 상응하게 낮은 해상도를 가지며, 현재 고정확도에 대한 요구는 상기 위성을 이용한 글로벌 항법 시스템(이하, 'GNSS') 정보를 보충하기 위해 부가적 확장이 반드시 채용됨을 의미한다. 더욱이, 이들은 중복 결정된 위치 솔루션을 계산하기 위해 모든 가시적인 수많은 위성들까지의 많은 위성들로부터 측정값들을 취하고, 상기 위치 솔루션의 정확성을 개선하기 위해 불일치하는 데이터를 거부하는 수신기를 포함한다. 그러한 시스템은 GNSS 위성, GPS 및 글로나스 중 하나 이상의 무리로부터의 데이터를 이용할 수 있다.
GNSS가 적절한, 통상적으로 모바일인, 수신기를 갖는 이용자의 위치를 설정하기 위해 주로 이용됨에도 불구하고, 위치가 이미 알려진 또는 알 필요가 없는 이용자에게 정확한 시간 신호를 제공하는데 관하여도 이용된다. 하나의 이용자 위치 결정 셋트는 단순한 위성 전송 수신기 및 계산된 위치에서의 오차를 제거하기 위해 신호 수신에 영향을 미치는 적어도 일부의 대기 효과의 모델링을 유효화하는 회로를 구비한다.
그러나, 상기 이용자가 위치 및 시간 측정치를 얻는데 관심이 있는 지의 여부와 관련하여, 대기, 즉 전리층 및 대류층에 의해 야기되는 상기 GNSS 신호로의 지연을 정확하게 모델링하는 능력의 부재로부터 심각한 오차가 발생한다.
위성 항법 이용자는 넷 또는 그 이상의 위성으로 넷 또는 그 이상의 의사 거리(pseudorange) 측정을 처리함에 의해 자신들의 3차원 위치 및 시간 솔루션을 생성한다. 의사 거리 측정치는 신호 전송에서의 위성 클락 시간과 수신측 이용자 수신기 클락 시간의 차(difference)이다. 따라서, 상기 의사 거리 관측은 무선 전파 시간과 관계되며, 결과적으로 위성 및 이용자 간의 거리에 관계된다. 상기 위성 위치의 어림치가 알려져 있어서(상기 어림치들은 위성에 의해 전파된다), 이용자는 넷 또는 그 이상의 의사 거리 관측을 이용하여 네 미지수(3차원 위치 및 시간)를 해결할 수 있다. 상기 이용자의 항법/시간 솔루션 필터로서, 의사 거리 관측은 자유 공간 전파(propagation)의 시간으로부터 무선 전파 시간의 변화에 대해 보정된다.
이용자의 항법/시간 솔루션 필터 내에서, 수많은 보정치들은 대류층, 전리층 및 상대적 보정을 포함한 다듬어지지 않은 의사 거리 측정에 적용된다.
WO-A1-03/069366에 어떻게 전리층 지연을 수용하는지가 개시되어 있으며, GNSS 위성 신호를 수신하는 소위 서버 사이트의 이용에 의해, 그러한 GPS 수신기에 의해 수신되고 그러한 지연을 보정하기 위해 이용되는 탑재 모델을 변형하도록 이용되기 위해 국부적으로 그들을 전파하기 전에 인접한 GPS 수신기에 적용할 수 있는 보정 인자(correction factors)를 유도한다. 작은 정도의 신호 경로 굴절 및 신호 속도에서의 더 많은 상당한 변화를 포함하는 전리층 지연에 있어서, 지연 및 보정은 많아도 하루에 몇 두 세 차례 보정 데이터의 업데이트를 요구하는 기간에 걸쳐 실질적으로 일정하다. US 2002/0199196은 이용자 단말기의 위치를 결정하는 장치 및 방법을 개시한다. 상기 방법은, 텔레비전 신호 송신기로부터 방송 텔레비전 신호를 상기 이용자 단말기가 수신하는 단계; 상기 방송 텔레비전 신호의 알려진 성분에 근거하여 상기 텔레비전 신호 송신기 및 상기 이용자 단말기 간의 제1 의사 거리를 결정하는 단계; GPS 위성으로부터 GPS 신호를 상기 이용자 단말기가 수신하는 단계; 상기 GPS 신호에 근거하여 상기 GPS 위성 및 상기 이용자 단말기 간의 제2 의사 거리를 결정하는 단계; 및 상기 제1 및 제2 의사 거리에 근거하여 상기 이용자 단말기의 위치를 결정하고, 상기 텔레비전 신호 송신기의 위치를 결정하며, 상기 GPS 위성의 위치를 결정하는 단계를 포함한다.
반면, 대류층 효과는 비교적 빨리 변화하며(또는 짧게 지속되며), 지리학적으로 국부화되어, 기본적으로 기후적 현상보다도 날씨 또는 기상학적 현상으로부터 야기된다. 그러나, 상기 대류층은, 신호들이 대류층을 통하여 지남에 의해, 가장 큰 식별된 오차 소스의 하나를 구성한다. 상기 대류층은 광선 굽음을 제공하여, 수많은 기상학적, 구체적으로는 수분을 포함하고 있는, 요인들에 의해 영향을 받은 신호 지연을 구성하는 신호 경로의 증가를 제공한다. 대류층 지연은 간단하게 모델링 하기 어렵다.
전통적으로, 대류층 지연은 비교적 변화가 없는 소위 기후적 파라미터들로부터 작동하고, 이용자 수신기에 저장될 수 있는 글로벌 대류층 지연 모델의 이용에 의해 다루어져 왔으나, 이러한 파라미터들은 기껏해야 평균 또는 계절적 기대를 구성한다. 그러나, 이는 기후학적으로 근거두지 않은 즉, 현재, 최근 또는 예측된 날씨 조건에 근거를 둔 것이다.
이용되고 휴대용 GPS 수신기 내에 장착될 수 있는 그러한 모델이 GPS/WAAS 공수 장비를 위한 최소 동작 성능 표준("Minimum Operational Performance Standards for Global Positioning Systems /Wide Area Augmentation System Airborne Equipment," RTCA DO229C, 2001년 11월)에 기술된 WAAS 이용자를 위한 RTCA 대류층 천정(zenith) 지연 모델이다.
그러한 모델은 대류층 지연을 천정 지연(여기서, DZ 또는 ZTD로 식별됨)으로 단순화하는 한 유용하나, 낮은 위성 경사에 의해 야기되는 고도 효과에 대한 이들을 상기 이용자에게 매핑할 필요가 여전히 있다. 하나의 그러한 매핑 모델은 1996년 2월 지구물리학 연구 볼륨 101, 제B2호 3227-3246 페이지의 "무선 주파수에서의 대류층 지연을 위한 글로벌 매핑 함수(Global mapping function for the atmosphere delay at radio wavelengths" 저널에서 닐(Niell)에 의해 기술된다.
그러나, 이러한 모델들이 이용자 수신기로의 통합을 허용함에도 불구하고, 끊임없이 변화하고 국부적인 날씨에 의해 야기되는 신호 지연에 영향을 주는 대류층 조건에서의 변화를 수용하는 능력에서 원래부터 제한을 받는다.
수치적 날씨 예측(Numerical Weather Prediction)(이하, 'NWP')에 의한 것과 같이 하나 이상의 지역에서의 기상학적 조건들을 고려함에 의해 정확한 대류층 데이터를 유도하기 위해 모델들이 존재함에도 불구하고, 상기 국부화된 성질 및 생성된 많은 양의 데이터는, 실제적인 장치들에 관해, 즉, 모바일 이용자에게 활용가능한 통신 시스템을 통해 송신되기에 너무 큰 데이터 및 합리적인 양의 시간 내의 처리를 위한 제한된 용량 때문에, 눈에 띄게 개선하는데 이용될 수 없음을 확인하는 것으로 인식되어졌다. 상기 및 이하의 논의에 있어서, 대류층 지연 값 및 천정 대류층 지연(zenith tropospheric delays) 값은 그들의 성질에 무관하게 언급되었다. 특정 위치에 대한 단일 대류층 지연 값을 유도하는 것이 가능한 반면, 소위 "습식" 지연 및 "건식" 또는 "정수의(hydrostatic)" 지연으로서 대류층 지연 값을 유도하는 것이 보다 일반적이다. 본 명세서에서, 특히 데이터 감소에 관하여 구분하는 것이 중요한 경우를 제외하고는, 대류층 지연 또는 지연들에 대한 참조 및 그들의 유도는 각각에 대한 값을 유도하는 것으로 읽혀질 것을 의도한다. 또한, 이미 송신된 신호들에 부가적으로 신호들을 송신할 수 있는 제한된 능력을 갖는 것과 일반적으로 주기적으로 보정 데이터를 포함한 모든 데이터를 송신하는 것이 가능함을 언급할 필요가 있다. 그러나, 매핑된 영역과 관련하여 날씨 특성이 그들 위치를 변화함에 따라, 상기 기상학적 환경은 연속적으로 변화하고 있다. 따라서, 매핑된 영역의 격자점과 연관된 대류권 지연 값을 유도하는 데 더하여, 본 발명은 상기 기상학적 모델에 의해 이용되는 상기 기상학적 정보의 유효시간(validity time) 보다 상당히 일찍인, 위성 송신율 및 송신 가능성(transmission availability)에 의해 지시된, 시간 내에 이용자에 의해 이용가능한 변형들의 셋트의 일부 또는 전부인 송신을 허용하기에 충분한 데이터 감소 역시 포함한다. 대류층 관련(tropospherically) 유도된 데이터의 활용가능성을 보장하기 위해, 시간 및 거리가 관련 날씨 특성들의 움직임의 속도와 연결되어 있는 한, 1시간 보다 크지 않은 상기 기상학적 모델 정보의 기상학적 일시적 해상도(temporal resolution)에 따라 및/또는 90킬로미터보다 크지 않은 상기 기상학적 모델 정보의 기상학적 공간적 해상도(spatial resolution)에 따라, 상기 지연 값 보정을 이용자에게 전송하는 것이 바람직하다. 상기 기상학적 모델이 하나 이상의 위치에서 날씨 조건, 즉 시간과 함께 변하는 조건을 예측 또는 예보하기 위해 다른 곳에서 채용된 데이터로부터 대류층 지연 값을 유도하는 한, 상기 기상학적 정보로부터 장래에 대류층 지연 값을 예측할 수 있고, 지구 표면의 지리학적 영역에 대한 상기 보정의 예측 셋트를 전개할 수 있어서, 상기 예측 셋트의 각 구성원이 전개(development)로부터 시간의 함수로서 현재(current)가 되는 보정을 기술한다. 따라서, 상기 보정의 예측 셋트를 배치(batch)로서 전달하는 것이 가능하며, 예보와 관련하여 각각이 예측된 시간이 현재가 됨에 따라 상기 셋트의 구성원을 이용하는 것이 가능하다. 예보와 관련하여 각각이 예측된 시간이 현재가 됨에 따라, 그러한 통신은 궤도 위성 및 그 구성원으로의 한 번에 재전송되는 것일 수 있다.
도 1을 참고로 하면, 지구 표면(50) 부분을 개략적으로 나타내고 있으며, 지구 궤도의 복수의 GNSS 위성(1101, 1102, 1103, ...) 및 그에 관련된 이용자(120)를 포함하는 글로벌 측위 시스템(100)을 신호 수신기 및 지구 표면상 또는 위의 자동차 장착 타입 또는 포켓용 프로세서의 형태로 나타낸다.
상기 이용자 수신기(120)는, 종래방식으로, 무선 주파수 범위에서 다양한 가시(within view) 위성들로부터 전송된 신호의 프런트 엔드 수신기(122), 처리 수단(124) 및 정보 디스플레이 또는 배달 장치(information display or like delivery apparatus)(126)를 포함한다. 상기 처리 수단은 지구상의 지점에 대한 위성의 위치가 알려진 다양한 위성으로부터의 수신된 신호들 및 특성에 응답하고, 2차원 또는 3차원의 이용자 수신기의 위치 및 일부 응용예에서는 중요하게는 시간을 포함하는 솔루션을 이러한 신호들의 수신에 있어서의 변화로부터 계산하는 디지털 프로세 서를 포함한다.
상기 이용자 수신기는 상기 약술된 의사 거리 측정치를 통해 복수의 수신된 위성 신호로부터 근사 위치를 결정할 수 있으나, 주로 날씨전선과 같은 기상학적 시스템의 수분 함유인 굴절에 의해 야기된 대류층 내의 굴절에 의한 신호들에 인가되는 지연에 의해 절충된다. 그러한 대류층 굴절은 상기 일자(time of year)에 상기 근사 위치에서 기대되는 기후 조건을 나타내는 제1 모델(130)을 수신된 신호들의 처리에 인가함에 의해 적어도 제1 근사로 보상될 수 있다. 이 소위 기후 모델은, 드물게 업데이트 되고, 기껏해야 평균 조건을 나타내는 한, 본질적으로 비기상학적(non-meteorological)이다. 기지의 방법으로, 상기 기후 모델(130)은 적어도 하나, 및 바람직하게는 상기 이용자의 위치에 관계된 고도, 위도 및 일자 모두에 대한 파라미터들을 가지며, 경도 및/또는 시각 파라미터를 선택적으로 가질 수 있다.
상기 기후 모델은, 특히 위성이 낮은 고도에 있는 경우, 수신된 신호 경로에 의해 실제적으로 취해지는 방향에 관계있는 의사 거리 보정을 이루고 보다 정확한 대류층 지연 값을 제공하기 위해, 상기 수신기와 관계된 위성 고저 경사와 관련되어 매핑될 수 있는 이용자 위치에 적용될 수 있는 천정 대류층 지연(zenith tropospheric delays)(이하, 'ZD')을 생성하도록 배치될 수 있다.
이를 위해, 상기 제1 모델은 예를 들어, 앞서 언급된 논문에서 닐(Niell)에 의해 실질적으로 설명된, 예컨대 3기(three-term) 연속 굴절 근사를 채용하는 고도 매핑 함수(130´)를 포함할 수 있다. 그러나, 앞서 언급된 일자(time of year), 위도 및 고도 파라미터로부터 유도된, 상기 매핑 모델에서 이용된 파라미터들은, 많은 목적을 위해 이러한 오차들이 보정하기에는 너무 작은 것으로 고려될 수 있음에도 불구하고, 기상학적 방해(disturbances)에 의해 야기된 오차들에 영향을 받을 수 있음은 이해되어야만 한다.
이 종래 장치는 상기 ZD를 이용하고, 매핑 함수가 적절한 경우, 상기 수신기로 하여금 위치 및 시간에 대한 보다 정확한 솔루션을 계산하도록 하는 대류층 지연으로의 근사 보정을 이룬다.
그 고유의 부정확성에도 불구하고, 이용자 수신기로 하여금 내부에 설치되었으나 다른 곳으로부터의 신호를 수신하는데 의존적이지 않은 이(비록 제한되기는 하나) 보정 설비와 함께 이용되고 제작될 것을 허용하는 한, 상기 제1 모델은 유익하다.
지금까지로 봐서는, 이용자 수신기의 측위 정확성은 수많은 인자들에 의해 절충되어져 왔으나, 이들이 해결되면서, 오차 소스(error sources)가 감소하며, 상기 제1 모델을 이용한 후에 남는 잔여 대류층 지연 오차가 이제 정확성에의 제한의 중요한 원인인 것이 명백하다.
제1 측면으로서, 본 발명은 본 명세서에 첨부된 특허청구범위 제1항에 기재된 바와 같은 GNSS 내에서의 이용을 위한 대류층 지연 데이터를 얻는 방법을 제공한다. 상기 발명의 종속적인 특징들은 종속항인 특허청구범위 제2항 내지 제33항에 기재되어 있다.
제2 및 제3 측면으로서, 본 발명은 본 명세서의 특허청구범위 제34항에 기재된 바와 같은 GNSS 내의 대류층 지연 오차를 감소시키는 방법 및 특허청구범위 제35항에 기재된 바와 같은 GNSS 내의 수신기 위치 결정 방법을 제공한다.
본 발명은 또한 특허청구범위 제36항에 기재된 바와 같은 본 발명의 제1, 제2 및 제3 실시예의 방법을 수행하는 데 적합한 장치를 제공한다.
제4 측면으로서, 본 발명은 특허청구범위 제37항에 기재된 바와 같은, 이전보다 더 정확성을 가지며 자신의 위치를 결정할 수 있는 수신기를 제공한다.
본 발명의 더욱 상세한 내용 및 장점들은 이하의 도면을 참고로 한 이하의 기술로부터 분명해 질 것이다.
도 1은 이용자 측위 수신기 장치 및 복수의 궤도 측위 위성을 도시하고 있는, 종래의 GNSS 측위 시스템을 개략적으로 나타낸 것이다.
도 2는 본 발명을 구현하는 제1 실시예에 따른 GNSS 측위 시스템을 개략적으로 나타낸 것으로서, 이용자 측위 수신기 장치, 그라운드 스테이션(ground station) 및 복수의 궤도 측위 위성을 도시하고 있다.
도 3a는 광선 추적을 그래프로 나타낸 것이다.
도 3b는 광선 추적에 있어서 굴절 필드 매핑을 그래픽적으로 나타낸 것이다.
도 4는 이미지 압축 기술에 의한 데이터 압축에 적합한 천정 지연 데이터 파 일을 나타낸 것이다.
도 5는 잡음이 어떻게 압축에 영향을 미치는지를 그래픽적으로 나타낸 것이다.
도 2를 참고로 하면, 본 발명에 따라, 대지의 위치에, 여기서 편리하게 서버로 언급될, 지구 표면의 다른 영역과 관계된 하나 이상의 그라운드 스테이션(ground station)이 있을 수 있음에도, 하나의 접지국(200)이 제공된다. 이 서버는 위성 신호를 수신할 수단을 구비하지 않으나, 지구의 여러 위치에서의 위치에 대한 NWP의 결과를 나타내는, 또는 상기 NWP에 적합한 정보를 하나 이상의 기상학 관련 기관으로부터 수신하기 위해 연결되어있다. 상기 기상학적 정보는 사실상 지구 전체에 관한 것일 수도 있고, 하나 이상의 일부 영역들에 제한될 수도 있다.
앞서 언급된 비기상학적, 기후 모델링 파라미터를 포함하는, 상기 이용자 수신기에서 이용되는 상기 제1 모델(130)의 복사본이 230의 부제번호로 지시되어 서버 내에 제공된다.
또한, 일반적으로 250의 부제번호를 갖는 기상학적 모델이 서버 내에 제공된다. 상기 모델은 상기 NWP에 의해 제공된 기상학적 정보에 응답하며, ZD의 정확한 값(습식 및 건식 구성요소로서)을 결정한다.
상기 두 모델에 대한 ZD 값은, 상기 제1 모델에 기인하는 오차를 구성하는 그 값들 간의 차이를 결정하기 위해 260에서 비교된다. 결국 상기 차이는 제1 모델의 프로덕트가 상기 제2 모델과 동일한 결과를 제공하기 위해 변형되거나 보정될 수 있는 변형 값을 구성한다.
이러한 보정들은 이하에서 상세히 설명될 것과 같이 270에서 인코딩되며 데이터 감소될 수 있으며, 이후 220으로 일반적으로 지시된 상기 이용자 수신기로 상기 위성 또는 위성들로부터의 재전송 및 송신기(275)에 의해 하나 이상의 GNSS 위성(1101)등으로의 업링크를 구성하는 통신 채널(280)에 의해 상기 이용자 수신기로 전한다.
상기 이용자 수신기는, 상기 제2 모델에 의해 정확하게 유도된 것이 상기 원격 서버 내에만 존재하는 것처럼 효율적으로 동일하게 만드는 상기 제1 모델(습식 및 건식 값들)에 대한 ZD 값들을 결국 제공하게 되는 보정값 데이터의 디코더(228)를 항법 및 시간 계산을 위해 포함한다.
선택적으로, 역시 이하에서 기술될 바와 같이, 상기 보정은 상기 제1 모델의 매핑 함수에 적용가능한 아이템을 포함할 수 있어서, 천정 지연 및 매핑 함수 값들 모두 위치 및 시간 계산에 있어서 보다 정확한 정확성을 얻는다.
상기 시스템의 이상의 개요는, 개별적으로 채용될 수 있으나 동시에 이용되는 때 장점이 되도록 서로 관계되는 더 이상의 특징들에 대한 논의와 함께 아래에서 계속된다.
상기 서버(200)를 참고로 하면, 상기 기상학적 모델은, (상기 습식 및 건식 지연들 각각에 대한) 대류층 지연 값이 발견될 수 있는 결과에 따라, 기상학적 정보가 유용한 격자점의 3차원 어레이에 의존적이며, 특정 위성과 지구 표면에 가까운 접지점 간의 광선 추적을 허용하는 굴절도 필드(refractivity field)를 유도하기 위한 그러한 정보를 이용한다.
이 점에서, 그들이 광선추적 및 NWP에 관련됨에 따라, 대기 효과 및 대기 굴절도와 전파에 대한 배경을 제공하는 것이 적절하다.
매질을 통한 전자파(electromagnetic wave)의 전파(propagation) 속도는, 자유공간에서의 빛의 속도와 상기 매질을 통한 스피드의 비로 정의된 굴절지수(refractive index) n으로 나타낼 수 있다(식1-1).
Figure 112005058248433-pct00001
여기서, n은 굴절 지수, c는 자유공간에서의 빛의 속도, υ는 전파 속도이다.
실제로, 도 3a에서 도시된 바와 같이, 상기 경로는 상기 위성과 지구 사이를 통과함에 따라 굴절에 의해 휜다. 이 대부분이 대류층 내이며, 지연으로서 나타난다. 상대론적인 효과를 무시한, 상기 GNSS 대류층 시간 지연은 상기 위성으로부터 이용자로의 상기 GNSS 신호의 전파 시간 마이너스 상기 자유 공간 전파 시간으로 정의된다.
Figure 112005058248433-pct00002
여기서, s는 상기 전파 경로를 따른 거리, 첫 번째 적분기호는 굽은 전파 경로를 따른 것이고, 두 번째 적분기호는 기하학적으로 직선 경로를 따른 것이다.
굽은 광선 경로를 기술하는 미분 방정식은 데카르트 좌표계에서 다음과 같이 표현될 수 있다.
Figure 112005058248433-pct00003
여기서, r=r(s)는 광선 경로를 나타내는 벡터, s는 r까지의 굽은 광선 경로의 길이, n은 굴절 지수 스칼라 필드, ∇n은 n의 그래디언트인 벡터 필드이다.
상기 미분 방정식은 다음과 같이 표현될 수 있다.
Figure 112005058248433-pct00004
기지의 초기 값을 갖는 제1차 일반 미분 방정식(ordinary differential equation)은 수치 방법을 이용하여 해결될 수 있다. 예를 들어, 룬지-쿠타(Runge-Kutta) 또는 아담스-몰튼(Adams-Moulton) 방법. 고차 미분 방정식은, 그들을 제1차 방정식의 등가 시스템으로 다시 씀에 의해 수치적으로(numerically) 해결될 수 있다. r1=r 및 r2=r´(1차 미분)의 대입을 이용하여, 상기 광선 경로 미분 방정식(1-4)는 두 1차 미분 방정식 (1-5) 및 (1-6)의 등가 시스템으로 표현될 수 있다.
Figure 112005058248433-pct00005
Figure 112005058248433-pct00006
따라서, 상기 광선 경로의 결정은 초기 값들을 갖는 두 일반 미분 방정식들의 시스템의 해(solution)에 상당한다. 표준 수치적 방법은 상기 문제를 해결하기 위해 이용될 수 있다. 예를 들어, 이용자 정의 한도(tolerances)와 일치하는 적응성 단계 제어를 갖는 룬지-쿠타 방법.
상기 광선 경로가 해결됨과 함께, 상기 대류층 지연은 다음과 같이 계산될 수 있다.
Figure 112005058248433-pct00007
여기서, a, b 및 c는 도 3a에 도시된 바와 같다. 점b는 광선 곡선 및 굴절도가 무시할 정도로 고려될 수 있는 지점(본 명세서 상에서는 고도 70킬로미터 이상)에 상당한다.
이용자로부터 위성(도 3a에서의 a에서 b)으로의 경로를 결정하기 위한 광선 추적 프로세스가 점a에서 시작하며, 시작 고도각αApparent 을 가정한다. 정확한 위성 위치 및 따라서 αTrue를 알고 있음에도, αApparent(상기 광선 경로가 점c와 교차하도록)는 당초 추정될 수 있을 뿐이다. 왜냐하면 광선 추적이 기껏해야 추측인 각도에서 시작하기 때문에, 결과적인 광선 경로가 대개 점c와 교차하지 않을 것이다. 적어도 두 광선 궤적을 유도하고 삽입 또는 반복 방법을 이용함에 의해, 대류층 지연이 유도된 것으로부터 적합한 정확도의 각도를 결정하는 것이 가능하다. 본 발명은, 각 대류층 지연에 대한 보다 정확한 값을 유도하는 때 속성을 나타낸다(predicate).
대류층 지연 결정의 적어도 일부는, 관리(governing) 방정식을 적용함에 의해 대기성 물리 프로세스의 진화를 예측하는, 질량, 운동량 및 에너지의 보존을 포함하는 NWP 모델링을 기초로 한다. 습도, 압력, 온도 및 속도를 포함하는 연속적인 변수의 3차원 필드는 수치적으로 처리되며, 날씨 기단을 포함한 기상학적 특성들은 두 번째로 유도된 특성들이다. 다양한 측정치들이 표면, 라디오존데(radiosonde) 및 위성 관찰을 포함하는 계수적 모델로 입력될 수 있다. 수분 주기(water cycle)는 강우량(precipitation), 구름 형성, 해표면 온도, 지형적 습기(terrain moisture)의 효과를 포함하여 모델링된다.
수치적 모델은 지구 전체에 걸친 것이거나 제한된 영역에 관한 것일 수 있다. 제한된 영역의 고해상도 모델은, 그들이 중간 규모의 기상학적 특성, 크기 면에서 100킬로 미터 이하의 날씨 패턴을 반영함에 따라, 종종 중간 규모의 모델(mesoscale models)로 명명된다.
영국 기상청(UK Meteorological Office)은 소위 중간 규모 및 글로벌 데이터의 통일된 모델을 가지며, 활용가능하도록 한다. 상기 NWP 모델 맵 각각은 상기 맵 커버리지 영역에 대한 격자를 정의하며, 상기 모델들은 해당 지점들에서의 대류층 지연을 푸는(working out) 수단을 제공한다. 예를 들어, 상기 영국 기상청은, 소위 글로벌 모델과 중간 규모의 모델의 두 NWP 모델을 갖는다. 상기 글로벌 모델은, 지구 표면을 정의하는 432 * 325점의 격자를 부여하되, 상기 각 점은 중간 위도(mid latitudes) 약 60킬로미터 및 회귀선상 약 90킬로미터인 셀과 관련되어 있는, 경도에서 0.8333 도(5/6 도), 위도에서 0.5555 도 (5/9 도)인 수평적 해상도를 갖는다. 상기 글로벌 맵은 영국 제도(British Isles)에 중심을 둔 지역적 모델이면서, 위도 및 경도에서 0.11도인 해상도를 갖고(상기 격자는 균일한 수평적 해상도를 유지하기 위해 시프트된 극점(pole)을 회전한다), 대략 사방 12킬로미터인 셀의 배열에 해당하는 146*182 격자점을 갖는 중간 규모의 모델에 대한 경계 지점을 특히 제공하도록 이용될 수 있다. 양 모델 모두 38 수직 레벨을 가지며, 약 40킬로미터까지 연장된다.
관련 맵의 어느 격자점에서도, 상기 대기 굴절 지수(및 따라서 상기 굴절 지수의 그래디언트)는 NWP 모델 압력, 수증기 부분 압력 및 온도 필드로부터 유도될 수 있다. 대기성 굴절도는 습식 및 건식(hydrostatic) 구성요소로 나뉠 수 있다. 0.5%의 굴절도 정확성을 갖는 간단한 두 항목 표시는 다음과 같다.
Figure 112005058248433-pct00008
Figure 112005058248433-pct00009
여기서, N은 굴절도(refractivity), n은 굴절 지수, P는 대기압(atmospheric pressure)(밀리바)(millibar), e는 수증기 압력(밀리바), T는 온도(켈빈)(Kelvin)이다.
이용될 NWP 필드는 구형 좌표계 프레임에서 표현되며, 결국 이하의 변환을 이용하여 국부 곡선 좌표(local curveilinear coordinates(u, v, w))로 변환될 수 있는, 구형 좌표계(r, θ, α) 내의 굴절도 그래디언트를 생성하는 것이 계산적으로 편리하다.
Figure 112005058248433-pct00010
이후, 더 이상의 회전성(rotational) 변환은, 수치적으로 식1-5 및 1-6을 해결하는 데 적합한 고정된 좌표계 프레임(도 3b에서 x, y, z)에서의 그래디언트를 제공하는 상기 국부 곡선 좌표 프레임에 적용된다.
격자점들 간의 NWP 필드 값들은 선형적으로 및 로그 선형적으로 삽입(interpolate)될 수 있다. 선형적 및 로그 선형적 외삽(extrapolation) 기술은 상기 NWP 필드를 가장 높은 격자점 이상으로 및 NWP 영역 이하로 연장하는데 이용될 수 있다. 굴절 지수 필드의 정확한 생성을 위해, 고도 및 위도와 중력 가속도의 변화가 고려되어야만 한다. 정수의(hydrostatic) 균형이 가정될 수 있다. 3차원 굴절 지수 필드(n)이 정의됨과 함께, 상기 광선 경로 방정식이 풀릴 수 있으며, 상기 대류층 지연이 식1-2를 이용하여 계산될 수 있다.
상기 대기 굴절 지수는 건식(또는 정수의) 및 습식 구성요소로 나뉠 수 있다. 상기 습식 구성요소는 보다 큰 공간적 및 일시적 변화성을 갖는다. 종종 전체 천정 지연을 습식 및 건식 천정 지연으로 나누는 것이 편리하다. 상기 정수의(hydrostatic) 천정 지연은 표면 압력 측정하에 정확하게 모델링 될 수 있으나, 습 식 천정 지연은, 상기 대기를 나타내는 것이 아니기에, 표면 습도 측정치(surface humidity measurements)로부터 정확하게 결정될 수 없다.
이해를 돕기 위해, 소위 "습식" 및 "건식" 구성요소로서의 대류층 지연 및 거기에 가해지는 고도 매핑의 표시의 논의를 위해 간략히 참조가 언급된다.
대류층 지연을 모델링하는데 있어서, 상기 제1 모델에 따라, 매핑 함수(m(ε))에 의해, 주어진 고도각 ε에서의 대류층 지연을 천정 지연(dz Trop)으로 관련짓는 것이 편리하다.
Figure 112005058248433-pct00011
상기 정수의 천정 지연은 표면 압력 측정이 있다면 정확하게 모델링 될 수 있으나, 상기 습식 천정 지연은, 상기 대기를 나타내는 것이 아니기에, 표면 습도 측정치로부터 정확하게 결정될 수 없다. 주어진 고도각에서의 상기 대류층 지연에 대한 표현은 다음과 같이 정의될 수 있다.
Figure 112005058248433-pct00012
정수의 및 습식 대기성 지연의 중첩의 단순화를 적용하는 때, 다루어져야 할 것이다. 상기 전파 경로는 정수의 및 습식 구성요소 모두에 의존적이다.
상기 닐 방법에 따른 정수의 및 습식 매핑 함수는, 이전의 기상학적 정보의 필요성 없이 높은 수준의 정확도를 가지며, 고도각과 함께 대류층 지연의 변화는 연속적인 부분 확장(continued fraction expansion)에 의해 효율적으로 모델링 될 수 있다.
대류층 지연에서의 큰 공간적 및/또는 일시적 변화를 갖는 기상학적 특성은, 지역적 또는 글로벌 기반의 보급을 위해 필요한 대역폭 및 NWP 유도된 대류층 보정의 정확성에 영향을 줄 것이다. 정수의 굴절도에서의 상기 공간적 및 일시적 변화는 일반적으로 작으며, 반면 대기 수분의 급격한 변화와 관련된 기상학적 특징은 심각하게 상기 정확도/대역폭 관계에 영향을 미친다.
상기 NWP 모델의 해상도보다 작은 기상학적 특징들은 상기 NWP 유도 대류권 보정 내에 정확하게 반영되지 않을 것이다.
날씨 기단은, 물리적 특성이 수평으로 수백 킬로미터에 걸쳐 크게 균일한 공기의 큰 몸체로서 정의된 공기 덩어리 간의 인터페이스를 마크한다. 상기 기단은 대기 수분, 온도 및 따라서 굴절도 상의 갑작스러운 변화의 발생을 마크할 수 있다. 기단은 따뜻하고, 차갑고, 폐색된 세 분류로 나뉠 수 있다.
대류층 지연의 가장 빠른 변화는, 위성 고도 및 기단 기울기가 동일한 경우에 발생하기 쉽다. 일반적으로, 영국에서, 기단 시스템(frontal system)은 시간당 30 내지 50 킬로미터의 속도로 움직이며, 시간당 3센티미터의 천정 지연 변화를 야기할 수 있다. 고도 및 위치 모두와 다르게 변화하는 기상학적 특징을 통해 발생하는 광 추적에 의해 기술되는 한, 대류층 지연은 지구로의 기울기에 따라 변화한다.
따라서, 상기 서버(200)는 압력, 온도 및 습도 데이터를 포함하는 입력 지역적 또는 글로벌 NWP 모델 정보를 취하며, 상기 기상학적 데이터로부터 3차원의 굴 절 지수 필드를 계산한다. 습식 및 건식 대류층 지연은, (NWP 지역일 수 있는) 지역 데이터베이스(terrain database)에 따른 높이에서, 상기 NWP 커버리지에 따라 격자가 형성된 영역에 대해 유도된다. 이들은 변형되거나 또는 당초 천정 지연으로서 계산된다. 높이를 포함하는 동일한 격자에 대해, 습식 및 건식 천정 지연이 상기 제1 모델(210)로부터 계산된다.
상기 제1 모델 및 기상학적 모델 간의 차이와, 상기 제1 모델 천정 지연이 보다 정확하도록 하는데 필요한 변형을 계산하는 데 있어서, 상기 서버는 상기 제1 모델 값으로부터의 부분적 변화로서 이들 차이를 각각 퍼센티지로서 유도한다.
여기에는 두 가지 이익이 있다. 먼저, 상기 지연 및 차이의 실제 값에 불구하고, 상기 차이는 해당 제1 모델 값으로부터 작은 범위 내에 놓인다(대략 ±10%)는 것을 알 수 있다. 이는 실제 값 차이가 이용되는 경우보다 더 작은 범위의 전송을 위한 보정 값을 전개하는 것을 허용한다. 둘째로, 삽입(interpolation)에 의해 제1 모델의 더 나은 보정을 위해 천정 지연을 제공한다.
고도와 함께 천정 지연의 변화를 포함하는 상기 제1 모델에 대한 퍼센티지 보정으로 정의되는 보정(BC%)이 전송된다. 상기 보정은 격자화된 데이터 셋트의 형태이다. 상기 이용자는 인접한 셋트 점으로부터 그들의 대류층 보정을 선형적으로 삽입할 수 있다.
Figure 112005058248433-pct00013
여기서, ZDh0 nwp는 NWP로부터 계산되고, h0로부터 측정된 천정 지연,
ZDh0 prior는 이전의 기후 모델을 이용하여 계산된 높이 h0로부터 추정된 천정 지연,
h0는 전파보정 퍼센티지(broadcast correction percentage)가 계산되는 평균 해수면 이상의 높이,
φ는 상기 전파 보정 퍼센티지가 계산되는 위도,
λ는 상기 전파 보정 퍼센티지가 계산되는 경도이다.
이용자는 천정 지연을 다음과 같이 계산할 수 있다.
Figure 112005058248433-pct00014
여기서, BCint %는 삽입된 보정 퍼센티지이고, h1은 이용자의 높이이다.
이 기술이 상기 이용자 수신기로 하여금, 상기 NWP 모델이 발달함에 따라, 변화하기 쉬운 NWP 지역 데이터 셋트를 저장하도록 요구하는 것을 피함을 주목하여야 한다. 상기 이용자가 상기 전파 보정에 따른 격자 점 중의 하나에 위치하고, h1=h0인 경우, 상기 이용자 적용된 대류층 보정은 ZDh0 nwp와 같다.
구체적으로 위성 및 보다 구체적으로 GNSS 위성에 의해 통신함에 있어서, 전송 대역폭에 제한이 있음이 이해될 것이다. 장래의 개선이 이러한 제한을 완화하 더라도, 현재로서는 500 초당 비트수(bit/s) 보다 낮은 속도 및 대개 200 내지 250 초당 비트의 속도로 데이터를 전송할 것을 계획하는 것이 필요하다. 이는 항상 전송하는데 유용하지 않은 위성에 의해 악화되지만, 특정 전송창(transmission window) 내에서만 이다. 이를 위해, 상기 모델들로부터 유도된 보정 데이터가 데이터 감소에 적합한 것이 적당하다.
상기 NWP 모델 맵은 각각 상기 맵의 커버리지 영역에 걸쳐 격자를 정의하고, 상기 모델들은 해당 지점에서, 천정 지연을 제공하여, 결국은 한 셋트의 차이(변형 또는 보정)가 상기 지리학적 지점에 따라 정의된다. 따라서, 특정 시점에 특정 셋트의 기상학적 정보에 대하여, 상기 서버는 상기 기관(organization)의 맵 커버리지의 다양한 위치에 대해 그러한 천정 지연 변형의 매트릭스 어레이를 컴파일할 수 있다.
예를 들어, 앞서 언급된 바와 같이, 상기 영국 기상청은 소위 글로벌 모델 및 중간 규모의 모델의 두 NWP 모델을 갖는다. 상기 글로벌 모델은 지구 표면을 정의하는 432*325의 격자를 제공하는 해상도를 가지며, 상기 영국 제도에 중심을 둔 지역적 모델인 상기 중간 규모의 모델은 146*182 격자점을 갖는다.
따라서, 각각이 다수 비트의 단어로 나타내어지는 점 보정 셋트의 2차원 매트릭스 어레이가 존재한다. 특히, 이는 본 발명의 실시예에서, 8비트 단어로서 나타내어 질 수 있다.
따라서, 관심있는 구체적인 UM을 기초로 하여 보정의 지리학적 배포, 필수적으로 8비트 그레이스케일 맵 이미지 보정이 기지국 내에 존재한다. 이해를 돕는 정도까지는, 그러한 맵은 시각적으로 나타내어질 수 있으며, 도 4는 글로벌한 보정 맵의 그러한 표시를 포함한다.
반면 상기 시각적 표시는 실질적으로 상기 정보 및 그 보급에 따른 수치적 데이터이며, 상기 정보의 형식은 보급을 위한 정보 또는 상기 데이터 파일의 크기를 감소시키기 위해 그러한 2차원 이미지와 함께 채용된 데이터 압축 기술로 자체를 빌려주는 것임이 이해될 것이다.
데이터의 무손실 또는 손실있는 압축 맵이 채용되나, 본 실시예에서, 상기 서버는 손실있는 이미지 압축을 이룬다. JPEG(코사인 기반) 또는 간단한 서브-샘플링과 같은 다른 기술들이 상기 정보의 파일 크기를 감소시키기 위해 이용될 수 있음에도 불구하고, 바람직한 압축은 JPEG 2000 표준(웨이블릿 기반)에 따른다.
여기서, 이용자 수신기를 다시 언급하는 것이 바람직하다. 상기 보정 데이터 신호가 통상의 신호와 함께 GNSS 위성(또는 상기 위성)으로부터 수신되는 한, 특별한 수신 회로는 필요하지 않다. 상기 보정 (이미지) 데이터 셋트는 개인 픽셀 값의 이용을 위한 이미지를 앞서 언급한 보정으로서 디코딩하는 프로세서 천정 지연 계산으로 패스된다. 그러한 디코딩은 상기 수신기 내에 세워진 하드웨어 구조에 의해 달성될 수 있거나, 그러한 디코딩이 수신기의 중심 프로세서에 로딩된 소프트웨어에 의해 달성될 수 있으며, JPEG 이미지 파일 압축해제를 위한 소프트웨어가 잘 알려져 있다.
예를 들어, 만약 압축되지 않은 이미지의 파일 크기가 약 141킬로바이트(kb)라면, 압축비 35(파일 크기를 4kb로 압축하는)는 매우 작은(little) 압축 잡음을 나타내지만, 보다 큰 압축 140(1kb로)에서의 압축 잡음은 두드러진다(evident). 이는 또한 그래픽적으로 도 5에 도시되어 있다.
습식 지연 함수에 대한 조건들이 훨씬 더 복잡하며, 건식 지연 함수보다 더 큰 파일 사이즈를 생성하는 것이 이해될 것이다. 따라서, 각각 9킬로 비트(kb) 및 1킬로 비트 급의 압축된 파일 크기를 합리적으로 기대할 수 있는 습식 및 건식 지연 함수를 분리하는 데에는, 약 88,000비트를 배포(disseminate)할 필요가 있다.
상기 데이터 셋트는 단일 이미지로서 그룹(constellation group)의 모든 위성들에게 전달될 수 있다. 상기 실시예에서, 그러한 낮은 비율로 데이터 전송을 가능하게 하는 능력이, 고전송율/장기 지속시간에서의 전체 이미지, 또는 그에 관련된 오직 일부만을 수신하는 특정 위성 또는 상기 위성들 중 분리된 위성과 관계된 맵 영역과 관계된 이미지의 단지 일부와, 요구된 수신 시간 내에서 더 이상의 세(three) 감소의 인자를 허용하면서, GNSS 위성으로의 전송을 유효화함에 의해 이루어진다. 즉, 전송 및 수신이 250 초당 비트수(bits/sec)의 데이터 레이트로 약 2분 걸린다.
따라서, 상기 GNSS 위성들의 각각은, 통상의 신호와 함께, 각 이용자 수신기가 그 위치에 속하는 실질적으로 현재의 기상학적 조건에 따른 모델과 함께 채용된 값으로의 보정이 유효하도록 ZD 모델링과 함께 채용할 수 있는 보정 신호를 전파할 수 있다.
데이터 배포율(rate of data dissemination)이 모두 기술적으로 및 경제적으로 중요하다는 것이 이해될 것이다. 먼저, 상기 부가 정보로 넣는(slotting) 데이 터 전송 능력이, 적어도 현재의 GNSS 구현예에서, 제한된다.
다른 타입의 데이터에 대해서, 상기 솔루션은 전송 이벤트의 지속시간을 늘릴 수 있는 반면에, 날씨 의존적 데이터를 업데이트하는 경우에서 이는 적합한 선택이 아니다. 날씨가 변화하고 날씨 특성이 지구 표면 및 결과적으로 상기 기상학적 모델에 채용된 격자들을 따라 움직이는 한, 커런시 소자(currency element) 즉, 시간 간격 및/또는 원하는 대류층 지연 값이 유효한 거리가 존재한다. 그러한 커런시 시간이 한 시간 급 및/또는 50 내지 90 킬로미터의 격자 크기이다. 따라서, 이용자가 기상학적으로 일반적으로 대류층 지연 값들(보정에 의해)에 의존적이면, 그러한 유효 시간 및 생성된 위치 내에 있어야만 한다. 따라서, 이용자로의 전송의 측면에서, 정보가 유효한 동안에 사용자가 상기 정보를 수신하고 처리할 수 있는 그러한 비율로 전송이 이뤄져야 한다. 위성 통신율(satellite transmission rate)은 비트율에서 느리며, 그러한 보정 정보를 다운로드하는 유효성(availability)에서 간헐적이다(intermittent). 따라서, 상기 데이터가 실행가능성(viability)을 유지하는 동안, 보정 데이터(이미지) 셋트의 전송을 수용하기 위한 데이터 감소를 이루는 것이 필수적이다.
게다가, 상기 보정 데이터(이미지) 셋트를 다운로드 하는데 걸린 시간은, 다운로드를 유효화하고, 상기 이미지 데이터 파일을 압축해제하고 위치를 계산하는데 걸리는 시간을 기다리는 것을 이용자로 하여금 거부하도록 하기 위해 과도하게 길어서는 안 된다.
따라서, 이러한 다양한 목적들을 달성하는 데이터 감소/이미지 압축의 정도 를 유효화하는 것이 중요하다.
지연 값들(및 유도된 보정)의 활용가능성의 상기 논의와 관련하여, 예측된 대류층 지연의 활용가능성이 예측된 시간에 일단(once current) 비교적 작은(앞서 언급된 바와 같이) 것에 불구하고, 상기 NWP 모델 접근에 기초한 데이터를 채용하는 것이 실제로 날씨 조건을 예측하고, 두 세 시간까지의 장래 어떤 시점에서의 대류층 지연을 유도할 수 있는 것이 가능하다는 것을 주목하여야만 한다.
따라서, 지역 격자점과 연관된 한 셋트의 대류층 지연(천정 지연으로서)을 전개할 뿐만 아니라 장래 시간에 대해 예측된 해당 셋트들을 전개하는 것이 가능하다. 즉, 상기 서버는 보정 셋트의 예측 셋트를 유도할 수 있다.
이는, 상기 서버가 주기적으로 지연 보정을 전개하는데만 전념할 수 있는 경우, 상기 예측 셋트가 저장될 수 있고, 상기 시간이 현재가 되고 상기 셋트가 유효한 때, 그 구성원들(members), 특정 시간에 대한 보정 셋트들,이 검색될 수 있기 때문에, 유용하다.
다르게는, 그러한 예측 셋트들은 전송될 수 있고, 상기 유효성이 현재인 시간에 보정 셋트들의 검색 및 재전송하기 위한 위성 내에 저장되거나, 유사하게는 검색을 위한 수신기 내에 저장될 수 있다.
그 순간 실제로 데이터의 예측 셋트들을 생성하고 업로드할 수 있는 능력에도 불구하고, 상기 데이터 전송 바틀 넥(bottle neck)은 상기 위성(구체적으로 GNSS 위성)으로부터 상기 이용자에게 다운로딩되고 있다.
위성에 의해 이용자에게 전송되기 위해 파일된 보정 데이터 셋트의 크기를 감소시키기 위해, 지구의 다른 지점의 이용자를 위한 데이터를 무시하는 동안, 범위 즉, 상기 위성의 시야(sight of the satellite) 내의 이용자들에게 적용가능한 지연 보정들만을 전송하도록 배치될 수 있다. 이는, 위성에 액세스할 수 있는 이용자와 관련하여, 어떤 특정 위성에 상기 보정 데이터 셋트의 어느 부분을 업로드할 지를 결정하는 상기 서버에 의해 이루어질 수 있거나, 상기 서버는 글로벌 데이터 셋트를 업로드 할 수 있되, 상기 위성은 상기 셋트의 어느 부분이 재전송될 것인지를 결정한다.
상기 기재는 상기 이용자 수신기 제1 모델에 의해 보정되지 않는 측위 오차의 주된 소스(source)를 나타내는 ZD로의 보정의 전개(derivation), 통신 및 이용을 기술하는데 집중되었었다.
앞서 언급한 바와 같이, 상기 제1 모델은 또한 대기에 또한 의존적이면서 상기 기후 모델에서 사용된 소자들에 의해 동반된 파라미터들을 채용하는 매핑 함수 즉, 일자(time of year)(a), 위도(b) 및 고도(c)의 함수를 채용한다. 이들은 또한 상기 서버에서 유도된 보정 셋트들에 의해 보정될 수 있다. 상기 매핑 함수는 다음과 같이 표현될 수 있다.
Figure 112005058248433-pct00015
여기서, ε은 고도각이다.
이는 또한 다음과 같이 표현될 수 있다.
Figure 112005058248433-pct00016
여기서, a0, b0 및 c0는 제1 모델 값이며, Δa, Δb 및 Δc는 상기 기상학적 모델에 의해 유도될 수 있는 고도(elevation)의 매핑을 이루도록 하기 위해 상기 제1 모델 값에 적용될 보정값이다.
상기 식 (2-2) 및 광선 추적된 (진실) 간의 나머지의 제곱의 합이 최소화되도록 프로세스가 피팅(fitting)에 의해 동작한다. 따라서, 한 셋트의 보정값들은 유사 데이터 이미지 파일로서 Δa, Δb 및 Δc를 포함하도록 유도될 수 있거나, 이러한 보정들을 포함하는 단어 소자들을 포함하기 위하여 단어 길이를 증가시킴에 의해 천정 보정 데이터 이미지 파일 상에 포개어질 수 있다.
반 코딩(anti-coding)의 전송 및 수신은, 상기 수신기가 현재 상기 매핑 함수의 파라미터들과 함께 채용될 보정 값들을 가지는 점을 제외하고는 이전과 동일하여, 상기 천정 지연 및 그 매트(mat) 값들이 보다 정확하게 제시된다.
경도 및 시각(time of day)의 파라미터들을 고도 매핑 함수에 포함시키는 것이 가능함이 이해될 것이고, 수치적 솔루션을 유도하기 위한 상기 언급된 접근이 거기까지(thereto) 연장될 수 있다.
NWP를 채용하는 것이 편리하고, 여러 면에서 장점이 있음에도 불구하고, 다른 기상학적 소스들이 활용가능한 데이터를 증대시키기 위해 그들과의 조합에 이용될 수 있다. 대기의 3차원 시야를 취하는 다른 어떤 기상학적 모델도 NWP를 대신하여 채용될 수 있다. 앞으로 통찰될 바와 같이, 상기 NWP는 이용되는 NWP 모델에 의해 제한되는 셀 크기를 갖는 격자에 대해 정의된 대류층 지연을 유도한다. 고도의 수분 함유(moisture content)를 가지며 천둥을 동반한 폭풍(thunder storm)과 같은 대류층 지연을 이룰 수 있는 많은 날씨 특성들이 상기 NWP 모델의 해상도 임계치 이하일 수 있다. 그러나, 고해상도로 그러한 특성들의 존재를 식별할 수 있는 본래 차원적인(essentially dimensional) 성격의 위성 이미지와 같은 수많은 데이터 소스가 존재하며, 거기에 포함된 정보는 그러한 특성을 상기 NWP 격자에 고려하도록 격자의 특정 셀에 대한 NWP 값을 변화시키기 위해 채용될 수 있다.
상기 기술된 실시예는 비기상학적 모델을 먼저 내장하고 있는 이용자 수신기가 상기 모델만을 이용하여 가능한 경우보다 더 정확하게 그 위치를 결정할 수 있도록 하기 위한 것이다. 상기 계산 솔루션의 일부가 대류층 지연에 대한 상기 모델의 해석에 의해 허용되는 정확도로 시간 값을 유도하는 것이 이해될 것이다. 일부 이용자에게는, 중요한 것은 시간 함수이며, 그러한 이용자는 고정된 수신기의 정확한 위치를 알 수 있다.
삭제
상기 개시는 다음과 같이 요약될 수 있다.
상기 대류층 보정 서버는 압력, 온도 및 습도 데이터를 포함하는 정보를 입력 지역적 또는 글로벌 NWP 모델로서 취한다. 예를 들어 고해상도(high-resolution)의 수증기와 같이 적외선 위성 관측으로부터 측정된 부가적인 기상학적 데이터는 NWP 데이터를 확장하는데 이용될 수 있으며, 매우 작은 기상학적 특성들(예를 들어, 국부적 대류성 폭풍)의 보정을 도울 수 있다.
상기 대류권 보정 서버는 상기 기상학적 모델로부터 3차원의 굴절 지수 필드를 계산한다. 습식 및 건식 천정 지연은, (NWP 지역일 수 있는) 지역 데이터베이스에 해당하는 높이에서, 상기 NWP 커버리지에 따라, 격자화된 영역에 대해 계산된다. 상기 서버(200)의 경우에는, 높이를 포함하는 동일한 격자 위치에 대해, 습식 및 건식 천정 지연들이 이전의 모델로부터 계산된다. 상기 서버는 이후, 이전의 것과 천정 지연에 기반한 기상학적 관찰로부터의 차이를 퍼센티지로 계산한다. 습식 및 건식의 퍼센티지 보정의 상기 격자화된 데이터 셋트는 이후 양자화 되고 손실있는 이미지 압축 기술을 이용하여 압축된다. 이미지 디코딩을 위해 필요한 데이터를 포함한 상기 압축된 이미지는 이후 위성 업링크 스테이션(위성 항법 시스템 그라운드 구조의 일부)으로 배포된다. 상기 이미지 데이터는 상기 현재의 대기 상 태에 관계되며, 또한 두세 시간의 예측된 이미지들을 포함할 수 있다. 데이터의 업로딩은 하나 이상의 업링크 스테이션으로부터일 수 있으며, 하나 이상의 위상으로 업링크 될 수 있다. 상기 데이터는 사실상(in nature) 글로벌하거나 지역적일 수 있다. 각 위성으로 보내진 데이터는, 상기 위성 무리가 각 위성의 데이터에도 불구하고 글로벌한 커버리지를 제공하도록, 지역 제한적일 수 있다.
두세 시간의 예측된 이미지의 위성으로의 배치 업로딩(batch-uploading)은 상기 위성 항법 시스템 그라운드 구조에 부가되는 부담을 줄이도록 이용될 수 있다. 각 위성은 가장 적용가능하며, 가장 현재의, 대류층 이미지를 상기 위성 항법 시스템의 항법 데이터의 일부로서 전파(broadcast)한다.
상기 이용자의 위성 항법 신호 추적 시스템은 위성 궤도 결정 파라미터를 포함하는 표준 항법 데이터인 대류층 이미지를 수신하며, 의사 거리 및 축적된 캐리어 관측을 이룬다. 상기 습식 및 건식 압축된 대류층 보정 이미지들은 압축해제된다. 상기 이전의 습식 및 건식 천정 지연들이 계산된다. 상기 이전의 습식 및 건식 천정 지연 모델은 상기 대류층 보정 서버에 이용된 것과 동일한 것이다. 상기 이용자 위치에 따른, 상기 이용자 습식 및 건식 천정 지연은 이후에 근접한 격자화된 데이터 점들간의 삽입을 이용하여 계산된다.
습식 및 건식 천정 전파 지연들은 이후, 위성 고도각 매핑 함수를 이용하여 위성의 구체적 의사 거리 보정으로 변환된다. 마지막으로, 상기 표준 항법 솔루션이 계산되나, 기상학적 관측을 기반으로 한 대류층 지연 보정의 부가와 함께이다.
측위 시스템, NWP 기술 및 기상학적 측정으로부터의 보정된 대류층 지연 정보의 구현에 영향을 미치는 요소들에 대한 보다 상세한 논의는, 본 발명의 우선권 주장의 근거가 된 출원에 기재되고, GNSS 2003 회보에 기재된 엠 포웨(M Powe), 제이 부처(J Butcher) 및 제이 오웬(J Owen)의 "NWP 필드를 이용한 대류층 지연 모델링 및 보정 배포(Tropospheric Delay Modelling and Correction Dissemination using Numerical Weather Prediction Fields)"에서 발견되며, 본 명세서에 참고로서 통합되어 있다.

Claims (62)

  1. 글로벌 항법 위성 시스템(GNSS, Global Navigation Satellite System)(100) 내의 수신기(220)의 위치가 결정될 수 있는 정확도를 증가시키는데 이용될 대류층 지연 데이터를 얻기 위한 방법으로서,
    상기 수신기로부터 떨어진 위치(200)에서의 제1 모델(230)로부터 다양한 수신기 지리적 위치에 적용가능한 근사 대류층 지연 값들의 제1 셋트를 생성하는 단계;
    상기 수신기로부터 떨어진 위치에 있는 제2 기상학적 모델로부터 상기 다양한 수신기 지리적 위치들에 적용가능한 정확한 대류층 지연 값들의 제2 셋트를 생성하는 단계;
    상기 제1 모델 및 대류층 지연 값 변형들의 셋트가 함께, 상기 정확한 대류층 지연 값들의 제2 셋트와 동일한 대류층 지연 값들의 셋트를 제공할 수 있도록 상기 제1 모델에 적용가능한 대류층 지연 값 변형들의 셋트를 생성하는 단계; 및
    상기 수신기에 상기 대류층 지연 값 변형들의 셋트를 전달하는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  2. 제1항에 있어서,
    상기 제1 모델이 비기상학적 파라미터를 기초로 한 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  3. 제2항에 있어서,
    상기 비기상학적 파라미터는 일자(time of year), 위도 및 고도 중의 적어도 하나를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  4. 제3항에 있어서,
    상기 비기상학적 파라미터는 경도 및 시각(time of day) 중 적어도 하나를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 대류층 지연 값들의 셋트는 천정 대류층 지연 값을 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  6. 제5항에 있어서,
    상기 제1 모델은 주어진 고도각에서의 대류층 지연값을 상기 천정 대류층 지연값으로 관계짓는 매핑 함수를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  7. 제6항에 있어서,
    상기 대류층 지연 값 변형 셋트는 상기 제1 모델의 매핑 함수와 이용하기 위한 변형 셋트를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  8. 제1항에 있어서,
    상기 대류층 지연 값 변형들은,
    - 상기 제1 모델에 기여할 수 있는 근사 대류층 지연 값들의 제1 셋트, 및
    - 상기 제2 기상학적 모델에 기여할 수 있는 정확한 대류층 지연 값들의 제2 셋트의 대응 값들 간의 차이인 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  9. 제8항에 있어서,
    상기 지연 값 변형들이 상기 제1 셋트의 대류층 지연 값들의 값으로부터의 분수 순열(fractional change)로 표현되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  10. 제1항에 있어서,
    상기 대류층 지연 값 변형들의 셋트는 데이터 어레이로서 표현되며, 각 변형은 지구 표면의 적어도 일부 상에 개별 격자점에 대해 결정된 값을 갖는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  11. 제10항에 있어서,
    상기 변형 셋트는 디지털 데이터 파일로서 표현되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  12. 제11항에 있어서,
    상기 디지털 데이터 파일은 다수 비트 단어의 그레이스케일 이미지이며, 각 단어는 지구의 한 영역의 위치를 나타내는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  13. 제12항에 있어서,
    이용자로의 통신을 위한 감소된 대류층 지연 값 변형 셋트를 유도하기 위해 상기 대류층 지연 값 변형 셋트로 데이터 감소(270)를 인가하는 단계를 더 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  14. 제13항에 있어서,
    상기 데이터 감소는 이미지 압축 프로세스인 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  15. 제13항에 있어서,
    손실 데이터 감소에 의해 상기 데이터 사이즈를 감소시키는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  16. 제15항에 있어서,
    JPEG 2000 또는 JPEG 90 표준에 따라 변형 셋트 데이터 파일을 감소시킴에 의해 데이터 감소를 유효화하는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  17. 제1항에 있어서,
    상기 정확한 대류층 지연 값들은 광선 추적(ray tracing) 기법에 의해 유도되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  18. 제17항에 있어서,
    상기 정확한 대류층 지연 값들은 3차원 굴절지수 필드 생성에 의해 유도되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  19. 제1항에 있어서,
    상기 기상학적 모델은 지구의 한 영역에 대한 NWP 데이터에 기반한 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  20. 제17항 내지 제19항 중 어느 한 항에 있어서,
    상기 기상학적 모델 또는 상기 대류층 지연 값 변형의 각각은 직접 관측된 기상학적 데이터에 의해 증대되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  21. 제20항에 있어서,
    상기 직접 관측된 데이터는 지구 한 영역에 대한 NWP 데이터보다 작은 해상도를 갖는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  22. 제20항에 있어서,
    상기 직접 관측된 기상학적 데이터는 지구 한 영역에 대한 NWP 데이터의 적어도 일부에 대응되는 지구 표면의 영역에 관한 데이터 셋트로서 유도되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  23. 제19항에 있어서,
    상기 지구의 한 영역은 글로벌한 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  24. 제20항에 있어서,
    기상학적 정보로부터 장래의 하나 또는 그 이상의 시간에 대한 정확한 대류층 지연 값을 예측하고, 지구 표면의 지리적 영역에 대한 지연 값 변형의 예측 셋트를 전개하여,
    상기 예측 셋트의 각 구성원이 전개로부터 시간의 함수로서 현재가 되는 지연 값 변형을 기술하게 되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  25. 제1항에 있어서,
    상기 대류층 지연 값 변형 셋트가 통신 채널 또는 데이터 링크를 통해 상기 수신기로 전달되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  26. 제24항에 있어서,
    상기 지연 값 변형의 예측 셋트를 배치(batch)로서 통신하고, 예보와 관련하여 각각이 예측된 시간이 현재가 됨에 따라 상기 셋트의 구성원들을 이용하는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  27. 제1항에 있어서,
    상기 지연 값 변형 셋트의 적어도 일부를 적어도 하나의 궤도 위성(1101, 1102, ...)으로 전달하고, 상기 셋트의 적어도 일부를 상기 궤도 위성의 하나로부터 상기 수신기로 재송신하는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  28. 제27항에 있어서,
    하나의 위성(1101, 1102, ...)의 범위 내의 영역 내의 수신기로 이용될 수 있는 상기 지연 값 변형 셋트의 그 일부만이 상기 위성으로 전달되는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  29. 제13항에 있어서,
    상기 기상학적 모델에 의해 이용되는 기상학적 정보의 유효 시간보다 작은, 상기 위성의 송신율 및 송신 유효성에 의해 지시된, 시간 내에 상기 수신기에 의해 이용가능한 상기 지연 값 변형 셋트의 일부 또는 전부의 송신을 허용하기 위해 데이터 감소를 인가하는 단계를 포함하는 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  30. 제29항에 있어서,
    상기 데이터 감소는 25 내지 500 초당 비트수의 범위 내의 데이터 속도로 수신기로의 지연 값 변형 데이터 송신을 허용하도록 된 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  31. 제30항에 있어서,
    상기 데이터 감소는 200 내지 250 초당 비트수의 범위 내의 지연 값 변형 데이터 송신을 허용하도록 된 것을 특징으로 하는 대류층 지연 데이터 획득 방법.
  32. 제1항 내지 제31항 중 어느 한 항의 방법들을 수행하는 데 적합한 장치.
  33. 글로벌 항법 위성 시스템(GNSS)(100) 내의 대류층 지연 오차를 감소시키는 방법으로서,
    복수의 위성들(1101, 1102,...)로부터 수신된 신호에 적용가능한 제1 모델(130)로부터 근사 대류층 지연 값들의 제1 셋트를 생성하는 단계;
    상기 제1 모델 및 대류층 지연 값 변형들의 셋트가 함께, 제2 기상학적 모델로부터 생성된 정확한 대류층 지연 값들의 제2 셋트와 동일한 대류층 지연 값들의 셋트를 제공할 수 있도록 상기 제1 모델에 적용가능한 대류층 지연 값 변형들의 셋트를 수신하는 단계; 및
    상기 대류층 지연 값 변형들의 셋트에 따라 상기 근사 대류층 지연 값들의 제1 셋트를 보정하는 단계를 포함하는 것을 특징으로 하는 GNSS(100) 내의 대류층 지연 오차를 감소시키는 방법.
  34. 제33항에 있어서,
    수신기(220)의 위치를 보다 정확하게 결정하기 위해 채용된 방법으로서,
    상기 근사 대류층 지연 값들의 제1 셋트를 생성하는 단계 이후에 지구 표면에 대해 상기 수신기의 근사 위치를 계산하는 단계, 및
    상기 대류층 지연 값 변형 셋트에 따라 상기 대류층 지연 값들의 제1 셋트를 보정하는 단계 이후에 상기 수신기의 정확한 위치를 계산하는 단계를 더 포함하는 것을 특징으로 하는 GNSS(100) 내의 대류층 지연 오차를 감소시키는 방법.
  35. 보다 더 정확하게 글로벌 항법 위성 시스템(GNSS) 수신기(220)의 위치 또는 현재 시간을 계산할 수 있는 GNSS 수신기로서,
    복수의 위성들로부터 수신된 신호들에 적용가능한 근사 대류층 지연 값들의 제1 셋트를 생성하고, 지구 표면 또는 시간에 대해 상기 수신기의 근사 위치를 계산하도록 된 수단(130)을 포함하며,
    상기 제1 모델 및 대류층 지연 값 변형들의 셋트가 함께, 제2 기상학적 모델로부터 생성된 정확한 대류층 지연 값들의 제2 셋트와 동일한 대류층 지연 값들의 셋트를 제공할 수 있도록 상기 제1 모델에 적용가능한 대류층 지연 값 변형들의 셋트를 수신하는 수단; 및
    상기 근사 대류층 지연 값 변형들의 셋트에 따라 상기 근사 대류층 지연 값들의 제1 셋트를 보정하는 수단;을 포함하는 것을 특징으로 하는 GNSS 수신기.
  36. 제35항에 있어서,
    상기 근사 대류층 지연 값들의 제1 셋트를 보정하는 수단은 상기 변형이 유도된 위치에 대해 이용자의 계산된 위치에 따라 상기 변형의 삽입 또는 외삽 중의 하나가 유효하도록 동작하는 것을 특징으로 하는 GNSS 수신기(220).
  37. 복수의 위성(1101, 1102,...)으로부터 수신된 신호들에 적용가능한 제1 모델(130)로부터 근사 대류층 지연 값들의 제1 셋트를 생성하는 글로벌 항법 위성 시스템(GNSS) 내의 대류층 지연 오차를 보정하는 데 적합한 수신기로서,
    상기 제1 모델 및 대류층 지연 값 변형들의 셋트가 함께, 제2 기상학적 모델로부터 생성된 정확한 대류층 지연 값들의 제2 셋트와 동일한 대류층 지연 값들의 셋트를 제공할 수 있도록 상기 제1 모델에 적용가능한 대류층 지연 값 변형들의 셋트를 수신하고,
    상기 대류층 지연 값 변형의 셋트에 따라 상기 근사 대류층 지연 값들의 제1 셋트를 보정하는 것을 특징으로 하는 GNSS 내의 대류층 지연 오차 보정용 수신기.
  38. 제37항에 있어서,
    상기 수신기는,
    상기 근사 대류층 지연 값들의 제1 셋트를 생성한 뒤에 지구 표면에 대해 상기 수신기의 근사 위치를 계산하고,
    상기 대류층 지연 값 변형 셋트에 따라 상기 대류층 지연 값들의 제1 셋트를 보정한 후에 상기 수신기의 정확한 위치를 계산함에 의해,
    보다 더 정확하게 그 위치를 결정할 수 있는 것을 특징으로 하는 GNSS 내의 대류층 지연 오차 정정용 수신기.
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
KR1020057019681A 2003-04-17 2004-04-19 위성 측위 시스템에서의 유도된 대류층 오차 보정 방법 KR101100531B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0308894.5 2003-04-17
GB0308894A GB0308894D0 (en) 2003-04-17 2003-04-17 Tropospheric delays in global positioning systems
GB0309142.8 2003-04-23
GB0309142A GB0309142D0 (en) 2003-04-23 2003-04-23 Tropospheric delays in global positioning systems
PCT/GB2004/001676 WO2004095055A1 (en) 2003-04-17 2004-04-19 Correction of troposphere induced errors in global positioning systems

Publications (2)

Publication Number Publication Date
KR20060008899A KR20060008899A (ko) 2006-01-27
KR101100531B1 true KR101100531B1 (ko) 2011-12-30

Family

ID=33312362

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057019681A KR101100531B1 (ko) 2003-04-17 2004-04-19 위성 측위 시스템에서의 유도된 대류층 오차 보정 방법

Country Status (13)

Country Link
US (1) US7877207B2 (ko)
EP (1) EP1613978B1 (ko)
JP (1) JP2006523836A (ko)
KR (1) KR101100531B1 (ko)
CN (1) CN1774645A (ko)
AT (1) ATE493676T1 (ko)
AU (1) AU2004232832B2 (ko)
CA (1) CA2519808C (ko)
DE (1) DE602004030777D1 (ko)
ES (1) ES2356821T3 (ko)
NO (1) NO20055398L (ko)
RU (1) RU2348052C2 (ko)
WO (1) WO2004095055A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448223B1 (ko) * 2013-03-20 2014-10-15 대한민국 인공위성기반 홍수탐지시스템 및 홍수탐지방법, 홍수탐지방법을 수행하는 프로그램이 수록된 기록매체

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705793B2 (en) * 2004-06-10 2010-04-27 Raysat Antenna Systems Applications for low profile two way satellite antenna system
US20060176843A1 (en) * 2005-02-07 2006-08-10 Yoel Gat Method and apparatus for providing low bit rate satellite television to moving vehicles
US7379707B2 (en) * 2004-08-26 2008-05-27 Raysat Antenna Systems, L.L.C. System for concurrent mobile two-way data communications and TV reception
US7911400B2 (en) * 2004-01-07 2011-03-22 Raysat Antenna Systems, L.L.C. Applications for low profile two-way satellite antenna system
US20110215985A1 (en) * 2004-06-10 2011-09-08 Raysat Antenna Systems, L.L.C. Applications for Low Profile Two Way Satellite Antenna System
US8761663B2 (en) * 2004-01-07 2014-06-24 Gilat Satellite Networks, Ltd Antenna system
US7907087B2 (en) 2006-05-05 2011-03-15 Nokia Corporation Satellite based positioning of a wireless terminal
JP4901365B2 (ja) * 2006-08-23 2012-03-21 古野電気株式会社 測位システム、測位方法および測位用プログラム
JP4910676B2 (ja) * 2006-12-15 2012-04-04 セイコーエプソン株式会社 演算回路、測位装置、指標算出方法及びプログラム
EP2003468B1 (en) * 2007-06-13 2015-09-16 Airbus DS GmbH Dissemination of critical atmospheric conditions within global and regional navigation satellite systems
US7739048B2 (en) * 2007-06-18 2010-06-15 The Boeing Company Method and system for determining water vapor profile using GPS signals
WO2009008104A1 (ja) * 2007-07-10 2009-01-15 Electronic Navigation Research Institute, An Independent Administrative Institution 天頂対流圏遅延量の算出方法及び衛星測位信号の対流圏遅延の補正方法
DE102007036497A1 (de) * 2007-08-01 2009-02-19 Astrium Gmbh Positionierungsvorrichtung und Positionierungsverfahren für ein Satellitennavigationssystem
EP2040090A1 (en) * 2007-09-18 2009-03-25 Leica Geosystems AG Method for accuracy estimation of network based corrections for a satellite-aided positioning system
US7869951B1 (en) * 2008-07-11 2011-01-11 Lockheed Martin Corporation Method of determining local electromagnetic sensor refractivity
ES2550634T3 (es) 2009-07-10 2015-11-11 Boston Scientific Scimed, Inc. Uso de nanocristales para un balón de suministro de fármaco
AT508966A1 (de) * 2009-10-30 2011-05-15 Teleconsult Austria Gmbh Verfahren und vorrichtung zur übermittlung von satellitennavigationsdaten
CN101706571B (zh) * 2009-11-05 2012-08-29 宁波市气象服务中心 一种雷达回波中非气象杂波的处理方法
CN102346252B (zh) * 2010-08-06 2013-06-05 清华大学 光学卫星遥感数据地理定位中的大气折射补偿方法及系统
KR101183582B1 (ko) * 2010-09-29 2012-09-17 주식회사 에스원 위성항법보정시스템의 대기층 해석을 통한 측위방법
JP5570649B2 (ja) * 2011-02-22 2014-08-13 三菱電機株式会社 測位補強情報生成装置、及び測位補強システム
US9972198B2 (en) * 2011-03-22 2018-05-15 Vaisala Oyj Method for launching and a radiosonde
US8604966B1 (en) * 2011-07-11 2013-12-10 Lockheed Martin Corporation Correction of radar beam refraction using electro-optical measurements
US8787944B2 (en) * 2011-08-18 2014-07-22 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
FR2987899B1 (fr) * 2012-03-09 2014-05-02 Thales Sa Procede adaptatif d'estimation du contenu electronique de l'ionosphere
US9322926B2 (en) * 2012-03-30 2016-04-26 Qualcomm Technologies International, Ltd. Method and apparatus for synchronization and precise time computation for GNSS receivers
US20140091967A1 (en) * 2012-09-28 2014-04-03 Global Geophysical Services, Inc. Seismic Data Acquisition Module with Broadband Antenna, and Corresponding Systems, Devices, Components and Methods
FR2998976B1 (fr) * 2012-11-30 2015-01-16 Thales Sa Procede et systeme de determination d'une erreur de l'estimation du temps de la traversee de la ionosphere
CN103033833B (zh) * 2012-12-13 2014-12-10 中国航天科工信息技术研究院 一种修正对流层延迟误差的方法
CN103885046A (zh) * 2012-12-20 2014-06-25 河南省电力勘测设计院 基于GPS的InSAR大气延迟改正方法
WO2014163069A1 (ja) * 2013-04-01 2014-10-09 株式会社次世代技術研究所 レーダの信号処理方法及び装置
FR3025610B1 (fr) * 2014-09-05 2022-01-14 Centre Nat Etd Spatiales Procede de determination collaborative d'erreurs de positionnement d'un systeme de navigation par satellites
BR112017013140A2 (pt) * 2014-12-22 2018-01-02 User Centric Ip L P método implementado por computador e sistema de modelagem em mesoescala
CN104656108B (zh) * 2015-02-12 2017-05-10 东南大学 一种顾及高程差异的稀疏参考站网络天顶对流层延迟建模方法
GB2538101A (en) 2015-05-08 2016-11-09 Esa Interferometric radio occultation
RU2601387C1 (ru) * 2015-07-02 2016-11-10 Александр Васильевич Тертышников Способ определения положения аврорального овала и состояния магнитного поля земли
CN105137461A (zh) * 2015-09-01 2015-12-09 中国人民解放军63655部队 一种消除导航定位卫星系统介质延时的方法
EP3475730B1 (en) * 2016-06-24 2023-10-04 RX Networks Inc. Method, apparatus and computer-readable medium for reducing tropospheric effects in gnss positioning
ES2931501T3 (es) * 2017-03-03 2022-12-30 Deutsche Telekom Ag Procedimiento, dispositivos, sistema y producto de programa de ordenador para aumentar la precisión de posicionamiento de un equipo de usuario móvil mediante el uso de datos de un sistema global de navegación por satélite
CN107991676B (zh) * 2017-12-01 2019-09-13 中国人民解放军国防科技大学 星载单航过InSAR系统对流层误差校正方法
KR102522923B1 (ko) * 2018-12-24 2023-04-20 한국전자통신연구원 차량의 자기위치 추정 장치 및 그 방법
FR3092565B1 (fr) * 2019-02-08 2021-08-27 Airbus Defence & Space Sas Systèmes informatiques pour l’acquisition d’images satellitaires avec prise en compte de l’incertitude météorologique
CN109900973B (zh) * 2019-02-25 2021-06-01 西安电子科技大学 基于规则矩形折射率单元的带有光强衰减的射线追踪方法
CN109900658B (zh) * 2019-03-06 2019-11-01 中国人民解放军国防科技大学 一种利用恒星观测数据校正光学成像卫星大气折射的方法
CN109901203B (zh) * 2019-03-27 2020-12-18 北京航空航天大学 一种对流层折射率高精度预测的地基增强系统
KR102677918B1 (ko) * 2019-06-06 2024-06-25 스타 알리 인터내셔널 리미티드 가변적인 전리층 지연 하에서의 단일-에포크 의사-거리 위치 확인
CN110673184A (zh) * 2019-09-05 2020-01-10 成都亿盟恒信科技有限公司 一种基于车辆的高精度定位系统及方法
US20220369593A1 (en) * 2019-11-04 2022-11-24 mOOverment Holding B.V, System and apparatus for the monitoring of livestock and the like
CN111753408B (zh) * 2020-06-09 2023-05-09 南京信息工程大学 一种顾及天气的gnss大气加权平均温度计算方法
KR102184290B1 (ko) * 2020-07-06 2020-11-30 아주대학교산학협력단 저궤도 위성 안테나의 조준 오차 보정 방법
CN112034490B (zh) * 2020-10-10 2022-03-22 山东科技大学 一种nwp反演对流层延迟改进方法
US20240048671A1 (en) * 2020-12-23 2024-02-08 Sony Group Corporation Ground system and image processing method thereof
KR20220108317A (ko) * 2021-01-27 2022-08-03 현대자동차주식회사 퍼스널 모빌리티, 그와 통신하는 서버 및 그 제어 방법
CN113325448A (zh) * 2021-04-21 2021-08-31 中铁第一勘察设计院集团有限公司 顾及对流层延迟改造的大高差cors网解算方法
CN114019584B (zh) * 2021-10-11 2024-06-14 武汉大学 一种大高差地区高精度cors网vrs解算方法
CN114297939B (zh) * 2021-12-31 2022-09-16 山东大学 适用于南极地区的对流层延迟预测方法及系统
CN116125495B (zh) * 2022-12-14 2024-04-16 北京六分科技有限公司 电离层改正数的确定方法、设备、存储介质及程序产品
CN116244265B (zh) * 2023-03-07 2023-08-18 国家海洋环境预报中心 一种海洋气象数值预报产品的处理方法、装置及电子设备
CN116361714B (zh) 2023-06-01 2023-08-04 山东科技大学 一种顾及非各向同性的水平方向对流层延迟分类方法
CN117629211A (zh) * 2023-11-14 2024-03-01 中国电子科技集团公司第七研究所 一种基于射线跟踪的折射修正快速计算方法及系统
CN118311615A (zh) * 2024-03-29 2024-07-09 武汉大学 一种gnss对流层与多路径联合建模纠正方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026239A1 (en) 2000-01-26 2001-10-04 Fenton Patrick C. Method and apparatus for generating a time signal
US20020199196A1 (en) 2001-06-21 2002-12-26 Matthew Rabinowitz Position location using global positioning signals augmented by broadcast television signals
US20050001742A1 (en) 2001-11-02 2005-01-06 David Small Method and device for chronologically synchronizing a location network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323322A (en) 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
US5828336A (en) * 1996-03-29 1998-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Robust real-time wide-area differential GPS navigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026239A1 (en) 2000-01-26 2001-10-04 Fenton Patrick C. Method and apparatus for generating a time signal
US20020199196A1 (en) 2001-06-21 2002-12-26 Matthew Rabinowitz Position location using global positioning signals augmented by broadcast television signals
US20050001742A1 (en) 2001-11-02 2005-01-06 David Small Method and device for chronologically synchronizing a location network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448223B1 (ko) * 2013-03-20 2014-10-15 대한민국 인공위성기반 홍수탐지시스템 및 홍수탐지방법, 홍수탐지방법을 수행하는 프로그램이 수록된 기록매체

Also Published As

Publication number Publication date
CA2519808C (en) 2012-06-12
DE602004030777D1 (de) 2011-02-10
EP1613978A1 (en) 2006-01-11
WO2004095055A9 (en) 2004-12-16
RU2005135641A (ru) 2006-08-27
KR20060008899A (ko) 2006-01-27
US7877207B2 (en) 2011-01-25
JP2006523836A (ja) 2006-10-19
AU2004232832A1 (en) 2004-11-04
EP1613978B1 (en) 2010-12-29
ES2356821T3 (es) 2011-04-13
WO2004095055A8 (en) 2005-03-03
CN1774645A (zh) 2006-05-17
NO20055398L (no) 2006-01-04
WO2004095055A1 (en) 2004-11-04
RU2348052C2 (ru) 2009-02-27
CA2519808A1 (en) 2004-11-04
US20070027624A1 (en) 2007-02-01
NO20055398D0 (no) 2005-11-15
AU2004232832B2 (en) 2009-03-05
ATE493676T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
KR101100531B1 (ko) 위성 측위 시스템에서의 유도된 대류층 오차 보정 방법
Duan et al. GPS meteorology: Direct estimation of the absolute value of precipitable water
US10545243B2 (en) Systems and methods for improved atmospheric monitoring and GPS positioning utilizing GNSS tomographic refractivity
Zheng et al. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning
Cong et al. Imaging geodesy—Centimeter-level ranging accuracy with TerraSAR-X: An update
Vedel et al. Calculation of zenith delays from meteorological data comparison of NWP model, radiosonde and GPS delays
Jade et al. Estimates of precipitable water vapour from GPS data over the Indian subcontinent
Tan et al. Evaluating precipitable water vapor products from Fengyun-4A meteorological satellite using radiosonde, GNSS, and ERA5 Data
Zhang et al. GNSS-RS tomography: Retrieval of tropospheric water vapor fields using GNSS and RS observations
Rózsa et al. An advanced residual error model for tropospheric delay estimation
KR20230086347A (ko) 드롭존데와 g밴드 수증기 라디오미터를 이용한 총가강수량 산출 장치와 이를 이용한 총가강수량 산출 방법
Bai Near-real-time GPS sensing of atmospheric water vapour
Pany et al. Atmospheric GPS slant path delays and ray tracing through numerical weather models, a comparison
Jin et al. Near real-time global ionospheric total electron content modeling and nowcasting based on GNSS observations
Wu et al. Retrieval of vertical distribution of tropospheric refractivity through ground-based GPS observation
Rózsa Modelling tropospheric delays using the global surface meteorological parameter model GPT2
Manning Sensing the dynamics of severe weather using 4D GPS tomography in the Australian region
Kumar et al. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India
Hdidou et al. Global positioning systems meteorology over Morocco: accuracy assessment and comparison of zenith tropospheric delay from global positioning systems and radiosondes
Jensen et al. The effect of different tropospheric models on precise point positioning in kinematic mode
Acheampong Retrieval of integrated water vapour from GNSS signals for numerical weather predictions
Madani et al. Continuously operating reference station and surveying applications in KSA
Johny et al. Impact of assimilation of Megha-Tropiques ROSA radio occultation refractivity by observing system simulation experiment
Skone et al. Strategies for 4-D regional modeling of water vapour using GPS
Cilliers et al. The South African network of dual-frequency global positioning system satellite receiver base stations: a national asset with many applications and research opportunities: news & views

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee