WO2014163069A1 - レーダの信号処理方法及び装置 - Google Patents

レーダの信号処理方法及び装置 Download PDF

Info

Publication number
WO2014163069A1
WO2014163069A1 PCT/JP2014/059619 JP2014059619W WO2014163069A1 WO 2014163069 A1 WO2014163069 A1 WO 2014163069A1 JP 2014059619 W JP2014059619 W JP 2014059619W WO 2014163069 A1 WO2014163069 A1 WO 2014163069A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
radar
radar apparatus
measurement data
correlation
Prior art date
Application number
PCT/JP2014/059619
Other languages
English (en)
French (fr)
Inventor
田川哲也
Original Assignee
株式会社次世代技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社次世代技術研究所 filed Critical 株式会社次世代技術研究所
Publication of WO2014163069A1 publication Critical patent/WO2014163069A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/955Radar or analogous systems specially adapted for specific applications for meteorological use mounted on satellite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a data interpolation method and apparatus in signal processing of a radar.
  • the weather radar device transmits radio waves while scanning the antenna beam, receives reflected waves from weather targets such as precipitation, and makes it possible to estimate the precipitation distribution from the received power.
  • the received power value can be expressed in a polar coordinate system with the origin being the function of the beam scanning angle and the distance from the radar, that is, the radar position.
  • pixel dropout occurs when the received power value distribution is converted into the orthogonal coordinate system and displayed on the screen, in Patent Document 1, the observation data of the adjacent sweep line is used and the received power value at the same distance from the radar is used. Data interpolation is performed between sweep lines.
  • the positional relationship between the radar and the observation target is in the horizontal direction or the sky direction when viewed from the radar, and the direction of scanning the antenna beam is above the horizontal direction.
  • the antenna beam is scanned below the horizontal direction. Radars mounted on aircraft and artificial satellites can observe a wider area than radars installed on the ground.
  • the data between sweep lines is interpolated using the received power value at the same distance from the radar, so generally when the weather target whose radar reflection factor changes depending on the altitude from the ground is to be observed. It is difficult to accurately interpolate data.
  • the observation range reaches several hundred km or more by antenna beam scanning, the influence of the altitude change from the ground surface becomes larger due to the roundness of the earth, and it becomes more difficult.
  • satellite radar and airborne radar reduce antenna beam pointing accuracy due to changes in the attitude of the aircraft and changes in the mechanical and thermal environment, so data interpolation or correction to compensate for beam pointing errors There is a need to do.
  • a radar mounted on a moving body such as an automobile.
  • the first invention calculates the cross-correlation of observation data in a plurality of observation directions without limiting to the observation data of the same distance from the radar when processing radar data.
  • a range bin is selected based on the position to be, and both interpolation processing and extrapolation processing are performed.
  • the second invention calculates the cross-correlation between the reference data and the observation data, not limited to the observation data at the same distance from the radar, and selects the range bin based on the position where the cross-correlation is maximum.
  • the interpolation process and / or the extrapolation process are performed.
  • the third invention has different frequencies. Calculate the cross-correlation of the observation data in multiple frequency bands, and select the range bin based on the position where the cross-correlation is maximized. Perform extrapolation or both.
  • observation data can be converted and used between different frequencies. If the reflected data is below the noise level of the receiver due to the observation data in the frequency band with strong rain attenuation such as Ka and W bands, the simultaneous observation data of the low frequency (C, X, Ku band) is converted. And use it.
  • the present invention in observation by a weather radar, it is possible to accurately interpolate radar reflected waves from a wide range of weather targets.
  • the processing of observation data by an artificial satellite or an airborne weather radar in which the pointing accuracy of the antenna beam is likely to be lowered it is possible to accurately perform data interpolation and correction of the beam pointing error.
  • FIG. 1 is a diagram showing a positional relationship between weather radars and weather targets on various platforms
  • FIG. 2 is a diagram showing an embodiment of a data interpolation method and apparatus in signal processing of the weather radar according to the present invention
  • FIG. 3 is a flowchart for explaining the data interpolation method.
  • radio waves are transmitted and received through the antenna 30 and the transmitter / receiver 31, and the observation data for each antenna beam scanning angle and each range bin and the coordinates of the data are obtained by the signal processing device 32.
  • the received radio wave is a radar reflected wave from a weather target or the ground surface.
  • Beam scanning is based on mechanical and electrical scanning and digital beam forming.
  • the beam direction and the observation data / coordinates of the observation data are input, and the direction for the interpolation processing is given.
  • the direction in which interpolation processing is performed can be made the original beam direction, and data in that direction can also be obtained by interpolation processing (beam pointing error correction processing).
  • a range bin of equal height h from the ground surface is obtained by calculation based on the ground surface database ( ⁇ R1 and ⁇ R2 are obtained simultaneously), and the weights w1 and w2 are applied to the observation data 13 and 14, and data interpolation is performed. An interpolation value 10 in the direction 20 for processing is obtained. This process is repeated for each range bin.
  • FIG. 1 only two directions (21, 22) are shown as observation directions, but in the case of a radar mounted on a flying object, there are many around the direction of the interpolation target according to the movement of the radar position and by antenna beam scanning. Will have the observation direction.
  • the number of surrounding observation directions is n, including the case of using observation data of a plurality of frequencies (C, X, Ku, Ka, W band, etc.).
  • Weights w1, w2,... Wn are obtained by a distance weighting method, a kriging method, a radial basis function method, or the like.
  • the observation data spreads in the range direction due to the influence of the resolution function in the range direction, the antenna pattern, and the like, so that the observation data may be weighted accordingly.
  • the weight can be expressed as a function of the distance r, w1 (r), w2 (r),... Wn (r).
  • the reflected wave (observation data) from the weather target can be expressed in the same manner as Equation (1) in Patent Document 2.
  • R is the distance from the radar
  • P (R) is the received power (Watt)
  • C is the radar system constant
  • Z (R) is the radar reflection factor (mm 6 / m 3 ).
  • C is a value determined in advance by radar calibration or the like.
  • Z (R) is obtained from the measured value of Equation 1 and P (R).
  • Z (R) is considered as observation data used for interpolation processing.
  • FIG. 4 shows an example of the vertical profile of Z (R) in the case of observing a state where there is a layer of ice particles in the sky above the rain zone as shown in FIG.
  • the vertical profiles of Z (R) in the directions 20 to 22 are the same is illustrated.
  • Near the 0 ° C altitude a strong scattering peak from the melting layer of precipitation appears.
  • ground surface clutter reaches a certain altitude of 25.
  • Patent Document 1 since data at the same distance from the radar is used for interpolation, for example, in order to obtain data 10, interpolation processing is performed based on observation data 11 and 12. Focusing on the feature that the radar reflection factor from the weather target changes according to the change in the state of the weather target (such as precipitation), select the observation data (13, 14 in the example) to be used for interpolation based on the altitude from the ground surface To do. In the calculation, interpolation processing is performed according to Formula 2 or a calculation formula (Formula 3) of its logarithm (dB value).
  • Equation 4 The temperature profile of the atmosphere is expressed by Equation 4.
  • h is the altitude (m) from the ground
  • t0 is the temperature near the ground (° C.)
  • is the temperature decrease rate of the atmosphere (0.0065 ° C./m for the standard atmosphere).
  • the distribution of the 0 ° C altitude of the atmosphere varies depending on the latitude and longitude on the sea surface. Interpolation can also be performed according to the state of the weather target (solid precipitation such as rainfall and snowfall) by performing interpolation processing based on the 0 ° C. altitude and the atmospheric temperature profile.
  • the above is based on Z (R) as the observation data used for the interpolation process, but Ze (R), Ze (R) after performing attenuation correction on received power P (R), Z (R)
  • the precipitation intensity (mm / h) obtained from the above can also be used for interpolation processing.
  • Observed values used for interpolation are not limited to real numbers but may be complex numbers.
  • interpolation processing can be performed without depending on the database of the ground surface position by using the position where the correlation is maximum.
  • the method of Patent Document 4 depends on a database of ground surface positions.
  • the above method can also be applied to a range profile observed by a ground radar.
  • weighting is applied to correct the attenuation and radar reflection factor between different frequencies.
  • the low frequency (C, X, Ku band) simultaneous observation data is converted and used.
  • Patent Document 5 Simulate range profiles observed by radar based on weather data statistics and observations, ground surface location database (DEM, etc.) and ground surface cover classification (scattering characteristics differ depending on sea, desert, forest, river, etc.) (Patent Document 5 is an example).
  • This simulated data can be used to supplement or use data from observations in multiple frequency bands.
  • simulated data of the vertical profiles in the directions 20, 21, 22 are created, and the cross-correlation between the simulated data and the observed values is obtained for the vertical profiles in the directions 21, 22, and the position where the correlation becomes maximum Is used as a reference for a range bin for interpolation processing.
  • the interpolation value in the direction 21 can be obtained based on the vertical profile obtained by the observation in the directions 21 and 22.
  • the interpolated value of the vertical profile in the direction 20 thus obtained matches the interpolated value at the position where the correlation with the simulated data in the direction 20 is maximized and the correlation obtained in the directions 21 and 22 is maximized. Replacing the positional relationship between the observation value and the interpolation value with the positional relationship between the radar distance r and the simulated data is important during the interpolation process.
  • a radar equation (Equation 5) representing the ground surface echo intensity Ps is shown in Non-Patent Document 1 and the like.
  • the position where the correlation between the observed ground surface echo profile and the simulated data is maximized is obtained and used as the reference of the range bin for performing the interpolation process.
  • the definition of the parameter included in Equation 5 is the same as in Non-Patent Document 1, Ps (R, k) is the ground surface echo (mW) received from the range bin at a distance R from the radar, and k is for each antenna beam direction.
  • Pt is the power (mW) transmitted from the radar
  • I (R, k) is the antenna gain (transmission: Gt, k reception: Gr, k), transmission pulse waveform u (or range resolution function), ground surface Radar scattering cross section ⁇ 0, integral value determined by radio wave attenuation A in the propagation path between the radar and the ground surface
  • r ′ is the distance from the radar to a position on the ground surface
  • S is the range bin at the position of distance R Is the ground surface at the same distance.
  • a cross-correlation is obtained between the simulated data in the direction 20 and the vertical profiles obtained by the observations in the directions 21 and 22, and the position where the correlation is maximum is used as a reference for the range bin for performing the interpolation process.
  • the number of surrounding observation directions is n, including the case of using observation data of multiple frequencies (C, X, Ku, Ka, W bands, etc.) and multiple polarizations, and is used for interpolation processing according to Equation 2 or 3.
  • the weights w1 (r), w2 (r),... Wn (r) include coefficients for converting the radar reflection intensity between a plurality of frequencies and between a plurality of polarizations.
  • the range bin reference used for interpolation can be obtained from a ground surface database (such as DEM).
  • DEM ground surface database
  • the ground surface echo profile can be associated with the ground surface position, radar shadow, etc. based on the DEM data.
  • the surface echo profile expands or narrows in the range direction according to the altitude variation of the DEM data, so the variation of the DEM data within the range irradiated by the antenna main beam and the surface echo profile
  • the point in the interpolation process is to replace the positional relationship between the observed value and the interpolated value with the positional relationship between the radar distance r and the ground surface position, radar shadow, and the like based on the DEM data.
  • a cross-correlation is obtained between the vertical profiles observed in the directions 21 and 22, and a position where the correlation is maximum is used as a reference for the range bin for performing the interpolation process.
  • the offset of the position where the correlation is maximum is linearly interpolated with respect to the direction 20 or the positional relationship (spherical surface etc.) of the ground surface in the directions 20, 21, 22 Can be obtained by interpolation.
  • only two directions (21, 22) are shown in FIG. 5 as the observation direction. However, since there are many observation directions around the direction to be interpolated, the number of surrounding observation directions is n.
  • a cross-correlation is calculated for each of the n directions, and a range bin reference for performing interpolation processing is obtained.
  • interpolation processing is performed according to Equation 2 or 3.
  • the above method can also be applied to a range profile observed by a ground radar.
  • range bin data including characteristic echoes such as a melting layer is used for correlation processing.
  • the range of range bins used for correlation processing can be changed for each observation and for each process.
  • the range bin range can be divided into a plurality of ranges or can be divided in an overlapping manner.
  • the range bin outside the range of the correlation processing is assumed to be data to be subjected to interpolation processing in a form that is continuous with the range bin within the range.
  • the characteristics of the range profile depend on the range resolution function, antenna pattern, etc., and the range resolution function, antenna pattern, etc. are taken into consideration for the range bin range division.
  • the beam direction and observation data / coordinates of observation data are input (for example, the beam directions 21 and 22 in FIG. 2), and in S103, the direction for interpolation processing (for example, the beam direction 20) is given.
  • S104 the presence / absence of a plurality of polarizations and a plurality of frequency data is confirmed. If there are, cross correlations are calculated between received data in a plurality of polarizations / frequency bands in S105, and the position where the maximum correlation is obtained is obtained. Use observation data converted between different (polarization) frequencies.
  • Data to be input to S106 is obtained based on the same observation data coordinates as S102 (such as a ground surface database).
  • S106 cross-correlation is calculated with reference data (simulated data of a plurality of range bins, observation data of different beam directions, etc.), and the range bin position that provides the maximum correlation is obtained.
  • weights w1, w2,... Wn are obtained by a distance weighting method or an extrapolation method. Weighting can be expressed as a function of distance r, w1 (r), w2 (r),... Wn (r).
  • the direction / range bin interpolation value calculated by the interpolation process is calculated based on the range bin position having the maximum correlation.
  • the radar apparatus according to claim 1 includes means for transmitting and receiving radio waves in a plurality of frequency bands; A radar apparatus comprising means for referring to measurement data in at least one different frequency band among the radio waves in the plurality of frequency bands as measurement data in different directions.
  • the radar apparatus according to claim 1 is characterized in that means for transmitting / receiving radio waves in a plurality of frequency bands and measurement data in the different directions as at least one different frequency band among the radio waves in the plurality of frequency bands.
  • Means for referring to the measurement data of A radar apparatus comprising means for converting measurement data in at least one different frequency band among radio waves in a plurality of frequency bands.
  • the radar apparatus according to claim 1 further comprising means for referring to simulated data of the range profile instead of the measurement data in different directions.
  • the radar apparatus according to claim 1 further comprising means for referring to ground surface elevation model data instead of the measurement data in different directions.
  • the radar apparatus according to (1) comprising means for referring to a database of ground surface echo profiles instead of the measurement data in the different directions.
  • the radar apparatus according to (1) wherein the means for calculating the cross-correlation changes the range of the range bin in which the cross-correlation is calculated according to the characteristic of the data based on the reference.
  • a radar apparatus includes means for transmitting and receiving a plurality of polarized waves, A radar apparatus comprising means for referring to at least one measurement data of different polarizations among the plurality of polarized waves as the measurement data of different directions.
  • a radar apparatus according to (1), wherein means for transmitting / receiving radio waves of a plurality of polarizations and measurement data in different directions as at least one different polarization of the radio waves of the plurality of polarizations.
  • Means for referring to the measurement data of A radar apparatus comprising means for converting measurement data of at least one different polarized wave among a plurality of polarized waves.
  • a radar apparatus wherein the weighting is set to 1 in the interpolation process and the extrapolation process.
  • the difference in antenna gain for each observation direction is weighted and processed.
  • (Claim 13) A step of transmitting and receiving radio waves in a plurality of frequency bands by scanning an antenna beam; Measuring a reception signal for each of a plurality of observation directions obtained by beam scanning for each of a plurality of range bins; Referring to measurement data of at least one different frequency band among the radio waves of the plurality of frequency bands; Calculating a cross-correlation of the data from the reference and the data from the measurement; Selecting a plurality of range bins based on a position where the cross-correlation is maximized; A method comprising: performing interpolation processing and / or extrapolation processing based on data from the measurement of the plurality of selected range bin positions.
  • the industrial applicability of the present invention is useful as an apparatus for interpolating data between antenna beam scans of a radar, particularly a weather radar mounted on a moving body such as an aircraft or an artificial satellite.
  • Radar equipment 4 Airborne radar on the flying object 10: Data obtained by interpolation 11-14: Data on the beam direction to be observed 20: Direction of interpolation target 21, 22: Observation beam direction 23: Equidistant line of distance R from radar 24: Contour line from ground surface 25: Altitude covered by ground clutter 31: Transceiver 32: Signal processing Device 33: Data interpolation unit
  • Patent No. 3734619 “Radar device and similar device and data interpolation method using the same device”
  • Patent No. 2676773 Metalological radar device”
  • Patent No. 3408943 “Dual-frequency measurement method and multi-frequency radar device”
  • Japanese Patent Laid-Open No. 9-257929 “Radar device” US8289202 “METHOD AND SYSTEM SYSTEM FOR GENERATING WEATHER AND GROUND REFLECTIVITY INFORMATION"

Abstract

【課題】従来のデータ補間方法では、レーダから同一距離の受信電力値を用いてスイープライン間のデータを補間するため、一般に地表面からの高度などに従ってレーダ反射因子が変化する気象目標を観測対象にする場合には正確にデータを補間することが難しい。 【解決手段】レーダから同一距離の観測データに限定せず、複数のビーム方向の観測データ・模擬データの相互相関が最大となるレンジ位置を基に観測データを選択し、補間処理を行う。複数の周波数帯の電波を送受信するレーダの場合には、異なる周波数間で異なる重み付けを掛けて観測データを換算して用いる。

Description

レーダの信号処理方法及び装置
 本発明は、レーダの信号処理における、データ補間方法及び装置に関する。
 気象レーダ装置は、アンテナビームを走査しながら電波を送信し、降水などの気象目標からの反射波を受信し、その受信電力から降水分布を推定することを可能にする。受信電力値はビーム走査角とレーダからの距離の関数、つまりレーダ位置を原点とする極座標系で表すことができる。受信電力値の分布を直交座標系に変換し画面表示する際に画素欠けが生じる場合について特許文献1では、隣接するスイープラインの観測データを用いて、レーダから同一距離の受信電力値に基づいてスイープライン間でデータの補間を行っている。
地上に設置されるレーダの場合、レーダと観測対象(気象目標など)の位置関係がレーダから見て水平方向もしくは上空の方向にあり、アンテナビームを走査する方向は水平方向よりも上空方向となる。それに対して航空機や人工衛星に搭載されるレーダの場合には、水平方向よりも下方にアンテナビームを走査する。航空機や人工衛星に搭載されるレーダは地上設置のレーダに比べて広範囲を観測することができる。
従来のデータ補間方法では、レーダから同一距離の受信電力値を用いてスイープライン間のデータを補間するため、一般に地面からの高度によってレーダ反射因子が変化する気象目標を観測対象にする場合には正確にデータを補間することが難しい。アンテナビーム走査により観測範囲が数百km以上に及ぶ場合には、地球の丸みのため地表面からの高度変化の影響が大きくなり一層難しくなる。
また、人工衛星や航空機搭載のレーダでは、機体の姿勢変動や機械的・熱的な環境の変動のためにアンテナビームの指向精度が低下するため、ビーム指向誤差を補償するためのデータ補間又は補正を行う必要性がある。自動車等の移動体に搭載されるレーダでも同様である。
以上の課題を解決するために、第一発明はレーダデータ処理の際に、レーダから同一距離の観測データに限定せず、複数の観測方向の観測データの相互相関を計算し、相互相関が最大となる位置に基づいてレンジビンを選択し、補間処理と補外処理の両方、またはいずれか一方を行う。
第二発明は、レーダデータ処理の際に、レーダから同一距離の観測データに限定せず、参照データと観測データの相互相関を計算し、相互相関が最大となる位置に基づいてレンジビンを選択し、補間処理と補外処理の両方、またはいずれか一方を行う。
第三発明は、複数の周波数帯(C,X,Ku,Ka,W帯ごとに降水などによる電波の減衰量・レーダ反射因子が異なる)の電波を送受信する気象レーダの場合には、異なる周波数間で減衰量・レーダ反射因子を補正する重み付けを掛けた上で、複数の周波数帯の観測データの相互相関を計算し、相互相関が最大となる位置に基づいてレンジビンを選択し、補間処理と補外処理の両方、またはいずれか一方を行う。複数の周波数帯を用いるレーダでは、異なる周波数間で観測データを換算して利用することができる。Ka,W帯のように降雨減衰が強い周波数帯の観測データで減衰により反射波が受信機のノイズレベル以下となる場合には、低い周波数(C,X,Ku帯)の同時観測データを換算して利用する。
本発明によれば、気象レーダによる観測において、広範囲に及ぶ気象目標からのレーダ反射波の補間を精度良く行うことができる。また、アンテナビームの指向精度が低下しやすい人工衛星や航空機搭載の気象レーダによる観測データの処理において、データ補間とビームの指向誤差の補正を精度良く行うことができる。
以下、本発明の実施の形態について図面を参照して説明する。
図1は各種プラットフォーム上の気象レーダと気象目標の位置関係を示す図、図2は本発明に係る気象レーダの信号処理における、データ補間方法及び装置の実施形態を示す図である。図3はデータ補間方法を説明するフローチャートである。
図1は、各種プラットフォーム上の気象レーダ1~3のいずれかにより広範囲を観測する場合の模式図であり、特に飛翔体搭載型レーダによる観測の場合について、空中線4による観測方向21,22とデータ補間処理を行う方向20の位置関係を示す。従来技術(特許文献1)では、補間値10を得るにはレーダから等距離Rの位置の観測データ11、12を基に補間処理を行うが、本発明では観測データ13,14を元に補間処理を行う。レーダ(空中線4)の位置はGPSや慣性航法装置により取得する。
図2に示すように、空中線30と送受信機31を通して電波を送受信し、信号処理装置32によりアンテナビーム走査角度ごと並びにレンジビンごとの観測データとそのデータの座標を得る。受信する電波は気象目標や地表面等からのレーダ反射波である。ビーム走査は機械式・電気式走査、デジタルビームフォーミングによる。
データ補間部33における処理は、まずビーム方向と観測データ・観測データの座標を入力し、補間処理する方向を与える。ビーム指向誤差が0でない場合には、補間処理する方向を本来のビーム方向とし、その方向のデータを補間処理によって求めることもできる(ビーム指向誤差の補正処理)。
図1に示すように、地表面から等高度hのレンジビンを地表面データベースに基づいて計算により求め(同時にΔR1、ΔR2が求まる)、観測データ13,14に重み付けw1,w2をかけて、データ補間処理を行う方向20の補間値10を得る。この処理をレンジビンごとに繰り返し行う。
図1では、観測方向として2方向のみ(21,22)を図示しているが、飛翔体搭載のレーダの場合、レーダ位置の移動に従って、またアンテナビーム走査によって、補間対象の方向の周囲に多くの観測方向を有することになる。複数の周波数(C,X,Ku,Ka,W帯など)の観測データを用いる場合も含めて周辺の観測方向の数をnとする。重み付けw1,w2,…wnを距離加重法、クリギング(Kriging)法、動径基底関数法などによって求める。
現実の観測データでは、レンジ方向の分解能関数・アンテナパターン等の影響により観測データはレンジ方向に広がっているので、それに応じて観測データに重み付けを加える場合もある。その場合、重み付けはw1(r),w2(r),…wn(r)という距離rの関数として表せる。
気象目標からの反射波(観測データ)は特許文献2の式(1)と同様に表せる。
Figure JPOXMLDOC01-appb-M000001

ここでRはレーダからの距離、P(R)は受信電力(Watt)、Cはレーダのシステム定数、Z(R)は途中降雨減衰補正定数と大気減衰補正定数を含むレーダ反射因子(mm6/m3)である。Cはレーダの校正等により予め決められた値である。Z(R)は数1とP(R)の測定値から求められる。
補間処理に利用する観測データとして、まずZ(R)を考える。図1のように雨域の上空に氷粒の層がある状態を気象レーダにより観測する場合について、図4にZ(R)の鉛直プロファイルの例を示す。簡単の為に方向20~22のZ(R)の鉛直プロファイルが同じ場合を図示する。0℃高度近傍では降水の融解層からの強い散乱のピークが現れる。地表面近傍では地表面クラッタが一定の高度25まで及ぶ。
従来技術(特許文献1)では、レーダから同一距離のデータを補間に利用するため、例えばデータ10を得るために観測データ11,12に基づいて補間処理を行う。気象目標からのレーダ反射因子は、気象目標(降水など)の状態の変化に従って変化するという特徴に着目して、地表面からの高度などによって補間に用いる観測データ(例では13,14)を選択する。計算は数2または、その対数(dB値)での計算式(数3)により補間処理を行う。
Figure JPOXMLDOC01-appb-M000002


Figure JPOXMLDOC01-appb-M000003
大気の温度プロファイルは数4で表される。
Figure JPOXMLDOC01-appb-M000004

ここでhは地上からの高度(m)、t0は地上付近の温度(℃)、Γは大気の気温減率(標準大気の場合0.0065℃/m)である。大気の0℃高度は海面上でも緯度・経度によって分布にばらつきがある。0℃高度や大気の温度プロファイルを基準にして補間処理することでも、気象目標の状態(降雨・降雪等の固体降水)に合わせて補間を行うことができる。
以上では、補間処理に利用する観測データとしてZ(R)を基にしているが、受信電力P(R)、Z(R)に減衰補正を行った後のZe(R)、Ze(R)から求めた降水強度(mm/h)も同様に補間処理に利用できる。補間に用いる観測値は実数に限らず複素数とする場合もある。
複数の周波数(C,X,Ku,Ka,W帯など)の観測データを用いる場合には、特許文献3と同様に受信品質の良い周波数のデータを利用する。図4の鉛直プロファイルの例では、融解層近傍からの強い受信エコーの相互相関を複数の周波数帯間で求め、相関が最大となる位置を補間処理を行うレンジビンの基準とする。相互相関の計算は真数又は対数値で行う。複数の偏波により観測を行う場合にも偏波間で観測データの相互相関計算・換算・補間処理を行う。複数の周波数帯のデータが利用できる場合には、相関が最大となる位置を利用することで地表面位置のデータベースに依存せずに補間処理を行うことができる。特許文献4の方法では、地表面位置のデータベースに依存する。
以上の方法は、地上レーダで観測するレンジプロファイルにも適用できる。Ka,W帯のように降雨減衰が強い周波数帯の観測データで減衰により反射波が受信機のノイズレベル以下となる場合には、異なる周波数間で減衰量・レーダ反射因子を補正する重み付けを掛け、低い周波数(C,X,Ku帯)の同時観測データを換算して利用する。
気象データの統計値や観測値、地表面位置のデータベース(DEM等)や地表面の被覆分類(海・砂漠・森・川などにより散乱特性が異なる)により、レーダで観測するレンジプロファイルを模擬的に計算することが出来る(特許文献5はその一例)。この模擬データにより、複数の周波数帯の観測によるデータを補ったり、代わりに利用することが出来る。図5に示すように方向20、21,22の鉛直プロファイルの模擬データを作成し、方向21,22の鉛直プロファイルについて、模擬データと観測値の間で相互相関を求め、相関が最大となる位置を補間処理を行うレンジビンの基準とする。その相関が最大となる位置を方向20に適用すると、方向21,22の観測による鉛直プロファイルに基づいて、方向21の補間値を求めることが出来る。こうして求めた方向20の鉛直プロファイルの補間値は、方向20の模擬データとの相関が最大となる位置が、方向21,22で求めた相関が最大となる位置の補間値と一致する。観測値と補間値の位置関係を、レーダ距離rから模擬データとの位置関係に置換するのが補間処理時に重要となる。
地表面エコー強度Psを表すレーダ方程式(数5)は非特許文献1などに示されている。模擬データとして、数5により地表面エコーのみを計算する場合には、観測した地表面エコープロファイルと模擬データの相関が最大となる位置を求め、補間処理を行うレンジビンの基準とする。
Figure JPOXMLDOC01-appb-M000005
数5に含まれるパラメータの定義は非特許文献1と同様であり、Ps(R,k)はレーダから距離Rの位置のレンジビンから受信する地表面エコー(mW)、kはアンテナビーム方向毎に割り当てた番号、Ptはレーダから送信する電力(mW)、I(R,k)はアンテナゲイン(送信:Gt,k 受信:Gr,k)、送信パルス波形u(又はレンジ分解能関数)、地表面のレーダ散乱断面積σ0、レーダと地表面の間の伝搬経路における電波の減衰量Aにより決まる積分値、r'はレーダから地表面上のある位置までの距離、Sは距離Rの位置のレンジビンと同一距離にある地表面である。
人工衛星・航空機等に搭載したレーダであっても長期間の観測では、ほぼ同じ地点を繰り返し観測するので、数5により計算した地表面エコーの代わりに、地表面エコー(プロファイル)の観測値のデータベースを利用することも出来る。
もう一つの方法として、方向20の模擬データと方向21,22の観測による鉛直プロファイルの間でそれぞれ相互相関を求め、相関が最大となる位置を補間処理を行うレンジビンの基準とする。
いずれの方法でも、図5では観測方向として2方向のみ(21,22)を図示しているが、レーダ位置の移動やアンテナビーム走査によって、補間対象の方向の周囲に多くの観測方向を有するので、複数の周波数(C,X,Ku,Ka,W帯など)・複数の偏波の観測データを用いる場合も含めて周辺の観測方向の数をnとし、数2又は3により補間処理に用いるデータとする。重み付けw1(r),w2(r),…wn(r)には、複数の周波数間・複数の偏波間でレーダ反射強度を換算する係数も含む。
鉛直プロファイルの模擬データを作成しない場合でも、地表面のデータベース(DEM等)により、補間に用いるレンジビンの基準を求めることができる。鉛直プロファイルの観測時はレンジ方向にオーバーサンプルすることが通常行われるので、その地表面エコープロファイルとDEMデータによる地表面位置・レーダーシャドウ等を対応づけることができる。陸上の観測の場合、DEMデータの高度の変動に従って、地表面エコーのプロファイルはレンジ方向に拡がったり、狭まったりするので、アンテナメインビームが照射する範囲内のDEMデータの変動と地表面エコーのプロファイルを関係づけて、補間に用いるレンジビンの基準を求める。この方法では観測値と補間値の位置関係を、レーダ距離rからDEMデータによる地表面位置・レーダーシャドウ等との位置関係に置換するのが補間処理時のポイントとなる。
もう一つの方法として、方向21,22の観測による鉛直プロファイルの間で相互相関を求め、相関が最大となる位置を補間処理を行うレンジビンの基準とする。補間によって求める方向20の鉛直プロファイルのレンジビンは、その相関が最大となる位置のオフセットを方向20に対して線形補間又は、方向20,21,22の地表面の位置関係(球面等)に合わせて補間して求めることが出来る。いずれの方法でも、図5では観測方向として2方向のみ(21,22)を図示しているが、補間対象の方向の周囲に多くの観測方向を有するので、周辺の観測方向の数をnとし、そのn個の方向それぞれについて相互相関を計算し補間処理を行うレンジビンの基準を求める。重み付けw1(r),w2(r),…wn(r)を計算した上で、数2又は3により補間処理を行う。以上の方法は、地上レーダで観測するレンジプロファイルにも適用できる。地上設置のレーダの場合には、融解層など特徴的なエコーを含むレンジビンのデータを相関処理に利用する。相関処理に利用するレンジビンの範囲は観測毎・処理毎に変更することが出来る。ある方向20の補間値を求める際の相関処理では、レンジビンの範囲を複数に分割、又重複して分割することも出来る。ここで相関処理の範囲外としたレンジビンについては、範囲内のレンジビンと連続する形で補間処理を行うデータとする。レンジプロファイルの特徴はレンジ分解能関数・アンテナパターン等に依存する点で、レンジビンの範囲の分割についてはレンジ分解能関数・アンテナパターン等を考慮する。
以上では補間処理について説明したが、ビーム方向20が方向21,22の外側にある場合は、補間処理に用いた観測データを基に補外(外挿)処理を行う。外挿処理に用いるレンジビンの選択方法は補間処理の場合と同様であり、重み付けw1(r),w2(r),…wn(r)を一般的な外挿法により求める。
ビーム指向誤差があると、ビーム指向誤差が無い場合と同じレンジビンのデータは補間に用いることが出来ない。この場合、ビーム方向20を本来の(誤差が無い)ビーム方向として補間(又は補外)処理を行う。ビーム指向誤差が小さく本来のビーム方向kに近い場合には補間処理時の重み付けをwk(R)=1と近似しても良い(rについてはレンジ分解能関数・アンテナパターン等に依存する)。
また、アンテナゲインがビーム方向によって異なる場合には、ビーム方向20と方向21,22のアンテナゲインの差分をw1(r),w2(r),…wn(r)に含めて計算する(周辺の観測方向の数をnとする)。
以上の説明を、図3のフローチャート(データ補間部33における処理)により説明する。まずS101,102でビーム方向と観測データ・観測データの座標を入力し(例えば図2のビーム方向21,22)、S103で補間処理する方向(例えばビーム方向20)を与える。
S104で複数の偏波や複数の周波数データの有無を確認し、有りの場合にはS105で複数の偏波・周波数帯の受信データ間で相互相関を計算し、最大相関となる位置を求める。異なる(偏波)周波数間で観測データを換算して利用する。
S102と同じ観測データの座標を基にS106に入力するデータを得る(地表面のデータベース等)。S106で参照データ(複数のレンジビンの模擬データ、異なるビーム方向の観測データ等)と相互相関を計算し、最大相関となるレンジビン位置を求める。S107で重み付けw1,w2,…wnを距離加重法や外挿法により求める。重み付けはw1(r),w2(r),…wn(r)という距離rの関数として表せる。S108では、最大相関となるレンジビン位置を元に補間処理により求める方向・レンジビンの補間値を計算する。S109で処理対象のレンジビンの残りがあれば再びS106から処理を行う。最大相関となるレンジビン位置の計算(S106等)を繰り返し計算に含むのは、相互相関を計算するレンジビンの範囲を処理時毎に変更できるようにする為である。相互相関を計算するレンジビンの範囲を複数に分割、又は/さらに重複して分割する。S110では補間処理する方向の残りの有無を判断する。
以下に、本件出願の特許請求の範囲に記載された発明を付記する。
   (請求項1) アンテナビームを走査して電波を送受信する手段と、
ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する手段と、
前記複数の観測方向の内少なくとも1つの互いに異なる方向の測定データを参照する手段と、
前記参照によるデータと前記測定によるデータの相互相関を計算する手段と、
前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する手段と、
前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う手段
を備えるレーダ装置。
   (請求項2) 請求項1のレーダ装置は、複数の周波数帯の電波を送受信する手段と、
前記互いに異なる方向の測定データとして、前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する手段を備えるレーダ装置。
   (請求項3)請求項1のレーダ装置は、複数の周波数帯の電波を送受信する手段と、前記互いに異なる方向の測定データとして、前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する手段と、
複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを換算する手段を備えるレーダ装置。
   (請求項4)請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、レンジプロファイルの模擬データを参照する手段を備えるレーダ装置。
   (請求項5) 請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、地表面標高モデルデータを参照する手段を備えるレーダ装置。
   (請求項6)請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、地表面エコープロファイルのデータベースを参照する手段を有するレーダ装置。
   (請求項7)請求項1のレーダ装置の前記相互相関を計算する手段は、前記参照によるデータの特徴によって前記相互相関を計算するレンジビンの範囲を変化させることを特徴とするレーダ装置。
   (請求項8)請求項1のレーダ装置は、複数の偏波の電波を送受信する手段と、
前記互いに異なる方向の測定データとして、前記複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを参照する手段を備えるレーダ装置。
   (請求項9)請求項1のレーダ装置は、複数の偏波の電波を送受信する手段と、前記互いに異なる方向の測定データとして、前記複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを参照する手段と、
複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを換算する手段を備えるレーダ装置。
   (請求項10)請求項1のレーダ装置は、前記補間処理と補外処理において、重み付けを1として処理することを特徴とするレーダ装置。
   (請求項11)請求項1のレーダ装置は、前記補間処理と補外処理において、前記観測方向毎のアンテナゲインの差を重み付けに掛けて処理することを特徴とするレーダ装置。
   (請求項12)アンテナビームを走査して電波を送受信する工程と、
ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する工程と、
前記複数の観測方向の内少なくとも1つの互いに異なる方向の測定データを参照する工程と、
前記参照によるデータと前記測定によるデータの相互相関を計算する工程と、
前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する工程と、
前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う工程を備えることを特徴とする方法。
   (請求項13)アンテナビームを走査して複数の周波数帯の電波を送受信する工程と、
ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する工程と、
前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する工程と、
前記参照によるデータと前記測定によるデータの相互相関を計算する工程と、
前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する工程と、
前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う工程を備えることを特徴とする方法。
本発明の産業上の利用可能性は、レーダの特に、航空機、人工衛星等の移動体に搭載される気象レーダの、アンテナビーム走査間のデータを補間処理する装置として役立つ。
各種プラットフォーム上の気象レーダと気象目標の位置関係を示す図である。 本発明の実施形態を示す図である。 本発明のデータ補間方法を説明するフローチャートである。 ビーム方向毎のレーダ反射因子の鉛直プロファイルとその位置関係を示す図である。 ビーム方向毎のレーダ反射因子の鉛直プロファイルと、補間処理するデータとレーダの位置関係を示す図である。
 1~3:レーダ装置 
 4:飛翔体搭載レーダの空中線
 10:補間して求めるデータ
 11~14:観測するビーム方向のデータ 
 20:補間対象の方向
 21、22:観測するビーム方向
 23:レーダからの距離Rの等レンジ線
 24:地表面からの等高度線
 25:地表面クラッタが及ぶ高度
 31:送受信機
 32:信号処理装置
 33:データ補間部
特許3734619号 「レーダー装置及び類似装置並びに同装置でのデータ補間方法」 特許2617673号  「気象レーダ装置」 特許3408943号 「2周波計測方法及び多周波レーダ装置」 特開平9-257929 「レーダ装置」 US8289202「METHOD AND SYSTEM FOR GENERATING WEATHER AND GROUND REFLECTIVITY INFORMATION」
T.Kozu,"A Generalized Surface Echo Radar Equation for Down-Looking Pencil Beam Radar",IEICE TRANCE.COMMUN.,VOL.E78-B ,NO.8,pp1245-1248, August,1995

Claims (13)

  1. アンテナビームを走査して電波を送受信する手段と、
    ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する手段と、
    前記複数の観測方向の内少なくとも1つの互いに異なる方向の測定データを参照する手段と、
    前記参照によるデータと前記測定によるデータの相互相関を計算する手段と、
    前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する手段と、
    前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う手段
    を備えるレーダ装置。
  2. 請求項1のレーダ装置は、複数の周波数帯の電波を送受信する手段と、
    前記互いに異なる方向の測定データとして、前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する手段を備えるレーダ装置。
  3. 請求項1のレーダ装置は、複数の周波数帯の電波を送受信する手段と、前記互いに異なる方向の測定データとして、前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する手段と、
    複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを換算する手段を備えるレーダ装置。
  4. 請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、レンジプロファイルの模擬データを参照する手段を備えるレーダ装置。
  5. 請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、地表面標高モデルデータを参照する手段を備えるレーダ装置。
  6. 請求項1のレーダ装置は前記互いに異なる方向の測定データの代わりに、地表面エコープロファイルのデータベースを参照する手段を有するレーダ装置。
  7. 請求項1のレーダ装置の前記相互相関を計算する手段は、前記参照によるデータの特徴によって前記相互相関を計算するレンジビンの範囲を変化させることを特徴とするレーダ装置。
  8. 請求項1のレーダ装置は、複数の偏波の電波を送受信する手段と、
    前記互いに異なる方向の測定データとして、前記複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを参照する手段を備えるレーダ装置。
  9. 請求項1のレーダ装置は、複数の偏波の電波を送受信する手段と、前記互いに異なる方向の測定データとして、前記複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを参照する手段と、
    複数の偏波の電波の内少なくとも1つの互いに異なる偏波の測定データを換算する手段を備えるレーダ装置。
  10. 請求項1のレーダ装置は、前記補間処理と補外処理において、重み付けを1として処理することを特徴とするレーダ装置。
  11. 請求項1のレーダ装置は、前記補間処理と補外処理において、前記観測方向毎のアンテナゲインの差を重み付けに掛けて処理することを特徴とするレーダ装置。
  12. アンテナビームを走査して電波を送受信する工程と、
    ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する工程と、
    前記複数の観測方向の内少なくとも1つの互いに異なる方向の測定データを参照する工程と、
    前記参照によるデータと前記測定によるデータの相互相関を計算する工程と、
    前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する工程と、
    前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う工程を備えることを特徴とする方法。
  13. アンテナビームを走査して複数の周波数帯の電波を送受信する工程と、
    ビーム走査により得られる複数の観測方向ごとの受信信号を複数のレンジビン毎に測定する工程と、
    前記複数の周波数帯の電波の内少なくとも1つの互いに異なる周波数帯の測定データを参照する工程と、
    前記参照によるデータと前記測定によるデータの相互相関を計算する工程と、
    前記相互相関が最大となる位置に基づいて複数のレンジビンを選択する工程と、
    前記選択した複数のレンジビン位置の前記測定によるデータを元に、補間処理と補外処理の両方、またはいずれか一方を行う工程を備えることを特徴とする方法。
PCT/JP2014/059619 2013-04-01 2014-04-01 レーダの信号処理方法及び装置 WO2014163069A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-075637 2013-04-01
JP2013075637 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014163069A1 true WO2014163069A1 (ja) 2014-10-09

Family

ID=51658364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059619 WO2014163069A1 (ja) 2013-04-01 2014-04-01 レーダの信号処理方法及び装置

Country Status (1)

Country Link
WO (1) WO2014163069A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257077A (ja) * 1989-03-30 1990-10-17 Toshiba Corp 画像処理装置
JP2617673B2 (ja) * 1993-02-05 1997-06-04 日本無線株式会社 気象レーダ装置
JPH09257929A (ja) * 1996-03-22 1997-10-03 Mitsubishi Electric Corp レーダ装置
JP3408943B2 (ja) * 1997-03-28 2003-05-19 三菱電機株式会社 2周波計測方法及び多周波レーダ装置
JP2003323611A (ja) * 2002-04-24 2003-11-14 Hitachi Software Global Technology Ltd 衛星撮影画像のオルソ補正処理方法
JP3734619B2 (ja) * 1998-06-09 2006-01-11 古野電気株式会社 レーダー装置及び類似装置並びに同装置でのデータ補間方法
JP2006523836A (ja) * 2003-04-17 2006-10-19 セクレタリー・オヴ・ステイト・フォー・ディフェンス 全地球測位システムにおけるトロポシェア誘導エラーの補正
JP2009036765A (ja) * 2007-07-10 2009-02-19 Electronic Navigation Research Institute 天頂対流圏遅延量の推定値の算出方法
JP2012230102A (ja) * 2011-04-04 2012-11-22 Honeywell Internatl Inc 天気および地面の反射情報を生成するための方法およびシステム
JP5354705B1 (ja) * 2013-05-22 2013-11-27 哲也 田川 レーダの信号処理方法及び装置
JP5392936B1 (ja) * 2013-05-22 2014-01-22 哲也 田川 レーダの信号処理方法及び装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257077A (ja) * 1989-03-30 1990-10-17 Toshiba Corp 画像処理装置
JP2617673B2 (ja) * 1993-02-05 1997-06-04 日本無線株式会社 気象レーダ装置
JPH09257929A (ja) * 1996-03-22 1997-10-03 Mitsubishi Electric Corp レーダ装置
JP3408943B2 (ja) * 1997-03-28 2003-05-19 三菱電機株式会社 2周波計測方法及び多周波レーダ装置
JP3734619B2 (ja) * 1998-06-09 2006-01-11 古野電気株式会社 レーダー装置及び類似装置並びに同装置でのデータ補間方法
JP2003323611A (ja) * 2002-04-24 2003-11-14 Hitachi Software Global Technology Ltd 衛星撮影画像のオルソ補正処理方法
JP2006523836A (ja) * 2003-04-17 2006-10-19 セクレタリー・オヴ・ステイト・フォー・ディフェンス 全地球測位システムにおけるトロポシェア誘導エラーの補正
JP2009036765A (ja) * 2007-07-10 2009-02-19 Electronic Navigation Research Institute 天頂対流圏遅延量の推定値の算出方法
JP2012230102A (ja) * 2011-04-04 2012-11-22 Honeywell Internatl Inc 天気および地面の反射情報を生成するための方法およびシステム
JP5354705B1 (ja) * 2013-05-22 2013-11-27 哲也 田川 レーダの信号処理方法及び装置
JP5392936B1 (ja) * 2013-05-22 2014-01-22 哲也 田川 レーダの信号処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.KOZU: "A Generalized Surface Echo Radar Equation for Down-Looking Pencil Beam Radar", IEICE TRANCE.COMMUN., vol. E78-B, no. 8, August 1995 (1995-08-01), pages 1245 - 1248 *

Similar Documents

Publication Publication Date Title
CN110426690B (zh) 一种机载气象雷达波束指向自动校准方法
JP5354705B1 (ja) レーダの信号処理方法及び装置
Quegan et al. Ionospheric and tropospheric effects on synthetic aperture radar performance
CN112363185B (zh) 一种星载iGNSS-R测高精度评估方法
De la Vega et al. Software tool for the analysis of potential impact of wind farms on radiocommunication services
Kumar et al. Post-launch calibration–validation and data quality evaluation of SCATSAT-1
Schvartzman et al. Distributed beams: Concept of operations for polarimetric rotating phased array radar
Gomez-Del-Hoyo et al. The STARLINK-based passive radar: preliminary study and first illuminator signal measurements
Bazin et al. A general presentation about the OTH-Radar NOSTRADAMUS
JP5392936B1 (ja) レーダの信号処理方法及び装置
Yeo et al. Comparison of S-band radar attenuation prediction with beacon measurements
Weber Meteorological phased array radar research at NOAA’s national severe storms laboratory
Takahashi Surface echo characteristics derived from the wide swath experiment of the precipitation radar onboard TRMM satellite during its end-of-mission operation
Bredemeyer et al. Comparison of principles for measuring the reflectivity values from wind turbines
WO2014163069A1 (ja) レーダの信号処理方法及び装置
KR102408991B1 (ko) 지향각 sar 기반 고해상도 영상복원 시스템 및 이를 이용한 영상복원방법
Yoshikawa et al. A study of comb beam transmission on phased array weather radars
WO2015129842A1 (ja) レーダ装置
Roca et al. RA-2 sigma-0 absolute calibration
Zrnic et al. System requirements for phased array weather radar
Yang et al. The vertical ionosphere parameters inversion for high frequency surface wave radar
Scarsi et al. Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Furukawa et al. The orbital operations status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft
Katsumata et al. Combined use of TRMM/PR and disdrometer data to correct reflectivity of ground-based radars
Scarsi et al. Mispointing correction methods for the conically scanning WIVERN Doppler radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP