KR101088923B1 - TiO2 nanostructure electrodes for dye-sensitized solar cells - Google Patents

TiO2 nanostructure electrodes for dye-sensitized solar cells Download PDF

Info

Publication number
KR101088923B1
KR101088923B1 KR1020090055241A KR20090055241A KR101088923B1 KR 101088923 B1 KR101088923 B1 KR 101088923B1 KR 1020090055241 A KR1020090055241 A KR 1020090055241A KR 20090055241 A KR20090055241 A KR 20090055241A KR 101088923 B1 KR101088923 B1 KR 101088923B1
Authority
KR
South Korea
Prior art keywords
nano
dye
dimensional
titanium oxide
brunch
Prior art date
Application number
KR1020090055241A
Other languages
Korean (ko)
Other versions
KR20100137032A (en
Inventor
박경원
오제경
이진규
김현수
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020090055241A priority Critical patent/KR101088923B1/en
Publication of KR20100137032A publication Critical patent/KR20100137032A/en
Application granted granted Critical
Publication of KR101088923B1 publication Critical patent/KR101088923B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 티타늄 산화물을 나노와이어와 나노브런치로 제조하는 방법에 관한 것으로, 염료감응형 태양전지 중 광전극의 형성방법에 관한 것으로, 더욱 상세하게는 티타늄 옥사이드 물질을 점도성 있는 슬러리로 만들어 물리화학 증착을 통한 불소 함유 산화주석(FTO) 투명전도막 유리의 표면에 피막을 형성시켜서 표면에 가시광선을 흡수하는 염료가 흡착시켜 전기에너지를 발생할 수 있도록 하는 염료감응형 태양전지에 관한 것이다. 1차원 형태의 나노와이어와 3차원 형태인 나노브런치를 전극으로 사용하여 비교 분석을 통해 나노브런치가 나노와이어의 원활한 전자흐름 및 비표면적과 전극투명도가 증가하여 나노와이어를 사용할 때와 비교하여 염료감응형 태양전지에서 효율이 높게 나타냈다. The present invention relates to a method for producing titanium oxide with nanowires and nano brunch, and to a method for forming a photoelectrode in a dye-sensitized solar cell, and more particularly, to a physical slurry by making a titanium oxide material into a viscous slurry. The present invention relates to a dye-sensitized solar cell that forms a film on the surface of a fluorine-containing tin oxide (FTO) transparent conductive film glass by vapor deposition so that a dye that absorbs visible light on the surface is adsorbed to generate electrical energy. The comparative analysis using the nanowire in the one-dimensional form and the nano brunch in the three-dimensional form as the electrode showed that the nano-branch increased the electron flow, the specific surface area, and the electrode transparency of the nanowire, resulting in a dye-sensitization compared with the case of using the nanowire. The efficiency was high in the solar cell.

티타늄 산화물, 나노와이어, 나노브런치, 광전극, 염료감응형 태양전지 Titanium Oxide, Nano Wire, Nano Brunch, Photoelectrode, Dye-Sensitized Solar Cell

Description

염료감응형 태양전지를 위한 티아이오투 나노전극구조 {TiO2 nanostructure electrodes for dye-sensitized solar cells}TiO2 nanostructure electrodes for dye-sensitized solar cells

본 발명은 염료감응형 태양전지용 광전극을 위한 나노브런치 전극 구조 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 티타늄산화물(TiO2)을 수열법으로 제조함으로써, 기존의 다공성형태인 나노입자의 티타늄산화물 형태에서 1차원구조의 나노와이어와 3차원구조의 나노브런치 전극구조를 개발하여 염료감응형 태양전지용 광전극 및 그 제조방법에 관한 것이다.The present invention relates to a nano-brunch electrode structure for a dye-sensitized solar cell photoelectrode and a method for manufacturing the same, and more particularly, by manufacturing titanium oxide (TiO 2 ) by hydrothermal method, the titanium of the nanoparticles of the conventional porous form The present invention relates to a dye-sensitized photovoltaic photoelectrode and a method of manufacturing the same by developing a nanowire electrode structure having a one-dimensional structure and a nano-branched electrode structure having a three-dimensional structure in an oxide form.

염료감응형 태양전지는 가시광선을 염료가 흡수하여 광전극에 있는 티타늄산화물로 주입하여 전자를 이동시키는 역할을 한다. 도 1에서 보는 바와 같이, 도전성 투명 전극, 전해질, 염료가 흡착된 다공질 광전극, 상대전극 등을 구비하고 있다. 이러한 반응 중 종래의 염료감응형 태양전지에서의 광전극으로는 다공성인 티타늄산화물을 주로 사용하고 있다. 그러나, 다공성 형태인 물질은 전자들이 이동시 입자 사이 계면에서 전자들이 걸리는 경우가 있다. 이러한 문제점을 해결하기 위한 것으로, 광전극으로써 나노브런치를 사용하므로 문제점을 극복할 수 있을 것이다.Dye-sensitized solar cells move electrons by absorbing visible light into the titanium oxide in the photoelectrode. As shown in Fig. 1, a conductive transparent electrode, an electrolyte, a porous photoelectrode on which dye is adsorbed, a counter electrode, and the like are provided. Among these reactions, porous titanium oxide is mainly used as a photoelectrode in a conventional dye-sensitized solar cell. However, porous materials sometimes trap electrons at the interface between particles as they move. In order to solve this problem, it will be possible to overcome the problem because the nano-brunch as a photoelectrode.

본 발명은 1차원형태의 나노와이어를 시드로 사용하여 3차원형태의 나노브런치를 합성한다. 1차원형태의 나노와이어는 온도와 반응조건에 따라 상을 선택적으로 조절하고 그 물질의 농도를 조절하여 3차원형태의 나노브런치를 합성한다. 합성된 산화물들을 투명도전성 유리의 표면에 피막을 형성시킴으로서 염료감응형 태양전지의 광전극에 제공하는데 그 목적이 있다.       The present invention synthesizes a three-dimensional nano brunch using a nano-dimensional wire of the one-dimensional form as a seed. One-dimensional nanowires are synthesized by three-dimensional nano-branches by selectively controlling the phase and the concentration of the material according to the temperature and reaction conditions. The purpose is to provide the synthesized oxides to the photoelectrode of the dye-sensitized solar cell by forming a film on the surface of the transparent conductive glass.

3차원형태의 티타늄산화물 나노브런치를 제조하는데 있어서 1차원형태의 티타늄산화물 나노와이어를 수열법으로 120 ℃에서 120시간동안 온열기에서 반응시키는 단계, 합성된 1차원형태의 나노와이어를 증류수와 에탄올로 세척하는 단계, 세척된 1차원형태의 나노와이어를 이용하여 용액상에서 12%를 채취하여 수열법으로 주입후 30분 정도 교반하는 단계, 교반 후 95 ℃에서 6시간정도를 온열기에서 반응시키는 단계, 합성된 3차원형태의 나노브런치를 증류수와 에탄올로 세척 후 건조시키는 단계, 상기 티타늄산화물인 3차원형태의 나노브런치를 에탄올 용매에 분산하여 잉크상으로 제조하는 단계, 상기 투명도전성 유리 전극판에 피막을 형성하고자 하는 특정부분을 제외한 나머지 부분에 상기 잉크를 도포하여 피막을 형성하는 단계, 상기 단계 후 전극판을 450℃에서 약 30분동안 열처리 하는 단계, 상기 단계 후 전극판을 염료감응형 태양전지에 적용하는 단계로 이루어진 것에 특징이 있다. In preparing a three-dimensional titanium oxide nano brunch, the one-dimensional titanium oxide nanowires were reacted by a hydrothermal method at 120 ° C. for 120 hours, and the synthesized one-dimensional nanowires were washed with distilled water and ethanol. Step, taking 12% from the solution phase using the washed one-dimensional nanowires and stirring by hydrothermal method for 30 minutes, after stirring for about 6 hours at 95 ℃ in a warmer, synthesized Washing the three-dimensional nano brunch with distilled water and ethanol and drying the same; dispersing the three-dimensional nano brunch, which is the titanium oxide, in an ethanol solvent to prepare an ink, and forming a film on the transparent conductive glass electrode plate. Forming a film by applying the ink to the remaining portions other than the specific portion to be desired, the electrode after the step Heat-treating the plate at 450 ° C. for about 30 minutes, and applying the electrode plate to the dye-sensitized solar cell after the step.

본 발명은 티타늄산화물을 3차원형태의 나노브런치로 수열법인 방법으로 개발하고 상기 형상이 조절된 산화물을 이용하여 닥터블레이드 방법을 포함하는 막을 제조하는 방법에 의해 투명도전성 유리의 표면에 3차원형태의 티타늄산화물 나노브런치를 형성시킴으로서 종래의 다공성의 전극구조를 대체한다.The present invention is to develop a three-dimensional nano-branch in a three-dimensional form by a hydrothermal method and to produce a film including a doctor blade method using the oxide having the shape of the three-dimensional form on the surface of the transparent conductive glass By forming titanium oxide nano brunch, it replaces the conventional porous electrode structure.

본 발명을 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1에는 본 발명의 실시예에 따른 3차원형태의 티타늄산화물 나노브런치를 도전성 투명 전극(광)에 피막을 형성하였다. 백금을 물리 증착법으로 상대전극(양극)을 형성하였다.In FIG. 1, a three-dimensional titanium oxide nanobrunch according to an embodiment of the present invention is formed on a conductive transparent electrode (light). A counter electrode (anode) was formed of platinum by physical vapor deposition.

도 1에의 도전성 투명 광전극과 상대전극(양극)에 있어서, 광전극의 물질의 형태 종류는 종래의 염료감응형 태양전지 광전극 물질의 경우 다공성의 나노입자인 티타늄산화물인데 반해, 본 발명에 채용되는 광전극은 3차원형태의 티타늄산화물이며, 전자의 전도성 및 높은 비표면적을 갖고 있다.In the conductive transparent photoelectrode and counter electrode (anode) of FIG. 1, the type of the material of the photoelectrode is a titanium oxide, which is a porous nanoparticle in the case of the conventional dye-sensitized solar cell photoelectrode material, but is employed in the present invention. The photoelectrode is a three-dimensional titanium oxide, and has electron conductivity and high specific surface area.

상기 도전성 투명 광전극의 나노입자 산화물층은 티타늄산화물(TiO2), 이산화주석(SnO2) 또는 산화아연(ZnO)층일 수 있으며, 상기 전해질 용액은 0.1 M의 과염소산리튬(LiClO4)과 10 mM의 요오드화리튬(LiI)와 1 mM의 요오드(I2)를 아세토나이트릴(CH3CN)에 용해시킨 I3 -/I-의 전해질 용액일 수 있다. 또한, 도전성 투명 전극으로는 주로 불소가 도핑된 산화주석(FTO) 또는 인듐이 도핑된 산화주석(ITO)를 사용할 수 있다. The nanoparticle oxide layer of the conductive transparent photoelectrode may be a titanium oxide (TiO 2 ), tin dioxide (SnO 2 ) or zinc oxide (ZnO) layer, the electrolyte solution is 0.1 M lithium perchlorate (LiClO 4 ) and 10 mM It may be an electrolyte solution of I 3 / I in which lithium iodide (LiI) and 1 mM of iodine (I 2 ) are dissolved in acetonitrile (CH 3 CN). In addition, as the conductive transparent electrode, tin oxide (FTO) doped with fluorine or tin oxide (ITO) doped with indium may be mainly used.

상기 목적을 달성하기 위하여, 본 발명의 3차원형태의 티타늄산화물 나노브런치를 제조하는 방법은, 먼저 시드인 1차원형태의 나노와이어를 10몰의 염산수용액을 용매로 티타늄 이소프로폭사이드(Ti-isopropoxide)를 8 ml정도 투여한다. 다음 수열법을 이용하여 약 120℃까지 온도를 상승시켜 티타늄산화물을 1차원형태의 나노와이어로 결정을 얻는다. 3회 정도 과량의 증류수와 에탄올을 넣고 염산을 희석시켜 용매를 제거한 후, 진공건조기를 이용하여 60℃의 온도에서 증류수, 에탄올을 제거하고 고체상의 산화물을 회수한다.In order to achieve the above object, the method for producing a three-dimensional titanium oxide nano brunch of the present invention, first is a seed of the one-dimensional nanowires of 10 moles of aqueous hydrochloric acid solution using a titanium isopropoxide (Ti- isopropoxide) is administered about 8 ml. Next, the temperature is raised to about 120 ° C. using hydrothermal method to obtain titanium oxide as one-dimensional nanowire crystals. After distilled water and ethanol in about 3 times and dilute hydrochloric acid to remove the solvent, using a vacuum dryer to remove distilled water, ethanol at a temperature of 60 ℃ to recover a solid oxide.

상기 단계 후, 상기 고체상의 나노와이어를 증류수에 분산시킨 뒤 용액상에서 12%를 채취하여 0.5몰 염산수용액에 주입 뒤 약 30분동안 교반시킨다. 상기 단계 후, 상기와 같은 전구체로 티타늄 이소프로폭사이드를 2 ml정도를 넣고 수열법을 이용하여 약 95 ℃에서 반응을 시킨 뒤, 증류수와 에탄올을 이용하여 3회정도 세척하고 진공건조기에서 고체상의 산화물을 회수한다. After the step, the solid nanowires were dispersed in distilled water, 12% was collected from the solution, injected into a 0.5 molar hydrochloric acid solution, and stirred for about 30 minutes. After the above step, about 2 ml of titanium isopropoxide was added to the precursor as described above, and the reaction was performed at about 95 ° C. using hydrothermal method. After washing three times with distilled water and ethanol, the solid phase was dried in a vacuum dryer. Recover the oxide.

상기 단계 후, 상기 단계에서 제조된 1차원의 나노와이어와 3차원의 나노브런치를 에탄올 용매에 분산하여 나노입자 콜로이드 용액을 마련하고 상기 나노입자 나노와이어와 나노브런치 콜로이드 용액을 닥터블레이드법에 의해 상기 도전성 투명 광전극 기판위에 도포한다.After the step, the one-dimensional nanowires and the three-dimensional nanobrunch prepared in the step is dispersed in an ethanol solvent to prepare a nanoparticle colloidal solution and the nanoparticle nanowires and nanobrunch colloidal solution by the doctor blade method It is applied on a conductive transparent photoelectrode substrate.

상기 나노입자 나노와이어와 나노브런치 콜로이드 용액이 도포된 상기 기판에서 상기 용매를 제거할 때에는 450℃온도에서 약 30분 동안 상기 기판을 건조시킨다. When the solvent is removed from the substrate coated with the nanoparticle nanowires and the nanobrunch colloidal solution, the substrate is dried at a temperature of 450 ° C. for about 30 minutes.

이상과 같이, 본 발명은 염료감응형 태양전지 광전극을 위한 나노입자 나노와이어 및 나노브런치층을 구성하는 것으로, 두가지 형태의 산화물을 염료감응형 태양전지중 광전극으로 적용하여 비교분석하였다.As described above, the present invention constitutes a nanoparticle nanowire and a nano brunch layer for a dye-sensitized solar cell photoelectrode, and the two types of oxides are applied to the photoelectrode of the dye-sensitized solar cell and analyzed.

실험예 1 : X선회절 분석Experimental Example 1: X-ray diffraction analysis

상기 본 발명에 따라 제조된 염료감응형 태양전지용 광전극의 1차원 티타늄산화물 나노와이어 및 3차원 티타늄산화물 나노브런치 구조를 확인하기 위하여 X-선 회절 (XRD) 분석을 θ값이 20 ~60o까지 수행하였으며, 그 결과를 도 4에 나타내었다.The X- ray diffraction (XRD) analysis to identify a one-dimensional titanium oxide nano-wire and three-dimensional titanium oxide nano-brunch structure of the dye-sensitized solar cells the photoelectrode manufactured according to the present invention, the value of θ up to 20 ~ 60 o It carried out, and the result is shown in FIG.

도 4에 나타낸 바와 같이 수열법으로 합성한 1차원 나노와이어와 3차원 나노브런치는 티타늄산화물의 루틸상인 것을 확인하였다. 또한 주된 픽(Peak)에서는 (110)면으로 나노와이어보다 3차원 나노브런치의 세기가 증가한 것을 확인하였다. 이것은 가지들도 루틸상으로 안정한 (110)면을 드러나는 것으로 고배율투과현미경(HR-TEM)으로 관찰한 것과 일치한다.As shown in FIG. 4, it was confirmed that the one-dimensional nanowires and the three-dimensional nanobrunches synthesized by the hydrothermal method were rutile phases of titanium oxide. In addition, in the main peak (Peak) it was confirmed that the intensity of the three-dimensional nano brunch increased than the nanowire to the (110) plane. This is the same as observed with HR-TEM, with branches also revealing a stable (110) plane in rutile phase.

실험예 2 : 전자투과현미경 (TEM) 및 고배율 전자투과현미경 (HRTEM) 관찰Experimental Example 2 Observation of the electron transmission microscope (TEM) and high magnification electron transmission microscope (HRTEM)

상기에서 본 발명에 따라 제조된 염료감응형 태양전지용 광전극의 1차원 티타늄산화물 나노와이어의 나노 입자 형성 구조를 확인하기 위하여 전자투과현미경(TEM) 및 고배율 전자투과현미경 (HRTEM) 관찰을 수행하였으며, 그 결과를 도 2a과 도 2b에 나타내었다.In order to confirm the nanoparticle formation structure of the one-dimensional titanium oxide nanowires of the dye-sensitized solar cell photoelectrode prepared according to the present invention, the electron transmission microscope (TEM) and high magnification electron transmission microscope (HRTEM) observation was performed, The results are shown in Figures 2a and 2b.

도 2a에 나타낸 바와 같이 상기에서 제조된 시드인 1차원 티타늄산화물 나노 와이어는 직경은 약 8 나노미터에 길이는 약 120 나노미터인 나노입자 및 결정질 형태의 상태라는 것을 확인할 수 있었다.As shown in Figure 2a it can be seen that the one-dimensional titanium oxide nanowires prepared as the seed is in the state of crystalline form and nanoparticles of about 8 nanometers in diameter and about 120 nanometers in length.

도 2b에 나타낸 바와 같이 상기에서 제조된 시드인 1차원 티타늄산화물 나노와이어는 안정한 (110)면과 (001)면은 수직인 것을 관찰하였다. 또한 도 2a 내지 도 2b에서 1차원 나노와이어는 [001]방향으로 성장하는 것을 관찰하였다.As shown in Figure 2b it was observed that the one-dimensional titanium oxide nanowires prepared above are stable (110) plane and (001) plane is vertical. In addition, it was observed that the one-dimensional nanowires grow in the [001] direction in FIGS. 2A to 2B.

실험예 3 : 전자투과현미경 (TEM) 및 고배율 전자투과현미경 (HRTEM) 관찰Experimental Example 3 Electron Transmission Microscope (TEM) and High Magnification Electron Microscope (HRTEM) Observation

상기에서 본 발명에 따라 제조된 상기에서 제조된 3차원 티타늄산화물 나노브런치 구조를 확인하기 위하여 전자투과현미경 (TEM) 및 고배율 전자투과현미경 (HRTEM) 관찰을 수행하였으며, 그 결과를 도 3a 내지 도 3b에 나타내었다.In order to confirm the structure of the three-dimensional titanium oxide nano-brunch prepared in the above prepared according to the present invention, the electron transmission microscope (TEM) and the high magnification electron transmission microscope (HRTEM) observation was performed, the results are shown in Figures 3a to 3b Shown in

도 3a에 나타낸 바와 같이 형성된 3차원 나노브런치 구조는 직경은 20 나노미터이고 길이는 약 150 나노미터로 시드인 나노와이어 축에 루틸상의 결정들이 붙어서 형성한 나노입자 및 결정질 형태인 것을 확인하였다.The three-dimensional nanobrunch structure formed as shown in Figure 3a is 20 nanometers in diameter and about 150 nanometers in length was confirmed that the nanoparticles and crystalline form formed by the attachment of rutile phase crystals to the nanowire axis seeded.

도 3b에 나타낸 바와 같이 상기에서 제조된 3차원 나노브런치는 축은 안정한 (110)면에 가지는 (101)면이 드러났는데, (101)면과 약 30 °로 기울어진 (001)면으로 가지들도 성장하는 것을 관찰하였다.As shown in FIG. 3b, the three-dimensional nanobrunch prepared above has a (101) plane exposed to a stable (110) plane, and branches to the (001) plane inclined at about 30 ° with the (101) plane. Growing was observed.

도 3c에 나타낸 바와 같이 1차원 나노와이어 축에 티타늄산화물에 소스인 티타늄 옥타헤드라 (Ti-octahedra)는 불안정한 면에 붙어서 성장하는 것을 나타냈다.As shown in FIG. 3C, the titanium octahedra, a source of titanium oxide, on the one-dimensional nanowire axis was attached to the unstable surface and grown.

실험예 4 : 비표면적 분석기 (BET)Experimental Example 4: Specific Surface Area Analyzer (BET)

상기 본 발명에 따라 제조된 염료감응형 태양전지용 광전극의 1차원 티타늄산화물 나노와이어 및 3차원 나노브런치에 대한 비표면적 및 공극 크기를 확인하기 위하여 비표면적 분석기 (BET) 관찰을 수행하였으며, 그 결과를 도 4 및 표 1에 나타내었다.A specific surface area analyzer (BET) observation was performed to confirm specific surface area and pore size for the one-dimensional titanium oxide nanowires and the three-dimensional nanobrunch of the dye-sensitized solar cell photoelectrode manufactured according to the present invention. 4 is shown in Table 1.

표 1 합성된 티타늄산화물 나노와이어 및 나노브런치 특성Table 1 Synthesized Titanium Oxide Nanowires and Nano Brunch Characteristics

Figure 112009037442339-pat00001
Figure 112009037442339-pat00001

표 1에서 나타낸 바와 같이 3차원 나노브런치가 1차원 나노와이어보다 공극율도 2배이상 높게 형성하였으며, 비표면적도 3배이상 나타냈다. 이것을 이용하여 염료감응형 태양전지용 광전극에 사용시 염료 흡착량과 광전극에 도포된 두께당 거칠기 인자를 확인한 결과 2배정도 차이가 나타났다.As shown in Table 1, the three-dimensional nanobrunch formed two times higher porosity than the one-dimensional nanowire, and the specific surface area was also three times or more. When using the dye-sensitized solar cell photoelectrode, the amount of dye adsorption and the roughness factor per thickness applied to the photoelectrode were confirmed.

실험예 5 : 전압에 따른 광전류밀도 측정Experimental Example 5 Measurement of Photocurrent Density According to Voltage

상기 본 발명에 따라 제조된 염료감응형 태양전지용 광전극의 1차원 티타늄산화물 나노와이어 및 3차원 나노브런치에 대한 1sun 조건에서 빛을 이용한 전압에 따른 광전류밀도를 측정하였다. 그 결과를 도5 및 표2에 나타냈다.The photocurrent density of the dye-sensitized solar cell photoelectrode according to the present invention was measured according to the voltage using light at 1 sun conditions for the one-dimensional titanium oxide nanowires and the three-dimensional nanobrunch. The results are shown in FIG. 5 and Table 2.

표 2 합성된 나노와이어 및 나노브런치의 염료감응형 태양전지 비교.Table 2 Comparison of dye-sensitized solar cells of synthesized nanowires and nanobrunches.

Figure 112009037442339-pat00002
Figure 112009037442339-pat00002

도 5와 표 2에서 나타낸 바와 같이 3차원 나노브런치가 1차원 나노와이어보다 광전류밀도가 2배정도 높게 나타냈다. 또한, 염료감응형 태양전지의 효율도 2배정도 차이가 났다. 이는, 염료의 흡착량이 3차원 나노브런치가 1차원 나노와이어 비해 높아서 나타낸 결과로 예상된다. 또한 전압값은 3차원 나노브런치가 가지들이 축에 붙어 있어서 불안정한 것에 비해 1차원 나노와이어와 비슷하게 나타났다.As shown in FIG. 5 and Table 2, the three-dimensional nano brunch showed two times higher photocurrent density than the one-dimensional nanowire. In addition, the efficiency of the dye-sensitized solar cell also differed by about twice. This is expected to be the result of the adsorption amount of the dye is shown as the three-dimensional nano brunch is higher than the one-dimensional nanowire. In addition, the voltage value is similar to that of the one-dimensional nanowires compared to the unstable three-dimensional nano-branch branches attached to the axis.

3차원 나노브런치와 1차원 나노와이어를 비교한 결과 3차원 나노브런치가 비표면적 및 광전류밀도가 높게 나타나 염료감응형 태양전지에 사용할 수 있는 가능성을 보여주었다.As a result of comparing 3D nanobrunch and 1D nanowire, the specific surface area and photocurrent density of 3D nanobrunch are high, which shows the possibility of using them in dye-sensitized solar cells.

이하, 첨부도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 그러나 다음과 같이 예시하는 본 발명의 실시예들은 여러가지 다른 형태로의 적용이 가능하며, 본 발명의 권리 범위가 다음에 서술하는 실시예들에 한정되는 것은 아니다. 본 발명의 실시예들은 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다. Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; However, the embodiments of the present invention illustrated as follows may be applied to various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.

도 1은 본 발명의 실시예에 따른 티타늄산화물 나노브런치와 나노와이어를 적용 가능한 염료감응 태양전지의 구성을 개략적으로 도시한 도면. 1 is a view schematically showing the configuration of a dye-sensitized solar cell that can be applied to titanium oxide nano brunch and nanowires according to an embodiment of the present invention.

도 2a는 티타늄산화물 1차원 나노와이어 전자투과현미경(TEM) 사진. Figure 2a is a titanium oxide one-dimensional nanowire electron transmission microscope (TEM) photograph.

도 2b는 티타늄산화물 1차원 나노와이어의 고배율 전자투과현미경(HR-TEM) 사진. 삽입된 그림은 결정면을 나타낸 FFT (Fast Fourier Transformation)패턴. Figure 2b is a high magnification electron transmission microscope (HR-TEM) of titanium oxide one-dimensional nanowires. Inset is FFT (Fast Fourier Transformation) pattern showing crystal plane.

도 3a는 나노와이어를 시드로 사용하여 합성된 티타늄산화물 3차원 나노브런치의 전자투과현미경(TEM) 사진.Figure 3a is an electron transmission microscope (TEM) photograph of the titanium oxide three-dimensional nano-brunch synthesized using the nanowire as a seed.

도 3b는 티타늄산화물 3차원 나노브런치의 고배율 전자투과현미경(HR-TEM) 사진. 삽입된 그림은 결정면을 나타낸 FFT 패턴.Figure 3b is a high magnification electron transmission microscope (HR-TEM) photograph of the titanium oxide three-dimensional nano brunch. Inset shows FFT pattern showing crystal plane.

도 3c는 티타늄산화물 3차원 나노브런치의 합성 메카니즘을 나타낸 그림.Figure 3c is a diagram showing the synthesis mechanism of titanium oxide three-dimensional nano brunch.

도 4는 티타늄산화물의 나노와이어와 나노브런치의 XRD 결과를 나타내는 그래프.4 is a graph showing the XRD results of nanowires and nano brunch of titanium oxide.

도 5는 본 발명에 따라 제조된 티타늄산화물 1차원 나노와이어 및 3차원 나노브런치의 비표면적 분석(BET) 결과를 나타내는 그래프.Figure 5 is a graph showing the specific surface area analysis (BET) results of titanium oxide one-dimensional nanowires and three-dimensional nano brunch prepared in accordance with the present invention.

도 6은 본 발명에 따라 제조된 티타늄산화물 1차원 나노와이어 및 3차원 나노브런치를 광전극으로 이용한 염료감응 태양전지의 I-V곡선.6 is an I-V curve of a dye-sensitized solar cell using a titanium oxide 1-dimensional nanowire and a 3-dimensional nano-brunch prepared as photoelectrodes according to the present invention.

Claims (4)

다음의 단계를 포함하는 것을 특징으로 하는 3차원 형태의 티타늄 나노브런치의 제조방법: Method for producing a three-dimensional titanium nano brunch characterized in that it comprises the following steps: (a) 산 용매에 티타늄 산화물을 첨가한 용액을 수열반응시켜 1차원 형태의 티타늄 나노와이어 결정을 확인하는 단계; (a) hydrothermally reacting a solution in which titanium oxide is added to an acid solvent to identify titanium nanowire crystals in one-dimensional form; (b) 상기 나노와이어 결정을 증류수 및 에탄올로 세척하는 단계; (b) washing the nanowire crystals with distilled water and ethanol; (c) 상기 세척된 나노와이어를 회수하여 산수용액에 교반하는 단계; (c) recovering the washed nanowires and stirring them in an acid aqueous solution; (d) 상기 교반된 산수용액에 추가적으로 티타늄 산화물을 첨가하고 수열반응시켜 3차원 형태의 티타늄 나노브런치 결정을 확인하는 단계; 및 (d) adding titanium oxide to the stirred acid aqueous solution and hydrothermally reacting to determine titanium nanobrunch crystals in a three-dimensional form; And (e) 상기 나노브런치 결정을 증류수 및 에탄올로 세척하여 티타늄 나노브런치를 회수하는 단계.(e) recovering the titanium nanobrunch by washing the nanobrunch crystals with distilled water and ethanol. 제 1 항의 제조방법으로 제조된 3차원 형태의 티타늄 나노브런치.A three-dimensional titanium nano brunch prepared by the method of claim 1. 제 2 항의 나노브런치를 포함하는 태양전지용 광전극.Photovoltaic electrode for a solar cell comprising the nano-brunch of claim 2. 다음의 단계를 포함하는 것을 특징으로 하는 태양전지용 광전극의 제조방법:Method for manufacturing a photoelectrode for a solar cell comprising the following steps: (a) 산 용매에 티타늄 산화물을 첨가한 용액을 수열반응시켜 1차원 형태의 티타늄 나노와이어 결정을 확인하는 단계; (a) hydrothermally reacting a solution in which titanium oxide is added to an acid solvent to identify titanium nanowire crystals in one-dimensional form; (b) 상기 나노와이어 결정을 증류수 및 에탄올로 세척하는 단계; (b) washing the nanowire crystals with distilled water and ethanol; (c) 상기 세척된 나노와이어를 회수하여 산수용액에 교반하는 단계; (c) recovering the washed nanowires and stirring them in an acid aqueous solution; (d) 상기 교반된 산수용액에 추가적으로 티타늄 산화물을 첨가하고 수열반응시켜 3차원 형태의 티타늄 나노브런치 결정을 확인하는 단계; (d) adding titanium oxide to the stirred acid aqueous solution and hydrothermally reacting to determine titanium nanobrunch crystals in a three-dimensional form; (e) 상기 나노브런치 결정을 증류수 및 에탄올로 세척하여 티타늄 나노브런치를 회수하는 단계; (e) recovering the titanium nanobrunch by washing the nanobrunch crystals with distilled water and ethanol; (f) 상기 회수된 티타늄 나노브런치를 에탄올 용액에 분산하여 콜로이드 용액을 제조하는 단계; 및 (f) dispersing the recovered titanium nano brunch in an ethanol solution to prepare a colloidal solution; And (g) 상기 콜로이드 용액을 기판 위에 도포하여 전극을 제조하는 단계.(g) applying the colloidal solution onto a substrate to produce an electrode.
KR1020090055241A 2009-06-20 2009-06-20 TiO2 nanostructure electrodes for dye-sensitized solar cells KR101088923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090055241A KR101088923B1 (en) 2009-06-20 2009-06-20 TiO2 nanostructure electrodes for dye-sensitized solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090055241A KR101088923B1 (en) 2009-06-20 2009-06-20 TiO2 nanostructure electrodes for dye-sensitized solar cells

Publications (2)

Publication Number Publication Date
KR20100137032A KR20100137032A (en) 2010-12-30
KR101088923B1 true KR101088923B1 (en) 2011-12-01

Family

ID=43510842

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090055241A KR101088923B1 (en) 2009-06-20 2009-06-20 TiO2 nanostructure electrodes for dye-sensitized solar cells

Country Status (1)

Country Link
KR (1) KR101088923B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493477B1 (en) * 2013-12-23 2015-02-16 전남대학교산학협력단 Photoelectrode with light scattering layer and One-pot synthesis of the same
CN108155019B (en) * 2017-12-22 2019-11-12 河南大学 A kind of three-dimensional hierarchical structure ZnO film and its application in sensitization solar battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289270A (en) 2001-03-23 2002-10-04 Japan Science & Technology Corp Grezel solar cell and manufacturing method of the same
JP2004207012A (en) 2002-12-25 2004-07-22 Sony Corp Dye-sensitized photoelectric transducing device and its manufacturing method
JP2007070136A (en) 2005-09-05 2007-03-22 Kyoto Univ Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289270A (en) 2001-03-23 2002-10-04 Japan Science & Technology Corp Grezel solar cell and manufacturing method of the same
JP2004207012A (en) 2002-12-25 2004-07-22 Sony Corp Dye-sensitized photoelectric transducing device and its manufacturing method
JP2007070136A (en) 2005-09-05 2007-03-22 Kyoto Univ Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod

Also Published As

Publication number Publication date
KR20100137032A (en) 2010-12-30

Similar Documents

Publication Publication Date Title
Zhao et al. Fabrication of CdS quantum dots sensitized ZnO nanorods/TiO2 nanosheets hierarchical heterostructure films for enhanced photoelectrochemical performance
Marimuthu et al. Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications
Qiu et al. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells
Wang et al. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells
Xu et al. Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency
Shalan et al. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells
Wang et al. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition
Aksoy et al. Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC
Zhang et al. Mesocrystalline TiO 2 nanosheet arrays with exposed {001} facets: Synthesis via topotactic transformation and applications in dye-sensitized solar cells
Sun et al. Continually adjustable oriented 1D TiO 2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells
Yu et al. One-step ammonia hydrothermal synthesis of single crystal anatase TiO 2 nanowires for highly efficient dye-sensitized solar cells
Peng et al. Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells
Yang et al. Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency
Cui et al. Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells
Subramaniam et al. Synthesis of micrometer-sized hierarchical rutile TiO 2 flowers and their application in dye sensitized solar cells
Lu et al. Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell
Yang et al. Electrodeposition of flake-like Cu2O on vertically aligned two-dimensional TiO2 nanosheet array films for enhanced photoelectrochemical properties
He et al. Electrospinning in situ synthesis of graphene-doped porous copper indium disulfide/carbon composite nanofibers for highly efficient counter electrode in dye-sensitized solar cells
Li et al. Highly crystalline mesoporous TiO2 (B) nanofibers
Liu et al. Construction of a branched ZnO–TiO 2 nanorod array heterostructure for enhancing the photovoltaic properties in quantum dot-sensitized solar cells
Chou et al. The effect of annealing temperatures to prepare ZnO seeds layer on ZnO nanorods array/TiO2 nanoparticles photoanode
Hao et al. Bifunctional single-crystalline rutile nanorod decorated heterostructural photoanodes for efficient dye-sensitized solar cells
Shin et al. Highly transparent dual-sensitized titanium dioxide nanotube arrays for spontaneous solar water splitting tandem configuration
Su et al. An innovative method to quickly and simply prepare TiO2 nanorod arrays and improve their performance in photo water splitting
Sriharan et al. Surface modification of TiO2 nanorods with Mg doping for efficient photoelectrodes in dye sensitized solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161024

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee