KR101082421B1 - 콜레스테롤 및 지질대사 개선을 위한 식품 - Google Patents

콜레스테롤 및 지질대사 개선을 위한 식품 Download PDF

Info

Publication number
KR101082421B1
KR101082421B1 KR1020090010566A KR20090010566A KR101082421B1 KR 101082421 B1 KR101082421 B1 KR 101082421B1 KR 1020090010566 A KR1020090010566 A KR 1020090010566A KR 20090010566 A KR20090010566 A KR 20090010566A KR 101082421 B1 KR101082421 B1 KR 101082421B1
Authority
KR
South Korea
Prior art keywords
cholesterol
bacillus subtilis
mixture
lipid metabolism
group
Prior art date
Application number
KR1020090010566A
Other languages
English (en)
Other versions
KR20100091393A (ko
Inventor
이인선
김현정
이성규
이삼빈
김종부
이은주
정현진
Original Assignee
주식회사 엔유씨전자
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔유씨전자, 계명대학교 산학협력단 filed Critical 주식회사 엔유씨전자
Priority to KR1020090010566A priority Critical patent/KR101082421B1/ko
Publication of KR20100091393A publication Critical patent/KR20100091393A/ko
Application granted granted Critical
Publication of KR101082421B1 publication Critical patent/KR101082421B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/001Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from waste materials, e.g. kitchen waste
    • A23J1/005Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from waste materials, e.g. kitchen waste from vegetable waste materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/006Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from vegetable materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/50Fermented pulses or legumes; Fermentation of pulses or legumes based on the addition of microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/185Vegetable proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/20Freezing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 콜레스테롤 및 지질대사 개선을 위한 식품에 관한 것으로서, 탈지대두박 및 녹두 발효물의 혼합물이 갖는 콜레스테롤 및 지질대사 개선을 위한 식품으로서의 용도에 관한 것이다.

Description

콜레스테롤 및 지질대사 개선을 위한 식품{Food for improving cholesterol and lipid metabolism}
본 발명은 콜레스테롤 및 지질대사 개선을 위한 식품에 관한 것으로서, 탈지대두박 발효물 및 녹두 발효물의 혼합물이 갖는 콜레스테롤 및 지질대사 개선을 위한 식품으로서의 용도에 관한 것이다.
고도의 산업화와 경제적 수준의 향상으로 식생활 패턴이 서구화되면서 최근 한국인의 사망원인을 살펴보면, 뇌혈관계 질환, 악성 종양, 고혈압 및 심장 질환 등이 높은 비중을 차지하고 있으며, 소아 성인병 또한 증가추세에 있어 국민 보건에 심각한 문제점으로 지적되고 있다. 특히 동물성 식품과 정제된 식품의 섭취량 증가는 지방간, 동맥경화, 심혈관계질환, 고지혈증, 고혈압 등의 합병증을 수반한다. 이 중 고지혈증은 혈장 내 콜레스테롤이나 중성지방이 비정상적으로 증가된 상태이고, 그 중 고콜레스테롤혈증은 죽상동맥경화증과 고중성지방혈증을 유발하는 것으로 알려져 있다. 이러한 추세에 따라 고지혈증 개선을 위한 콜레스테롤 합성저 해제가 다방면으로 연구되고 있다.
콜레스테롤 생합성 과정 중 3-하이드록시-3-메틸글루타릴 코엔자임 A(3-hydroxy-3-methylglutaryl coenzyme A, 이하 HMG-CoA으로 약칭.)로부터 메발로네이트(mevalonate)로 전환시키는 효소인 HMG-CoA 리덕타아제는 콜레스테롤 합성속도의 주요 조절 효소이며, 간 내에 HMG-CoA 리덕타아제 활성의 저하는 간의 LDL-수용체(receptor)의 활성을 증가시켜 혈중 콜레스테롤 농도를 감소시킨다고 보고되고 있다(Sitory, C. R. Pharmacology and mechanism of action of the new HMG-CoA reductase inhibitors. Pharm. Res. 1990, 22, 555-562; Qureshi, A. A.; Abuimeileh, N.; Din, Z. Z.; Elson, C. E.; Burger, W. C. Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids. 1983, 18, 343-348; Qureshi, A. A., Burger W. C. Peterson D. M., Elson, C. E.: Suppression of cholesterogenesis by plant constituents: review of wisconsin contributions to NC-167. Lipids. 1985, 20, 817-824. 기재 참조).
이러한 고지혈증 및 고콜레스테롤혈증의 치료제로써 최근 가장 많이 사용되는 것은 로바스타틴(lovastatin), 심바스타틴(simvastatin), 프라바스타틴(pravastatin), 플루바스타틴(fluvastatin), 아토바스타틴(atorvastatin) 및 세바스타틴(cervastatin) 등의 스타틴류(statin)의 물질이다. 스타틴류의 물질은 생체 내에서 콜레스테롤의 합성을 저해하여 결과적으로 콜레스테롤 양을 현저히 낮출 수 있지만, 심각한 근육통 등의 부작용들을 수반한다. 그러므로 부작용 없이 콜레 스테롤 합성을 저해하는 생리활성물질을 찾아내려는 연구가 활발하게 진행되고 있다.
한편, 단백질이 혈중 콜레스테롤 농도와 동맥경화에 영향을 미친다는 것이 보고 되었으며(Iwami, K.; Sakakibara, K.; Ibuki, F. Involvement of post-digestrion hydrophobic peptides in plasma cholesterol lowering effect of dietary plant proteins. Agric. Biol. Chem. 1986, 50, 1217; Sugano, M.; Goto, S.; Yamada, Y.; Toshida, K, M.; Hashimoto, Y.; Matsuno, T.; Kimoto, M. Cholesterol-lowering activity of various undigested fraction of soybean protein in rats. J. Nutr. 1990, 120, 977-985; Iritani, N.; Hosomi, H.; Fukuda, H.; Tada, K.; Ikeda, H. Soybean protein suppresses hepatic lipogenic enzyme gene expression in wister fatty rats. J. Nutr. 1996, 126, 380-388.; Moi, M. A. E.; Smet, R. C.; Terpstra, A. H. M.; West, C. E. Effect of dietary protein and cholesterol on cholesterol concentration and lipoprotein pattern in the serum of chickens. J. Nut. 1982, 112, 1029-1037. 참조), 특히 대두 단백질이 동물성 단백질인 카제인에 비해 혈중 콜레스테롤 농도를 저하하는 효과가 현저하다는 연구들이 많이 보고되었다(Huff, M. W.; Carrol, K. K. Effects of dietary proteins and amino acid mixtures on plasma cholesterol levels in rabbits. J. Nutr. 1980, 110, 1676-1685.; Park, M. S.; Liepa, G. U. Effects of dietary protein and amino acids on the metabolism of cholesterol-carring lipoproteins in rats. J. Nutr. 1982, 112, 1892-1898.; Sautier, C.; Doucet, C.; Flament, C.; Lemonnier, D. Effect of soy protein and saponins on serum, tissue and feces steroids in rats. Atherosclerosis. 1979, 34, 233-241.; Sirtori, C. R.; Agra, E.; Conti, F.; Gatti, E.; Mantero, O.; Tremili, E.; Sirtori, M.; Fraterrigo, L.; Tavazzi, L.; Kritxhevsky, D. Clinical experience with the soybean protein diet in the treatment of hypercholesterolemia. Am. J. Clin. Nutr. 1979, 32, 1645-1658. 참조).
대두 단백질의 혈중 콜레스테롤 저하효과에 대한 기전으로 첫째, 대두 단백질의 섭취가 간에서 콜레스테롤 합성 율속 효소인 HMG-CoA 리덕타아제의 활성에 영향을 준다는 보고(Forsythe, W. A. Comparison of dietary casein or soy protein effects on plasma lipids and hormone concentrations in the gerbil. J. Nutr. 1986, 116, 1165-1171. 참조)와, 특정 아미노산의 비율이 혈중 콜레스테롤 농도를 감소시킨다는 보고(Milner, J. A.; Hassan, A. S. Species specificity of arginine deficiency-induced hepatic steatosis. J. Nutr. 1981, 111, 1067-1073.; Forsythe, W. A.; Miller, E. R.; Hill, G. M.; Romsos, D. R.; Simpson, R. C. Effects of dietary protein and fat sources on plasma cholesterol parameters, LCAT activity and amino acid levels on tissue lipid content of growing pogs. J. Nutr. 1980, 110, 2467-2479.참조)들이 있다. 둘째, 대두 단백질의 섭취가 분변으로의 담즙산 배설을 증가시켜 간의 콜레스테롤은 더 많은 담즙산을 생성하기 위하여 사용되며 혈액으로부터 apolipoprotein B/E 수용체를 통해 콜레스테롤을 제공받아 혈장 콜레스테롤 농도를 저하시켜 체내 콜레스테롤 pool을 감 소시킨다고 보고되었다(Iwami, K.; Sakakibara, K.; Ibuki, F. Involvement of post-digestrion hydrophobic peptides in plasma cholesterol lowering effect of dietary plant proteins. Agric. Biol. Chem. 1986, 50, 1217. ; Sugano, M.; Goto, S.; Yamada, Y.; Toshida, K, M.; Hashimoto, Y.; Matsuno, T.; Kimoto, M. Cholesterol-lowering activity of various undigested fraction of soybean protein in rats. J. Nutr. 1990, 120, 977-985. 참조). 셋째, 내분비계에 영향을 미쳐 혈중 글루카곤/인슐린 비의 감소(Potter, S. M. Overview of proposed mechanisims for the hypocholesterolemic effect of soy. J. Nutr. 1995, 125, 606-611 . 참조)와 티록신(thyroxine) 농도를 증가시켜 혈중 중성지방과 콜레스테롤 농도를 감소시킨다는 보고(Forsythe, W. A. Soy protein, thyroid regulation and cholesterol metabolism. J. Nutr. 1995, 125, 619-623. 참조)들이 있다.
또한 대두의 발효과정 중 쏘이 펩타이드류 (soy peptides), 글루불린류(glubulins), 이소플라본류(isoflavones), 사포닌 등의 물질이 생산되어(Choi, Y. B.; Sohn, H. S. Isoflavone content in Korean fermented and unfermented soybean foods. Korean J. Food Sci. Technol. 1998, 30, 745-750. 참조) 혈전용해능(Hso, S.; Lee, S. K.; Joo, H. K. Isolation and identification of fibrinolytic bacteria from Korean traditional chugkookjang. J. Korean Soc. Agric. Chem. Biotechnol. 1998, 41, 119-124. 참조), 항암(Kwon, E. Y. Standardization of Chungkookjang preparation and its cancer preventive effect. M. S. Thesis. Pusan National University, Pusan. 2000. 참조), 항산화 및 항동맥경화 효과(Yang, J. L. Antiatherogenic effect of chonkukjang. Dissertation of Ph. D., Pusan National University, Pusan. 2000.), 그리고 혈당조절 및 혈중 중성지질 및 콜레스테롤 감소로 인한 지질대사를 개선하는 기능(Kang, M. J. Antibiabetic effect of soy pinito and Chongkukjang : Animal studies and clinical trials. Dissertation of Ph. D., Inje University, Gimhae. 2004.) 등이 보고되었다. 특히 대두의 고초균 발효과정 중에 생성되는 점질물은 감마-폴리글루탐산(gamma-poly-glutamic acid, γ-PGA)과 프락토오즈 중합체인 레반으로 구성되며, γ-PGA는 칼슘이 인과 결합하여 불용성 염을 형성하는 것을 방지하여 칼슘 용해도를 증가시키며, 레반은 혈중지질 감소효과를 나타내었다.
대두는 우리나라 국민이 가장 많이 섭취하는 두류로서 육류의 대체 영양공급원으로 다양하게 이용되고 있는 식품이며, 발효제품, 발아제품, 기타 가공식품 등의 식품으로서 이용도가 높을 뿐 아니라 공업용, 의약용, 화장품, 비누 등의 원료로도 널리 이용되고 있다. 새로운 단백질 식품의 소재로써 상업적으로 생산되고 있는 탈지대두박(defatted soybean grit), 농축대두단백(soybean protein concentrate), 분리대두단백(soybean protein isolate) 및 조직대두단백(textured soybean protein) 등의 이용도 증가하고 있다.
특히 탈지대두박은 대두유 제조로 생산되는 부산물로, 외피를 제거한 대두로부터 만들어져 상대적으로 낮은 섬유소를 가지고, 높은 단백질 함량을 가지며, 지질 함량이 1% 이하이다.
본 발명의 일 구현예에서는 탈지대두박을 B. subtilis 균주로 고체 발효시킨 탈지대두박 발효물과 HMG-CoA 리덕타아제 저해활성이 우수한 천연물의 발효물의 혼합물에 대하여 in vitro in vivo 상에서 콜레스테롤 및 지질대사 개선능을 비교 검색하여, 이들 발효물의 콜레스테롤 및 지질대사 개선능을 가지는 새로운 식품 소재로서의 용도를 제공하고자 한다.
본 발명의 일 구현예에서는 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 및 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물의 혼합물을 포함하는 콜레스테롤 및 지질대사 개선을 도모하는 식품을 제공한다.
바람직한 본 발명의 일 구현예에 의한 식품에 있어서, 혼합물은 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물을 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 100중량부에 대해 0.1 내지 10중량부로 포함하는 것일 수 있다.
본 발명의 일 구현예에 의한 식품에 있어서, 혼합물은, 증자한 탈지대두박과 녹두 분말의 혼합물을, 바실러스 서브틸리스( Bacillus subtilis )로 고체 발효시켜 얻어지는 것일 수 있으며, 구체적으로는 탈지대두박 100중량부에 녹두 분말 0.1 내지 10중량부를 혼합하고 증류수를 가하여 멸균 및 증자하여, 멸균된 녹두 첨가 탈지대두박 용액을 제조하는 공정; 멸균된 대두분말 용액 중에서 바실러스 서브틸리 스( Bacillus subtilis )를 40~42℃에서 46~48시간 동안 배양하여 배양액을 제조하는 공정; 및 멸균된 녹두 첨가 탈지대두박 용액에 배양액을 접종한 후 40~42℃에서 24~26 시간 발효시키는 공정을 수행하여 얻어지는 것일 수 있다.
본 발명의 일 구현예에 의한 식품에 있어서, 혼합물은 동결건조물일 수 있다.
본 발명의 일 구현예에 의한 식품에 있어서, 혼합물은 발효 공정 이후에 동결건조 공정을 더 수행하여 얻어질 수 있다.
본 발명의 일 구현예에 의하면 탈지대두(DSG)에 녹두를 첨가하여 바실러스 서브틸리스균( Bacillus sbutlis )을 이용한 고체발효를 행하여 얻어지는 발효물은 in vitro 상에서 콜레스테롤 개선능을 검색한 결과 콜레스테롤 흡착능과 HMG-CoA 리덕타아제 저해활성 및 HepG2 세포에서의 콜레스테롤 조절능이 우수함을 확인하였으며, 또한 HepG2 세포에서 apolipoprotein AI, AII 활성 증가 및 apolipoprotein CIII의 활성 저해 효과가 우수함을 확인하였다.
또한 티로신 및 점질물 함량이 20 배 이상 증가되며 프로테아제 활성과 α-아밀라아제 활성이 높다.
또한 In vivo 상에서의 체내 콜레스테롤 함량변화를 측정한 결과, 콜레스테롤 및 지질 개선효과를 보였고 특히 혈장 및 간 내의 콜레스테롤과 TG 함량이 감소되었고, 변 내 콜레스테롤 및 TG 함량의 배출이 증가되었다. 또한 간 내의 HMG-CoA 리덕타아제 활성을 저해하여 콜레스테롤 및 지질대사가 조절되었다.
따라서, 본 발명의 일 구현예들에 의한 탈지대두박 발효물과 녹두 발효물의 혼합물은 콜레스테롤과 지질대사 개선효과를 가지고 있으며, 이로써 콜레스테롤 및 지질대사 개선능에 관련된 기능성 식품 천연소재로서 유용성을 기대할 수 있다.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명의 일 구현예에서는 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 및 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물의 혼합물을 포함하는 콜레스테롤 및 지질대사 개선을 도모하는 식품을 제공한다. 다시 말해, 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 및 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물의 혼합물을 이용한 콜레스테롤 및 지질대사 개선을 도모하는 식품으로서의 용도에 관한 것이다.
두 발효물을 혼합함에 따른 콜레스테롤 및 지질대사 개선의 상승적인 효과에 있어 최적하기로는, 혼합물은 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물을 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 100중량부에 대해 0.1 내지 10중량부로 포함하는 것이다.
탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물에 대하여 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물의 함량이 과 다하면, 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 단독으로 발현되는 콜레스테롤 및 지질대사 개선 효과를 오히려 저감시켜 첨가에 따른 효과를 기대하기 어려울 수 있다. 바람직하기로는 혼합물은 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물을 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 100중량부에 대해 0.1 내지 5중량부로 포함하는 것일 수 있다.
이러한 두 발효물의 혼합물은 다양한 방법으로 얻어질 수 있으나, 탈지대두박 및 녹두를 각각 발효하여 혼합하는 경우보다 증자한 탈지대두박과 녹두 분말의 혼합물을, 바실러스 서브틸리스( Bacillus subtilis )로 고체 발효시키는 방법이 발효 중에 효소 생성이나 점질물 함량 등의 증가에 영향을 미치므로 발효적성이나 콜레스테롤 및 지질대사 개선 효과적 측면에서 좋기로는 증자한 탈지대두박과 녹두 분말의 혼합물을, 바실러스 서브틸리스( Bacillus subtilis )로 고체 발효시키는 방법을 들 수 있다.
좀더 구체적으로는, 먼저 탈지대두박 100중량부에 녹두 분말 0.1 내지 10중량부를 혼합하고 증류수를 가하여 멸균 및 증자하여, 멸균된 녹두 첨가 탈지대두박 용액을 제조한다.
이때 증류수의 첨가량은 탈지대두박 100중량부에 대해 0.1 내지 10중량부일 수 있다.
멸균 및 증자는 고압멸균기를 이용하여 수행할 수 있으며, 120~121℃에서 15~16분 동안 증자하면 멸균된 탈지대두박 및 녹두 분말의 혼합 용액(멸균된 녹두 첨가 탈지대두박 용액)을 얻을 수 있다.
멸균된 녹두 첨가 탈지대두박 용액은 발효 공정으로의 이행을 위해 50 내지 60℃로 냉각하여 둔다.
이와는 별도로 발효를 수행하기 위한 균주 배양의 공정을 수행하는바, 구체적으로는 멸균된 대두분말 용액 중에서 바실러스 서브틸리스( Bacillus subtilis )를 40~42℃에서 46~48시간 동안 배양하여 배양액을 제조할 수 있다.
이때 배양 용액은 멸균된 대두분말 용액 이외에도 검정 콩파쇄물, MRS 배지 등을 사용할 수 있으며, 바실러스 서브틸리스( Bacillus subtilis ) 균주의 스타터 균을 배양가능한 경우라면 이에 각별히 한정이 있는 것은 아니다.
그 다음, 멸균된 녹두 첨가 탈지대두박 용액에 배양액을 접종한 후 40~42℃에서 24~26시간 발효시킨다. 배양액의 접종 농도는 1~2% 일 수 있다.
이와 같은 방법에 따라 녹두 발효물과 탈지대두박 발효물의 혼합물 용액을 제조할 수 있으며, 이러한 혼합물 용액을 그대로 식품으로 이용할 수 있고, 추가적으로 동결건조 등의 건조공정을 수반하여 동결건조물 형태로 식품으로 이용할 수도 있다.
이하에서는 본 발명의 일 구현예들에 의한 녹두 발효물과 탈지대두박 발효물의 혼합물의 콜레스테롤 및 지질대사 개선을 도모하는 식품으로서의 용도를 뒷받침하기 위한 실험을 수행하고 그 효과를 확인한다.
다만, 이하의 실시예에서 녹두 발효물과 탈지대두박 발효물의 혼합물의 특성 및 효과를 용이하게 대비하기 위하여 탈지대두박 발효물 단독의 경우와도 대비를 수행하나, 이는 다만 탈지대두박 발효물과 녹두 발효물과의 혼합에 따른 효과의 변화를 가늠하기 위한 것일 뿐 탈지대두박 발효물의 콜레스테롤 및 지질대사 개선을 도모하는 식품으로서의 용도가 공지된 것으로 이해되어서는 아니 될 것이다.
<실시예>
1. 시약 및 기기
1) 시약
세포배양에 사용된 dulbecco's modified eagle medium (DMEM), fetal bovine serum (FBS), antibiotics, trypsin-EDTA는 Gibco BRL (Gibco BRL, Grand island, N.Y., USA)로부터 구입하였다.
콜레스테롤 조절능 측정을 위해 총 콜레스테롤 측정용 kit는 아산제약 (Seoul, Korea)의 제품을 구입하였고, apolipoprotein 분비량 측정을 위해 apolipoprotein-AⅠ, apolipoprotein-AⅡ, apolipoprotein-CⅢ는 Academy Bio-Medical (Huston, USA)과 anti-goat IgG는 Jackson ImmunoResearch Laboratories (West Grove, USA)로부터 구입하였다.
Tyrosine 함량 측정시 이용된 Folin-phenol reagent는 Junsei Chemical Co. (Tokyo, Japan)을 사용하였다. 간의 HMG-CoA reductase 활성측정을 위해 NADPH, HMG-CoA, mevalonlactone은 Sigma (ST. Louis. MO., USA)로부터 구입하여 사용하였다. 그 외 시약 및 유기용매도 일급시약을 사용하여 실험하였다.
2) 기기
본 실험에 사용된 기기는 UV/visible spectrophotometer (Unikon 922, Kontron, Italy), incubator (Model 3154, Forma Scientific, USA), ultracentrifuge (Model 695-7, Hitachi, Japan), microplate spectrophotometer (Molecular Devices, Spectra max 340PC, USA), microplate shaker (Finemixer SH2000, FINEPCR, Korea), deep freezer (CLN-50VW, Nihon freezer, Japan), glass teflon homogenizer (Glascol, 099C K44, USA), pH meter (model 691, Metrohm, Swiss) 등이다.
2. 시료 준비
1) 천연소재 추출물의 조제
본 실험에 사용된 식용가능한 버섯, 향신료, 한방소재 및 녹두를 포함하는 천연물 9종은 Table 1과 같으며, 커리플라워와 녹두는 대형마트에서 구입하였고 커리플라워와 녹두를 제외한 나머지 재료는 대구 약령시장에서 건조된 것을 구입하여 사용하였다. 시료의 불순물을 제거하기 위해 수세하여 건조시킨 후 시료 무게의 10배(w/v)의 80% 메탄올을 가하여 24시간 동안 정치하여 총 3회 반복 추출하였다. 추출액은 여과지 (Whatman No.3, England)를 사용하여 여과한 액을 rotary vacuum evaporator (R-3000, Buchi Switzerland)로 55℃에서 농축한 다음 동결 건조하여 사용하였다.
2) 원료처리 및 발효물 제조
탈지대두박(Defatted Soybean Grit, 이하 DSG라 약칭한다.)은 ADM사 (Decatur, IL, USA)에서 구입하여 사용하였고, 균주로는 (주)NUC전자 바이오연구소의 보유균주인 바실러스 서브틸러스 BN-NUC1(KCCM10839P)을 사용하여 실험하였다.
발효물의 제조공정을 도 1을 참조하여 설명하면, 먼저 DSG 단독 발효물을 제조하는 공정은, DSG 원료에 증류수를 원료대비 2.5배 중량비로 첨가한 후 고압 멸균기로 121℃에서 15분간 증자하였다. 증자된 DSG를 실온에서 50∼60℃로 냉각하였다. 한편 멸균된 대두분말 용액에서 B. subtilis BN-NUC1(KCCM10839P)을 40~42℃에서 46~48시간 배양하여 배양액을 얻고, 이를 상기 증자한 DSG 용액에 B. subtilis BN-NUC1(KCCM10839P)이 2%가 되게 접종한 후 40~42℃에서 24~26시간 발효시켜 DSG 발효물(이하, FD라 한다.)을 얻었다.
한편, 탈지대두박과 녹두의 혼합 발효물의 제조는, 먼저 DSG 원료에 증류수를 원료대비 2.5배 중량비로 첨가한 후 여기에 분말 녹두를 DSG 원료 중량 대비하여 2.5 내지 10중량부 되도록 첨가량을 달리하여 첨가하여 용해시킨 다음, 이를 고압 멸균기로 120~121℃에서 15~16분간 증자한 후 냉각하였다.
한편 멸균된 대두분말 용액에서 B. subtilis BN-NUC1(KCCM10839P)을 40~42℃에서 46~48시간 배양하여 배양액을 얻고, 이를 상기 증자한 녹두 첨가 DSG 용액에 B. subtilis BN-NUC1(KCCM10839P)이 2%가 되게 접종한 후 40~42℃에서 22~24시간 발효시켜 녹두 첨가 DSG 발효물(이하, FDM이라 한다.)을 얻었다.
각각의 발효물을 동결건조하여 이하의 실험에 이용하였다.
No. Korean name Scientific name
1. 황금 Scutellaria baicalensis Georgi
2. 능이버섯 Sarcodon aspratus
3. 커리플라워 Brassica oleracea L. var.
4. 당귀 Angelicae Gigantis Radix
5. 상황버섯 Pellinus Linteus
6. 감초 Glycyrrhiza uralensis Fisch
7. 치커리 Cichorium intybus L.
8. 몰로키아 Corchorus olitorius L.
9. 녹두 Phaseolus radiatus
3. In vitro system을 이용한 콜레스테롤 조절능 검색
1) 총 콜레스테롤 흡착능
총 콜레스테롤 흡착능 측정은 효소법에 의한 아산제약 총콜레스테롤 측정용 kit (AM 202-K)를 사용하여 측정하였다. 동결건조한 발효물을 10배의 증류수에 녹인 후 발효물 1 mL에 30 μg의 콜레스테롤을 첨가하여 25℃에서 20분 동안 잘 섞어준 후, 0.1 M hexadecyltrimethylamminium bromide을 50 μL를 가하여 섞은 후 4℃에서 15,000 rpm으로 10분간 원심분리하여 상층액을 취해 효소액과 37℃에서 5분간 반응시킨 뒤 500 nm에서 흡광도를 측정하였다(Soh, H. S.; Kim, C. S.; Lee, S. P. A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides J. Med. Food. 2003, 6, 225-230. 참조).
2) HMG-CoA reductase 저해활성
간 조직의 효소원은 Hulcher 등의 방법(Hulcher, F.; Oleson, W. H. Simplified spectrophotometric assay for microsomal HMG-CoA reductase by measurement of coenzyme A. J. Lipid Res. 1973, 14, 625-631. 참조)을 일부 수정하여 분리하였다. 적출한 간 조직 1 g당 4배량의 0.1 M potasium phosphate (pH 7.4)를 가한 후 마쇄하여 4℃ 이하에서 600×g로 10분간 원심분리한 다음 상층액을 취해, 이를 10,000×g, 4℃에서 20분간 원심분리하였다. 상층액을 다시 105,000×g, 4℃ 1시간 동안 초원심분리하여 침전물인 microsomal 분획을 얻어 사용하였다. 분획은 일정량씩 나누어 실험에 사용할 때까지 80℃에서 보관하였다.
측정 방법은 1 mL cuvette에 시료 20 μL, 0.5 mM phosphate buffer (pH 7.0), 20 mM DTT 100 μL, 3 mM NADPH 100 μL, 효소원 100 μL를 넣었다. 반응액의 온도는 37℃로 일정하게 유지하여 약 10분간 preincubation한 후에 3 mM HMG-CoA 100 μL를 가하여 효소 반응을 시작하였다. 반응이 시작됨과 동시에 340 nm에서 5분간의 흡광도 변화를 기록하였다. HMG-CoA reductase의 억제활성은 다음 식에 의하여 계산하였다.
HMG-CoA reductase inhibition activity (%) =
Figure 112009008134436-pat00001
T: △O.D. of sample C: △O.D. of blank
3) 세포 배양
본 실험에 사용한 인간 유래의 간암 세포주인 HepG2는 한국 세포주은행으로부터 분양 받았으며, 10% FBS와 1% antibiotics를 첨가한 DMEM (Dulbecco's modified eagle medium) 배지를 이용하여 5% CO2가 존재하는 37℃ incubator에서 2일에 한번씩 계대 배양하였다.
4) 세포주를 이용한 총 콜레스테롤 함량 측정
세포주를 이용한 총 콜레스테롤 함량 측정은 Park등의 방법(Park, S. C.; Noh, Y. H.; Koo, J. H. Effect of ginseng componets on content of cholesterol and activity of Acyl CoA : Cholesterol Acyltransferase in Hep G2 cells cultured in cholesterol rich medium. Korean J. Ginseng Sci. 1995, 19, 212-218. 참조)을 일부 수정하여 HepG2 세포를 6-well plate(corning, USA)에 DMEM (FBS 2%) 배지에 5×105 cell/mL로 분주하고 24시간 배양하여 이를 PBS로 세척한 후 10 μg/mL의 콜레스테롤이 함유되어 있는 DMEM (FBS 0%) 배지에 추출물을 각각 첨가하여 8시간 배양하였다. 그 후 상층액을 취한 다음 1% 에탄올을 함유하는 PBS로 세포를 1회 세척하고 다시 에탄올이 첨가되지 않은 PBS로 세포를 3회 세척한 후 lysis 시켜 총 콜레스테롤 함량을 효소법에 의한 아산제약 총콜레스테롤 측정용 kit (AM 202-K)를 사용하여 흡광도를 측정하였고, 단백질은 Lowry 법(Lowry, O. H.; Rosebrough, N. H.; Farr, A. L.; Randall, R. J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275. 참조)으로 정량하여 콜레스테롤 양을 산출하였다.
5) Apolipoprotein 분비능 검색
Apolipoprotein의 분비능은 enzyme-linked immunosorbent 법(Sambrook, J.; Russell, D. W. Molecular Cloning : A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press. 2001. 참조)으로 검색하였다. 먼저, HepG2 세포를 high glucose DMEM 배지에 5×105 cell/mL로 분주하고 시료를 처리한 뒤 24시간 후에 배양액을 96-well plate (Corning, USA)에 50 μl/well로 분주하고 4℃에 방치하였다. 12시간 후 5% skim milk에 37℃에서 1시간동안 배양한 다음 1차 항체와 2차 항체를 반응시켰다. 마지막으로 발색시약인 1,2-pheylenediamine(100 μl/well)에 30분간 반응시킨 후 492 nm에서 흡광도를 측정하였다.
4. 발효물의 이화학적 특성분석
1) pH 측정
pH는 시료 20 g을 채취하여 80 mL의 증류수에 용해한 후 pH meter를 이용하여 측정하였다.
2) Tyrosine 함량 측정
발효물의 peptide 생성정도를 측정하기 위하여 Folin phenol 시약을 이용하여 발효물 중에 존재하는 tyrosine 함량을 측정하였다(Matsushita, S.; Iwami, N.; Nitta, Y. Colorimetric estimation of amino acids and peptides with the Folin phenol reagent. Anal. Biochem. 1966, 16, 365-371. 참조). 각 발효물을 증류수로 5배 희석하여 추출한 시료액 0.7 mL에 0.44 M TCA (trichloroacetic acid) 0.7 mL을 첨가하여 37℃에서 30분간 반응시킨 다음, 15,000 rpm에서 10분동안 원심 분리하여 침전물을 제거하였다. 회수된 상층액 1 mL에 0.55 M Na2CO3 2.5 mL와 phenol reagent 0.5 mL를 차례로 넣고 혼합한 후 37 ℃ 항온수조에서 30분간 반응시켰다. 상온에서 냉각시킨 후 반응액의 흡광도를 spectrophotometer로 660 nm에서 측정하였다.
3) 가수분해 효소활성도 측정
효소활성은 α-amylase와 protease로 나뉘어 역가를 측정하였으며, 발효물 5 g에 0.02 M phosphate buffer (pH 7.0) 95 mL을 첨가한 뒤 실온에서 진탕 후 원심분리(15,000 rpm, 15 min)하여 상층액으로부터 효소액을 조제한 다음 효소활성을 측정하였다. α-amylase의 기질로는 1% 가용성전분 (0.02 M phosphate buffer, pH 7.0) 1 mL을 사용하였다. 미리 조제한 효소액을 1 mL 첨가하여 37℃에서 30분간 반응시킨 후 1 M acetic acid 10 mL로 반응을 정지시키고 요오드화 용액 (0.005% I2 + 0.05% KI) 2 mL을 넣고 발색시킨 후 660 nm에서 흡광도를 측정하여 blank OD값을 10% 감소시키는 것을 1 unit로 하여 시료 1 g 으로 환산 시킨 후 표시하였다. 대조군인 공시험은 미리 제조한 효소액을 100℃에서 30분간 끓여서 불활성화시킨 검액을 사용하였다(Park, J. M.; Oh, H. I. Changes in microflora and enzyme activities of traditional Kochujang meju during fermentation. Korean J. Food Sci. Technol. 1995, 27, 56-62. 참조).
Protease의 활성도는 Anson의 방법(Kim, H. J.; Lee, J. J.; Cheigh, M. J.; Choi, S. Y. Amylase, protease, peroxidase and ascorbic acid oxidase activity of Kimchi ingredients. J. Food Sci. Technol. 1998, 30, 1333-1338. 참조)을 변형하여 측정하였다. 기질로 0.6%의 casein용액 0.35 mL와 효소액 0.35 mL를 e-tube에 넣고 항온수조에서 반응(37℃, 10 min)시킨 다음 0.44 M TCA 용액 0.7 mL을 넣어 반응을 정지시킨 후 37℃에서 30분간 정치시켰다. 이 반응액을 원심분리(15,000 rpm, 15 min)한 후 여액 1 mL와 0.55 M Na2CO3 2.5 mL, 3배 희석된 Folin reagent 0.5 mL을 넣고 37℃에서 30분간 반응시킨 후 660 nm에서 흡광도를 측정하였다. 이 반응조건 하에서 1분간에 tyrosine 1 ug을 유리시키는 효소량을 1 unit로 하였다.
4) 점조도 측정
시료 발효물 5 g에 증류수 45 mL 첨가하여 균질화 후에 여과체 (sieve, 0.99 mm)를 이용하여 여과시킨 시료를 제조하였다. 여과액 13 mL을 취하여 원통형점도계(HAAKE RheoStress 1, Germany)에 spindle(Rotor DG43 DIN 53544 Titan, Germany)을 장착하여 measuring cup DG43을 사용하여 측정하였다. 측정온도는 20℃에서 전단속도(γ)는 1-100 s-1의 범위에서 점도 측정을 통해서 유동특성을 알아보았고, 점조도 지수는 power law model로 측정하였다(46).
Power law model : σ = K·γn
σ는 전단응력(Pa), K는 점조도 지수(consistency index, Pa·sn), γ는 전단속도(s-1), n은 유동성 지수(flow behavior index)이다.
5) 점질물 함량 측정
시료에 5 g에 증류수를 첨가하여 균질화시킨 후 여과체를 이용하여 여과시킨 후 10,000 rpm에서 20분간 원심분리하여 상층액을 취하였다. 회수한 상층액에 2배 부피의 iso-propanol을 첨가하여 고형분을 침전시킨 후 고형분을 회수하여 80% 에탄올로 세척한 후 60∼70℃ 진공열풍건조기에서 하루 동안 건조한 후 건조무게를 측정하였다(47).
5. In vivo system을 이용한 지질대사 및 콜레스테롤 개선능 검색
1) 동물실험 계획 및 실험식이 조성
실험동물은 (주)오리엔트사 (Pusan, Korea)로부터 5주령 (100∼150 g)의 Sprague-Dawley종 수컷 랫트 24마리를 구입하여 사용하였다. 사육실 온도는 23 ± 2℃, 상대습도는 60 ± 5%를 유지시키고, 12시간 주기로 명암이 유지되는 사육실에서 사육하였다. 처음 1주일간 pellet형의 lab chow 식이를 제공하면서 적응시킨 후, 난괴법 (randomized block design)에 의해 4개의 군으로 나누었다.
실험식이는 표 2에 제시된 바와 같이 정상 식이군 (CON군), 고지방 식이군 (HF군), 고지방 식이에 20% FD을 첨가한 군 (HF-FD군), 고지방식이에 20% FDM을 첨가한 군 (HF-FDM군)으로 나누어 4주간 사육하였다. 각 군별 6 마리의 랫트를 사용하였고, 고지방 식이는 10% lard, 1% cholesterol 그리고 0.25% sodium cholate를 기본식이에 첨가하여 공급하였다. 실험식이의 조성은 다음 표 3과 같으며, 이때 음용수와 사료는 충분한 양을 공급하였다.
N 식이 형태
CON 6 정상 식이
HF 6 고지방 식이1)
HF-FD 6 고지방 식이 +20% FD
HF-FDM 6 고지방 식이 +20% FDM2)
1)고지방 식이는 정상 식이에 1% 콜레스테롤, 10% lard, 0.25% 소듐 콜레이트를 포함시킴.
2)DSG 100중량부에 대하여 2.5중량부에 해당하는 양의 분말 녹두를 첨가하여 얻어지는 발효물
성분 식이 조성 (%)
CON HF HF-FD HF-FDM
Corn starcha 56.95 46.95 41.15 40.45
Caseinb 20 20 7.8 8.1
Corn oil 7.0 7.0 7.0 7.0
Sucrose 10 10 10 10
DL-methionine 0.3 0.3 0.3 0.3
Cellulose 5.0 5.0 5.0 5.0
Mineral mixturel 3.0 3.0 1.7 1.7
Vitamin mixture 1.0 1.0 1.0 1.0
Lard - 10 10 10
Cholesterol - 1 1 1
Sodium cholate - 0.25 0.25 0.25
FD powder - - 20 -
FDM powder - - - 20
Total(%) 103.25 104.5 105.2 104.8
aStarch와 bcasein은 FD와 FDM 분말 중의 프로테인과 카보하이드레이트 함량에 의해 조정되었다.
2) 실험동물 처리 및 시료수집
식이 섭취량은 일주일에 한 번 식이 잔량을 측정하여 식이 제공량으로부터 뺀 값으로 계산하였으며, 체중은 매주 일정한 시간에 측정하였다. 또한 사육기간 마지막 3일간은 분변을 수집하여 건조시킨 후 냉동보관 하였다.
사육기간 동안의 혈액 내 지질 및 콜레스테롤 변화를 관찰하기 위해 사육 전, 사육 2주째에 각각 쇄골 대정맥채혈 방법으로 혈액을 채취해 원심 분리하여 혈장을 분리하였다. 분리한 혈장은 자동혈액분석기로 지질 및 콜레스테롤 농도를 측정하였다.
4주간의 사육이 끝난 다음 12시간 절식시킨 랫트를 에테르로 마취시켜 해부하였다. 복부대동맥으로부터 헤파린 처리된 주사기로 혈액을 채취하여, 30분 동안 방치한 후 3,000 rpm에서 15분간 원심 분리하여 혈장을 분리하였다. 또한 간, 신장, 비장과 부고환지방, 복부지방도 적출하여 생리식염수에 헹군 후 물기를 제거하고 칭량하였다. 분리된 혈장 및 조직들은 액체질소로 급냉하여 분석시까지 -70℃에 보관하였다. 분리한 혈장은 중성지질 및 콜레스테롤 함량 측정에 사용하였고, 간 조직은 지질 함량 및 간 내 효소활성 측정에 사용하였다.
3) 혈장의 중성지질 및 콜레스테롤 함량 분석
주차별로 분리한 혈장의 총 콜레스테롤, 중성지질, HDL-콜레스테롤, LDL-콜레스테롤함량은 자동혈액분석기로 측정하였다. 이때 혈청 중의 중성지방은 중성지방 측정용 kit, 총콜레스테롤 함량은 총콜레스테롤 측정용 kit, HDL-콜레스테롤 함량은 HDL-콜레스테롤 측정용 kit를 각각 사용하여 측정하였다.
LDL-콜레스테롤은 분석을 통해 얻은 총 콜레스테롤, HDL-콜레스테롤 그리고 중성지방의 수치를 이용하여 아래의 계산식에 의해 계산하였다(Friedewald, W. T.; Levy, R. I.; Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, with out use of the preparative ultracentrifuge. Clin. Chem. 1972, 18: 499-502 참조).
LDL-cholesterol = T-cholesterol - (HDL-cholesterol + TG/5)
4) 간내 HMG-CoA reductase 활성 분석
적출한 간조직 1 g당 4배량의 0.1 M potassium phosphate (pH 7.4)을 가한 후 마쇄하여 4℃ 이하에서 600×g로 10분간 원심분리한 다음 상층액을 취해 이를 4℃에서 10,000×g로 20분간 원심분리하였다. 상층액을 다시 4℃에서 105,000×g로 1시간 동안 초원심분리하여 침전물인 microsomal 분획을 측정에 사용하였다. HMG-CoA reductase 활성 측정은 Hulcher의 방법(Hulcher, F.; Oleson, W. H. Simplified spectrophotometric assay for microsomal HMG-CoA reductase by measurement of coenzyme A. J. Lipid Res. 1973, 14, 625-631. 참조)을 변형하여 사용하였다. 150 μM HMG-CoA와 2 mM NADPH를 500 μg microsome 분획과 잘 섞은 후 0.1 M triethanolamine, 0.02 M EDTA (pH 7.4) 완충용액으로 1 mL를 채우고 37℃에서 30분간 반응시켰다. 그 다음 0.01 M sodium arsenite 20 μL를 넣고 상온에서 1분 이상 반응시킨 후 100 μL의 2 M citrate (pH 3.5), 3% Na-tungstate 완충용액을 넣고 37℃에서 10분간 반응시켰다. 반응물을 4℃에서 13,000 rpm으로 10분간 원심분리한 후 상층액 1 mL에 200 μL의 2 M Tris (pH 10.6)와 100 μL 2 M Tris (pH 8.0)를 섞어 실온에서 3분간 반응 시킨 후 20 μL의 3 mM 5,5-dithiobis 2-nitrobenzoic acid (DTNB), 0.1 M triethanolamine, 0.2 M EDTA (pH 7.4) 완충용액을 넣고 잘 섞은 후 412 nm에서 4분간의 흡광도 변화를 측정하였다. 이때 효소활성도는 1분간 1 mg의 microsome 단백질이 생성하는 CoA-SH의 양을 nmole로 나타내었다. 그리고 단백질 정량은 Lowry 등의 방법(Lowry, O. H.; Rosebrough, N. H.; Farr, A. L.; Randall, R. J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.)에 의하여 bovine serum albumin을 표준단백질 용액으로 이용한 표준 검량선을 구하여 그 양을 산출하였다.
5) 간 조직의 지질 분석
간 조직 지질의 추출법과 중성지질 및 콜레스테롤 농도 측정법은 Folch 등(49)의 방법과 Sale 등(Sale, F. O.; Marchesine, S. P.; Fishman, H.; Berra, B. A. Sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal. Biochem. 1984, 347-350. 참조)에 의해 수정, 보완된 방법을 이용하여 측정하였다.
간 조직 0.5 g을 잘게 자른 후 10 mL의 Folch solution (chloroform : methanol, 2 : 1, v/v)을 첨가하여 조직의 지질을 추출하였다. 추출액은 Whatman 여과지(No. 2)로 여과된 간 추출액과 0.5% H2SO4 3 mL를 분별 깔대기에 넣어 혼합하였다. 일정시간 방치하여 분리된 하층을 새로운 tube에 넣고 총량이 10 mL가 되도록 Folch solution을 첨가하였다. 이 추출액 10 μL를 중성지방 분석에 이용하였다. 10 mL 추출물 500 μL를 새로운 tube에 넣어 하루 밤 동안 실온에서 건조시킨 후 50 μL Triton X-100 : chloroform solution (1 : 1, v/v)을 첨가하여 vortex하고 chloroform 450 μL를 넣어 총 500 μL가 되게 희석하였다. Triton X-100은 chloroform에 용해된 조직지질의 발색시 발생하는 혼탁성을 제거하기 위하여 사용하였으며, 이 용액 10 μL를 간 콜레스테롤 측정에 사용하였다. 간 콜레스테롤과 중성지방 분석은 위 추출액 10 μL를 실온에서 건조 시킨 후 효소액 1.5 mL를 넣고 37℃ water bath에서 10분 간 반응시켜 발색 시킨 후, 콜레스테롤은 500 nm에서 중성지질은 550 nm에서 각각 측정하였다.
6) 분변 중의 지질 함량 측정
분변 중의 중성지방 및 콜레스테롤은 Folch법(Folch, J.; Lees, M.; Sloane-Stanley, G. H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497-509. 참조)으로 추출한 후, 혈장 중성지방은 McGowan 등의 효소법(McGowan, M. W.; Artiss, J. D.; Strandbergh, D. R.; Zak, B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin. Chem. 1983, 29: 538-542. 참조)을 이용한 발색법 원리에 따라 측정하였고 혈장 총 콜레스테롤은 Allain 등의 효소법(Allain, C. C.; Poon, L. S.; Chan, C. S. G. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20: 470-475. 참조)을 응용한 아산제약 총콜레스테롤 측정용 kit (AM 202-K)를 사용하여 정량하였다.
7) 간과 복부지방 및 부고환지방의 병리학적 변화 관찰
실험 동물의 조직의 병리학적 변화를 관찰하기 위하여 각 군의 간, 복부지방 및 부고환지방의 일부분을 떼어내 10% neutral buffered formalin에서 24 시간 동안 고정한 후 자동 파라핀 침투기를 이용하여 탈수, 투명 및 침투 과정을 진행하여 파라핀에 포맷한 다음 회전형 박절기를 사용하여 4 μm 두께의 파라핀 절편을 제작하였다. 파라핀 절편은 xylene에 탈파라핀하고 하강 계열 알코올 과정을 진행하여 함수한 후, hematoxylin-eosin (H&E) 염색을 하였다. 염색이 끝난 절편은 탈수 및 투명 과정을 거쳐 카나다 발삼으로 봉입하여 광학 현미경으로 관찰하였다.
8) 통계분석
실험결과는 SAS program(53)을 이용하여 분산 분석한 후 유의차가 있는 항목에 대해서는 Duncan's multiple range test로 p<0.05 수준에서 시료간의 유의차를 검정하였다.
상기와 같은 방법으로 수행되는 다양한 검색 및 측정의 결과를 고찰하면 다음과 같다.
1. In vitro system을 이용한 콜레스테롤 조절능 검색
1) 천연물의 HMG-CoA reductase 저해활성
콜레스테롤 및 지질대사 개선효과를 증진시키기 위해 DSG 발효 시 첨가할 천연물의 선정을 위하여 콜레스테롤 저하능이 있다고 알려져 있는 천연물 9종에 대해서 콜레스테롤 합성계에서 중요한 조절 효소로 작용하는 HMG-CoA reductase의 저해능을 검색해 보았다.
선정된 9종의 천연물을 80% 메탄올로 추출한 후 100 mg/mL의 농도로 처리하여 HMG-CoA reductase의 저해능을 검색한 결과는 도 2와 같이 선정된 천연물 9종 모두 70% 이상의 우수한 저해능을 보였고, 특히 식용이 가능하면서 90% 이상의 가장 높은 저해활성을 가지는 녹두(Phaseolus radiatus)를 최종 시료로 선정하였다.
도 2에 있어서, I는 황금, Ⅱ는 능이버섯, Ⅲ은 커리플라워, Ⅳ는 당귀, Ⅴ는 상황버섯, Ⅵ은 감초, Ⅶ은 치커리, Ⅷ은 몰로키아, Ⅸ은 녹두를 나타낸다.
3) HMG-CoA reductase 저해활성
HMG-CoA reductase는 콜레스테롤 생합성 단계에서 작용하는 조절 효소로써 스테롤이나 isoprenoid계 화합물의 생합성 경로의 중간단계인 mevalonic acid의 합성을 매개하는 역할을 한다.
시료에 의한 HMG-CoA reductase 저해활성은 도 4에 나타내었다. 이를 참조하면, FD의 경우 약 25%의 저해활성을 나타냈었으며, 녹두를 2.5% 첨가한 FD-Mung bean군에서 약 42%의 가장 높은 저해활성을 나타내었다. 특이하게도 녹두를 5, 10% 첨가한 FD-Mung bean군은 녹두 첨가량이 증가할수록 저해활성이 감소되는 것을 확인하였다. 이러한 결과는, 발효물의 혼합물에 있어서 녹두 발효물 함량은 탈지대두박 발효물 100중량부에 대하여 2.5중량부 이내인 것이 HMG-CoA reductase의 활성 측면에서 유리함을 나타낸다. 이처럼 HMG-CoA reductase의 활성이 억제되면 콜레스테롤 생합성을 억제한다고 알려져 있으므로, FD와 FDM은 우수한 콜레스테롤 합성을 억제하는 소재가 되리라 생각된다.
4) HepG2 세포주를 이용한 총 콜레스테롤 함량 측정
HepG2 세포내로 콜레스테롤이 가장 잘 유입되는 조건을 측정한 결과, 콜레스테롤의 농도를 10 μg/mL, 8시간 배양했을 때 세포내 콜레스테롤 유입률이 가장 높은 것으로 나타나 이 조건으로 세포를 배양하였다.
시료에 의한 세포 내 콜레스테롤 함량은 도 5에 나타낸 것과 같다.
이를 참조하여 설명하면, 먼저 콜레스테롤(10 μg/mL)만 투여한 대조군 그리고 실험군은 콜레스테롤 첨가배지(10 μg/mL)에 FD 그리고 녹두를 2.5, 5, 10%로 첨가한 FD-Mung bean을 1 mg/mL의 농도가 되도록 각각 처리해 8시간 배양하여 고콜레스테롤 조건하에서 HepG2 세포내의 콜레스테롤 함량을 조사하였다. 각 배지조건으로 배양한 HepG2 세포 내액의 콜레스테롤을 정량하고 단백질 대비 평균값을 구한 결과, 녹두를 2.5, 5% 첨가한 FD-Mung bean군에서 대조군에 비해 세포내의 콜레스테롤 농도가 유의적으로 낮아지는 것을 확인하였다. 특히 녹두를 2.5% 첨가한 FD-Mung bean군에서 가장 낮은 콜레스테롤 함량을 나타내었다. 즉 녹두를 2.5% 첨가하여 발효시켰을 때 첨가하지 않았을 때 보다 콜레스테롤 조절능이 증가하는 것을 알 수 있었다.
5) Apolipoprotein AⅠ,Ⅱ 및 CⅢ의 분비능 검색
혈중 지질상태 개선 측면에서 총콜레스테롤, 특히 LDL 콜레스테롤과 중성지방 농도가 저하되는 것이 바람직하지만 HDL 콜레스테롤의 증가도 매우 중요하다.
Apolipoprotein의 기능은 지방질의 운반과 지단백 구조 유지에 있고, 역할은 지단백 대사에 관여하는 효소들의 활성인자가 되며, 지단백 내 지질이 간, 혈관 벽, 지방조직에 대사되는데 필요한 성분이다(채범석. 지방질대사. 서울대학교 의과대학 생화학교실, 1987, 116. 참조).
그 중 apolipoprotein AⅠ은 chylomicron과 HDL 콜레스테롤을 구성하는 중요한 지단백일 뿐만 아니라 LCAT를 활성화시키는 작용이 있으며, apolipoprotein AⅡ는 HDL 콜레스테롤의 중요한 구성 단백질이다(58). 특히 apolipoprotein AⅠ과 apolipoprotein AⅡ의 증가는 항동맥경화증의 역할을 하는 HDL2의 증가와 비례하는 것으로 알려져 있다(Taskinen, M. R.; Kahri, J.; Koivisto, V.; Shepherd, J.; Dackard, C. J. Metabolism of HDL apolipoprotein AⅠ and AⅡ in type Ⅰ(insulindependent) diabetes mellitus. Diabetologia. 1992, 35: 347-356. 참조). 한편 apolipoprotein CⅢ는 VLDL, IDL, HDL의 구성 단백으로서 LPL을 억제하여 혈중 콜레스테롤 증가하는 기능이 있는 것으로 알려져 있다(Gotto, A. M.; Pownall, H. J.; Havel, R. A. Introduction to the plasma lipoproteins. Methods Enzymol. 1986, 128, 3-40. 참조).
FD와 녹두를 2.5, 5, 10% 되도록 첨가한 FD-Mung bean군의 apolipoprotein의 분비량 검색은 대조군을 100으로 보았을 때 apolipoproteinAⅠ, apolipoprotein AⅡ, apolipoprotein CⅢ의 분비량이 각각 도 6 내지 8과 같이 나타났다.
먼저, apolipoprotein AⅠ의 경우 FD보다 녹두를 첨가하였을 때, 분비량이 증가하였고, 특히 2.5%로 녹두를 첨가한 FD-Mung bean군이 유의적으로 가장 높은 분비량을 나타냈다. Apolipoprotein AⅡ 역시 녹두를 2.5%로 첨가한 FD-Mung bean군에서 분비량이 가장 높은 것으로 나타났다. 반면 apolipoprotein CⅢ의 분비량은 녹두를 2.5% 첨가한 FD-Mung bean군에서 가장 낮은 분비량을 나타냈다. 따라서 녹두를 2.5% 첨가한 FD-Mung bean군은 콜레스테롤의 역수송 운반체로서 항동맥경화 인자로 작용하는 HDL을 주로 구성하는 apolipoprotein AⅠ, AⅡ를 증가시키고 VLDL, IDL, HDL을 구성하는 apolipoprotein CⅢ의 분비를 저해함을 확인할 수 있었다.
이와 같이 in vitro 상에서 콜레스테롤 조절능을 검색한 결과, FD 자체가 콜레스테롤 조절능이 있었으며, 여기에 녹두를 2.5% 첨가하여 발효시키면 콜레스테롤 조절능이 더 우수해지는 것을 확인하였다. 하지만 녹두를 5, 10% 되도록 더 첨가하게 되면 오히려 콜레스테롤 조절능이 감소되는 것으로 확인되었다. 따라서 FD와 효과가 가장 우수했던 녹두를 2.5%로 첨가한 FD-Mung bean군의 이화학적 특성 및 in vivo 상에서의 지질대사 및 콜레스테롤 개선능을 검색하였다.
2. 발효물의 이화학적 특성분석
1) FD 및 FDM의 이화학적 특성검색
DSG를 발효시킨 FD와 in virto 상에서 콜레스테롤 저해 효과가 가장 우수했던 2.5% 녹두를 첨가한 DSG 발효물 (FDM)의 pH와 tyrosine 함량 및 가수분해효소 활성을 측정한 결과를 다음 표 4에 나타내었다.
pH는 DSG가 6.48로 나타났고, 발효한 FD와 FDM은 각각 6.91과 6.96으로 상승하였다.
DSG 발효물의 peptide 생성정도를 측정하기 위하여 tyrosine 함량을 측정한 결과 DSG가 약 95.6 mg%로 나타났고 발효시킨 FD와 FDM은 각각 1893.42, 1973.96 mg%로 약 20배 이상 증가하였고 특히 녹두를 첨가한 FDM이 FD보다 함량이 더 증가한 것으로 나타났다.
Protease는 대두의 단백질을 분해하여 대두 발효물의 맛을 형성하는데 가장 중요한 역할을 하는 것으로 알려져 있다(Lee, K. H.; Lee, H. J.; Chung, M. K. Studies on Chungkookjang. on the changes of soybean protein in manufacturing Chungkookjang. J. Korean Agric. Chem. 1971, 14, 191-200. 참조). 발효물의 가수분해효소 활성을 검색한 결과 protease 활성은 FD와 FDM에서 각각 482.46, 507.83 unit/g으로 FDM에서 높게 나타났으며 α-amylase 활성 역시 FD와 FDM이 각각 24.38, 38.29 unit/g으로 FDM에서 높게 나타났다. 이들 결과로 보아 적정량의 녹두 첨가가 균주의 생육을 촉진시켜 가수분해효소의 활성을 증가시킨 것으로 생각된다.
2) FD 및 FDM의 점조도 및 점질물 함량 검색
Bacillus 균주의 발효대사산물인 점질물은 glutamic acid가 약 5,000개가 중합된 γ-polyglutamic acid(PGA)와 과당의 중합체인 fructan 형태의 레반으로 구성되어 있다(Lee, Y. L.,; Kim, S. H.; Choung, N. H.; Tim, M. H. A study on the production of viscous substance during the Chungkookjang fermentation. J. Korean Agirc. Chem. Soc. 1992, 5, 202-209. 참조). 이러한 점질물은 제품의 품질특성에 중요한 영향을 미치며, 특히 여러 생리활성기능을 가지고 있어 식품, 의약품 뿐만 아니라 화장품으로도 각광받고 있는 기능성 소재이다(Choi, H. J.; Kunioka, M. Preparation conditions and swelling equilibria of hydrogel prepared by (γ-irradiation from microbiol poly(γ-glutamic acid)). radiat. Phys. Chem. 1995, 46, 175-179. 참조).
FD 및 FDM을 10배 물로 희석하여 여과한 추출액의 점조도 및 점질물 함량을 다음 표 4에 나타내었다.
DSG에서는 점조도나 점질물 함량이 아주 낮거나 측정되지 않았지만 FD에서는 0.966 Pa·sn 이하의 점조도 값을 나타내었고 점질물 함량은 DSG에 비해 20배 이상의 높은 함량을 나타내었다. 특히 녹두를 첨가하여 발효시킨 FDM은 점조도 값이 1.679 Pa·sn 로 FD보다 높게 측정되었고, 점질물 함량 역시 FD보다 약 3% 정도 더 높게 측정되었다. 따라서 DSG에 녹두를 첨가하여 발효시키게 되면 점질물 생산이 증대되는 것을 확인할 수 있었다.
시료1) Consistency index
(Pa·sn )
Viscous substance
content (%)
D 0.003 ND
FD 0.966 23.67
FDM 1.679 26.67
1)D: 탈지대두박 FD: 탈지대두박 발효물 FDM: 녹두 첨가한 탈지대두박 발효물
ND: Not Detected
3. FD 및 FDM의 콜레스테롤 및 지질대사 개선효과
1) 체중증가량 및 식이섭취량에 미치는 영향
FD 및 FDM의 지질대사 및 콜레스테롤 개선 효과를 확인하고자, SD계열 랫트에 콜레스테롤 1%, lard 10%, sodium cholate 0.25%를 첨가한 식이로 4주간 사육한 동물의 체중변화를 다음 표 5에 나타내었다.
4주 후 각 군별의 체중증가량은 대조군보다 HF군에서 유의적으로 증가하였다. 고지방식이에 FD 및 FDM을 첨가한 그룹에서는 HF군보다 체중이 감소하였지만 유의적인 감소는 없었다. 또한 사료효율 역시 각 군별 유의적인 차이가 없었다.
1) 체중 중가
(g/4 weeks)
FER2)
CON 155.90 ± 15.0b 22.31 ± 2.08ns
HF 198.48 ± 23.65a 28.02 ± 4.01
HF-FD 189.24 ± 18.42ab 30.42 ± 4.34
HF-FDM 193.80 ± 20.08a 27.30 ± 1.06
The values are mean ± S.D.(n=6).
Values with a common superscript letter within the same column are not significantly different(ρ<0.05).
1)군은 상기 표 2에 나타낸 것과 같다.
2)FER: food efficiency ratio=body weight gain/food intake
ns: not significant
2) 장기무게에 미치는 영향
단위 체중 당 장기무게는 다음 표 6에 나타내었다.
체중 100 g 당 무게로 환산한 장기의 중량을 비교한 실험에서 간장 무게는 대조군에 비해 HF군에서 유의적으로 증가되었다. 이는 콜레스테롤 식이에 의한 영향으로 보이며, 간장의 중성지질 농도와 총 콜레스테롤 농도 때문에 간장 중량 역시 증가한 것으로 보인다. 이에 반해 HF-FD군 및 HF-FDM군에서 HF군에 비해 무게가 감소되었고 특히 HF-FDM군은 HF군에 비해 유의적으로 간장의 무게가 감소하는 것으로 나타났다. 이는 FD와 FDM을 처리함으로써 간장의 지방 침착을 감소시켜 무게가 감소되고, 녹두를 첨가한 발효물인 FDM이 간장 내의 지방 침착을 더 감소시키는 것으로 보인다.
이 등(Rhee, S. J.; Park, H. K. Changes of lipid concentration and histochemical observation in liver of rats fed high fat diet. J. Nutr. 1984, 17, 113-125. 참조)은 식이로 섭취한 과량의 콜레스테롤이 체외로 정상적으로 배출되지 못하고 간장 내에 축적되면 간장이 비대해 진다고 하였으며, Thrley 등(Thrley, E.; Armstrong, N. C.; Wallace, J. M.; Gilore, W. S.; Mckelvey-matin, J. V.; Allen, T. M.; Strain, J. J. Effect of cholesterol feeding on DNA damage in male and female syrian hamsters. Ann. Nutr. Merab. 1990, 43, 48-51. 참조)도 콜레스테롤을 장기간 급여할 때 간 비대증을 유발시켜, 지방의 과잉 섭취 및 지질 대사 이상을 초래하여 간장조직에 지방이 침착된다고 보고하였다. 본 연구에서도 대조군에 비해 HF군에서 간장 조직에 지방이 침착된 것을 확인하였다.
그러나 간장을 제외한 나머지 비장, 신장, 부고환 지방 및 복부지방의 최종 무게는 모든 군에서 유의한 차이가 보이지 않았으나 HF군에서 가장 높았고, 복부지방과 복부비만의 척도로 여겨지는 부고환지방의 체중에 대한 비율은 유의하지 않았지만 FD와 FDM을 첨가한 군에서 무게가 감소되는 것으로 나타났다.
(단위:%)
CON HF HF-FD HF-FDM
간장 3.25 ± 0.17c 6.21 ± 0.60a 5.56 ± 0.69ab 5.60 ± 0.41b
비장 0.20 ± 0.01ns 0.28 ± 0.08 0.27 ± 0.06 0.27 ± 0.09
신장 0.20 ± 0.01ns 0.26 ± 0.08 0.27 ± 0.06 0.27 ± 0.09
부고환 지방 0.81 ± 0.25ns 1.15 ± 0.43 1.04 ± 0.20 1.04 ± 0.19
복부지방 1.29 ± 0.63ns 1.42 ± 0.43 1.28 ± 0.40 1.16 ± 0.26
The values are mean ± S.D.(n=6).
Values with a common superscript letter within the same column are not significantly different(ρ<0.05).
ns: not significant
3) 혈장의 중성지질 및 콜레스테롤 농도
고지방식이와 FD 및 FDM을 섭취시킨 흰쥐를 사육하는 동안 2주차와 4주차의 혈장내의 중성지질 및 콜레스테롤 함량 변동을 쇄골 대정맥에서 채혈 후 혈장을 분리하여 측정한 결과는 도 9 및 10에 나타내었다.
혈장 중의 중성지질은 콜레스테롤의 합성을 촉진시켜 혈중 콜레스테롤을 증가시키는 것(Lee, H. J. Effects of dietary casein. soy protein and mixed protein on body lipid components of rats. Master thesis, Sung-shin women's University, Seoul, 1986. 참조)으로 알려져 있다. 혈장 중 중성지질의 함량은 대조군에 비해 HF군에서 유의적으로 증가되었으나 고지방식이에 FD 및 FDM을 첨가한 군에서는 중성지질 함량이 유의적으로 감소되었고 특히 녹두를 첨가하여 발효한 FDM 첨가군이 가장 낮은 중성지질 함량을 보였다(도 9의 A)).
혈장 중 총 콜레스테롤 농도는 도 9의 B)와 같이 2주차에서는 모든 HF군에서 대조군에서보다 유의적으로 콜레스테롤 함량이 증가 되었다가 4주차에서는 FD와 FDM 첨가군에서는 HF군보다 유의적으로 콜레스테롤 함량이 감소되었다.
LDL 콜레스테롤 농도가 증가되면 심혈관계 질환의 매우 중요한 위험인자로 알려져 있는 oxLDL의 함량을 증가시키게 된다(Parthasarathyl, S.; Santanam, N.; Auge, N. Oxidized low-density lipoprotein, a two-faced janus in coronary artery disease. Biochem. Pharmacol. 1998, 56, 279-284. 참조). 혈장 중 LDL 콜레스테롤 함량도 모든 HF군에서 대조군에 비해 유의적으로 증가되었으나 고지방식이에 FD와 FDM 첨가군은 HF군에 비해 LDL 콜레스테롤의 함량이 유의적으로 감소되었으며 특히 FDM을 첨가한 군은 고지방 식이군 중 가장 낮은 LDL-콜레스테롤 함량을 보였다(도 10의 A)).
반면 혈장 중 HDL 콜레스테롤 함량은 대조군에 비해 HF군에서 유의적으로 증가하였고 고지방식이와 FD 첨가군의 경우 HDL 콜레스테롤이 증가하였고 특히 FDM 첨가군은 유의적으로 HDL 콜레스테롤이 증가되었다(도 10의B)). HDL 콜레스테롤은 말초조직이나 혈액 중에 축적된 콜레스테롤을 콜레스테롤 에스테르로 만들어 간으로 수송하여 혈액 중 콜레스테롤 함량을 저하시켜 동맥경화증의 개선 및 예방에 효과가 있다고 알려져 있으며, LDL 콜레스테롤 함량과 역상관 관계를 유지한다(Lee, H. J. Effects of dietary casein. soy protein and mixed protein on body lipid components of rats. Master thesis, Sung-shin women's University, Seoul, 1986.; Fernandez, M. L.; Mcnamara, D. J. Regulation of cholesterol and lipoprotein metabolism in guinea pogs mediated by dietary fat quality and quantity. J. Nutr. 1991, 121: 934-943. 참조). 따라서 FD 및 FDM은 고지방식이에 의해 증가된 LDL 콜레스테롤 함량은 감소시키고 HDL 콜레스테롤 함량은 증가시켜 고콜레스테롤증 예방에 관여할 것으로 기대된다.
4) 간 조직의 HMG-CoA reductase 활성
간 내 HMG-CoA reductase는 콜레스테롤 생합성 과정에서 중요한 조절 효소로서, 이 효소의 저해는 세포 내에서 콜레스테롤 합성을 억제한다고 알려져 있다. HMG-CoA reductase 저해제는 혈중 콜레스테롤 특히 LDL 콜레스테롤을 가장 효과적으로 낮출 수 있는 hypocholesterolemic 약제로 널리 사용되고 있다(Fujioka, T.; Nara, F.; Tsujita, Y.; Fukushige, J.; Fukami, M.; Kuroda, M. The mechanism of lack of hypocholesterolemic effects of pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in rats. BBA. 1995, 1254, 7-12. 참조). 일반적으로 사틴계열의 약물이 혈장 총 콜레스테롤 및 LDL 콜레스테롤을 낮추는 기전은 간에서 HMG-CoA reductase의 활성을 억제하여 콜레스테롤 생합성을 억제함으로써 간의 LDL receptor의 발현을 촉진시켜 혈중의 지질농도를 저하시킨다고 알려져 있다(Igel, M.; Sudhop, T.; vonBergmann, K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). Eur. J. Clin. Pharmacol. 2001, 57, 357-364.; Paoletti, R.; Corsini, A.; Bellosta, S. Pharmacologicl interactions of statins. Atherosclerosis Supplements. 2002, 3, 35-40. 참조).
HMG-CoA reductase의 활성변동은 도 11에 나타내었다. HMG-CoA reductase 활성은 대조군에 비해 HF군에서 크게 증가되었다가, HF-FD, HF-FDM군에서 유의성 있게 감소되었다. 고지방식이군의 HMG-CoA reductase 활성의 증가는 고지방 및 고콜레스테롤 식이에 의한 결과로 생각되고, FD 및 FDM 첨가에 의해 혈중 콜레스테롤 함량이 감소하는 것은 FD와 FDM 성분이 내인성 콜레스테롤 합성의 중요한 효소인 HMG-CoA reductase의 활성을 저해하여 나타난 결과로 생각된다.
5) 간 조직의 지질 함량에 미치는 영향
고지방 또는 콜레스테롤의 섭취에 의해 간 조직에서 지질대사 이상이 초래되어 지질의 침착에 의해 간의 무게가 증가하고 간에서의 지질과 콜레스테롤 함량이 증가한다고 알려져 있다.
간의 지질함량 변동은 도 12에 나타낸 것과 같다. 콜레스테롤 함량은 대조군에 비해 HF군에서 유의적으로 증가되었으나, HF-FD군은 HF군에 비해 콜레스테롤 농도가 줄었지만 유의성이 없는 데에 반해 HF-FDM군은 유의적으로 콜레스테롤 함량이 감소되었다. 중성지질 함량의 경우에도 콜레스테롤 함량변동과 유사하게 HF군에서 함량이 증가되었다가 HF-FDM군에서 유의성 있는 감소를 보였다.
6) 분변의 지질 농도에 미치는 영향
분변으로의 총 콜레스테롤, 중성지질의 배설량은 도 13Fig. 13에 나타내었다. 분변 중의 콜레스테롤 함량은 대조군에 비해 HF군에서는 유의적인 차이가 없었지만 HF-FD군과 HF-FDM군에서는 유의적으로 콜레스테롤 배설량이 증가되었고 특히 HF-FDM군에서 콜레스테롤 농도가 가장 증가되었다. 중성지질 농도는 대조군에 비해 HF군에서 배설량이 증가되었으나 HF-FD군과 HF-FDM군에서는 중성지질 배설량이 유의적으로 증가되었고 콜레스테롤 배설량과 마찬가지로 HF-FDM군에서 중성지질 배설량이 유의적으로 가장 높았다. 즉 고지방식이에 FD와 FDM을 첨가함으로서 HF군에 비해 분변으로의 총콜레스테롤 및 중성지질의 배설량이 증가되었다.
따라서 FD와 FDM은 체내 콜레스테롤 및 중성지질의 함량을 조절하여 체내 지질대사 개선에 관여할 수 있는 소재로 생각된다.
7) 간과 복부지방 및 부고환지방의 병리학적 변화
각 군의 간 조직의 형태학적 분석결과는 도 14와 같다. 대조군에 비해 고지방 섭취군인 HF군에서 지방구가 가장 많이 축적되었으며 지방구의 크기도 가장 큰 것으로 관찰되었다. 이에 반해 HF-FD군과 HF-FDM군에서는 HF군보다 지방구의 크기가 감소되는 것을 확인하였고, 특히 HF-FDM군이 HF-FD군보다 효과가 더 우수한 것으로 관찰되었다.
각 군의 복부 지방세포와 부고환 지방세포의 형태학적 분석결과는 각각 도 15 및 16에 나타내었다. 먼저, 복부 지방세포의 크기가 대조군에 비해 HF군에서 커졌다가 HF-FD군과 HF-FDM군에서 지방세포의 크기가 다시 감소되었으며, 부고환 지방세포의 변화 역시 복부 지방세포와 마찬가지로 HF-FD군과 HF-FDM군이 HF군의 지방세포 크기보다 감소되는 것으로 나타났다.
결과적으로 고지방 식이의 섭취로 인해 간세포나 지방세포에 지질의 침착 정도가FD와 FDM 첨가시에 경감되는 효과를 보이는 것은, 발효되면서 생성되는 점질물성분과 peptide등의 성분에 의한 것으로 생각된다.
도 1은 탈지대두박 발효물의 제조공정 및 녹두 첨가 탈지대두박 발효물의 제조공정을 개략적으로 도시한 것.
도 2는 식용 식물의 80% 메탄올 추출물의 HMG-CoA 리덕타아제 저해 활성을 검색한 결과를 나타낸 막대 그래프로서,
I는 황금, Ⅱ는 능이버섯, Ⅲ은 커리플라워, Ⅳ는 당귀, Ⅴ는 상황버섯, Ⅵ은 감초, Ⅶ은 치커리, Ⅷ은 몰로키아, Ⅸ은 녹두를 나타냄.
도 3은 FD 및 DSG에 대해 녹두를 각각 2.5%, 5% 및 10%로 첨가한 군(FD-Mung bean.)에 대한 콜레스테롤 흡착정도 평가 결과를 도시한 막대 그래프.
도 4는 FD 및 DSG에 대해 녹두를 각각 2.5%, 5% 및 10%로 첨가한 군(FD-Mung bean.)에 대한 HMG-CoA 리덕타아제 저해활성을 평가한 결과를 도시한 막대 그래프.
도 5는 각 시료에 의한 세포 내 콜레스테롤 함량 측정의 결과를 나타낸 막대 그래프.F
도 6 내지 도 8은 FD 및 DSG에 대해 녹두를 각각 2.5%, 5% 및 10%로 첨가한 군(FD-Mung bean.)에 의한 HepG2 cell로부터 apolipoprotein AⅠ 분비량 검색 결과(도 6), apolipoprotein A Ⅱ 분비량 검색 결과(도 7) 및 apolipoprotein CⅢ 분비량 검색 결과(도 8).
도 9 및 도 10은 고지방 식이와 FD 및 DSG에 대해 녹두를 각각 2.5%, 5% 및 10%로 첨가한 군(FD-Mung bean.)을 섭취시킨 흰쥐를 사육하는 동안 2주차와 4주차의 현장내의 중성지질 및 콜레스테로 함량 변동을 쇄골 대정맥에서 채현한 후 혈장 을 분리하여 측정한 결과를 도시한 것으로, 도 9는 트리글리세라이드(A) 및 총 콜레스테롤(B) 함량에 대한 것이고, 도 10은 HDL 콜레스테롤(A) 및 LDL 콜레스테롤(B) 함량을 도시한 것.
도 11은 각각의 식이방법에 따라 4주간 식이한 후의 간내의 HMG-CoA 리덕타아제 활성변동을 도시한 것.
도 12는 각각의 식이방법에 따라 4주간 식이한 후의 간의 지질함량 변동을 도시한 것.
도 13은 각각의 식이방법에 따라 4주간 식이한 후의 분별으로의 총 콜레스테롤, 중성지질의 배설량을 도시한 것.
도 14는 각각의 식이방법에 따라 4주간 식이한 후의 간 조직의 형태학적 분석 결과( H&E staining. X 400).
도 15는 각각의 식이방법에 따라 4주간 식이한 후의 복부 지방세포의 형태학적 분석 결과( H&E staining. X 400).
도 16은 각각의 식이방법에 따라 4주간 식이한 후의 부고환 지방세포의 형태학적 분석 결과( H&E staining. X 400).

Claims (7)

  1. 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 및 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물의 혼합물을 포함하는 콜레스테롤 및 지질대사 개선용 식품.
  2. 제 1 항에 있어서, 혼합물은 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물을 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 100중량부에 대해 0.1 내지 10중량부로 포함하는 것을 특징으로 하는 콜레스테롤 및 지질대사 개선용 식품.
  3. 제 1 항 또는 제 2 항에 있어서, 혼합물은 녹두의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물을 탈지대두박의 바실러스 서브틸리스( Bacillus subtilis )에 의한 발효물 100중량부에 대해 0.1 내지 5중량부로 포함하는 것을 특징으로 하는 콜레스테롤 및 지질대사 개선용 식품.
  4. 제 1 항에 있어서,
    혼합물은,
    증자한 탈지대두박과 녹두 분말의 혼합물을, 바실러스 서브틸리스( Bacillus subtilis )로 고체 발효시켜 얻어지는 것임을 특징으로 하는 콜레스테롤 및 지질대 사 개선용 식품.
  5. 제 1 항에 있어서,
    혼합물은,
    탈지대두박 100중량부에 녹두 분말 0.1 내지 10중량부를 혼합하고 증류수를 가하여 멸균 및 증자하여, 멸균된 녹두 첨가 탈지대두박 용액을 제조하는 공정;
    멸균된 대두분말 용액 중에서 바실러스 서브틸리스( Bacillus subtilis )를 40~42℃에서 46~48시간 동안 배양하여 배양액을 제조하는 공정;
    멸균된 녹두 첨가 탈지대두박 용액에 배양액을 접종한 후 40~42℃에서 22~24 시간 발효시키는 공정을 수행하여 얻어지는 것임을 특징으로 하는 콜레스테롤 및 지질대사 개선용 식품.
  6. 제 1 항에 있어서, 혼합물은 동결건조물인 것을 특징으로 하는 콜레스테롤 및 지질대사 개선용 식품.
  7. 제 4 항에 있어서, 혼합물은 발효 공정 이후에 동결건조 공정을 더 수행하여 얻어지는 것임을 특징으로 하는 콜레스테롤 및 지질대사 개선용 식품.
KR1020090010566A 2009-02-10 2009-02-10 콜레스테롤 및 지질대사 개선을 위한 식품 KR101082421B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090010566A KR101082421B1 (ko) 2009-02-10 2009-02-10 콜레스테롤 및 지질대사 개선을 위한 식품

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090010566A KR101082421B1 (ko) 2009-02-10 2009-02-10 콜레스테롤 및 지질대사 개선을 위한 식품

Publications (2)

Publication Number Publication Date
KR20100091393A KR20100091393A (ko) 2010-08-19
KR101082421B1 true KR101082421B1 (ko) 2011-11-11

Family

ID=42756586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090010566A KR101082421B1 (ko) 2009-02-10 2009-02-10 콜레스테롤 및 지질대사 개선을 위한 식품

Country Status (1)

Country Link
KR (1) KR101082421B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838588B1 (ko) * 2010-12-09 2018-03-16 (주)아모레퍼시픽 발효차 추출물을 포함하는 지질 수준 감소용 조성물

Also Published As

Publication number Publication date
KR20100091393A (ko) 2010-08-19

Similar Documents

Publication Publication Date Title
Kwak et al. Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high fat diet more effectively than nonfermented soybeans
US20080107759A1 (en) Composition Comprising Bamboo Extract and the Compounds Isolated Therefrom Showing Treating and Preventing Activity for Inflammatory and Blood Circulation Disease
KR20080003931A (ko) 인슐린 저항성 증후군의 치료
Xiang et al. Supplementation of fermented barley extracts with lactobacillus plantarum dy-1 inhibits obesity via a UCP1-dependent mechanism
Tsai et al. Effect of probiotic-fermented, genetically modified soy milk on hypercholesterolemia in hamsters
Guo et al. Strawberry fermentation with Cordyceps militaris has anti-adipogenesis activity
Hwang et al. Cholesterol-lowering effect of astringent persimmon fruits (Diospyros kaki Thunb.) extracts
KR101082421B1 (ko) 콜레스테롤 및 지질대사 개선을 위한 식품
KR20140114801A (ko) 제주조릿대 잎 추출물 또는 그로부터 분리된 파라-쿠마르산을 이용한 비만 및 지방간 개선제 조성물
Ahmed et al. Hypocholesterolaemic effect of probiotic yogurt enriched with barley β-glucan in rats fed on a high-cholesterol diet
KR101888871B1 (ko) 차전초 잎 추출물을 포함하는 비만 또는 대사성 질환의 예방 및 치료용 조성물
KR101944295B1 (ko) 헛개나무 열매 추출 발효물을 유효성분으로 함유하는 간 기능 개선용 조성물 및 이의 제조방법
WO2009057954A2 (en) Composition for improvement of fatty liver
Son et al. Comparison of anti-obesity effects of sprit vinegar and natural fermented vinegar products on the differentiation of 3T3-L1 cells and obese rats fed a high-fat diet
KR102057923B1 (ko) 항고지혈 효능이 있는 조성물
KR100945670B1 (ko) 청국장 분말을 포함하는 건강 식품 조성물
KR101228554B1 (ko) 진피발효생성방법 및 이에 의한 진피발효생성물
Yoon et al. Antiobesity effect of baek-kimchi (whitish baechu kimchi) in rats fed high fat diet
KR101769592B1 (ko) 갯질경의 새로운 용도
Huang et al. Soy noodles processed from soy flour or tofu affects antioxidant content, lipid accumulation in 3T3‐L1 cells, and plasma lipids in hamsters
Lee et al. Chemical Compositions before and after Lactic Acid Fermentation of Isoflavone-Enriched Soybean Leaves and Their Anti-Obesity and Gut Microbiota Distribution Effects
KR101097838B1 (ko) 고초균과 산수유를 이용한 관능성과 지질저하능이 개선된 발효두유의 제조방법 및 이로부터 얻어진 동맥경화 예방용 발효두유
KR102141862B1 (ko) 밀리타리스 동충하초의 코르디세핀 및 딸기의 기능성 물질 생산량 증대 방법 및 발효 추출물을 포함하는 비만 예방 또는 치료용 조성물
KR20110077644A (ko) 밀겨 추출물을 이용한 비만 개선제 조성물
KR101769593B1 (ko) 갯질경 및 화합물의 신규 용도

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141014

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181105

Year of fee payment: 8