JP2007109500A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2007109500A
JP2007109500A JP2005298591A JP2005298591A JP2007109500A JP 2007109500 A JP2007109500 A JP 2007109500A JP 2005298591 A JP2005298591 A JP 2005298591A JP 2005298591 A JP2005298591 A JP 2005298591A JP 2007109500 A JP2007109500 A JP 2007109500A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
titanium oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298591A
Other languages
Japanese (ja)
Inventor
Masaru Ito
大 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005298591A priority Critical patent/JP2007109500A/en
Publication of JP2007109500A publication Critical patent/JP2007109500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell using a metal oxide film increasing porosity, achieving high surface area and enhancing electron conductivity by using a vacuum deposition method excellent in productivity, and clean and safe. <P>SOLUTION: The dye-sensitized solar cell is formed by laminating a conductive film layer, a dye molecule adsorbed anatase type titanium oxide layer, an electrolyte or a hole transport material layer, and a counter electrode in order on at least a substrate. The anatase type titanium oxide layer has a columnar structure and intensity ratio of peaks originating in (101) planes and (004) planes of the anatase type observed by X-ray diffraction is in a range of 1:1.5 to 1:3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材上の導電膜層、色素分子の吸着したアナターゼ型酸化チタン層と電解質または正孔輸送材料層と対向電極より構成される色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell comprising a conductive film layer on a substrate, an anatase-type titanium oxide layer adsorbed with dye molecules, an electrolyte or hole transport material layer, and a counter electrode.

一般に太陽電池には、単結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池などが知られているが、製造コストや原材料コストの抑制が難しく、太陽電池普及の妨げになっていた。こうした中、半導体層表面に色素を担持させて構成した電極を用いた色素増感太陽電池が、低コスト、高変換効率という特徴を有していることが知られている(特許文献1、特許文献2参照)。   In general, single-crystal silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells, and the like are known as solar cells, but it has been difficult to suppress manufacturing costs and raw material costs, which has hindered the spread of solar cells. Under such circumstances, it is known that a dye-sensitized solar cell using an electrode formed by supporting a dye on the surface of a semiconductor layer has characteristics of low cost and high conversion efficiency (Patent Document 1, Patent) Reference 2).

一般的に知られている色素増感太陽電池は、基材上の導電膜層、色素分子の吸着した金属酸化物層と電解質または正孔輸送材料層と対向電極より構成され、透明基材側から入射しセル内部に到達した光は色素により吸収され、励起状態になった色素は化学結合を介して吸着している金属酸化物に瞬時に電子を注入し、イオン化した色素は電解質または正孔輸送材料から電子を受け取ることにより発電する。   A generally known dye-sensitized solar cell is composed of a conductive film layer on a substrate, a metal oxide layer on which a dye molecule is adsorbed, an electrolyte or hole transport material layer, and a counter electrode. The light that enters the cell and reaches the inside of the cell is absorbed by the dye, and the excited dye instantly injects electrons into the adsorbed metal oxide through chemical bonds, and the ionized dye is an electrolyte or hole. Electricity is generated by receiving electrons from the transport material.

金属酸化物は通常多孔性を有しており、単位面積あたりの表面積を大きくすることにより色素の吸着量を増やすことに成功しており、高い発電効率が得られている。多孔質の金属酸化物は、通常、チタンアルコキシドなどの水熱合成により10‐50nm程度の酸化チタン微粒子分散ゾルを製造し、これを透明導電膜上に塗布した後、焼成することにより10から20μm程度の膜厚で製造される。   Metal oxides are usually porous and have succeeded in increasing the amount of dye adsorbed by increasing the surface area per unit area, and high power generation efficiency is obtained. The porous metal oxide is usually produced by hydrothermal synthesis of titanium alkoxide or the like to produce a titanium oxide fine particle-dispersed sol of about 10-50 nm, coated on a transparent conductive film, and then baked to produce 10 to 20 μm. It is manufactured with a film thickness of about.

しかしながら以上のような微粒子の積層体を用いると微粒子間の界面抵抗が作用し、金属酸化物の電子伝導性が悪化する傾向があり、生産現場として扱いにくい四塩化チタン水溶液による後処理とそれに伴う再焼成により界面抵抗減少を図らなくてはならず、安全性と生産性、経済性に問題があった。   However, when using a laminate of fine particles as described above, interfacial resistance between the fine particles acts, and the electronic conductivity of the metal oxide tends to be deteriorated. Interfacial resistance must be reduced by refiring, which has problems with safety, productivity, and economy.

これを解消するため、近年CVD法、真空蒸着法あるいはゾル・ゲル法を用いて柱状構造を有する酸化チタンを製造する方法が提供されており、安全で生産性、経済性に優れた方法であり、大きな表面積を得ると同時に電子伝導性を向上させるものと期待されている(非特許文献1、非特許文献2、非特許文献3参照)。
特許第2664194号公報 特許第2101079号公報 Chemical Vapor Deposition 1998, Vol.4, No.3, p.109 Chemistry of Materials 1998, Vol.10, p.2419 Solar Energy Materials & Solar Cells 2005, Vol.85, p.321
In order to solve this problem, a method for producing titanium oxide having a columnar structure by using a CVD method, a vacuum deposition method or a sol-gel method has been provided in recent years, which is a safe, highly productive and economical method. It is expected to obtain a large surface area and at the same time improve the electron conductivity (see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3).
Japanese Patent No. 2664194 Japanese Patent No. 2101079 Chemical Vapor Deposition 1998, Vol. 4, no. 3, p. 109 Chemistry of Materials 1998, Vol. 10, p. 2419 Solar Energy Materials & Solar Cells 2005, Vol. 85, p. 321

しかしながら、これまでに用いられてきた柱状構造を有する酸化チタンは、多結晶を構成する一つ一つの結晶子径が小さいため、結晶面が無秩序に並ぶことによって電子伝導が阻害され、十分な導電性が得られていなかった。   However, the titanium oxide having a columnar structure that has been used so far has a small crystallite diameter constituting a polycrystal, so that the crystal planes are disordered so that electron conduction is hindered and sufficient conductivity is achieved. Sex was not obtained.

そこで、本発明は生産性に優れ、クリーンで安全な真空成膜法を用いることにより、多孔性に優れ、高表面積を達成しかつ、電子伝導性が高い金属酸化物膜を用いた色素増感太陽電池を提供する。   Therefore, the present invention is excellent in productivity, and by using a clean and safe vacuum film formation method, the dye sensitization using a metal oxide film that achieves high porosity, high surface area, and high electron conductivity is achieved. Provide solar cells.

請求項1の発明は、少なくとも基材上に、導電膜層と色素分子の吸着したアナターゼ型酸化チタン層と電解質または正孔輸送材料層と対向電極が順に積層されてなる色素増感太陽電池において、前記アナターゼ型酸化チタン層が柱状構造を有し、かつX線回折により観察されたアナターゼ型の(101)面と(004)面に由来するピークの強度比が1:1.5〜1:3の間であることを特徴とする色素増感太陽電池である。   The invention according to claim 1 is a dye-sensitized solar cell in which a conductive film layer, an anatase-type titanium oxide layer adsorbed with a dye molecule, an electrolyte or hole transport material layer, and a counter electrode are sequentially laminated on at least a substrate. The anatase type titanium oxide layer has a columnar structure, and the intensity ratio of peaks derived from the anatase type (101) plane and (004) plane observed by X-ray diffraction is 1: 1.5 to 1: It is a dye-sensitized solar cell characterized by being between 3.

請求項2の発明は、上記アナターゼ型酸化チタンの空孔径のピークが10Åから100Åの間にあることを特徴とする請求項1に記載の色素増感太陽電池である。   A second aspect of the present invention is the dye-sensitized solar cell according to the first aspect, wherein the anatase-type titanium oxide has a pore diameter peak between 10 and 100%.

請求項3の発明は、上記アナターゼ型酸化チタンの密度が0.5〜3.0g/cmであることを特徴とする請求項1及び2のいずれかに記載の色素増感太陽電池である。 The invention according to claim 3 is the dye-sensitized solar cell according to any one of claims 1 and 2, wherein the density of the anatase-type titanium oxide is 0.5 to 3.0 g / cm 3. .

請求項4の発明は、上記アナターゼ型酸化チタンの(101)面及び(004)面の結晶子径が13〜40nmであることを特徴とする請求項1から3のいずれかに記載の色素増感太陽電池である。   The invention according to claim 4 is characterized in that the crystallite diameter of the (101) plane and the (004) plane of the anatase-type titanium oxide is 13 to 40 nm. It is a solar cell.

本発明は、反応性蒸着法を用いて酸化チタンを柱状化するため、生産性、経済性、安全性が高く、かつ高い電子導電性を達成している。このような酸化チタン層を有する色素増感太陽電池では高い光電変換効率を得ることができる。   In the present invention, since titanium oxide is columnarized using a reactive vapor deposition method, productivity, economy, and safety are high, and high electronic conductivity is achieved. In a dye-sensitized solar cell having such a titanium oxide layer, high photoelectric conversion efficiency can be obtained.

以下に、本発明の実施の形態を詳細に説明する。図1に本発明の色素増感太陽電池の断面構造の一例を示した。図2に本発明の色素増感太陽電池における金属酸化物膜のX線回折スペクトルの一例を示した。図3に本発明の色素増感太陽電池における金属酸化物膜の空孔径分布の一例を示した。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows an example of a cross-sectional structure of the dye-sensitized solar cell of the present invention. FIG. 2 shows an example of the X-ray diffraction spectrum of the metal oxide film in the dye-sensitized solar cell of the present invention. FIG. 3 shows an example of the pore size distribution of the metal oxide film in the dye-sensitized solar cell of the present invention.

本発明で用いることができる基材1としては、例えばポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリイミド等のプラスチックフィルム、あるいはガラスを用いることができる。   Examples of the base material 1 that can be used in the present invention include polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetylcellulose, polyimide and other plastic films, or glass. Can be used.

光は図1に示した色素増感太陽電池10の上下どちらから入射してもよく、少なくとも入射光側の基材1は透明である必要があり、この条件を満たせば、用いることのできる基材は以上に挙げたものに限らない。このような基材は、必要に応じて表面がコロナ処理、プラズマ処理、薬品処理などによって改質されたものであってもよい。   Light may enter from either the top or bottom of the dye-sensitized solar cell 10 shown in FIG. 1, and at least the base material 1 on the incident light side needs to be transparent. The materials are not limited to those listed above. Such a substrate may have a surface modified by corona treatment, plasma treatment, chemical treatment, or the like, if necessary.

本発明における透明導電層2としては、錫をドープした酸化インジウム(ITO)、フッ素やインジウムなどをドープされた酸化スズ、アルミニウムやガリウムなどをドープした酸化亜鉛、およびその他の可視光領域の吸収が少なく、高い導電性を示す透明導電体が好ましい。   As the transparent conductive layer 2 in the present invention, indium oxide (ITO) doped with tin, tin oxide doped with fluorine, indium, etc., zinc oxide doped with aluminum, gallium, etc., and other visible light region absorption A transparent conductor having a small amount and high conductivity is preferable.

透明導電層2の形成方法としては真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等の真空成膜プロセスによることができるが、それ以外の成膜方法であっても構わない。   The transparent conductive layer 2 can be formed by vacuum deposition processes such as vacuum deposition, reactive deposition, ion beam assisted deposition, sputtering, ion plating, plasma CVD, etc. A film forming method may be used.

上下の透明導電層2は少なくともどちらか一方が透明であればよく、残りの一方は不透明な導電体を用いてもよい。   As long as at least one of the upper and lower transparent conductive layers 2 is transparent, an opaque conductor may be used for the remaining one.

本発明における金属酸化物層3としては、アナターゼ型酸化チタン多結晶を用い、酸化チタン薄膜のX線回折スペクトルを観察した時、アナターゼ相の(101)面及び(004)面のピーク強度比が1:1.5〜1:3の間にあることを特徴とする。測定X線にCu−Kα1を用いた場合、(101)面のピークは2θ=25.25°付近に、(004)面は2θ=37.80°付近に観察される。ピーク強度比が、この範囲に入ることにより結晶面が秩序だって並ぶため、良好な電子伝導特性が得られ、十分な導電性が得られる。   As the metal oxide layer 3 in the present invention, when an anatase-type titanium oxide polycrystal is used and the X-ray diffraction spectrum of the titanium oxide thin film is observed, the peak intensity ratio between the (101) plane and the (004) plane of the anatase phase is It is characterized by being between 1: 1.5 and 1: 3. When Cu-Kα1 is used for the measurement X-ray, the peak of the (101) plane is observed around 2θ = 2.25 °, and the (004) plane is observed around 2θ = 37.80 °. When the peak intensity ratio falls within this range, the crystal planes are arranged in order, so that good electron conduction characteristics can be obtained, and sufficient conductivity can be obtained.

金属酸化物層3の形成方法は、次の通りである。金属酸化物の成膜には、金属チタンやチタン酸化物などを蒸着源として、真空中で酸素ガスを導入しながら電子ビームやプラズマ銃による蒸着源を蒸発させる反応性蒸着法を用いる。成膜圧力は、1×10−2Pa〜1Paの範囲で行う。成膜の際に、プラズマやイオン銃、ラジカル銃などでアシストを行ってもよい。基板温度は−50℃から600℃の間で任意に選択することができるが、多孔性を高く保つためには300℃以下であることがより好ましい。また、基材にプラスチックフィルムなどの可撓性基材を用いた場合にはロールトゥロール方式で成膜すれば、より高い生産性を得ることができる。 The formation method of the metal oxide layer 3 is as follows. The metal oxide film is formed by a reactive vapor deposition method using metal titanium or titanium oxide as a vapor deposition source and evaporating the vapor deposition source by an electron beam or a plasma gun while introducing oxygen gas in a vacuum. The film forming pressure is in the range of 1 × 10 −2 Pa to 1 Pa. During film formation, assistance may be performed with a plasma, an ion gun, a radical gun, or the like. The substrate temperature can be arbitrarily selected between −50 ° C. and 600 ° C., but it is more preferably 300 ° C. or lower in order to keep the porosity high. Further, when a flexible base material such as a plastic film is used as the base material, higher productivity can be obtained by forming a film by a roll-to-roll method.

以上で得られた金属酸化物層3は、一般的には300℃〜600℃、より好ましくは400℃〜500℃、における焼成によってアナターゼ多結晶相に変換する。焼成時は大気中で行い、得られた金属酸化物はプラズマ処理、コロナ処理、UV処理、薬品処理など、任意の方法で表面処理することができる。また、圧縮機を用いた加圧処理、レーザアニーリングなど、任意の手段を用いて後処理することもできる。   The metal oxide layer 3 obtained as described above is generally converted to an anatase polycrystalline phase by firing at 300 ° C. to 600 ° C., more preferably 400 ° C. to 500 ° C. The firing is performed in the air, and the obtained metal oxide can be surface-treated by any method such as plasma treatment, corona treatment, UV treatment, chemical treatment, and the like. Further, post-processing can be performed using any means such as pressure treatment using a compressor, laser annealing, or the like.

金属酸化物層3の(101)面及び(004)面の結晶子径は、X線回折スペクトルからScherrer式より求め、13〜40nmであることが好ましい。Scherrerの式はピーク位置2θ[°]、ピークの半値幅β[radian]を用いてD=0.9λ/βcosθで表される。このとき、結晶子径はD [Å]、測定X線波長はλ[Å]である。測定X線にはCu−Kα1を用い、この時X線波長は、1.54056Åである。ここで、結晶子径が従来の5〜12nmに比べて大きいことにより、金属酸化物層中の電子伝導性が高くなり、光電変換効率が向上する。
The crystallite diameters of the (101) plane and (004) plane of the metal oxide layer 3 are obtained from the Scherrer equation from the X-ray diffraction spectrum, and are preferably 13 to 40 nm. The Scherrer equation is expressed as D = 0.9λ / βcos θ using the peak position 2θ [°] and the peak half-value width β [radian]. At this time, the crystallite diameter is D [Å], and the measured X-ray wavelength is λ [Å]. Cu-Kα1 is used for the measurement X-ray, and the X-ray wavelength at this time is 1.54056Å. Here, when the crystallite diameter is larger than the conventional 5 to 12 nm, the electron conductivity in the metal oxide layer is increased, and the photoelectric conversion efficiency is improved.

本発明に用いる柱状構造を有する金属酸化物層の柱状体の幅、柱状体間隔、膜厚、比表面積は任意に選択することができるが、キャリア伝導性、光透過性、光散乱性、電解質との界面面積の最適化を考慮すると、柱状体幅20nm以上10μm以下、間隔10μm以下、比表面積10m/g以上100m/g以下、さらに膜厚15μm以下であることがより好ましい。 The width, column interval, film thickness and specific surface area of the columnar body of the metal oxide layer having a columnar structure used in the present invention can be arbitrarily selected, but carrier conductivity, light transmission, light scattering, electrolyte In view of the optimization of the interface area, the columnar body width is preferably 20 nm to 10 μm, the interval is 10 μm or less, the specific surface area is 10 m 2 / g to 100 m 2 / g, and the film thickness is more preferably 15 μm or less.

本発明においては、特に金属酸化物層の空孔径分布を測定した際、空孔径のピークが10Åから100Åの間にあることが好ましく、より好ましくは、20Å〜80Åの間にあることが望ましい。空孔径分布測定は、液体窒素温度−196℃において窒素ガスを用いた吸着等温曲線測定を行い、得られた吸着等温曲線からBJH法を用いて得られた空孔径分布により行った。本発明における空孔径のピークとは、BJH法により得られた空孔径分布でもっとも高いピークを示し、例えば図2に示した空孔径分布のグラフにおいては56Åが空孔径のピークである。なお、空孔径ピークを最適にすることにより、表面積を最適にすることができる。   In the present invention, particularly when the pore size distribution of the metal oxide layer is measured, the peak of the pore size is preferably between 10 and 100%, more preferably between 20 and 80%. The pore size distribution was measured by measuring the adsorption isotherm curve using nitrogen gas at a liquid nitrogen temperature of -196 ° C., and using the pore size distribution obtained using the BJH method from the obtained adsorption isotherm curve. The pore diameter peak in the present invention is the highest peak in the pore diameter distribution obtained by the BJH method. For example, in the pore diameter distribution graph shown in FIG. The surface area can be optimized by optimizing the pore diameter peak.

さらに本発明においては、金属酸化物層の密度が0.5〜3.0g/cmであることが好ましい。この値は、表面積の最適化によるものである。本発明における金属酸化物層の密度は、積層した金属酸化物の体積と重量を測定し得られる。 Furthermore, in this invention, it is preferable that the density of a metal oxide layer is 0.5-3.0 g / cm < 3 >. This value is due to the optimization of the surface area. The density of the metal oxide layer in the present invention can be obtained by measuring the volume and weight of the laminated metal oxide.

また、金属酸化物層3は基材の法線に対して斜めに形成されていても構わない。さらに、金属酸化物層は透明導電層2上で図4のように不連続であっても構わないが、色素増感太陽電池として用いる際には、図5のように連続に形成されている方が、透明導電層2と電解質の接触が回避できるため、より好ましい。   The metal oxide layer 3 may be formed obliquely with respect to the normal line of the substrate. Further, the metal oxide layer may be discontinuous on the transparent conductive layer 2 as shown in FIG. 4, but when used as a dye-sensitized solar cell, it is continuously formed as shown in FIG. This is more preferable because the contact between the transparent conductive layer 2 and the electrolyte can be avoided.

本発明における色素4として、例えば、ルテニウムやオスミウムのトリスピリジン系やビスピリジン系の遷移金属錯体、またはフタロシアニンやポルフィリン、シアニジン色素、クマリン色素、メロシアニン色素、ローダミン色素などの有機色素が挙げられる。これらの色素は、吸光係数が大きくかつ繰り返しの酸化還元に対して安定であることが好ましい。また、上記色素は金属酸化物半導体上に化学的に吸着することが好ましく、カルボキシル基、スルホン酸基、リン酸基、アミド基、アミノ基、カルボニル基、ホスフィン基などの官能基を有することが好ましい。   Examples of the dye 4 in the present invention include ruthenium and osmium trispyridine-based and bispyridine-based transition metal complexes, or organic dyes such as phthalocyanine, porphyrin, cyanidin dye, coumarin dye, merocyanine dye, and rhodamine dye. These dyes preferably have a large extinction coefficient and are stable against repeated redox. The dye is preferably chemically adsorbed on the metal oxide semiconductor and has a functional group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amide group, an amino group, a carbonyl group, or a phosphine group. preferable.

色素4の酸化チタンへの吸着は任意の方法を用いることができるが、色素を適当な溶媒に溶解させることにより適当な濃度に調整した後、多結晶化させた酸化チタンをこの色素溶液に浸漬させる方法が一般的に用いられる。吸着色素量は色素増感太陽電池の性能に大きく影響を与えるため、濃度、溶媒、浸漬時間、温度などを調整して最適な吸着法を選択する必要がある。   Any method can be used to adsorb the dye 4 to the titanium oxide. After adjusting the dye to an appropriate concentration by dissolving it in an appropriate solvent, the polycrystallized titanium oxide is immersed in the dye solution. Is generally used. Since the amount of adsorbed dye greatly affects the performance of the dye-sensitized solar cell, it is necessary to select an optimal adsorption method by adjusting the concentration, solvent, immersion time, temperature and the like.

本発明における電解質または正孔輸送材料層5としては、溶媒としてアセトニトリルやプロピレンカーボネートのような極性溶媒に対して、ヨウ素を包含するヨウ化物、臭化物、キノン錯体、TCNQ錯体、ジシアノキノンジイミン錯体などを溶解させた酸化還元系を含む溶液を用いることができる。また、液漏れの可能性を回避するために、ゲル状電解質やp型半導体を含む固体状電荷輸送層を用いることがより好ましい。   As the electrolyte or hole transporting material layer 5 in the present invention, iodide, bromide, quinone complex, TCNQ complex, dicyanoquinone diimine complex, etc. containing iodine with respect to a polar solvent such as acetonitrile or propylene carbonate as a solvent. A solution containing a redox system in which is dissolved can be used. In order to avoid the possibility of liquid leakage, it is more preferable to use a solid charge transport layer containing a gel electrolyte and a p-type semiconductor.

固体状電荷輸送層に用いることのできる材料の具体例としては、トリフェニルアミン、ジフェニルアミン、フェニレンジアミンなどの芳香族アミン化合物、ナフタレン、アントラセンなどの縮合多環炭化水素、アゾベンゼンなどのアゾ化合物、スチルベンなどの芳香環をエチレン結合やアセチレン結合で連結した構造を有する化合物、アミノ基で置換されたヘテロ芳香環化合物、ポルフィリン類、フタロシアン類、キノン類、テトラシアノキノジメタン類、ジシアノキノンジイミン類、テトラシアノエチレン、ビオローゲン類、ジチオール金属錯体などが挙げられる。また、その他固体状電荷輸送層に用いることのできる材料として、CuI、AgI、TiI、およびその他の金属ヨウ化物、CuBr、CuSCN、ポリピロール、ポリチオフェン、ポリアニリン、PEDOT/PSSなどがある。また、ポリアルキレンエーテルなどの高分子ゲルにヨウ化物、キノン錯体等を抱含させて用いてもよい。これらの材料は、必要に応じて任意に組み合わせて用いることができる。   Specific examples of materials that can be used for the solid charge transport layer include aromatic amine compounds such as triphenylamine, diphenylamine, and phenylenediamine, condensed polycyclic hydrocarbons such as naphthalene and anthracene, azo compounds such as azobenzene, and stilbene. Compounds having a structure in which aromatic rings such as ethylene bonds or acetylene bonds are connected, heteroaromatic compounds substituted with amino groups, porphyrins, phthalocyanines, quinones, tetracyanoquinodimethanes, dicyanoquinone diimines , Tetracyanoethylene, viologens, dithiol metal complexes and the like. Other materials that can be used for the solid charge transport layer include CuI, AgI, TiI, and other metal iodides, CuBr, CuSCN, polypyrrole, polythiophene, polyaniline, and PEDOT / PSS. Further, an iodide, a quinone complex, or the like may be included in a polymer gel such as polyalkylene ether. These materials can be used in any combination as required.

本発明における電解質または正孔輸送材料層5の形成方法としては、マイクログラビアコーティング、ディップコーティング、スクリーンコーティング、スピンコーティング等を用いることができる。固体電解質またはp型半導体を用いる場合には、任意の溶媒を用いた溶液にした後、上記方法を用いて塗工し、基材を任意の温度に加熱して溶媒を蒸発させるなどにより形成する。   As a method for forming the electrolyte or hole transport material layer 5 in the present invention, microgravure coating, dip coating, screen coating, spin coating, or the like can be used. In the case of using a solid electrolyte or p-type semiconductor, after forming a solution using an arbitrary solvent, coating is performed using the above method, and the substrate is heated to an arbitrary temperature to evaporate the solvent. .

本発明における導電性触媒層6としては、任意の導電性材料を用いることができ、白金や金、銀、銅などの金属、もしくは炭素などが挙げられる。これらを形成する際には、透明導電層2と同様の真空成膜法、あるいはこれら材料の微粒子をペーストにしたものをウエットコーティングする方法を用いることができる。   As the conductive catalyst layer 6 in the present invention, any conductive material can be used, and examples thereof include metals such as platinum, gold, silver, and copper, or carbon. In forming these, a vacuum film forming method similar to that of the transparent conductive layer 2 or a method of wet coating a paste made of fine particles of these materials can be used.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

図1の層構成の色素増感太陽電池10を次のように作製した。基材1としてガラス(Corning7059、1.0mm厚)を使用し、この上に透明導電層2としてインジウム錫酸化物(ITO)を真空スパッタリング法により形成した。得られた透明導電性基材上に、金属酸化物層3として酸化チタンを酸素ガスを導入した反応性真空蒸着法により、9μm形成した。この時の成膜圧力は2.5×10−1Paであった。さらに、得られた積層体を、電熱炉を用いて大気中、450℃で30分間焼成した。得られた積層体の断面像をSEMによって観察したところ、酸化チタン層は柱状構造であった。得られた積層体のX線回折スペクトルを測定したところ、アナターゼ型TiO多結晶を示すスペクトルが観察され、(101)面を示すピークが2θ=25.24°に、(004)面を示すピークが2θ=37.79°に観察され、ピーク強度比は1:2.1であった。(101)面及び(004)面を示すピークの半値幅はそれぞれ0.431°、0.641°でScherrer式より結晶子径はそれぞれ18.9nm、13.1nmであった。得られた積層体を、5mm幅の短冊状にカットしたものを30枚用いることにより、液体窒素温度における窒素ガスの吸着等温線を測定したところ、空孔径ピークは55.6Åであった。密度は2.19g/cmであった。得られた積層体を、ビス(4,4’−ジカルボキシ−2,2’−ビピリジル)ジチオシアネートルテニウム (色素4)の2.5×10−4Mエタノール溶液に浸漬することにより、色素を金属酸化物層3に担持した後、エタノール洗浄、及び乾燥を行った。以下の操作を乾燥アルゴン雰囲気下で行った。電解質層5として0.4M TPAI(テトラプロピルアンモニウムヨーダイド)、0.05M I、0.05M tert−ブチルピリジン、3−メトキシプロピオニトリルからなる電解質を準備し、金属酸化物層3上に滴下した。更に、対向電極として上記と同様にして形成した基材1、透明導電層2よりなる積層体を用意し、この上に蒸着法により成膜した白金を導電性触媒層6として形成することにより対向電極を作製し、導電性触媒層6と電解質層5を重ね合わせるように固定した後、側面をUV硬化型アクリル樹脂で封止することにより色素増感太陽電池を作成した。 The dye-sensitized solar cell 10 having the layer configuration of FIG. 1 was produced as follows. Glass (Corning 7059, 1.0 mm thickness) was used as the substrate 1, and indium tin oxide (ITO) was formed thereon as the transparent conductive layer 2 by vacuum sputtering. On the obtained transparent conductive base material, 9 μm of titanium oxide was formed as the metal oxide layer 3 by a reactive vacuum deposition method in which oxygen gas was introduced. The film formation pressure at this time was 2.5 × 10 −1 Pa. Furthermore, the obtained laminate was baked at 450 ° C. for 30 minutes in the air using an electric furnace. When the cross-sectional image of the obtained laminated body was observed by SEM, the titanium oxide layer had a columnar structure. When the X-ray diffraction spectrum of the obtained laminate was measured, a spectrum showing anatase-type TiO 2 polycrystal was observed, and the peak showing the (101) plane showed (004) plane at 2θ = 25.24 °. A peak was observed at 2θ = 37.79 °, and the peak intensity ratio was 1: 2.1. The half widths of the peaks indicating the (101) plane and the (004) plane were 0.431 ° and 0.641 °, respectively, and the crystallite diameters were 18.9 nm and 13.1 nm, respectively, according to the Scherrer equation. When 30 sheets of the obtained laminate were cut into strips having a width of 5 mm were used, and the adsorption isotherm of nitrogen gas at the liquid nitrogen temperature was measured, the pore diameter peak was 55.6 mm. The density was 2.19 g / cm 3 . The obtained laminate was immersed in a 2.5 × 10 −4 M ethanol solution of bis (4,4′-dicarboxy-2,2′-bipyridyl) dithiocyanate ruthenium (dye 4) to obtain the dye. After being supported on the metal oxide layer 3, ethanol washing and drying were performed. The following operations were performed under a dry argon atmosphere. An electrolyte made of 0.4 M TPAI (tetrapropylammonium iodide), 0.05 M I 2 , 0.05 M tert-butylpyridine, 3-methoxypropionitrile was prepared as the electrolyte layer 5, and the metal oxide layer 3 was It was dripped. Further, a laminate composed of the base material 1 and the transparent conductive layer 2 formed in the same manner as described above is prepared as a counter electrode, and platinum formed by vapor deposition is formed thereon as the conductive catalyst layer 6 so as to oppose the laminate. After preparing an electrode and fixing the conductive catalyst layer 6 and the electrolyte layer 5 so as to overlap each other, a side surface was sealed with a UV curable acrylic resin to prepare a dye-sensitized solar cell.

以上で得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cmの擬似太陽光を用いた時、短絡電流JSC= 17mA/cm、開放電圧VOC= 0.80V、フィルファクターFF=0.71で光電変換効率はη=9.7%であった。 The current-voltage characteristics of the dye-sensitized solar cell obtained above were measured. M.M. When using pseudo sunlight of 1.5, 100 mW / cm 2 , the short-circuit current J SC = 17 mA / cm 2 , the open circuit voltage V OC = 0.80 V, the fill factor FF = 0.71, and the photoelectric conversion efficiency is η = It was 9.7%.

本発明における色素増感太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the dye-sensitized solar cell in this invention. 本発明における酸化チタン層のX線回折スペクトルの一例を示すスペクトル図である。It is a spectrum figure which shows an example of the X-ray-diffraction spectrum of the titanium oxide layer in this invention. 本発明における酸化チタン層の空孔径分布の一例を示すグラフ図である。It is a graph which shows an example of the hole diameter distribution of the titanium oxide layer in this invention. 本発明における柱状構造酸化チタン層の一例を示す断面図である。It is sectional drawing which shows an example of the columnar structure titanium oxide layer in this invention. 本発明における柱状構造酸化チタン層の一例を示す断面図である。It is sectional drawing which shows an example of the columnar structure titanium oxide layer in this invention.

符号の説明Explanation of symbols

1 基材
2 透明導電層
3 金属酸化物層
4 色素
5 電解質または正孔輸送材料層
DESCRIPTION OF SYMBOLS 1 Base material 2 Transparent conductive layer 3 Metal oxide layer 4 Dye 5 Electrolyte or hole transport material layer

Claims (4)

少なくとも基材上に、導電膜層と色素分子の吸着したアナターゼ型酸化チタン層と電解質または正孔輸送材料層と対向電極が順に積層されてなる色素増感太陽電池において、前記アナターゼ型酸化チタン層が柱状構造を有し、かつX線回折により観察されたアナターゼ型の(101)面と(004)面に由来するピークの強度比が1:1.5〜1:3の間であることを特徴とする色素増感太陽電池。   In the dye-sensitized solar cell in which a conductive film layer, an anatase-type titanium oxide layer on which a dye molecule is adsorbed, an electrolyte or hole transport material layer, and a counter electrode are sequentially laminated on at least a substrate, the anatase-type titanium oxide layer Has a columnar structure, and the intensity ratio of peaks derived from the (101) plane and (004) plane of anatase type observed by X-ray diffraction is between 1: 1.5 and 1: 3. Dye-sensitized solar cell characterized. 上記アナターゼ型酸化チタンの空孔径のピークが10Åから100Åの間にあることを特徴とする請求項1に記載の色素増感太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein the pore diameter of the anatase-type titanium oxide is between 10 and 100%. 上記アナターゼ型酸化チタンの密度が0.5〜3.0g/cmであることを特徴とする請求項1及び2のいずれかに記載の色素増感太陽電池。 3. The dye-sensitized solar cell according to claim 1, wherein the anatase-type titanium oxide has a density of 0.5 to 3.0 g / cm 3 . 上記アナターゼ型酸化チタンの(101)面及び(004)面の結晶子径が13〜40nmの範囲内であることを特徴とする請求項1から3のいずれかに記載の色素増感太陽電池。   4. The dye-sensitized solar cell according to claim 1, wherein a crystallite diameter of the (101) plane and the (004) plane of the anatase-type titanium oxide is within a range of 13 to 40 nm.
JP2005298591A 2005-10-13 2005-10-13 Dye-sensitized solar cell Pending JP2007109500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298591A JP2007109500A (en) 2005-10-13 2005-10-13 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298591A JP2007109500A (en) 2005-10-13 2005-10-13 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2007109500A true JP2007109500A (en) 2007-04-26

Family

ID=38035215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298591A Pending JP2007109500A (en) 2005-10-13 2005-10-13 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2007109500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102068A1 (en) * 2008-02-14 2009-08-20 Ube Industries, Ltd. Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
JP2010118149A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Dye-sensitized solar cell
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339867A (en) * 1998-05-29 1999-12-10 Catalysts & Chem Ind Co Ltd Photoelectric cell and manufacture of metal oxide semiconductor film for photoelectric cell
JP2002170557A (en) * 2000-12-01 2002-06-14 Toyota Central Res & Dev Lab Inc Electrode
JP2006199986A (en) * 2005-01-19 2006-08-03 Toppan Printing Co Ltd Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP2007070136A (en) * 2005-09-05 2007-03-22 Kyoto Univ Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod
JP2007087854A (en) * 2005-09-26 2007-04-05 Toppan Printing Co Ltd Dye-sensitized solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339867A (en) * 1998-05-29 1999-12-10 Catalysts & Chem Ind Co Ltd Photoelectric cell and manufacture of metal oxide semiconductor film for photoelectric cell
JP2002170557A (en) * 2000-12-01 2002-06-14 Toyota Central Res & Dev Lab Inc Electrode
JP2006199986A (en) * 2005-01-19 2006-08-03 Toppan Printing Co Ltd Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP2007070136A (en) * 2005-09-05 2007-03-22 Kyoto Univ Titania nano-rod, its manufacture method, and dye sensitizing solar battery using this titania nano-rod
JP2007087854A (en) * 2005-09-26 2007-04-05 Toppan Printing Co Ltd Dye-sensitized solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102068A1 (en) * 2008-02-14 2009-08-20 Ube Industries, Ltd. Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
JPWO2009102068A1 (en) * 2008-02-14 2011-06-16 宇部興産株式会社 Binuclear ruthenium complex dye solution, photoelectric conversion element using photosensitized semiconductor fine particles obtained using the complex dye solution, and photochemical battery using the same
JP2010118149A (en) * 2008-11-11 2010-05-27 National Institute For Materials Science Dye-sensitized solar cell
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module

Similar Documents

Publication Publication Date Title
Ogomi et al. All-solid perovskite solar cells with HOCO-R-NH3+ I–anchor-group inserted between porous titania and perovskite
Stergiopoulos et al. Minimizing Energy Losses in Dye‐Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes
KR20070056581A (en) Electrode for a solar cell, manufacturing method thereof and a solar cell comprising the same
JP4032873B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND PRODUCT USING THE SAME
Wang et al. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed
WO2010103759A1 (en) Dye-sensitized solar cell
Mingsukang et al. Third-generation-sensitized solar cells
Capasso et al. CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
Sharma et al. Improvement in the power conversion efficiency of thiocyanate-free Ru (II) based dye sensitized solar cells by cosensitization with a metal-free dye
Zhang et al. Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer
JP4710251B2 (en) Method for producing metal oxide film
Lee et al. Triphenylamine-based tri-anchoring organic dye with enhanced electron lifetime and long-term stability for dye sensitized solar cells
JP2006199986A (en) Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP4622519B2 (en) Dye-sensitized solar cell and method for producing the same
JP2007087854A (en) Dye-sensitized solar cell
JP2007109500A (en) Dye-sensitized solar cell
JP4797338B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003197283A (en) Dye sensitized solar battery
JP2003059546A (en) Manufacturing method of dye sensitizing solar cell and solar cell using same
JP2005251605A (en) Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
JP4314764B2 (en) Method for producing dye-sensitized solar cell
JP2009205890A (en) Photoelectric conversion element and solar cell
JP2002353483A (en) Dye sensitizing solar cell and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904