JP2007070136A - Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod - Google Patents
Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod Download PDFInfo
- Publication number
- JP2007070136A JP2007070136A JP2005256568A JP2005256568A JP2007070136A JP 2007070136 A JP2007070136 A JP 2007070136A JP 2005256568 A JP2005256568 A JP 2005256568A JP 2005256568 A JP2005256568 A JP 2005256568A JP 2007070136 A JP2007070136 A JP 2007070136A
- Authority
- JP
- Japan
- Prior art keywords
- titania
- oxide semiconductor
- dye
- porous layer
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 368
- 239000002073 nanorod Substances 0.000 title claims abstract description 116
- 230000001235 sensitizing effect Effects 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title abstract description 13
- 229920001400 block copolymer Polymers 0.000 claims abstract description 31
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 23
- 239000007864 aqueous solution Substances 0.000 claims abstract description 18
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 14
- 150000001412 amines Chemical class 0.000 claims abstract description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims description 84
- -1 titanium organic compound Chemical class 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 24
- 239000002105 nanoparticle Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- 239000008151 electrolyte solution Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 9
- 239000003093 cationic surfactant Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 41
- 239000000243 solution Substances 0.000 abstract description 8
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 55
- 239000010408 film Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 21
- 239000002002 slurry Substances 0.000 description 15
- 230000032258 transport Effects 0.000 description 11
- 238000007606 doctor blade method Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 9
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 7
- 229910001887 tin oxide Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000012327 Ruthenium complex Substances 0.000 description 2
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- NHCGQHAZAQDUDS-UHFFFAOYSA-N 1,2-dimethylimidazole;hydroiodide Chemical compound [I-].C[NH+]1C=CN=C1C NHCGQHAZAQDUDS-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- SNOJPWLNAMAYSX-UHFFFAOYSA-N 2-methylpropan-1-ol;titanium Chemical compound [Ti].CC(C)CO.CC(C)CO.CC(C)CO.CC(C)CO SNOJPWLNAMAYSX-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- YFNWGGHYPGCHDC-UHFFFAOYSA-N CC(C)O.CC(C)O.CC(C)O.CC(CC(O)=O)=O Chemical compound CC(C)O.CC(C)O.CC(C)O.CC(CC(O)=O)=O YFNWGGHYPGCHDC-UHFFFAOYSA-N 0.000 description 1
- OWWWZPXQZXZHBU-UHFFFAOYSA-N COC(C([O-])(OC)OC)OC.[Ti+4].COC(C([O-])(OC)OC)OC.COC(C([O-])(OC)OC)OC.COC(C([O-])(OC)OC)OC Chemical compound COC(C([O-])(OC)OC)OC.[Ti+4].COC(C([O-])(OC)OC)OC.COC(C([O-])(OC)OC)OC.COC(C([O-])(OC)OC)OC OWWWZPXQZXZHBU-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N Cadaverine Natural products NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- KVIKMJYUMZPZFU-UHFFFAOYSA-N propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(C)O KVIKMJYUMZPZFU-UHFFFAOYSA-N 0.000 description 1
- GGHDAUPFEBTORZ-UHFFFAOYSA-N propane-1,1-diamine Chemical compound CCC(N)N GGHDAUPFEBTORZ-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003865 secondary ammonium salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000010896 thin film analysis Methods 0.000 description 1
- 125000000858 thiocyanato group Chemical group *SC#N 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、高結晶性のチタニアナノロッドとその製造方法、およびこれを用いた高発電(光電変換)効率の色素増感太陽電池に関する。 The present invention relates to a highly crystalline titania nanorod, a method for producing the same, and a dye-sensitized solar cell with high power generation (photoelectric conversion) efficiency using the same.
多孔質のチタニア(TiO2)を電極に用いた色素増感太陽電池は、低コストで環境への影響が少なく、またシリコンを用いた太陽電池より効率がよいことから、学問的にも商業的にも関心が集まり、広く研究開発の対象になっている。 A dye-sensitized solar cell using porous titania (TiO 2 ) as an electrode has low cost and little environmental impact, and is more efficient than a solar cell using silicon. Has also attracted interest and has been widely researched and developed.
従来の色素増感太陽電池は、図1の模式図に示すように、透明電極101、表面に増感色素103が吸着しているチタニア104の多孔質の層、対向電極102、透明電極101と対向電極102の間に封止されている液体電解質105を基本的な構成要素とする。増感色素103は光を吸収して電子をチタニア104の伝導帯に注入する機能を果たす。チタニア104は、注入された電子を透明電極101へ輸送する半導体として機能し、アナターゼ相のチタニアが適していることが知られている。また、液体電解質105にはI−/I3 −の酸化還元対を含む水溶液が用いられている。 As shown in the schematic diagram of FIG. 1, a conventional dye-sensitized solar cell includes a transparent electrode 101, a porous layer of titania 104 having a sensitizing dye 103 adsorbed on the surface, a counter electrode 102, a transparent electrode 101, The liquid electrolyte 105 sealed between the counter electrodes 102 is a basic component. The sensitizing dye 103 functions to absorb light and inject electrons into the conduction band of the titania 104. It is known that the titania 104 functions as a semiconductor that transports injected electrons to the transparent electrode 101, and anatase titania is suitable. In addition, an aqueous solution containing an I − / I 3 — redox pair is used for the liquid electrolyte 105.
色素増感太陽電池に太陽光を照射すると、増感色素103中の電子が励起される。この励起された電子は、チタニア104から透明電極101へ注入され、外部負荷106を経由して対向電極102へ移動する。そして対向電極102ではI3 −が電子を与えられて還元され、3I−になる。この3I−が液体電解質105中を拡散して増感色素103に達すると電子を与え、自らは酸化されてI3 −に戻る。このサイクルが繰り返されることにより、発電が行なわれる。 When the dye-sensitized solar cell is irradiated with sunlight, electrons in the sensitizing dye 103 are excited. The excited electrons are injected from the titania 104 to the transparent electrode 101 and move to the counter electrode 102 via the external load 106. In the counter electrode 102, I 3 − is given an electron and reduced to 3I − . When this 3I − diffuses in the liquid electrolyte 105 and reaches the sensitizing dye 103, electrons are given, and it is oxidized and returns to I 3 − . By repeating this cycle, power generation is performed.
色素増感太陽電池の実用化を目指して、光電変換効率を高める検討が種々行なわれている。前記の色素増感太陽電池の構成の説明から分かるように、増感色素と多孔質チタニアが、高い光電変換効率を達成するための主要な要素となる。このため、従来からチタニアの粒径とモルフォロジーを変化させること(特許文献1)、多孔質チタニア層の製造方法と構造の最適化(非特許文献1)、新規な増感剤の開発(非特許文献2)、電荷の再結合の抑制(非特許文献3)、チタニアと増感色素の界面等の各界面における自由エネルギ差の改善(非特許文献4)等が検討されてきた。
ところで、現在一般的に知られている多孔質のチタニア膜電極は、球状のナノ粒子をコロイド状に分散させてドクターブレードを用いて形成されたものである。微小なチタニアナノ粒子を用いると、表面積を大きくする上で有利である一方、チタニアナノ粒子同士が接触する点が増えるため、多孔質チタニア層の電気抵抗が増加し電子の輸送効率が低下する結果、光電変換効率が損なわれるという問題がある。 By the way, the currently known porous titania membrane electrode is formed by dispersing spherical nanoparticles in a colloidal shape and using a doctor blade. The use of fine titania nanoparticles is advantageous in increasing the surface area, but the number of contact points between the titania nanoparticles increases, resulting in an increase in the electrical resistance of the porous titania layer and a decrease in electron transport efficiency. There is a problem that conversion efficiency is impaired.
上記問題に鑑み、本発明は従来よりも電子輸送効率の高い高結晶性のチタニアナノロッドとその製造方法、およびこのチタニアナノロッドを用いる太陽電池を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a highly crystalline titania nanorod having a higher electron transport efficiency than the conventional one, a method for producing the same, and a solar cell using the titania nanorod.
本発明者らは、高い電子輸送効率が得ることが可能で、かつ、色素増感太陽電池の光電変換率も高められるチタニアナノロッドの構造について、チタニアナノロッドの結晶性に注目して検討した。この結果、特定条件で合成したチタニアナノロッドは従来知られているものより高い結晶性を有し、これを用いた色素増感太陽電池は高い光電変換効率を示すことを見出し、本発明に至った。 The present inventors examined the structure of titania nanorods that can obtain high electron transport efficiency and that can increase the photoelectric conversion rate of the dye-sensitized solar cell, focusing on the crystallinity of titania nanorods. As a result, it was found that titania nanorods synthesized under specific conditions have higher crystallinity than those conventionally known, and dye-sensitized solar cells using the same show high photoelectric conversion efficiency, leading to the present invention. .
本発明に係るアナターゼ相のチタニアナノロッドは、ミラー指数表示における(004)面と(200)面のX線回折強度比(004)/(200)が0.85〜1.0と、従来よりも高結晶性であることを特徴とし、この高結晶性に基づき、高い電子輸送効率を示す。 The anatase phase titania nanorod according to the present invention has an X-ray diffraction intensity ratio (004) / (200) between the (004) plane and the (200) plane in the Miller index display of 0.85 to 1.0, which is higher than conventional. It is characterized by high crystallinity, and exhibits high electron transport efficiency based on this high crystallinity.
本発明に係るアナターゼ相のチタニアナノロッドの製造方法は、親・疎水性ブロックを有するブロック共重合体、並びに有機アミンまたはアンモニアを含む水溶液に、チタン有機化合物を反応させてチタニアゾルを得る工程と、チタニアゾルを水熱反応させてチタニアのナノロッドを生成させる工程とを含むことを特徴とする。 The method for producing a titania nanorod of anatase phase according to the present invention includes a step of obtaining a titania sol by reacting a block copolymer having a hydrophilic / hydrophobic block, an aqueous solution containing an organic amine or ammonia with a titanium organic compound, and a titania sol. And hydrothermal reaction to produce titania nanorods.
チタニアゾルを親・疎水性ブロックを有するブロック共重合体の存在下で水熱反応させることにより、従来のものより高結晶性で、かつ形状の揃ったチタニアナノロッドを製造することができる。これは、親・疎水性ブロックを有するブロック共重合体が水溶液中で形成する微小な隔離された反応場で、水熱合成でチタニアナノロッドへと成長する結果、最終的に得られるチタニアナノロッドの形状が揃ったものに制御されているものと考えられる。 By conducting a hydrothermal reaction of titania sol in the presence of a block copolymer having a hydrophilic / hydrophobic block, it is possible to produce titania nanorods having higher crystallinity and uniform shape than conventional ones. This is a minute isolated reaction field formed by a block copolymer having a hydrophilic / hydrophobic block in an aqueous solution, and the shape of the titania nanorod finally obtained as a result of growing into a titania nanorod by hydrothermal synthesis. Are considered to be controlled to the same.
本発明に係る色素増感太陽電池は、前記したアナターゼ相の高結晶性チタニアナノロッドを酸化物半導体層に用いることを特徴とする。このような構成の色素増感太陽電池は、高結晶性チタニアナノロッドが高い電子輸送効率を有すること、およびチタニアナノロッド同士の接触点が、ナノ粒子を用いる場合よりも減少して電池の内部抵抗が低下することにより、高い光電変換効率が得られる。 The dye-sensitized solar cell according to the present invention is characterized by using the anatase phase highly crystalline titania nanorod as an oxide semiconductor layer. In the dye-sensitized solar cell having such a configuration, the highly crystalline titania nanorod has high electron transport efficiency, and the contact point between the titania nanorods is smaller than that in the case of using nanoparticles, and the internal resistance of the battery is reduced. By reducing, high photoelectric conversion efficiency is obtained.
本発明によれば、従来よりも電子輸送効率が高いアナターゼ相の高結晶性チタニアナノロッドとその製造方法、およびこのチタニアナノロッドを用いる高光電変換効率の太陽電池が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the highly crystalline titania nanorod of the anatase phase whose electron transport efficiency is higher than before, its manufacturing method, and the solar cell of the high photoelectric conversion efficiency using this titania nanorod are provided.
以下、本発明に係るアナターゼ相の高結晶性チタニアナノロッドについて、その製造方法と構造、およびこのチタニアナノロッドを用いた色素増感太陽電池について、適宜図面等を参照しつつ説明する。 Hereinafter, the production method and structure of the highly crystalline titania nanorod of anatase phase according to the present invention and the dye-sensitized solar cell using the titania nanorod will be described with reference to the drawings as appropriate.
<チタニアナノロッドの製造>
本発明に係るアナターゼ相のチタニアナノロッドは、親・疎水性ブロックを有するブロック共重合体、並びに有機アミンまたはアンモニアを含む水溶液に、チタン有機化合物を反応させてチタニアゾルを得た後に、前記チタニアゾルを水熱反応させることにより生成させることができる。また、前記のブロック共重合体、並びに有機アミンまたはアンモニアを含む水溶液に、さらにカチオン性界面活性剤を添加することもできる。
<Manufacture of titania nanorods>
The titania nanorod of anatase phase according to the present invention comprises a block copolymer having a hydrophilic / hydrophobic block and an aqueous solution containing an organic amine or ammonia to obtain a titania sol by reacting with a titanium organic compound. It can produce | generate by making it heat-react. Further, a cationic surfactant can be further added to the aqueous solution containing the block copolymer and the organic amine or ammonia.
チタニアゲルを製造する出発原料のチタン有機化合物には、チタンアルコキシド、チタンアセテートを用いることができる。チタンアルコキシドは一般式Ti(OH)(OR)3またはTi(OR)4(Rは直鎖または分岐を有するアルキル基)で表され、一例として、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラ(n−プロポキシド)、チタンテトライソプロポキシド、チタンテトラ(n−ブトキシド)、チタンテトライソブトキシド、チタンテトラ(2−エチルヘキソキシド)、チタンテトラメトキシエトキシド、チタンメチルトリプロポキシドが挙げられる。また、チタンアセテートの一例として、チタン(2−メタクリロキシ)エチルアセトアセテートトリイソプロポキシド、チタンジイソプロポキシドジアセチルアセテート等を挙げることができる。 Titanium alkoxide and titanium acetate can be used as the starting titanium organic compound for producing the titania gel. Titanium alkoxide is represented by the general formula Ti (OH) (OR) 3 or Ti (OR) 4 (where R is a linear or branched alkyl group). As an example, titanium tetramethoxide, titanium tetraethoxide, titanium tetra (N-propoxide), titanium tetraisopropoxide, titanium tetra (n-butoxide), titanium tetraisobutoxide, titanium tetra (2-ethylhexoxide), titanium tetramethoxyethoxide, titanium methyltripropoxide It is done. Moreover, titanium (2-methacryloxy) ethyl acetoacetate triisopropoxide, titanium diisopropoxide diacetyl acetate, etc. can be mentioned as an example of titanium acetate.
チタン有機化合物には、入手が容易なことからチタンテトラアルコキシドを好適に用いることができ、反応性を考慮すると炭素数1〜6、より好ましくは炭素数3〜4のアルキル基を有するチタンテトラアルコキシドを好適に用いることができる。 Titanium tetraalkoxide can be suitably used for the titanium organic compound because it is easily available, and considering reactivity, titanium tetraalkoxide having an alkyl group having 1 to 6 carbon atoms, more preferably 3 to 4 carbon atoms. Can be suitably used.
疎水性ブロック及び親水性ブロックを有するブロック共重合体には、疎水性ブロックと親水性ブロックとからなる二元ブロック共重合体、あるいは親水性−疎水性−親水性ブロックからなる三元ブロック共重合体のように、水溶液中で疎水性ブロックが親水性ブロックによって囲まれたミセル状の反応場を形成し、チタニアナノロッド同士が連結できないような隔離された反応場を提供することができるものを用いることができる。また、チタニアゾルの水酸基が配位しうる酸素原子を疎水性ブロックの主鎖または側鎖に有する共重合体を用いることができる。 The block copolymer having a hydrophobic block and a hydrophilic block includes a binary block copolymer comprising a hydrophobic block and a hydrophilic block, or a ternary block copolymer comprising a hydrophilic-hydrophobic-hydrophilic block. Use a substance that can form a micelle-like reaction field in which an aqueous hydrophobic block is surrounded by a hydrophilic block in an aqueous solution and provides an isolated reaction field in which titania nanorods cannot be connected to each other. be able to. A copolymer having an oxygen atom capable of coordinating with a hydroxyl group of titania sol in the main chain or side chain of the hydrophobic block can be used.
このような二元または三元ブロック共重合体の一例として、疎水性ブロックがポリオキシプロピレン、親水性ブロックがポリオキシエチレンのもの、あるいは疎水性ブロックがポリメタクリル酸メチル、ポリ(メタクリル酸2−ヒドロキシエチル)、ポリ乳酸、ポリラクトン、又はポリラクタムのいずれかで、水溶性ブロックがポリビニルアルコール、ポリアクリルアミド、ポリジメチルアクリルアミド、ポリアリルアミン、又はポリアクリル酸のいずれかであるブロック共重合体等を挙げることができる。 As an example of such a binary or ternary block copolymer, the hydrophobic block is polyoxypropylene, the hydrophilic block is polyoxyethylene, or the hydrophobic block is polymethyl methacrylate, poly (methacrylic acid 2- A block copolymer in which the water-soluble block is any of polyvinyl alcohol, polyacrylamide, polydimethylacrylamide, polyallylamine, or polyacrylic acid, which is any of (hydroxyethyl), polylactic acid, polylactone, or polylactam. Can do.
(ポリオキシエチレン(PEO))x−(ポリオキシプロピレン(PPO))y−(ポリオキシエチレン(PEO))zの構造を有する三元ブロック共重合体は、入手のし易さから好適に用いることができる。上記の式中、x及びzは20以上、好ましくは100以上であり、yは10以上、好ましくは50以上のものを用いることができる。 (Polyoxyethylene (PEO)) x- (Polyoxypropylene (PPO)) y- (Polyoxyethylene (PEO)) A ternary block copolymer having a structure of z is preferably used because of its availability. be able to. In the above formula, x and z are 20 or more, preferably 100 or more, and y is 10 or more, preferably 50 or more.
このような二元または三元ブロック共重合体の溶液中の濃度は5wt%以上40wt%以下であり、好ましくは5wt%以上20wt%以下を用いることができる。二元または三元ブロック共重合体の濃度が5wt%以下になると、親・疎水性ブロックを有するブロック共重合体が形成する疎水的雰囲気の反応場が安定に形成できないため、チタニアナノロッドの形状を制御できないと考えられる。一方、二元または三元ブロック共重合体の濃度が40wt%以上であると、親・疎水性ブロックを有するブロック共重合体が形成する疎水的雰囲気の反応場が相分離に基づいて緻密に構築されるため、チタニアナノロッドの形状が制御できなくなる。 The concentration of such a binary or ternary block copolymer in the solution is 5 wt% or more and 40 wt% or less, preferably 5 wt% or more and 20 wt% or less. When the concentration of the binary or ternary block copolymer is 5 wt% or less, the reaction field in the hydrophobic atmosphere formed by the block copolymer having a parent / hydrophobic block cannot be stably formed. It is thought that it cannot be controlled. On the other hand, when the concentration of the binary or ternary block copolymer is 40 wt% or more, the reaction field in the hydrophobic atmosphere formed by the block copolymer having a parent / hydrophobic block is precisely constructed based on the phase separation. Therefore, the shape of the titania nanorod cannot be controlled.
チタニアナノロッドの製造機構は親・疎水性ブロックを有するブロック共重合体が形成する疎水的雰囲気の反応場の形成が重要であって、従来から知られているブロック共重合体が構築する周期的な構造を鋳型として用いて、その鋳型の形状がチタニアの形状となる製造方法とは異なる。 The production mechanism of titania nanorods is important to form a reaction field in a hydrophobic atmosphere formed by a block copolymer having a hydrophilic / hydrophobic block, and a periodic block constructed by a conventionally known block copolymer is constructed. This is different from the manufacturing method in which the structure is used as a mold and the shape of the mold is a titania shape.
有機アミンは有機チタン化合物とコンプレックスを形成してチタニアナノロッドの前駆体を生成するものであり、水溶性の脂肪族アミンまたは脂肪族ジアミンを用いることができる。このような有機アミンとして、炭素数1〜5の直鎖アルキル基の末端または両末端にアミンを有する脂肪族アミン、または脂肪族ジアミンを用いることが好ましく、例えばエチレンジアミン、プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミンジアミン等を好適に用いることができる。 An organic amine forms a complex with an organic titanium compound to produce a titania nanorod precursor, and a water-soluble aliphatic amine or aliphatic diamine can be used. As such an organic amine, an aliphatic amine having an amine at the terminal or both terminals of a linear alkyl group having 1 to 5 carbon atoms, or an aliphatic diamine is preferably used. For example, ethylenediamine, propanediamine, tetramethylenediamine, Pentamethylenediamine diamine and the like can be suitably used.
カチオン性界面活性剤には長鎖アルキル基含有ハロゲン化4級アンモニウム塩を用いることが好ましく、具体的には、炭素数10〜20の長鎖アルキル基と3個のメチル基を有するハロゲン化4級アンモニウム塩、例えばセチルトリメチルアンモニウムブロマイドを用いることができる。カチオン性界面活性剤により、チタンイオンを水溶液中でより安定化させて、高結晶性のチタニアナノロッドを得ることが可能になる。 The cationic surfactant is preferably a halogenated quaternary ammonium salt containing a long chain alkyl group, and specifically, a halogenated 4 having a long chain alkyl group having 10 to 20 carbon atoms and three methyl groups. Secondary ammonium salts such as cetyltrimethylammonium bromide can be used. The cationic surfactant makes it possible to stabilize titanium ions in an aqueous solution and obtain highly crystalline titania nanorods.
以上説明したカチオン性界面活性剤、および/または有機アミンと、ブロック共重合体とを含有する水溶液を調製した後、チタンアルコキシド等のチタン有機化合物を添加して撹拌することにより、チタニアゾルを得ることができる。その後、このチタニアゾルを水熱反応させて、目的物のチタニアナノロッドを得ることができる。 A titania sol is obtained by preparing an aqueous solution containing the cationic surfactant and / or organic amine described above and a block copolymer, and then adding and stirring a titanium organic compound such as titanium alkoxide. Can do. Thereafter, the titania sol can be hydrothermally reacted to obtain a target titania nanorod.
水熱反応の温度は、水の沸点から臨界温度の範囲(373K〜647K)で、チタンアルコキシドの種類等、反応に用いる試薬に応じて適宜選択することができる。また、水熱反応は水熱反応温度における水の飽和水蒸気圧で行なうので、オートクレーブや耐圧ガラス容器等、公知の耐圧容器を用いて行なうことが好ましい。反応時間は、反応に用いるチタンアルコキシドの種類等に応じて適宜選択すればよく、通常は10分〜数10時間の範囲で行なうことができる。 The temperature of the hydrothermal reaction is in the range from the boiling point of water to the critical temperature (373K to 647K), and can be appropriately selected according to the reagent used in the reaction, such as the type of titanium alkoxide. Further, since the hydrothermal reaction is carried out at the saturated water vapor pressure of water at the hydrothermal reaction temperature, it is preferably carried out using a known pressure vessel such as an autoclave or a pressure glass vessel. What is necessary is just to select reaction time suitably according to the kind etc. of titanium alkoxide used for reaction, and it can carry out normally in the range of 10 minutes-several tens hours.
このようにして得られた高結晶性のチタニアナノロッドはミラー指数表示における(004)面と(200)面のX線回折強度比(004)/(200)が1.0と、標準的なアナターゼ相チタニアの0.57よりはるかに高い値を示す。詳細は後述する。
得られたアナターゼ相のチタニアナノロッドを色素増感太陽電池に用いるために焼成するときは、700℃以下、好ましくは600℃以下で行なえばルチル相への転移を防止することができる。
The thus obtained highly crystalline titania nanorod has a standard anatase with an X-ray diffraction intensity ratio (004) / (200) of (004) plane and (200) plane in the Miller index display of 1.0. It shows a value much higher than 0.57 of phase titania. Details will be described later.
When the obtained anatase phase titania nanorod is fired for use in a dye-sensitized solar cell, the transition to the rutile phase can be prevented if it is carried out at 700 ° C. or lower, preferably 600 ° C. or lower.
<色素増感太陽電池の製造>
次に、高結晶性のチタニアナノロッドを用いた色素増感太陽電池について図2を参照して説明する。
本実施形態に係る色素増感太陽電池1は、透明電極2と、透明電極2の上に積層され、増感色素6が表面に吸着している酸化物半導体3を含有する多孔質の層と、透明電極2に対向して設けられる対向電極4と、透明電極2と対向電極4の間に含浸される電解液5を含んで構成され、さらに透明電極2と対向電極4の間隔を規制して電解液5を含浸させる空間を形成するためのスペーサ11を備えている。
<Manufacture of dye-sensitized solar cells>
Next, a dye-sensitized solar cell using a highly crystalline titania nanorod will be described with reference to FIG.
The dye-sensitized solar cell 1 according to this embodiment includes a transparent electrode 2, a porous layer that is stacked on the transparent electrode 2, and includes an oxide semiconductor 3 that has a sensitizing dye 6 adsorbed on the surface thereof. The electrode 4 is configured to include a counter electrode 4 provided to face the transparent electrode 2 and an electrolyte solution 5 impregnated between the transparent electrode 2 and the counter electrode 4, and further regulates the distance between the transparent electrode 2 and the counter electrode 4. And a spacer 11 for forming a space to be impregnated with the electrolytic solution 5.
そして、透明電極2と対向電極4を外部負荷12に接続することにより閉回路が形成され、電池として機能する。なお、本実施形態では図2に示すように、酸化物半導体3を含有する多孔質の層と対向電極4の間に、電解液5で満たされる空間が設けられている場合を例に説明する。また、以下の記載で酸化物半導体3を含有する多孔質の層を酸化物半導体層7と記す。 And the closed circuit is formed by connecting the transparent electrode 2 and the counter electrode 4 to the external load 12, and it functions as a battery. In the present embodiment, as illustrated in FIG. 2, a case where a space filled with the electrolytic solution 5 is provided between the porous layer containing the oxide semiconductor 3 and the counter electrode 4 will be described as an example. . In the following description, a porous layer containing the oxide semiconductor 3 is referred to as an oxide semiconductor layer 7.
透明電極2は、紫外線ないし可視光線の入射光Uを透過させ、また、酸化物半導体層7から電子を注入されるものであり、ガラス製またはプラスチック製の透明基材22の片面に、膜厚が2.5〜10μmの導電性光透過膜23が、スパッタリング、イオンプレーティング、スクリーン印刷等の公知の方法によりコーティングされて形成されている。 The transparent electrode 2 transmits ultraviolet light or visible light incident light U, and is injected with electrons from the oxide semiconductor layer 7. The transparent electrode 2 has a film thickness on one surface of a transparent substrate 22 made of glass or plastic. Is formed by coating by a known method such as sputtering, ion plating, or screen printing.
導電性光透過膜23は、電気伝導性を有し、入射光U(紫外線ないし可視光線)を透過し、透明基材22に対する密着性に優れるものであればよく、例えばITO(インジウム−スズ酸化物)、IZO(インジウム−亜鉛酸化物)、ZnO(酸化亜鉛)等を用いて形成することができる。ITOは入手し易く、製膜加工も容易である点で適している。 The conductive light transmission film 23 may be any material as long as it has electrical conductivity, transmits incident light U (ultraviolet light or visible light), and has excellent adhesion to the transparent base material 22, for example, ITO (indium-tin oxide). ), IZO (indium-zinc oxide), ZnO (zinc oxide), or the like. ITO is suitable because it is easily available and can be easily formed into a film.
本実施形態に係る酸化物半導体層7は、図3の部分拡大図に模式的に示すように、透明電極2上に酸化物半導体3からなる多孔質の層を積層することにより形成され、増感色素6を吸着している。酸化物半導体3には、本実施形態に係るアナターゼ相の高結晶性チタニアナノロッドを使用し、この他に、例えば酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb2O5)、酸化インジウム(In2O3)、酸化ジルコニウム(ZrO2)、酸化ランタン(La2O3)、酸化タンタル(Ta2O5)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)等の他の酸化物半導体3を併用することもできる。 The oxide semiconductor layer 7 according to this embodiment is formed by laminating a porous layer made of the oxide semiconductor 3 on the transparent electrode 2 as schematically shown in the partially enlarged view of FIG. The dye 6 is adsorbed. The oxide semiconductor 3 uses the highly crystalline titania nanorod of the anatase phase according to the present embodiment. Besides, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ). Indium oxide (In 2 O 3 ), Zirconium oxide (ZrO 2 ), Lanthanum oxide (La 2 O 3 ), Tantalum oxide (Ta 2 O 5 ), Strontium titanate (SrTiO 3 ), Barium titanate (BaTiO 3 ) Other oxide semiconductors 3 can also be used in combination.
色素増感型太陽電池の光電変換効率を高めるためには、量子サイズ効果が発現するメゾスコピックな酸化物半導体層7を用いることが好ましい。すなわち、直径が5〜30nmで長さが50〜300nm、好ましくは直径が10〜20nmで長さが100〜200nmのサイズのナノロッドを用いて、多孔質の酸化物半導体層7を形成することが好ましい。特に、アナターゼ相の高結晶性チタニアナノロッドを酸化物半導体層7に適用すれば、チタニア結晶内に長く連続した導電帯が形成されるので電子輸送効率が高く、この結果、高い光電変換効率が得られると考えられるため、酸化物半導体層7を構成する材料として優れている。 In order to increase the photoelectric conversion efficiency of the dye-sensitized solar cell, it is preferable to use a mesoscopic oxide semiconductor layer 7 that exhibits a quantum size effect. That is, the porous oxide semiconductor layer 7 may be formed using nanorods having a diameter of 5 to 30 nm and a length of 50 to 300 nm, preferably a diameter of 10 to 20 nm and a length of 100 to 200 nm. preferable. In particular, when a highly crystalline titania nanorod having an anatase phase is applied to the oxide semiconductor layer 7, a long and continuous conduction band is formed in the titania crystal, resulting in high electron transport efficiency. As a result, high photoelectric conversion efficiency is obtained. Therefore, it is excellent as a material for forming the oxide semiconductor layer 7.
また、酸化物半導体層7を多孔質にすることによって、注入された電子を透明電極2まで導くことができる。このような酸化物半導体層7は、チタニアを水あるいは有機溶剤に分散させてスラリ状とし、透明電極2の上にスピンコーティング法、キャストコーティング法やドクターブレード法等の公知の方法で薄膜を形成した後、前記した方法で焼成または乾燥することで形成することができる。 Further, by making the oxide semiconductor layer 7 porous, injected electrons can be guided to the transparent electrode 2. Such an oxide semiconductor layer 7 is formed into a slurry by dispersing titania in water or an organic solvent, and a thin film is formed on the transparent electrode 2 by a known method such as a spin coating method, a cast coating method or a doctor blade method. Then, it can be formed by firing or drying by the above-described method.
増感色素6には、その吸収波長域が可視光域を覆うくらい長波長側まで及び、光励起されたときのエネルギが酸化物半導体層7の伝導帯のレベルよりも約0.2eV以上高く、さらに電子を酸化物半導体層7へ注入された電子が増感色素6と再結合する前に、電解液5中のI−から電子を速く受け取れる色素を用いることが好ましい。 In the sensitizing dye 6, the absorption wavelength region extends to a long wavelength side so as to cover the visible light region, and the energy when photoexcited is about 0.2 eV or more higher than the level of the conduction band of the oxide semiconductor layer 7, Further, it is preferable to use a dye that can quickly receive electrons from I − in the electrolytic solution 5 before the electrons injected into the oxide semiconductor layer 7 recombine with the sensitizing dye 6.
このような増感色素6には、ルテニウム錯体、フタロシアニン、シアニン、メロシアニン、ポルフィリン、クロロフィル、ピレン、メチレンブルー、チオニン、キサンテン、クマリン、ローダミン等の金属錯体ないしは有機色素ならびにそれらの誘導体を用いることができる。アナターゼ相のチタニアの場合は、式(1)で表されるルテニウム錯体を好適に用いることができる。なお、式(1)において、−COOHが−COOC2H5で置換されていてもよい。
電解液5は、酸化物半導体層7へ電子注入して正孔が生じた増感色素6に電子を供与して酸化され、対向電極4で電子を受容して還元されるサイクルを繰り返すことができる酸化還元対を含有する溶液であればよく、I−/I3 −の酸化還元対を用いることができる。具体例として、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)等の金属ヨウ化物とヨウ素との組合せ、を挙げることができる。また、溶媒は水でもよいし、有機溶媒であってもよい。 The electrolytic solution 5 may repeat a cycle in which electrons are injected to the sensitizing dye 6 in which holes are generated by injecting electrons into the oxide semiconductor layer 7 to be oxidized, and are received and reduced by the counter electrode 4. Any solution containing a possible redox pair may be used, and a redox couple of I − / I 3 − can be used. Specific examples include combinations of metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), and calcium iodide (CaI 2 ) with iodine. The solvent may be water or an organic solvent.
対向電極4は、固定板42の片面に白金材質等の導電膜41がコーティングされて形成される。そして、この対向電極4に透明電極2が対向して設けられ、対向電極4と透明電極2の間には、両者の間隔を規制して電解液5を含浸させる空間を形成するためのスペーサ11が挿入される。なお、固定板42とスペーサ11の材質は電解液5に対して化学的に安定なものであればよく、例えばポリエステル、ポリオレフィン等の熱可塑性樹脂、シリコーン、ポリイミド等の熱硬化性樹脂、あるいはガラス等を用いることができる。 The counter electrode 4 is formed by coating one surface of the fixed plate 42 with a conductive film 41 made of platinum or the like. A transparent electrode 2 is provided opposite to the counter electrode 4, and a spacer 11 is formed between the counter electrode 4 and the transparent electrode 2 to regulate a space between the counter electrode 4 and the transparent electrode 2 and impregnate the electrolyte 5. Is inserted. The material of the fixing plate 42 and the spacer 11 may be any material that is chemically stable with respect to the electrolytic solution 5, for example, a thermoplastic resin such as polyester or polyolefin, a thermosetting resin such as silicone or polyimide, or glass. Etc. can be used.
対向電極4、透明電極2とスペーサ11で形成される空間に電解液5を含浸させる場合、毛管現象を利用するか、あるいは減圧ポンプを用いて前記空間を減圧して行なうことができる。このとき、酸化物半導体3で構成される酸化物半導体層7も電解液5で浸漬され、酸化物半導体3の表面に吸着している増感色素6と、電解液5に溶解しているI−/I3 −等の酸化還元対が接触できる状態になる。これにより、太陽光で励起した増感色素6から酸化物半導体3へ電子注入が起こり、図2のように電解液5に溶解している酸化還元対から増感色素6、酸化物半導体3(酸化物半導体層7)、透明電極2、外部負荷12、対向電極4を経て酸化還元対に戻る閉回路が形成され、色素増感太陽電池1として機能する。 When the electrolytic solution 5 is impregnated in the space formed by the counter electrode 4, the transparent electrode 2, and the spacer 11, the space can be reduced by using a capillary phenomenon or using a vacuum pump. At this time, the oxide semiconductor layer 7 composed of the oxide semiconductor 3 is also immersed in the electrolytic solution 5, the sensitizing dye 6 adsorbed on the surface of the oxide semiconductor 3, and the I dissolved in the electrolytic solution 5. The redox couple such as − / I 3 — can be brought into contact. Thereby, electrons are injected from the sensitizing dye 6 excited by sunlight into the oxide semiconductor 3, and the sensitizing dye 6 and the oxide semiconductor 3 ( A closed circuit that returns to the redox couple through the oxide semiconductor layer 7), the transparent electrode 2, the external load 12, and the counter electrode 4 is formed, and functions as the dye-sensitized solar cell 1.
本実施形態では、酸化物半導体3にアナターゼ相の高結晶性チタニアナノロッドを使用しているので、この閉回路における酸化物半導体3で構成される酸化物半導体層7の電子輸送効率が高くなることによって高光電変換効率が達成される。 In this embodiment, since the highly crystalline titania nanorod of anatase phase is used for the oxide semiconductor 3, the electron transport efficiency of the oxide semiconductor layer 7 composed of the oxide semiconductor 3 in this closed circuit is increased. A high photoelectric conversion efficiency is achieved.
ところで、前記の閉回路で効率よく光電変換を行なうためには、例えばI−/I3 −の酸化還元対を用いる場合、一旦I−から増感色素6に移動した電子が、I3 −と再結合して光電変換に寄与しなくなることを防止しなければならない。このためには、I−が電子を放出して生じたI3 −が、酸化物半導体層7の細孔中で拡散を妨げられることなく対向電極4に達して、電子を受取ることができるようにする必要がある。 By the way, in order to efficiently perform photoelectric conversion in the above-mentioned closed circuit, for example, when using a redox couple of I − / I 3 − , electrons once transferred from I − to the sensitizing dye 6 are converted into I 3 − and It must be prevented from recombining and not contributing to photoelectric conversion. For this purpose, I 3 − generated by releasing electrons from I − can reach the counter electrode 4 without being prevented from diffusing in the pores of the oxide semiconductor layer 7 and receive electrons. It is necessary to.
そこで、本実施形態の変形例として、図4に模式的に示すように、透明電極2上に粒径が1〜5nmの酸化物半導体ナノ粒子の層(第1多孔質層31)、直径5〜30nm、好ましくは直径10〜20nmのアナターゼ相の高結晶性チタニアナノロッドを含有する層(第2多孔質層32)、粒径が30nmを超える酸化物半導体粒子または直径が30nmを超えるナノロッドの層(第3多孔質層33)の順で積層された酸化物半導体層7とすることができる。ここで、第1多孔質層31の層厚を0.5〜5μm、第2多孔質層32と第3多孔質層33の層厚の和を3〜50μmとすることが好ましい。また、酸化物半導体層7の層厚を8μm以上とすることが好ましい。 Therefore, as a modification of the present embodiment, as schematically shown in FIG. 4, a layer of oxide semiconductor nanoparticles having a particle diameter of 1 to 5 nm (first porous layer 31) and a diameter of 5 on the transparent electrode 2. A layer (second porous layer 32) containing anatase-phase highly crystalline titania nanorods of ~ 30 nm, preferably 10-20 nm in diameter, oxide semiconductor particles having a particle diameter of more than 30 nm or nanorods of a diameter of more than 30 nm It can be set as the oxide semiconductor layer 7 laminated | stacked in order of (3rd porous layer 33). Here, it is preferable that the layer thickness of the first porous layer 31 is 0.5 to 5 μm, and the sum of the layer thicknesses of the second porous layer 32 and the third porous layer 33 is 3 to 50 μm. In addition, the thickness of the oxide semiconductor layer 7 is preferably 8 μm or more.
図4において、第1多孔質層31を構成するナノ粒子の粒径は1〜5nmと極めて微細であるため、層厚が薄いにもかかわらず大きな比表面積が得られる。すなわち第1多孔質層31に大量の増感色素6を吸着させることができる。これにより第1多孔質層31における入射光Uの吸光率が高くなり、色素増感太陽電池1の光電変換効率を向上させることができる。
また、第1多孔質層31を構成するナノ粒子の粒径が小さいことを考慮して層厚を0.5〜5μmと相対的に薄くすることにより、第1多孔質層31内部での電解液5中の酸化還元対の拡散不良が原因で電子が再結合により失われることが有効に防止される。
In FIG. 4, since the particle diameter of the nanoparticles constituting the first porous layer 31 is as extremely fine as 1 to 5 nm, a large specific surface area can be obtained even though the layer thickness is thin. That is, a large amount of the sensitizing dye 6 can be adsorbed on the first porous layer 31. Thereby, the absorptance of the incident light U in the 1st porous layer 31 becomes high, and the photoelectric conversion efficiency of the dye-sensitized solar cell 1 can be improved.
Further, in consideration of the small particle size of the nanoparticles constituting the first porous layer 31, the layer thickness is relatively reduced to 0.5 to 5 μm, so that the electrolysis in the first porous layer 31 is performed. It is effectively prevented that electrons are lost due to recombination due to the diffusion failure of the redox couple in the liquid 5.
そして、第1多孔質層31で吸収されなかった入射光Uは、第2多孔質層32に達してその表面に吸着している増感色素6により吸収されるので、入射光Uの利用効率を高くすることができる。さらに、第2多孔質層32は直径5〜30nmの高結晶性チタニアナノロッドを含有しているので増感色素から注入された電子の移動は速い。また、粒径が1〜5nmのナノ粒子の場合ほどは稠密に充填された状態にはなりえないので、多孔質の酸化物半導体層7中に酸化還元対が拡散するために必要な空間が確保され、酸化還元対の拡散が妨げられないので、一旦増感色素6から酸化物半導体7に注入された電子が酸化還元対との再結合により失われることは無い。 The incident light U that has not been absorbed by the first porous layer 31 reaches the second porous layer 32 and is absorbed by the sensitizing dye 6 adsorbed on the surface thereof. Can be high. Furthermore, since the second porous layer 32 contains highly crystalline titania nanorods having a diameter of 5 to 30 nm, the movement of electrons injected from the sensitizing dye is fast. In addition, since it cannot be as densely packed as in the case of nanoparticles having a particle size of 1 to 5 nm, there is a space necessary for the redox couple to diffuse into the porous oxide semiconductor layer 7. Since it is ensured and the diffusion of the redox couple is not hindered, the electrons once injected from the sensitizing dye 6 into the oxide semiconductor 7 are not lost by recombination with the redox couple.
このように、第2多孔質層32では入射光Uの利用効率を高める効果と、電子の再結合防止効果を有することに加え、アナターゼ相の高結晶性チタニアナノロッドが高い電子輸送効率を示すことにより、高い光電変換効率が得られる。 As described above, in the second porous layer 32, in addition to the effect of increasing the utilization efficiency of the incident light U and the effect of preventing recombination of electrons, the highly crystalline titania nanorods in the anatase phase exhibit high electron transport efficiency. Thus, high photoelectric conversion efficiency can be obtained.
第2多孔質層32上に、さらに粒径が30nmを超える酸化物半導体粒子または直径が30nmを超えるナノロッドで構成される第3多孔質層33を設けることができる。この第3多孔質層33も、第2多孔質層32と同様に、電子の再結合防止効果を有するが、主には、入射光Uを反射・散乱させることにより、光の利用効率を高める効果を有する。 On the 2nd porous layer 32, the 3rd porous layer 33 comprised by the oxide semiconductor particle which a particle size exceeds 30 nm further, or the nanorod whose diameter exceeds 30 nm can be provided. The third porous layer 33 also has the effect of preventing recombination of electrons, like the second porous layer 32, but mainly increases the light utilization efficiency by reflecting and scattering the incident light U. Has an effect.
このように第1多孔質層31〜第3多孔質層33を設けることにより、酸化物半導体層7中での酸化還元対の拡散を確保しつつ入射光Uの利用効率を高めることが可能となり、酸化物半導体層7全体としての層厚を薄くすることができる。この結果、透明電極2と対向電極4との間隔を狭めることが可能となり、色素増感太陽電池1の内部抵抗が小さくなるので、高い光電変換効率を得ることができる。 By providing the first porous layer 31 to the third porous layer 33 in this way, it becomes possible to increase the utilization efficiency of the incident light U while ensuring the diffusion of the redox couple in the oxide semiconductor layer 7. The layer thickness of the oxide semiconductor layer 7 as a whole can be reduced. As a result, the distance between the transparent electrode 2 and the counter electrode 4 can be reduced, and the internal resistance of the dye-sensitized solar cell 1 is reduced, so that high photoelectric conversion efficiency can be obtained.
ここで、第1多孔質層31の層厚の下限が0.5μmであるのは、積層により酸化物半導体層7を形成する際に、一回のコーティングで形成可能な最低厚みであることによる。そして、第1多孔質層31の層厚の上限が5μmであるのは、第1多孔質層31の内部に浸透した電解液5中を移動する酸化還元対であるI3 −および3I−の移動速度は極めて遅いため、層厚が5μmを超えると再結合により光電変換に寄与しなくなる電子が増大し、高い光電変換効率を得られなくなるからである。 Here, the lower limit of the layer thickness of the first porous layer 31 is 0.5 μm because it is the minimum thickness that can be formed by one coating when the oxide semiconductor layer 7 is formed by stacking. . The upper limit of the thickness of the first porous layer 31 is 5 μm because of the redox couples I 3 − and 3I − that move through the electrolytic solution 5 that has penetrated into the first porous layer 31. This is because the movement speed is extremely slow, and when the layer thickness exceeds 5 μm, electrons that do not contribute to photoelectric conversion due to recombination increase, and high photoelectric conversion efficiency cannot be obtained.
また、第2多孔質層32と第3多孔質層33の層厚の和の下限が3μmであるのは、コーティング処理で形成可能な最低厚みであるからである。そして、第2多孔質層32と第3多孔質層33の層厚の和が上限の50μmを超えると、透明電極2と対向電極4との電極間隔が大きくなり、電池の内部抵抗が上昇する結果、高い光電変換効率を得られなくなるからである。 The lower limit of the sum of the layer thicknesses of the second porous layer 32 and the third porous layer 33 is 3 μm because it is the minimum thickness that can be formed by the coating process. When the sum of the layer thicknesses of the second porous layer 32 and the third porous layer 33 exceeds the upper limit of 50 μm, the electrode interval between the transparent electrode 2 and the counter electrode 4 increases, and the internal resistance of the battery increases. As a result, high photoelectric conversion efficiency cannot be obtained.
次に、本発明の効果を確認した実施例について説明する。なお、本発明は、これらの実施例に何ら限定されるものではない。
本実施例では、まずアナターゼ相の高結晶性チタニアナノロッド(以下、チタニアナノロッドと記す)を水熱反応により合成した後、その分析を行なった。また、得られたチタニアナノロッドを用いて色素増感太陽電池1を製造し、光電変換効率等の電池特性の評価を行なった。
Next, examples in which the effects of the present invention have been confirmed will be described. Note that the present invention is not limited to these examples.
In this example, anatase-phase highly crystalline titania nanorods (hereinafter referred to as titania nanorods) were synthesized by a hydrothermal reaction and then analyzed. Moreover, the dye-sensitized solar cell 1 was manufactured using the obtained titania nanorod, and battery characteristics, such as photoelectric conversion efficiency, were evaluated.
<実施例1:チタニアナノロッドの合成と構造の評価>
本実施例では、以下の試薬類を用いてチタニアナノロッドを合成した。なお、全ての試薬は試薬グレードを用い、精製することなく使用した。
<Example 1: Synthesis of titania nanorods and evaluation of structure>
In this example, titania nanorods were synthesized using the following reagents. All reagents were reagent grade and used without purification.
チタン有機化合物として、テトライソプロピルオルトチタネート(以下、TIPTと記す)を用いた。疎水性ブロック及び親水性ブロックを有するブロック共重合体には、BASF社製のPlouronic F127(以下F127)を用いた。F127は(PEO)x(PPO)y(PEO)z:x、z=100〜110、y=50〜70で表される三元ブロック共重合体である。また、有機アミンにはエチレンジアミン(以下EDA)を用い、カチオン性界面活性剤としてセチルトリメチルアンモニウムブロマイド(以下CTAB)を用いた。 Tetraisopropyl orthotitanate (hereinafter referred to as TIPT) was used as the titanium organic compound. Pluralonic F127 (hereinafter referred to as F127) manufactured by BASF was used as a block copolymer having a hydrophobic block and a hydrophilic block. F127 is a ternary block copolymer represented by (PEO) x (PPO) y (PEO) z : x, z = 100 to 110, y = 50 to 70. Further, ethylenediamine (hereinafter referred to as EDA) was used as the organic amine, and cetyltrimethylammonium bromide (hereinafter referred to as CTAB) was used as the cationic surfactant.
F127の10wt%水溶液を調製し、ここにCTABを0.05モル/Lとなるように添加した後、35℃で透明な水溶液が得られるまで撹拌した。この水溶液にEDAを0.2モル/Lになるように加えた後、TIPTを0.22モル/Lになるまで撹拌しながら添加して、白色沈殿状のチタニアゾルを得た。このチタニアゾルを含む水溶液を、ステンレススチール製の耐圧容器中にシールされるテフロン(登録商標)製の容器に入れ、160℃で12時間水熱反応を行ない、目的とするチタニアナノロッドが懸濁した白色の液を得た(以下、この懸濁液をスラリAと記す)。 A 10 wt% aqueous solution of F127 was prepared, and CTAB was added thereto at 0.05 mol / L, followed by stirring at 35 ° C. until a transparent aqueous solution was obtained. After adding EDA to this aqueous solution so that it might become 0.2 mol / L, TIPT was added, stirring until it became 0.22 mol / L, and the white titania sol was obtained. The aqueous solution containing the titania sol is placed in a Teflon (registered trademark) container sealed in a stainless steel pressure-resistant container, subjected to a hydrothermal reaction at 160 ° C. for 12 hours, and the desired titania nanorod is suspended in white (Hereinafter, this suspension is referred to as slurry A).
得られたチタニアナノロッドを濾別し蒸留水で2回、エタノールで2回洗浄した後、遠心分離して得たチタニアナノロッドの白色粉末を走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、高分解能電子顕微鏡(HRTEM)、X線回折(XRD)分析用のサンプルとした。 The obtained titania nanorods were separated by filtration, washed twice with distilled water and twice with ethanol, and then centrifuged to obtain white powder of titania nanorods obtained by scanning electron microscope (SEM) and transmission electron microscope (TEM). Samples for high-resolution electron microscope (HRTEM) and X-ray diffraction (XRD) analysis were used.
<比較例1:ブロック共重合体を用いないチタニアナノロッド>
比較用に、F127を使用しない点を除き、実施例1と全く同一の方法でチタニアナノロッドの白色懸濁液を製造した(以下、この白色懸濁液をスラリBと記す)。
<Comparative Example 1: Titania nanorods not using a block copolymer>
For comparison, a white suspension of titania nanorods was produced in the same manner as in Example 1 except that F127 was not used (hereinafter, this white suspension is referred to as slurry B).
(SEM、TEMによる構造の比較)
図5に実施例1と比較例1のチタニアナノロッドのモルフォロジを示した。図5A〜図5Cはそれぞれ実施例1のTEM写真、SEM写真、HRTEM写真であり、図5D、Eはそれぞれ比較例1のTEM写真、SEM写真である。なお、これらの写真はチタニアナノロッドの焼成前のものである。
(Comparison of structures by SEM and TEM)
FIG. 5 shows the morphology of the titania nanorods of Example 1 and Comparative Example 1. 5A to 5C are a TEM photograph, an SEM photograph, and an HRTEM photograph of Example 1, respectively, and FIGS. 5D and 5E are a TEM photograph and an SEM photograph of Comparative Example 1, respectively. These photographs are taken before firing the titania nanorods.
まず、実施例1と比較例1のTEM写真(図5A、5D)およびSEM写真(図5B、5E)を比較する。実施例1のチタニアナノロッドは、直径20〜30nm、長さ100〜200nmの形状の揃ったロッドが分散しており、枝分かれしたロッドは見当たらない。これに対して比較例1では、ロッドの直径は20〜30nmであるが、長さは500〜600nmのものが多数あり、また単独で分散しておらず、枝分れ状態、若しくは会合状態のロッドであることが分かる。 First, TEM photographs (FIGS. 5A and 5D) and SEM photographs (FIGS. 5B and 5E) of Example 1 and Comparative Example 1 are compared. In the titania nanorod of Example 1, rods with a uniform shape having a diameter of 20 to 30 nm and a length of 100 to 200 nm are dispersed, and no branched rods are found. On the other hand, in Comparative Example 1, the diameter of the rod is 20 to 30 nm, but there are many rods having a length of 500 to 600 nm, which are not dispersed alone, and are in a branched state or an associated state. It turns out that it is a rod.
本発明者らは、CTABを用いずに、F127の存在下でチタニアゾルの水熱反応を行なった場合も、実施例1と同様のロッドの直径と長さで、単独で分散しているチタニアナノロッドが得られることを確認した。これらの結果は、ナノロッドの直径と長さは疎水性ブロック及び親水性ブロックを有するブロック共重合体、例えばF127により制御できることを示している。 In the case where the hydrothermal reaction of the titania sol was carried out in the presence of F127 without using CTAB, the present inventors independently dispersed the titania nanorods with the same rod diameter and length as in Example 1. It was confirmed that These results indicate that the diameter and length of the nanorods can be controlled by a block copolymer having a hydrophobic block and a hydrophilic block, such as F127.
図5Cは、実施例1で得られた1本のチタニアナノロッドのHRTEM写真である。この写真で明瞭な格子状の縞が認められることから、このチタニアナノロッドは高い結晶性を有し、微細な双晶(microtwins)等の欠陥が殆どないことが分かる。また、図5Cでは、アナターゼ相チタニアの格子間隔0.354nmの(101)面の縁が観察され、さらにチタニアナノロッドの結晶は(001)方向に成長していることが観察される。 FIG. 5C is an HRTEM photograph of one titania nanorod obtained in Example 1. Since clear lattice-like stripes are observed in this photograph, it can be seen that the titania nanorod has high crystallinity and has almost no defects such as fine twins. In FIG. 5C, the edge of the (101) plane of the anatase phase titania having a lattice interval of 0.354 nm is observed, and further, the crystal of the titania nanorod is observed to grow in the (001) direction.
図6に実施例1と比較例1のチタニアナノロッドのXRD分析結果を示す。図6の横軸上の棒線は、アナターゼ相チタニアの標準サンプルのピーク位置を示している。なお、図6において、上は実施例1のXRDピーク曲線であり、下は比較例1のものである。
これらのサンプルのX線回折パターンから、実施例1ではc軸に沿って結晶領域が成長する結果、(004)面と(200)面の強度比(004)/(200)が、比較例1と比較して大きくなることが認められた。
The XRD analysis result of the titania nanorod of Example 1 and Comparative Example 1 is shown in FIG. The bar on the horizontal axis in FIG. 6 indicates the peak position of the standard sample of the anatase phase titania. In FIG. 6, the top is the XRD peak curve of Example 1, and the bottom is that of Comparative Example 1.
From the X-ray diffraction patterns of these samples, in Example 1, the crystal region grew along the c-axis. As a result, the intensity ratio (004) / (200) between the (004) plane and the (200) plane was Comparative Example 1. It was observed that it was larger than
すなわち、ミラー指数表示における(004)面と(200)面の強度比(004)/(200)は比較例1の0.84に対し、実施例1では1.0と大きな値を示すことが認められた。なお、アナターゼ相チタニアの標準サンプルの強度比(004)/(200)は0.57であった。このように、強度比(004)/(200)が0.85以上の高い値を示すことから、c軸成長したことが分かる。 That is, the intensity ratio (004) / (200) between the (004) plane and the (200) plane in the Miller index display shows a large value of 1.0 in Example 1 compared to 0.84 in Comparative Example 1. Admitted. The intensity ratio (004) / (200) of the standard sample of anatase phase titania was 0.57. Thus, since the intensity ratio (004) / (200) shows a high value of 0.85 or more, it can be seen that the c-axis has grown.
ここで、強度比(004)/(200)の測定は以下のようにして行なった。
標準試料ホルダーに粉末試料を装填し、X線回折装置(Rigaku製、Rigaku Goniometer PMG-A2, CN2155D2)に装着し、X線照射条件を、CuKα35kV、15mA、Rigaku広角ゴニオメータ使用、スキャンスピード:2deg/min、スキャンステップ:0.017deg、走査範囲:4〜130degとして測定した。
Here, the intensity ratio (004) / (200) was measured as follows.
A standard sample holder is loaded with a powder sample and mounted on an X-ray diffractometer (Rigaku, Rigaku Goniometer PMG-A2, CN2155D2). X-ray irradiation conditions are CuK α 35 kV, 15 mA, using a Rigaku wide-angle goniometer, scan speed The measurement was performed at 2 deg / min, scan step: 0.017 deg, and scan range: 4 to 130 deg.
なお、前記したように比較例1のロッドの長さは実施例1より長いが、これにも関わらず、強度比(004)/(200)が0.84と実施例1より低いのは、比較例1のチタニアナノロッドはロッド状ではない枝分れ部分、若しくは会合状態部分のチタニアを含有していることに起因すると考えられる(図5D、5E)。 As described above, the length of the rod of Comparative Example 1 is longer than that of Example 1, but in spite of this, the strength ratio (004) / (200) is 0.84, which is lower than that of Example 1. It is considered that the titania nanorod of Comparative Example 1 contains a branched portion that is not rod-shaped or contains titania in an associated state (FIGS. 5D and 5E).
以上から、チタニアゾルにF127を添加して水熱反応を行なうことにより、比較的短いチタニアナノロッドが完全に分散した状態で各々独立に成長することが分かる。またこのことから、水熱反応等のウェットケミカルプロセスで、チタニアに配位しうるリガンド、例えばチタニアの水酸基に配位しうる酸素を主鎖または側鎖に有するポリマを用いることによりナノ結晶の形状を制御できるものと考えられる。 From the above, it can be seen that by adding F127 to the titania sol and conducting a hydrothermal reaction, relatively short titania nanorods grow independently in a completely dispersed state. In addition, from this, in the wet chemical process such as hydrothermal reaction, the shape of the nanocrystal can be formed by using a ligand capable of coordinating with titania, for example, a polymer having oxygen in the main chain or side chain capable of coordinating with the hydroxyl group of titania. Can be controlled.
<実施例2:チタニアナノロッドを用いた酸化物半導体層>
実施例1で合成したチタニアナノロッドを用いた酸化物半導体層7を製造し、その結晶構造を評価した。
<Example 2: Oxide semiconductor layer using titania nanorods>
An oxide semiconductor layer 7 using the titania nanorod synthesized in Example 1 was manufactured, and its crystal structure was evaluated.
酸化物半導体層7は以下のようにして製造した。
ガラス基板上に酸化インジウム・スズが製膜されたITO透明電極2(ジオマテック社製、シート抵抗約5Ω/□)の上に、メンディングテープを支持体として、実施例1で得たスラリAをドクターブレード法で塗布した。このチタニアナノロッドが塗布された透明電極を大気中室温下で自然乾燥させた後、450℃に熱せられた電気炉に入れて10分間焼成した。
The oxide semiconductor layer 7 was manufactured as follows.
On the ITO transparent electrode 2 (manufactured by Geomat Co., sheet resistance of about 5Ω / □) formed with indium tin oxide on a glass substrate, the slurry A obtained in Example 1 was used with a mending tape as a support. It apply | coated by the doctor blade method. The transparent electrode coated with the titania nanorods was naturally dried in the atmosphere at room temperature, and then placed in an electric furnace heated to 450 ° C. and baked for 10 minutes.
続いて、チタニアナノロッドが焼成された透明電極2に、スラリAをドクターブレード法で塗布して焼成する操作を3回繰り返した。なお、焼成条件は450℃で10分間とし、最後の1回だけ450℃で40分間焼成した。このようにして、透明電極2上に多孔質の酸化物半導体層7を形成した。 Subsequently, the operation of applying slurry A to the transparent electrode 2 on which the titania nanorods were fired by the doctor blade method and firing was repeated three times. The firing conditions were 450 ° C. for 10 minutes, and the final firing was performed at 450 ° C. for 40 minutes. In this manner, a porous oxide semiconductor layer 7 was formed on the transparent electrode 2.
<比較例2>
比較例2として、比較例1でF127を使用せずに製造したスラリBを用いて、実施例2と同一の方法で透明電極2上に多孔質の酸化物半導体層7を形成した。
<Comparative example 2>
As Comparative Example 2, a porous oxide semiconductor layer 7 was formed on the transparent electrode 2 by the same method as in Example 2, using the slurry B produced in Comparative Example 1 without using F127.
<比較例3>
比較例3として、市販品のチタニアナノ粒子である日本アエロジル製のP25(以下P25と記す)を用いて透明電極2上に多孔質の酸化物半導体層7を形成した。本比較例では、2gのP25を40wt%のポリエチレングリコール水溶液30mlに分散させたスラリCを用いて、ガラス基板に酸化インジウム・スズが製膜されたITO透明電極2(ジオマテック社製、シート抵抗約5Ω/□)上に、実施例2と同様にドクターブレード法で塗付した後、450℃で焼成して酸化物半導体層7を形成した。
<Comparative Example 3>
As Comparative Example 3, the porous oxide semiconductor layer 7 was formed on the transparent electrode 2 using P25 (hereinafter referred to as P25) manufactured by Nippon Aerosil, which is a commercially available titania nanoparticle. In this comparative example, using a slurry C in which 2 g of P25 was dispersed in 30 ml of a 40 wt% polyethylene glycol aqueous solution, an ITO transparent electrode 2 (made by Geomat Co., sheet resistance of about sheet resistance) formed of indium tin oxide on a glass substrate was used. 5Ω / □) was applied by the doctor blade method in the same manner as in Example 2, and then fired at 450 ° C. to form the oxide semiconductor layer 7.
(酸化物半導体層の構造)
焼成後の各酸化物半導体層7を光学顕微鏡で観察した。実施例2の酸化物半導体層7の場合、表面にクラックの無い薄膜が観察され、透明電極2との密着性に優れていることを確認した。これに対し、比較例2、比較例3の場合、表面のクラックが原因となって酸化物半導体層7の薄膜が透明電極2から一部剥離していることが観察された。
(Structure of oxide semiconductor layer)
Each oxide semiconductor layer 7 after firing was observed with an optical microscope. In the case of the oxide semiconductor layer 7 of Example 2, a thin film without cracks was observed on the surface, and it was confirmed that the adhesiveness with the transparent electrode 2 was excellent. On the other hand, in the case of Comparative Example 2 and Comparative Example 3, it was observed that the thin film of the oxide semiconductor layer 7 was partially peeled from the transparent electrode 2 due to surface cracks.
スラリAに含有されている共重合体(F127)がチタニアナノロッドのバインダとしても機能することは予想されるが、同じくポリマ(ポリエチレングリコール)を含有するスラリCを用いた比較例3で表面のクラックが観察されたことから、ブロック共重合体であるF127は、透明電極2との密着性に優れた酸化物半導体層7を形成する上で特に顕著な効果を有することがわかる。 Although the copolymer (F127) contained in the slurry A is expected to function as a binder for titania nanorods, surface cracks were observed in Comparative Example 3 using the slurry C containing polymer (polyethylene glycol). Thus, it can be seen that F127, which is a block copolymer, has a particularly remarkable effect in forming the oxide semiconductor layer 7 having excellent adhesion to the transparent electrode 2.
焼成後の酸化物半導体層7のSEM写真を、図7A(実施例2)、図7B(比較例2)に示す。実施例2の、F127を使用して製造したチタニアナノロッドは焼成後もナノロッドの形状を維持している(図7A)のに対し、比較例2では、ロッド形状から粒子に近い形状に変化し、ナノロッドの直径が30μm以上となっている(図7B)ことが認められた。すなわちブロック共重合体であるF127を用いて製造したチタニアナノロッドは、焼成しても形状は変化しないという特徴を有する。これは、F127がチタニアナノロッドの一本一本を包み込んで隔離しているため、焼成してもチタニアナノロッド同士が結合することはないためと考えられる。 SEM photographs of the oxide semiconductor layer 7 after firing are shown in FIG. 7A (Example 2) and FIG. 7B (Comparative Example 2). The titania nanorods manufactured using F127 of Example 2 maintain the shape of the nanorods after firing (FIG. 7A), whereas in Comparative Example 2, the shape changes from a rod shape to a shape close to particles, It was recognized that the diameter of the nanorods was 30 μm or more (FIG. 7B). That is, the titania nanorod manufactured using F127, which is a block copolymer, has a feature that the shape does not change even when fired. This is thought to be because the titania nanorods are not bonded to each other even when fired because F127 encloses and isolates the titania nanorods one by one.
次に、XRD分析によりチタニアナノロッドの結晶構造を分析した。測定には、薄膜分析用のX線回折装置(Rigaku製、Rigaku Goniometer PMG-A2,CN2155D2)を用いた。 Next, the crystal structure of titania nanorods was analyzed by XRD analysis. For the measurement, an X-ray diffractometer for thin film analysis (Rigaku Goniometer PMG-A2, CN2155D2 manufactured by Rigaku) was used.
実施例2の酸化物半導体層7のX線回折のピークは、回折パターンカードJCPDSに見られるアナターゼ型の結晶ピーク位置と一致した。また、アナターゼ相チタニアの特徴的ピークである(101)面の回折ピークの半値幅は1度であった。比較例2のX線回折ピークもアナターゼ相の結晶ピーク位置を示したが、(101)面回折ピークの半値幅は1.5度であった。 The X-ray diffraction peak of the oxide semiconductor layer 7 of Example 2 coincided with the anatase type crystal peak position found in the diffraction pattern card JCPDS. The half-value width of the diffraction peak on the (101) plane, which is a characteristic peak of anatase phase titania, was 1 degree. The X-ray diffraction peak of Comparative Example 2 also showed the crystal peak position of the anatase phase, but the half width of the (101) plane diffraction peak was 1.5 degrees.
比較例3の場合、アナターゼ相の結晶ピークが得られたが、ルチル相のピークも認められた。また、(101)面回折ピークの半値幅は2度であった。
これらの結果から、実施例2の酸化物半導体層7を構成するチタニアナノロッドの結晶性は、比較例2、比較例3より高いことが示される。
In the case of Comparative Example 3, an anatase phase crystal peak was obtained, but a rutile phase peak was also observed. The half width of the (101) plane diffraction peak was 2 degrees.
From these results, it is shown that the crystallinity of the titania nanorod constituting the oxide semiconductor layer 7 of Example 2 is higher than that of Comparative Example 2 and Comparative Example 3.
図8に、実施例2における焼成前後の酸化物半導体層7のX線回折パターンを示す。焼成前の強度比(004)/(200)は1.0であったのに対し、焼成後の値は0.893であり、焼成しても1割程度小さくなるにとどまっていた。このことは、本発明に係る高結晶性のチタニアナノロッドは、焼成しても結晶構造は極わずかしか変化しない事を示している。これはまた、前記したように焼成によっても形状が変化しないことと共に、本発明に係る高結晶性のチタニアナノロッドの特徴である。 FIG. 8 shows X-ray diffraction patterns of the oxide semiconductor layer 7 before and after firing in Example 2. The strength ratio (004) / (200) before firing was 1.0, whereas the value after firing was 0.893, which was only about 10% smaller even after firing. This indicates that the highly crystalline titania nanorods according to the present invention change very little even when fired. This is also a feature of the highly crystalline titania nanorod according to the present invention as well as the shape does not change by firing as described above.
また、チタニアナノロッドを焼成する前後でのBET比表面積を測定したところ、焼成前が45.5m2/g、焼成後が43.7m2/gと顕著な変化は見られなかった。このことからも、本発明に係るチタニアナノロッドの構造は焼成の前後で変化していないことが示される。 Moreover, when the BET specific surface area before and after baking a titania nanorod was measured, the remarkable change was not seen with 45.5 m < 2 > / g before baking and 43.7 m < 2 > / g after baking. This also indicates that the structure of the titania nanorod according to the present invention does not change before and after firing.
(色素増感太陽電池への適用)
次に、高結晶性のチタニアナノロッドを色素増感太陽電池1に適用して、その性能を評価した。フッ素がドープされた酸化スズは金属と比べて電気抵抗が大きいため、透明電極2が大型化した際にはその抵抗によって色素増感太陽電池1の効率が大きく下がる。そこで、フッ素がドープされた酸化スズの膜と金属配線とを組み合わせた透明電極2を作製して色素増感太陽電池1を製造した。
(Application to dye-sensitized solar cells)
Next, a highly crystalline titania nanorod was applied to the dye-sensitized solar cell 1 and its performance was evaluated. Since tin oxide doped with fluorine has a larger electric resistance than metal, when the transparent electrode 2 is enlarged, the efficiency of the dye-sensitized solar cell 1 is greatly reduced by the resistance. Therefore, the dye-sensitized solar cell 1 was manufactured by producing a transparent electrode 2 in which a tin oxide film doped with fluorine and a metal wiring were combined.
<実施例3>
透明電極2を以下の手順で作製し、この透明電極2上に実施例2に示した方法で酸化物半導体層7を形成した後、色素増感太陽電池1を製造した。
まず、図9に示すように、ガラス基板上にフッ素ドープされた酸化スズ膜52が製膜されたガラス基板51に溝53を敷設し、その溝53の中に銀ペースト(田中貴金属製)を埋設して550℃で1時間焼成することによって、金属配線54を設置した。
<Example 3>
The transparent electrode 2 was produced by the following procedure, and after forming the oxide semiconductor layer 7 on the transparent electrode 2 by the method shown in Example 2, the dye-sensitized solar cell 1 was produced.
First, as shown in FIG. 9, a groove 53 is laid on a glass substrate 51 on which a fluorine-doped tin oxide film 52 is formed on a glass substrate, and a silver paste (made by Tanaka Kikinzoku) is placed in the groove 53. The metal wiring 54 was installed by embedding and baking at 550 ° C. for 1 hour.
この金属配線54とフッ素ドープされた酸化スズ膜との電気的接続のため、インジウムドープされた酸化スズの前駆体溶液(ITO−05、高純度化学研究所製)を塗布して、400℃で1時間焼成した。こうして作製したITO薄膜55は金属配線54とフッ素ドープされた酸化スズ膜52との電気的接続を確保するのと同時に、金属配線54を電解液5から保護する役割を兼ねている。 In order to electrically connect the metal wiring 54 and the fluorine-doped tin oxide film, an indium-doped tin oxide precursor solution (ITO-05, manufactured by Kojundo Chemical Laboratories) was applied at 400 ° C. Baked for 1 hour. The ITO thin film 55 thus produced serves to protect the metal wiring 54 from the electrolytic solution 5 as well as to ensure electrical connection between the metal wiring 54 and the fluorine-doped tin oxide film 52.
こうして得られた透明電極2上に、実施例2と同一の方法で酸化物半導体層7を形成した。続いて、この酸化物半導体層7に増感色素6を吸着させた。まず、増感色素6としてcis−Di(thiocyanato)−N,N'−bis(2,2'−bipyridyl−4,4'dicarboxylic acid)−Ruthenium(II)(solaronix社製、商品名N719)を濃度3×10−4モル/Lでエタノールに溶解させた溶液を調整した。 An oxide semiconductor layer 7 was formed on the transparent electrode 2 thus obtained by the same method as in Example 2. Subsequently, the sensitizing dye 6 was adsorbed on the oxide semiconductor layer 7. First, as sensitizing dye 6, cis-Di (thiocyanato) -N, N′-bis (2,2′-bipyrylyl-4,4′dicarboxylic acid) -Ruthenium (II) (trade name N719, manufactured by solaronix) was used. A solution dissolved in ethanol at a concentration of 3 × 10 −4 mol / L was prepared.
次に、この溶液に酸化物半導体層7が積層された透明電極2を浸漬して、40℃の温度条件で20時間放置した。その後、この溶液から透明電極2を取り出してエタノールで洗浄して、暗所にて自然乾燥させた。これにより透明電極2上に、増感色素6を吸着している酸化物半導体層7を形成した。 Next, the transparent electrode 2 on which the oxide semiconductor layer 7 was laminated was immersed in this solution and allowed to stand at 40 ° C. for 20 hours. Thereafter, the transparent electrode 2 was taken out from this solution, washed with ethanol, and naturally dried in a dark place. Thereby, the oxide semiconductor layer 7 adsorbing the sensitizing dye 6 was formed on the transparent electrode 2.
次に対向電極4として、前記の透明電極2と同じ大きさの透明導電性ガラス(ITOスパッタガラス、日本板硝子社製)の表面に白金をスパッタした電極を製造した。 Next, an electrode in which platinum was sputtered on the surface of a transparent conductive glass (ITO sputtered glass, manufactured by Nippon Sheet Glass Co., Ltd.) having the same size as the transparent electrode 2 was manufactured as the counter electrode 4.
また、電解液5としてヨウ素系の酸化還元対溶液(ヨウ素0.05モル/L、ヨウ化リチウム0.1モル/L、2,3ジメチル−ヨウ化イミダゾリウム0.5モル/L、溶媒;メトキシアセトニトリル)を調製した。 Further, as an electrolytic solution 5, an iodine-based redox solution (iodine 0.05 mol / L, lithium iodide 0.1 mol / L, 2,3 dimethyl-imidazolium iodide 0.5 mol / L, solvent; Methoxyacetonitrile) was prepared.
さらに、透明電極2と対向電極4とをスペーサ11を介して対向させ、加熱することによって両電極とスペーサ11を密着させた。なおスペーサ11にはアイオノマ(商品名ハイミラン1702、三井デュポンポリケミカル社製)のフィルムを用いた。そして毛管現象を利用することにより、スペーサ11、透明電極2および対向電極4で構築された空間に上記の電解液5を充填した後、透明電極2と対向電極4の間の開口をエポキシ系接着剤で封止して色素増感太陽電池1を完成させた。 Further, the transparent electrode 2 and the counter electrode 4 were opposed to each other through the spacer 11 and heated to bring the both electrode and the spacer 11 into close contact. The spacer 11 was made of an ionomer (trade name: High Milan 1702, manufactured by Mitsui DuPont Polychemical Co., Ltd.). Then, by using the capillary phenomenon, the space formed by the spacer 11, the transparent electrode 2 and the counter electrode 4 is filled with the electrolytic solution 5, and then the opening between the transparent electrode 2 and the counter electrode 4 is bonded with epoxy. The dye-sensitized solar cell 1 was completed by sealing with an agent.
<実施例4>
前述したようにI3 -が酸化物半導体層7の細孔中で拡散を妨げられることなく対向電極4に到達できるように、酸化物半導体層7を粒径が1〜5nmのチタニアナノ粒子からなる第1多孔質層31と、直径5〜30nmのアナターゼ相のチタニアナノロッドを含有する第2多孔質層と、最大径が30nmを超えるチタニアナノロッドを含有する第3多孔質層とで形成した色素増感太陽電池1を製造した。
<Example 4>
As described above, the oxide semiconductor layer 7 is composed of titania nanoparticles having a particle diameter of 1 to 5 nm so that I 3 − can reach the counter electrode 4 without being prevented from diffusing in the pores of the oxide semiconductor layer 7. Dye enhancement formed by the first porous layer 31, the second porous layer containing titania nanorods having an anatase phase of 5 to 30 nm in diameter, and the third porous layer containing titania nanorods having a maximum diameter exceeding 30 nm A solar cell 1 was manufactured.
(第1多孔質層31の構築)
まず、第1多孔質層を構成する粒径が1〜5nmのチタニアナノ粒子を製造した。30mLの蒸留水に2モルの塩酸を0.2g加え、そこにF127を3g溶解させて、F127を10wt%含む水溶液を調製した。次に、チタンアルコキシドのテトライソプロピルオルトチタネート(TIPT)とアセチルアセトン(ACA)とをモル比1:1で混合した。具体的には、3.4gのTIPTと1.2gのACAを混合した。
(Construction of the first porous layer 31)
First, titania nanoparticles having a particle diameter of 1 to 5 nm constituting the first porous layer were produced. 0.2 g of 2 molar hydrochloric acid was added to 30 mL of distilled water, and 3 g of F127 was dissolved therein to prepare an aqueous solution containing 10 wt% of F127. Next, titanium alkoxide tetraisopropyl orthotitanate (TIPT) and acetylacetone (ACA) were mixed at a molar ratio of 1: 1. Specifically, 3.4 g of TIPT and 1.2 g of ACA were mixed.
そして、40℃で、前記のF127の10wt%水溶液と、TIPTとACAの混合溶液とを混合し、24時間攪拌して透明な液を得た。透明になった液を80℃の空気恒温槽中で攪拌しないで3日放置してゲル化させ、チタニアを含有する白色の懸濁液を得た。(以下、この懸濁液をスラリDと記す。)
なお、得られたチタニアナノ粒子の粒径は2〜4nmであることをSEM観察で確認した。
Then, the 10 wt% aqueous solution of F127 and the mixed solution of TIPT and ACA were mixed at 40 ° C. and stirred for 24 hours to obtain a transparent liquid. The liquid that became transparent was allowed to gel for 3 days without stirring in an air constant temperature bath at 80 ° C. to obtain a white suspension containing titania. (Hereinafter, this suspension is referred to as slurry D.)
In addition, it confirmed by SEM observation that the particle diameter of the obtained titania nanoparticle was 2-4 nm.
次に、透明電極2上に、メンディングテープを支持体として、スラリDをドクターブレード法で塗布した。このチタニアナノ粒子が塗布された透明電極を大気中室温下で自然乾燥させた後、450℃に熱せられた電気炉に入れて10分間焼成した。
続いて、チタニアナノ粒子が焼成された透明電極2上に、スラリDをドクターブレード法で塗布して焼成する操作を3回繰り返した。なお、焼成条件は450℃で10分間とした。
Next, slurry D was applied onto the transparent electrode 2 by a doctor blade method using a mending tape as a support. The transparent electrode coated with the titania nanoparticles was naturally dried at room temperature in the atmosphere and then placed in an electric furnace heated to 450 ° C. and baked for 10 minutes.
Subsequently, the operation of applying slurry D on the transparent electrode 2 on which the titania nanoparticles were baked and baking it by a doctor blade method was repeated three times. The firing condition was 450 ° C. for 10 minutes.
(第2多孔質層32の構築)
ここで得られた第1多孔質層の上に、メンディングテープを支持体として、実施例1で得たスラリAをドクターブレード法で塗布した。このチタニアナノロッドが塗布された透明電極を大気中室温下で自然乾燥させた後、450℃に熱せられた電気炉に入れて10分間焼成した。
引続き、チタニアナノロッドが焼成された透明電極2に、スラリAをドクターブレード法で塗布して焼成する操作を3回繰り返した。なお、焼成条件は450℃で10分間とした。
(Construction of the second porous layer 32)
On the first porous layer obtained here, the slurry A obtained in Example 1 was applied by a doctor blade method using a mending tape as a support. The transparent electrode coated with the titania nanorods was naturally dried in the atmosphere at room temperature, and then placed in an electric furnace heated to 450 ° C. and baked for 10 minutes.
Subsequently, the operation of applying slurry A to the transparent electrode 2 on which the titania nanorods were fired by the doctor blade method and firing was repeated three times. The firing condition was 450 ° C. for 10 minutes.
(第3多孔質層33の構築)
光散乱を利用した光路長の拡張を目的として、第3多孔質層を構築した。すなわち、比較例1で用いたスラリBを、メンディングテープを支持体として、ドクターブレード法で第2多孔質層32の上に塗布した。塗布後、大気中室温下で自然乾燥させた後、450℃に熱せられた電気炉に入れて40分間焼成した。
(Construction of the third porous layer 33)
A third porous layer was constructed for the purpose of extending the optical path length using light scattering. That is, the slurry B used in Comparative Example 1 was applied onto the second porous layer 32 by a doctor blade method using a mending tape as a support. After the coating, it was naturally dried at room temperature in the atmosphere, and then baked for 40 minutes in an electric furnace heated to 450 ° C.
(色素増感太陽電池1の製造)
こうして形成された酸化物半導体層7が積層された透明電極2に、実施例3と同様の方法で増感色素6を吸着させ、実施例3と同様にして色素増感太陽電池1を完成させた。
(Manufacture of dye-sensitized solar cell 1)
The sensitizing dye 6 is adsorbed to the transparent electrode 2 on which the oxide semiconductor layer 7 thus formed is laminated in the same manner as in Example 3, and the dye-sensitized solar cell 1 is completed in the same manner as in Example 3. It was.
<比較例4>
酸化物半導体層7を、F127を用いずに製造した酸化物半導体3を用いて形成した点を除き、実施例3と同一の方法で色素増感太陽電池1を製造し、比較例4とした。
<Comparative example 4>
A dye-sensitized solar cell 1 was manufactured in the same manner as in Example 3 except that the oxide semiconductor layer 7 was formed using the oxide semiconductor 3 manufactured without using F127. .
<比較例5>
酸化物半導体層7を市販のチタニアナノ粒子であるP25を用いて形成した点を除き、実施例3と同一の方法で色素増感太陽電池1を製造し、比較例5とした。
<Comparative Example 5>
A dye-sensitized solar cell 1 was manufactured in the same manner as in Example 3 except that the oxide semiconductor layer 7 was formed using P25, which is a commercially available titania nanoparticle, and used as Comparative Example 5.
(色素増感太陽電池としての特性評価)
以下の手順および測定条件により、実施例3と比較例4、比較例5の短絡電流密度、フィルファクタ等、色素増感太陽電池としての特性評価を行なった。特性評価は、ソーラーシミュレーター(セリック社製、商品名XIL−05A50K)を用いて照射強度1Sun、エアマス1.5の条件の擬似太陽光を照射することによって行った。
(Characteristic evaluation as dye-sensitized solar cell)
Characteristic evaluation as a dye-sensitized solar cell, such as the short circuit current density and fill factor of Example 3, Comparative Example 4, and Comparative Example 5, was performed according to the following procedures and measurement conditions. The characteristic evaluation was performed by irradiating simulated sunlight under the conditions of irradiation intensity 1 Sun and air mass 1.5 using a solar simulator (product name: XIL-05A50K, manufactured by Celic).
実施例3、実施例4、比較例4、比較例5の各色素増感太陽電池1について、ポテンショスタット(BAS−100W、BAS社製)を用いて、室温(20℃)にて電流・電圧特性を測定し、開放電圧(以下Voc:単位V)、短絡電流密度(以下Jsc:単位mA/cm2)、フィルファクタを求め、これらから起動初期の光電変換効率(単位%)を求めた。 About each dye-sensitized solar cell 1 of Example 3, Example 4, Comparative Example 4, and Comparative Example 5, using potentiostat (BAS-100W, manufactured by BAS), current / voltage at room temperature (20 ° C.) The characteristics were measured, the open circuit voltage (hereinafter Voc: unit V), the short-circuit current density (hereinafter Jsc: unit mA / cm 2 ), and the fill factor were calculated, and the photoelectric conversion efficiency (unit%) at the initial stage of startup was determined from these.
(電池特性へのブロック共重合体の影響)
実施例3と比較例4の色素増感太陽電池1の特性を上記の方法で測定し、結果を表1に示した。
The characteristics of the dye-sensitized solar cell 1 of Example 3 and Comparative Example 4 were measured by the above method, and the results are shown in Table 1.
表1から明らかなように、実施例3の色素増感太陽電池1のVoc、Jsc、フィルファクタ、光電変換効率はいずれも比較例4よりも優れており、焼成により電池として優れた特性を示すようになることが認められた。これは、実施例3では、チタニアナノロッドを包み込んでいるF127が焼成によりカーボンとなり、チタニアナノロッドの表面を絶縁層のように覆うことにより輸送中の電子の漏出を防止しているためと考えることができる。 As is clear from Table 1, the Voc, Jsc, fill factor, and photoelectric conversion efficiency of the dye-sensitized solar cell 1 of Example 3 are all superior to those of Comparative Example 4, and exhibit excellent characteristics as a battery by firing. It was recognized that This is considered to be because, in Example 3, F127 enclosing the titania nanorods becomes carbon by firing, and the surface of the titania nanorods is covered like an insulating layer to prevent leakage of electrons during transportation. it can.
(ナノ粒子との電池特性の比較)
表2に実施例3と比較例5(市販のチタニア粒子を用いた電池)の色素増感太陽電池1の特性を比較した結果を示した。
Table 2 shows the results of comparing the characteristics of the dye-sensitized solar cell 1 of Example 3 and Comparative Example 5 (battery using commercially available titania particles).
表2から、本発明の高結晶性のチタニアナノロッドを用いた色素増感太陽電池は、チタニアのナノ粒子を用いた場合よりも優れた性能を有し、特に光電変換効率が約1.5倍に改善されることが認められる。このことから、本発明のチタニアナノロッドは色素増感太陽電池に適していることが分かる。 From Table 2, the dye-sensitized solar cell using the highly crystalline titania nanorods of the present invention has a performance superior to that when titania nanoparticles are used, and in particular, the photoelectric conversion efficiency is about 1.5 times. It can be seen that This shows that the titania nanorod of the present invention is suitable for a dye-sensitized solar cell.
(多孔質層の構築による比較)
実施例3と実施例4について、多孔質層の構築による色素増感太陽電池1の特性を測定した結果を表3に示した。
Table 3 shows the results of measuring the characteristics of the dye-sensitized solar cell 1 obtained by constructing the porous layer for Example 3 and Example 4.
表3から明らかなように、酸化物半導体層7を第1多孔質層31〜第3多孔質層33で形成することにより、I3 -の拡散が抑制されることなく進行するため、短絡電流値Jscが増大することが認められる。このことから、本発明のチタニアナノロッドを適用し、かつ多孔質層を積層することによって、より大きな光電変換効率を示す色素増感太陽電池1が作製可能であることがわかる。 As is apparent from Table 3, since the oxide semiconductor layer 7 is formed of the first porous layer 31 to the third porous layer 33, the diffusion of I 3 − proceeds without being suppressed. It can be seen that the value Jsc increases. From this, it can be seen that the dye-sensitized solar cell 1 exhibiting higher photoelectric conversion efficiency can be produced by applying the titania nanorod of the present invention and laminating the porous layer.
図10に、実施例3と比較例5について、酸化物半導体層7の膜厚と、Jscおよび光電変換効率との関係を示した。膜厚が8μm以下の比較的薄い領域では、両者のJscは同じか比較例5の方が若干高い傾向が認められる。 FIG. 10 shows the relationship between the film thickness of the oxide semiconductor layer 7, Jsc, and photoelectric conversion efficiency for Example 3 and Comparative Example 5. In a relatively thin region having a film thickness of 8 μm or less, both Jscs are the same or tend to be slightly higher in Comparative Example 5.
しかし膜厚が8μmを超えると、実施例3の電池のJscは増加し続けて比較例5を上回るようになる。また、実施例3の光電変換効率は膜厚が8μmを超えても単調に増加して7.5%まで達しているが、比較例5の光電変換効率は膜厚が8μmを超えると約5%で飽和してしまう傾向が認められる。
従来報告されているチタニアを用いた太陽電池の光電変換効率は最高7〜8%であることから、本発明に係るチタニアナノロッドは高い光電変換効率を有するといえる。
However, when the film thickness exceeds 8 μm, the Jsc of the battery of Example 3 continues to increase and exceeds that of Comparative Example 5. Further, the photoelectric conversion efficiency of Example 3 monotonously increased to 7.5% even when the film thickness exceeded 8 μm, and reached 7.5%, but the photoelectric conversion efficiency of Comparative Example 5 was about 5 when the film thickness exceeded 8 μm. % Tends to saturate.
Since the photoelectric conversion efficiency of the solar cell using titania reported conventionally is 7 to 8% at the maximum, it can be said that the titania nanorod according to the present invention has a high photoelectric conversion efficiency.
さらに図11に示すように、増感色素6の吸着量が6×10−8モル/cm2以下の領域では、実施例3と比較例5の色素吸着量に対するJsc曲線はほぼ重なっている。しかし、これより色素吸着量が多い領域では、実施例3のJscは直線的に増加する傾向を示すのに対し、比較例5のJscは飽和状態となる傾向を示した。
このように、実施例3において高色素濃度領域でJscの直線的な増加傾向が認められることは、高結晶性のチタニアナノロッドを用いれば、さらに高効率の色素増感太陽電池が得られる可能性があることを示している。
Further, as shown in FIG. 11, in the region where the adsorption amount of the sensitizing dye 6 is 6 × 10 −8 mol / cm 2 or less, the Jsc curves with respect to the dye adsorption amounts of Example 3 and Comparative Example 5 almost overlap. However, in the region where the amount of dye adsorbed was larger than this, Jsc of Example 3 showed a tendency to increase linearly, whereas Jsc of Comparative Example 5 showed a tendency to become saturated.
Thus, the linear increase tendency of Jsc in the high dye concentration region in Example 3 is recognized. If a highly crystalline titania nanorod is used, a more efficient dye-sensitized solar cell can be obtained. It shows that there is.
実施例3で高いJscと光電変換効率が認められるのは、図1CのHRTEM写真に見られるような高結晶性で均一なチタニアナノロッド中では、電子移動の妨げとなる欠陥が少ないため、効率よく電子移動が行なわれるものと考えられる。ナノ粒子と比較すると、チタニアナノロッド内では導電帯が長く形成されているので、電気的に均質な材料であり電子の移動が容易に行なわれるといえる。さらに、チタニアナノ粒子の代わりに高結晶性チタニアナノロッドを用いれば、電子トラップとなりうる粒状界面のチタニア間の接触点数が減少することも、電子の移動が容易になる一因となる。 In Example 3, high Jsc and photoelectric conversion efficiency are recognized because in the highly crystalline and uniform titania nanorod as seen in the HRTEM photograph of FIG. It is thought that electron transfer takes place. Compared to nanoparticles, the conductive band is formed longer in the titania nanorods, so that it can be said that it is an electrically homogeneous material and the movement of electrons is facilitated. Furthermore, if highly crystalline titania nanorods are used instead of titania nanoparticles, the number of contact points between titania at the granular interface that can become electron traps is also a factor that facilitates the movement of electrons.
これは図12に示した実施例3と比較例5の、フィルファクタと膜厚の関係からも裏付けられる。フィルファクタは電池の抵抗と相関し、電子が素早く効率的に移動できるときは抵抗が小さくなり、フィルファクタの値は大きくなる。図12から明らかなように、比較例5では、膜厚を増すとフィルファクタが減少する傾向を示す。これは半導体的性質を有するチタニアナノ粒子の膜厚が増加することにより抵抗が増加していることを示している。 This is supported by the relationship between fill factor and film thickness in Example 3 and Comparative Example 5 shown in FIG. The fill factor correlates with the resistance of the battery. When electrons can move quickly and efficiently, the resistance decreases and the fill factor increases. As is clear from FIG. 12, in Comparative Example 5, the fill factor tends to decrease as the film thickness increases. This indicates that the resistance increases as the thickness of titania nanoparticles having semiconducting properties increases.
しかし、実施例3の高結晶性のチタニアナノロッドを用いた色素増感太陽電池1では、膜厚が増してもフィルファクタが減少することは無く、膜厚が増加しても抵抗は増加しないことを示している。以上から、本発明の高結晶性チタニアナノロッドは電子輸送に適した材料であることが分かる。 However, in the dye-sensitized solar cell 1 using the highly crystalline titania nanorod of Example 3, the fill factor does not decrease even when the film thickness increases, and the resistance does not increase even when the film thickness increases. Is shown. From the above, it can be seen that the highly crystalline titania nanorod of the present invention is a material suitable for electron transport.
図13に実施例3と比較例5の色素増感太陽電池1のJsc−電圧特性を示す。この図から明らかなように、実施例3の色素増感太陽電池1はJsc、Vocともに比較例5より高い値を示しており、優れた電池特性を有することが分かる。なお、ここで用いた実施例3の増感色素6を吸着したチタニアナノロッドの酸化物半導体層7の膜厚は16μm、増感色素6の吸着量は10モル/cm2、比較例5の増感色素6を吸着したチタニアナノ粒子の酸化物半導体層7の膜厚は16μm、増感色素6の吸着量は12×10−8モル/cm2である。 FIG. 13 shows Jsc-voltage characteristics of the dye-sensitized solar cell 1 of Example 3 and Comparative Example 5. As can be seen from this figure, the dye-sensitized solar cell 1 of Example 3 shows higher values for both Jsc and Voc than Comparative Example 5 and has excellent battery characteristics. In addition, the film thickness of the oxide semiconductor layer 7 of the titania nanorod adsorbing the sensitizing dye 6 of Example 3 used here is 16 μm, the adsorption amount of the sensitizing dye 6 is 10 mol / cm 2 , and the increase in Comparative Example 5 is used. The film thickness of the oxide semiconductor layer 7 of titania nanoparticles having adsorbed the dye 6 is 16 μm, and the adsorption amount of the sensitizing dye 6 is 12 × 10 −8 mol / cm 2 .
なお、BET比表面積を測定したところ、実施例3のチタニアナノロッドは45m2/gであり、P25の50〜55m2/gより僅かに小さい値であった。これは、実施例3のナノロッドは、サイズ(長さ)は大きいが表面積は小さいことから予想された結果である。これはまた、チタニアナノロッドの径を小さくて表面積を大きくすることにより、さらに増感色素6の吸着量を増やして光電変換効率を高められることを示している。 Incidentally, and the BET specific surface area, titania nanorods of Example 3 is 45 m 2 / g, it was slightly less than the 50~55m 2 / g of P25. This is an expected result because the nanorod of Example 3 has a large size (length) but a small surface area. This also indicates that by reducing the diameter of the titania nanorods and increasing the surface area, the adsorption amount of the sensitizing dye 6 can be further increased to increase the photoelectric conversion efficiency.
1 色素増感太陽電池
2 透明電極
3 酸化物半導体
4 対向電極
5 電解液
6 増感色素
7 酸化物半導体層
11 スペーサ
12 外部負荷
31 第1多孔質層
32 第2多孔質層
33 第3多孔質層
U 入射光
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2 Transparent electrode 3 Oxide semiconductor 4 Counter electrode 5 Electrolytic solution 6 Sensitizing dye 7 Oxide semiconductor layer 11 Spacer 12 External load 31 1st porous layer 32 2nd porous layer 33 3rd porous Layer U Incident light
Claims (13)
前記チタニアゾルを水熱反応させてチタニアのナノロッドを生成させる工程と
を含むことを特徴とするアナターゼ相のチタニアナノロッドの製造方法。 A step of obtaining a titania sol by reacting a block copolymer having a hydrophobic block and a hydrophilic block, and an aqueous solution containing an organic amine or ammonia with a titanium organic compound;
And a step of producing a titania nanorod by hydrothermal reaction of the titania sol.
The method for producing anatase titania nanorods according to claim 4, wherein the cationic surfactant is a halogenated quaternary ammonium salt containing a long-chain alkyl group.
前記透明電極上に積層され、増感色素が表面に吸着している多孔質の酸化物半導体層と、
前記透明電極に対向して設けられる対向電極と、
前記透明電極および前記対向電極の間に含浸される電解液と
を備える色素増感太陽電池であって、
前記酸化物半導体層が請求項1または請求項2に記載のアナターゼ相のチタニアナノロッドを含有することを特徴とする色素増感太陽電池。 A transparent electrode;
A porous oxide semiconductor layer laminated on the transparent electrode and having a sensitizing dye adsorbed on the surface;
A counter electrode provided to face the transparent electrode;
A dye-sensitized solar cell comprising: an electrolyte solution impregnated between the transparent electrode and the counter electrode;
The said oxide semiconductor layer contains the titania nanorod of the anatase phase of Claim 1 or Claim 2, The dye-sensitized solar cell characterized by the above-mentioned.
粒径が1〜5nmの酸化物半導体ナノ粒子を前記透明電極上に積層してなる第1多孔質層と、
直径5〜30nmのアナターゼ相のチタニアナノロッドを含有し、前記第1多孔質層上に積層される第2多孔質層と、
を有することを特徴とする請求項10に記載の色素増感太陽電池。 The porous oxide semiconductor layer is
A first porous layer formed by laminating oxide semiconductor nanoparticles having a particle size of 1 to 5 nm on the transparent electrode;
A second porous layer containing titania nanorods of anatase phase having a diameter of 5 to 30 nm and laminated on the first porous layer;
The dye-sensitized solar cell according to claim 10, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256568A JP4669352B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256568A JP4669352B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070136A true JP2007070136A (en) | 2007-03-22 |
JP4669352B2 JP4669352B2 (en) | 2011-04-13 |
Family
ID=37931916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005256568A Active JP4669352B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4669352B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007109500A (en) * | 2005-10-13 | 2007-04-26 | Toppan Printing Co Ltd | Dye-sensitized solar cell |
WO2008072479A1 (en) * | 2006-12-13 | 2008-06-19 | Panasonic Corporation | Nanowire, device comprising nanowire, and their production methods |
JP2008254983A (en) * | 2007-04-06 | 2008-10-23 | National Institute Of Advanced Industrial & Technology | ACICULAR ANATASE-TYPE TiO2 NANOCRYSTAL ACCUMULATED GRAINS, POROUS ANATASE-TYPE TiO2 CRYSTAL FILM, AND METHOD FOR PRODUCING THE SAMES |
WO2009020162A1 (en) * | 2007-08-07 | 2009-02-12 | Pioneer Corporation | Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell |
KR100998685B1 (en) | 2007-12-18 | 2010-12-07 | 아크로솔 주식회사 | Compostion for photoanode of solar cell |
KR101088923B1 (en) | 2009-06-20 | 2011-12-01 | 숭실대학교산학협력단 | TiO2 nanostructure electrodes for dye-sensitized solar cells |
CN102403130A (en) * | 2010-09-07 | 2012-04-04 | 叶南辉 | Method for manufacturing array nano tube type solar cell thin film |
JP2012532826A (en) * | 2009-07-16 | 2012-12-20 | ダウニア・ソーラー・セル・エスアールエル | Method for producing titanium dioxide having nanometer dimensions and controlled shape |
KR101234239B1 (en) | 2011-01-21 | 2013-02-18 | 삼성에스디아이 주식회사 | Dye sensitized solar cell, and manufacturing method thereof |
KR101274985B1 (en) * | 2011-07-28 | 2013-06-17 | 연세대학교 산학협력단 | Synthesis of high density, vertically aligned titanium dioxide nanorod on transparent conducting glass substrate and its use in photo-electrode of dye-sensitized solar cells |
JP2013203578A (en) * | 2012-03-28 | 2013-10-07 | Osaka Gas Co Ltd | Titanium oxide structure having high crystallinity and high specific surface area |
JP2014034495A (en) * | 2012-08-09 | 2014-02-24 | Kawamura Institute Of Chemical Research | Metal oxide nanostructure and method for manufacturing the same |
KR101522920B1 (en) * | 2013-09-17 | 2015-05-28 | 서강대학교산학협력단 | Metal oxide-containing porous structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode |
CN115029020A (en) * | 2022-07-12 | 2022-09-09 | 武汉万度光能研究院有限责任公司 | Modification method of nano titanium dioxide, dispersion liquid, preparation method and application thereof |
CN115414864A (en) * | 2022-08-26 | 2022-12-02 | 浙江和谐光催化科技有限公司 | Preparation method of super-hydrophobic and super-hydrophilic two-sided nano material for inhibiting saltpetering on surface of bare brick |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233615A (en) * | 2000-02-21 | 2001-08-28 | Natl Inst Of Advanced Industrial Science & Technology Meti | MESO-POROUS TiO2 THIN MEMBRANE HAVING THREE-DIMENSIONAL STRUCTURE AND METHOD FOR PRODUCING THE SAME |
JP2003034531A (en) * | 2000-05-19 | 2003-02-07 | Japan Science & Technology Corp | Metallic oxide having shape of nanotube or nanowire and method for producing the same |
JP2003137549A (en) * | 2001-10-30 | 2003-05-14 | Catalysts & Chem Ind Co Ltd | Method for manufacturing tubular titanium oxide grain and tubular titanium oxide |
JP2003238120A (en) * | 2002-02-15 | 2003-08-27 | Japan Science & Technology Corp | Ceramics composite nanostructure, its composition and method for producing the same |
-
2005
- 2005-09-05 JP JP2005256568A patent/JP4669352B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233615A (en) * | 2000-02-21 | 2001-08-28 | Natl Inst Of Advanced Industrial Science & Technology Meti | MESO-POROUS TiO2 THIN MEMBRANE HAVING THREE-DIMENSIONAL STRUCTURE AND METHOD FOR PRODUCING THE SAME |
JP2003034531A (en) * | 2000-05-19 | 2003-02-07 | Japan Science & Technology Corp | Metallic oxide having shape of nanotube or nanowire and method for producing the same |
JP2003137549A (en) * | 2001-10-30 | 2003-05-14 | Catalysts & Chem Ind Co Ltd | Method for manufacturing tubular titanium oxide grain and tubular titanium oxide |
JP2003238120A (en) * | 2002-02-15 | 2003-08-27 | Japan Science & Technology Corp | Ceramics composite nanostructure, its composition and method for producing the same |
Non-Patent Citations (1)
Title |
---|
JPN6010058441, Chung−Sik KIM, et al., "Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant", Journal of Crystal Growth, 2003, Vol.257, pp.309−315 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007109500A (en) * | 2005-10-13 | 2007-04-26 | Toppan Printing Co Ltd | Dye-sensitized solar cell |
US8198622B2 (en) | 2006-12-13 | 2012-06-12 | Panasonic Corporation | Nanowire, device comprising nanowire, and their production methods |
WO2008072479A1 (en) * | 2006-12-13 | 2008-06-19 | Panasonic Corporation | Nanowire, device comprising nanowire, and their production methods |
JP2008254983A (en) * | 2007-04-06 | 2008-10-23 | National Institute Of Advanced Industrial & Technology | ACICULAR ANATASE-TYPE TiO2 NANOCRYSTAL ACCUMULATED GRAINS, POROUS ANATASE-TYPE TiO2 CRYSTAL FILM, AND METHOD FOR PRODUCING THE SAMES |
WO2009020162A1 (en) * | 2007-08-07 | 2009-02-12 | Pioneer Corporation | Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell |
JP2009040622A (en) * | 2007-08-07 | 2009-02-26 | Kyoto Univ | Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell |
KR100998685B1 (en) | 2007-12-18 | 2010-12-07 | 아크로솔 주식회사 | Compostion for photoanode of solar cell |
KR101088923B1 (en) | 2009-06-20 | 2011-12-01 | 숭실대학교산학협력단 | TiO2 nanostructure electrodes for dye-sensitized solar cells |
KR101813190B1 (en) | 2009-07-16 | 2017-12-28 | 다우니아 솔라 셀 에스.알.엘. | Process for the preparation of titanium dioxide having nanometric dimensions and controlled shape |
JP2012532826A (en) * | 2009-07-16 | 2012-12-20 | ダウニア・ソーラー・セル・エスアールエル | Method for producing titanium dioxide having nanometer dimensions and controlled shape |
CN102403130A (en) * | 2010-09-07 | 2012-04-04 | 叶南辉 | Method for manufacturing array nano tube type solar cell thin film |
KR101234239B1 (en) | 2011-01-21 | 2013-02-18 | 삼성에스디아이 주식회사 | Dye sensitized solar cell, and manufacturing method thereof |
KR101274985B1 (en) * | 2011-07-28 | 2013-06-17 | 연세대학교 산학협력단 | Synthesis of high density, vertically aligned titanium dioxide nanorod on transparent conducting glass substrate and its use in photo-electrode of dye-sensitized solar cells |
JP2013203578A (en) * | 2012-03-28 | 2013-10-07 | Osaka Gas Co Ltd | Titanium oxide structure having high crystallinity and high specific surface area |
JP2014034495A (en) * | 2012-08-09 | 2014-02-24 | Kawamura Institute Of Chemical Research | Metal oxide nanostructure and method for manufacturing the same |
KR101522920B1 (en) * | 2013-09-17 | 2015-05-28 | 서강대학교산학협력단 | Metal oxide-containing porous structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode |
CN115029020A (en) * | 2022-07-12 | 2022-09-09 | 武汉万度光能研究院有限责任公司 | Modification method of nano titanium dioxide, dispersion liquid, preparation method and application thereof |
CN115029020B (en) * | 2022-07-12 | 2023-11-14 | 武汉万度光能研究院有限责任公司 | Modification method of nano titanium dioxide, dispersion liquid, preparation method and application thereof |
CN115414864A (en) * | 2022-08-26 | 2022-12-02 | 浙江和谐光催化科技有限公司 | Preparation method of super-hydrophobic and super-hydrophilic two-sided nano material for inhibiting saltpetering on surface of bare brick |
CN115414864B (en) * | 2022-08-26 | 2024-05-03 | 浙江和谐光催化科技有限公司 | Preparation method of super-hydrophobic and super-hydrophilic two-sided nano material for inhibiting fair-faced brick surface from being subjected to alkali efflorescence |
Also Published As
Publication number | Publication date |
---|---|
JP4669352B2 (en) | 2011-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4669352B2 (en) | Method for producing titania nanorod and dye-sensitized solar cell using the titania nanorod | |
Wang et al. | Hydrothermal fabrication of hierarchically macroporous Zn 2 SnO 4 for highly efficient dye-sensitized solar cells | |
De Marco et al. | Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency | |
Hou et al. | Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells | |
Hafez et al. | Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells | |
Li et al. | Unique Zn-doped SnO 2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell | |
Park et al. | Facile fabrication of vertically aligned TiO 2 nanorods with high density and rutile/anatase phases on transparent conducting glasses: high efficiency dye-sensitized solar cells | |
Tanyi et al. | Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO2 photoanodes | |
Shang et al. | Enhancement of photovoltaic performance of dye-sensitized solar cells by modifying tin oxide nanorods with titanium oxide layer | |
Roh et al. | Preparation of TiO 2 nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells | |
Li et al. | Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent “nanoglue” | |
Roh et al. | Facile synthesis of size-tunable mesoporous anatase TiO 2 beads using a graft copolymer for quasi-solid and all-solid dye-sensitized solar cells | |
Shalan et al. | Concordantly fabricated heterojunction ZnO–TiO 2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells | |
Momeni | Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes | |
Wang et al. | Fabrication of a double layered photoanode consisting of SnO 2 nanofibers and nanoparticles for efficient dye-sensitized solar cells | |
Ako et al. | DSSCs with ZnO@ TiO2 core–shell photoanodes showing improved Voc: Modification of energy gradients and potential barriers with Cd and Mg ion dopants | |
Zhang et al. | Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells | |
Liu et al. | Titanium mesh supported TiO 2 nanowire arrays/Nb-doped TiO 2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties | |
Amini et al. | From dense blocking layers to different templated films in dye sensitized and perovskite solar cells: Toward light transmittance management and efficiency enhancement | |
Park et al. | Formation of mesoporous TiO 2 with large surface areas, interconnectivity and hierarchical pores for dye-sensitized solar cells | |
Feng et al. | TiO2 flowers and spheres for ionic liquid electrolytes based dye-sensitized solar cells | |
Bandara et al. | Diatom frustules enhancing the efficiency of gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes | |
Park et al. | Multifunctional Organized Mesoporous Tin Oxide Films Templated by Graft Copolymers for Dye‐Sensitized Solar Cells | |
JP2011236104A (en) | Titanium oxide structure and method for producing the same, and photoelectric conversion device using the titanium oxide structure | |
Asemi et al. | Studying the effect of the controlled off-stoichiometry on the properties of Zn 2 SnO 4 nanoparticles for DSSC applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4669352 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |