KR101056774B1 - Method for measuring temperature gradient of chamber using ptcr - Google Patents

Method for measuring temperature gradient of chamber using ptcr Download PDF

Info

Publication number
KR101056774B1
KR101056774B1 KR1020100077037A KR20100077037A KR101056774B1 KR 101056774 B1 KR101056774 B1 KR 101056774B1 KR 1020100077037 A KR1020100077037 A KR 1020100077037A KR 20100077037 A KR20100077037 A KR 20100077037A KR 101056774 B1 KR101056774 B1 KR 101056774B1
Authority
KR
South Korea
Prior art keywords
chamber
temperature
pti
temperature gradient
seeds
Prior art date
Application number
KR1020100077037A
Other languages
Korean (ko)
Inventor
신기철
정주현
Original Assignee
(주)아즈텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아즈텍 filed Critical (주)아즈텍
Priority to KR1020100077037A priority Critical patent/KR101056774B1/en
Application granted granted Critical
Publication of KR101056774B1 publication Critical patent/KR101056774B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE: A temperature gradient measuring method is provided to use a process temperature control ring(PTCR), thereby enabling to provide an adequate temperature gradient measuring method in a chamber comprising an ultra high temperature vacuum furnace for mono-crystal sapphire growth. CONSTITUTION: A temperature gradient measuring method using a process temperature control ring(PTCR) is comprised of following four steps. The PTCR is installed on a side wall of a chamber in horizontal and vertical direction with a predetermined interval(S1). A heater is driven in order to a processing temperature in the chamber be able to reach to a predetermined temperature(S2). The diameter is measured by collecting the PTCRs(S3). The processing temperature is corrected by presuming a temperature gradient based on the measured diameter and reinforcing insulating materials in a corresponding region(S4).

Description

피티씨알을 이용한 챔버의 온도구배 측정 방법{METHOD FOR MEASURING TEMPERATURE GRADIENT OF CHAMBER USING PTCR}METHOD FOR MEASURING TEMPERATURE GRADIENT OF CHAMBER USING PTCR}

본 발명은 챔버 내의 온도구배를 측정하는 기술에 관한 것으로, 특히 피티씨알(PTCR: Process Temperature Control Ring)을 이용하여 단결정 사파이어 성장용 초고온 진공로를 구비한 챔버 내의 온도구배를 측정하는데 적당하도록 한 피티씨알을 이용한 챔버의 온도구배 측정 방법에 관한 것이다.
The present invention relates to a technique for measuring a temperature gradient in a chamber, and in particular, to fit a temperature gradient in a chamber having an ultra high temperature vacuum furnace for growing single crystal sapphire using a process temperature control ring (PTCR). It relates to a temperature gradient measurement method of a chamber using a seed.

일반적으로, 반도체 전공정 장비인 챔버의 온도구배(temperature gradient)를 측정하는 방법에는 여러 가지가 있다. 예를 들어, 상용화된 고온의 온도구배 측정 방법으로써 금속 열전대(metal thermocouple)를 이용하는 직접 측정 방법과, 고온계(pyrometer)를 이용한 간접 측정 방법이 있었다. In general, there are several methods for measuring the temperature gradient of a chamber, which is a semiconductor preprocessing equipment. For example, commercially available high temperature gradient measurement methods include a direct measurement method using a metal thermocouple and an indirect measurement method using a pyrometer.

그런데, 종래의 고온계(pyrometer)를 이용한 간접 측정 방법으로 단결정 사파이어 성장용 초고온 진공로를 구비한 초고온 챔버 내의 온도구배를 측정하는 경우 10~20℃ 오차가 발생되는 것으로 보고되고 있지만, 관찰점이 멀기 때문에 실질적으로는 더 큰 오차가 발생되는 문제점이 있었다.
By the way, when measuring the temperature gradient in the ultra-high temperature chamber equipped with the ultra-high temperature vacuum furnace for single crystal sapphire growth by using an indirect measuring method using a conventional pyrometer, an error of 10 to 20 ° C. has been reported, but since the observation point is far from In practice, there was a problem that a larger error occurred.

따라서, 본 발명의 목적은 피티씨알(PTCR)을 이용하여 단결정 사파이어 성장용 초고온 진공로를 구비한 챔버 내의 온도구배를 직접적으로 측정하여 온도구배가 심한 부분에 단열재를 보강할 수 있도록 하는데 있다. Therefore, an object of the present invention to directly measure the temperature gradient in the chamber equipped with an ultra high temperature vacuum furnace for single crystal sapphire growth using PTC (PTCR) to reinforce the heat insulating material in the severe temperature gradient.

본 발명의 목적들은 앞에서 언급한 목적으로 제한되지 않는다. 본 발명의 다른 목적 및 장점들은 아래 설명에 의해 더욱 분명하게 이해될 것이다.
The objects of the present invention are not limited to the above-mentioned objects. Other objects and advantages of the invention will be more clearly understood by the following description.

상기와 같은 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

(a) 챔버의 측벽에 수평 및 수직 방향으로 기 설정된 간격을 두고 피티씨알을 장착하는 단계;(a) mounting the PTs at predetermined intervals in the horizontal and vertical directions on the sidewalls of the chamber;

(b) 히터를 구동하여 상기 챔버 내부의 공정온도가 기 설정된 온도에 도달되도록 하는 단계;(b) driving a heater so that the process temperature inside the chamber reaches a preset temperature;

(c) 상기 피티씨알들을 수거하여 직경을 측정하는 단계;(c) collecting the PTI seeds to measure a diameter;

(d) 상기 측정된 직경값을 근거로 온도구배를 추정하여 해당 부분에 단열재를 보강하는 방식으로 공정온도를 보정하는 단계;를 포함하여 이루어진다.
(d) estimating the temperature gradient based on the measured diameter value and correcting the process temperature in such a manner as to reinforce the insulating material in the corresponding portion.

본 발명은 피티씨알을 이용하여 단결정 사파이어 성장용 초고온 진공로를 구비한 초고온 챔버 내의 온도구배를 직접적으로 측정함으로써, 측정오차를 줄일 수 있는 효과가 있다. 또한, 온도구배 측정결과를 근거로 온도구배가 심한 부분에 단열재를 보강함으로써 공정온도를 보다 정확하게 보정할 수 있는 효과가 있다.
The present invention has the effect of reducing the measurement error by directly measuring the temperature gradient in the ultra-high temperature chamber having an ultra high-temperature vacuum furnace for single crystal sapphire growth using PTI seed. In addition, based on the temperature gradient measurement results, by reinforcing the heat insulating material in a severe temperature gradient, there is an effect of more accurately correcting the process temperature.

도 1은 본 발명의 온도구배 측정 방법이 적용되는 챔버에 온도구배 측정을 위한 피티씨알이 장착된 것을 나타낸 예시도.
도 2는 본 발명의 온도구배 측정 방법이 적용되는 챔버에 온도구배 측정을 위한 피티씨알의 장착예를 보인 평면도.
도 3은 본 발명이 적용되는 챔버의 종단면도
도 4는 발명에 따른 피티씨알을 이용한 챔버의 온도구배 측정 방법의 제어 흐름도.
1 is an exemplary view showing that the PTI seed for measuring the temperature gradient is mounted in the chamber to which the temperature gradient measuring method of the present invention is applied.
Figure 2 is a plan view showing a mounting example of the PTI seed for measuring the temperature gradient in the chamber to which the temperature gradient measuring method of the present invention is applied.
Figure 3 is a longitudinal cross-sectional view of the chamber to which the present invention is applied
4 is a control flowchart of a method for measuring a temperature gradient of a chamber using a PTI seed according to the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 온도구배 측정 방법이 적용되는 챔버에 온도구배 측정을 위한 피티씨알의 장착예를 보인 개략도이고, 도 2는 본 발명의 온도구배 측정 방법이 적용되는 챔버에 온도구배 측정을 위한 피티씨알의 장착예를 보인 평면도이다.1 is a schematic diagram showing an example of mounting a PTI seed for measuring the temperature gradient in the chamber to which the temperature gradient measuring method of the present invention is applied, and FIG. 2 is a method for measuring a temperature gradient in a chamber to which the temperature gradient measuring method of the present invention is applied. It is a top view which showed the mounting example of PTTI.

상기 도 1 및 도 2에 도시한 바와 같이, 몰리브덴 와이어(12)에 다수의 피티씨알(13)이 수직 방향으로 연결되어 챔버(10)의 원통형 측벽(11) 내에 수직 방향으로 장착되고, 이와 같이 연결된 피티씨알(13)들이 수평방향으로 소정 간격을 두고 장착된다.(S1) 1 and 2, a plurality of PTI seeds 13 are connected to the molybdenum wire 12 in a vertical direction and mounted in a vertical direction in the cylindrical sidewall 11 of the chamber 10. The connected PTIs 13 are mounted at a predetermined interval in the horizontal direction. (S1)

상기 도 1 및 도 2에서는 피티씨알(13)이 수직 방향으로 3개씩 연결되고, 이와 같이 연결된 피티씨알(13)들이 수평방향으로 90ㅀ간격으로 4줄 씩 장착된 것을 예로 하였으나, 수직, 수평방향으로 장착되는 피티씨알(13)의 개수는 이에 한정되는 것이 아니라, 필요에 따라 자유롭게 증가시키거나 감소시킬 수 있다.In FIG. 1 and FIG. 2, three PTI seeds 13 are connected to each other in the vertical direction, and the connected PTI seeds 13 are installed in four rows at 90 ° intervals in the horizontal direction. The number of the PTI seeds 13 to be mounted is not limited thereto, and may be freely increased or decreased as needed.

도 3은 상기 챔버(10)의 종단면도를 나타낸 것으로, 원통형 측벽(11)의 내측으로 히터(14)가 장착되고, 그 히터(14)의 내측으로 도가니(15)가 놓이게 된다. 상기 도 1 및 도 2에서는 나타내지 않았지만 상기 챔버(10)의 바닥면 하부에도 상기 피티씨알(13)을 장착하였다. 3 shows a longitudinal cross-sectional view of the chamber 10 in which a heater 14 is mounted inside the cylindrical sidewall 11 and a crucible 15 is placed inside the heater 14. Although not shown in FIG. 1 and FIG. 2, the PTI seed 13 is also mounted on the bottom of the bottom of the chamber 10.

일반적으로, 상기 원통형 측벽(11) 및 바닥면 하부에 여러장의 단열재가 설치되는데, 상기 피티씨알(13)은 그 단열재들의 사이에 착탈이 용이하게 장착하는 것이 바람직하다.In general, a plurality of heat insulating materials are installed in the cylindrical side wall 11 and the bottom of the bottom surface, the PTI seed 13 is preferably mounted easily removable between the heat insulating materials.

상기 챔버(10)는 단결정 사파이어 성장용 초고온 진공로를 구비한 초고온 챔버(10)의 공정온도는 2000~2100℃로서, 이 챔버(10)의 구배온도를 직접 측정하기 위해 상기와 같이 장착된 피티씨알(13)의 온도측정 범위는 아래의 표에서와 같이 1,450~1,750℃인 것을 예로 하여 설명한다. The chamber 10 has a process temperature of the ultra high temperature chamber 10 including the ultra high temperature vacuum furnace for single crystal sapphire growth is 2000 to 2100 ° C., and the pit is mounted as described above to directly measure the gradient temperature of the chamber 10. The temperature measurement range of the seed 13 will be described with an example of 1,450 ~ 1,750 ℃ as shown in the table below.

Figure 112010051484366-pat00001
Figure 112010051484366-pat00001

상기와 같은 과정을 통해 상기 챔버(10)에 상기 설명에서와 같이 피티씨알(13)을 장착한 후 상기 히터(14)를 구동하여 내부의 공정온도가 2000~2100℃에 도달되도록 한다.(S2) Through the above process, the PTI seed 13 is mounted in the chamber 10 as described above, and then the heater 14 is driven to allow the internal process temperature to reach 2000 to 2100 ° C. (S2 )

이때, 상기 피티씨알(13)들은 상기 챔버(10)의 공정온도 상승에 따른 주변의 온도 상승에 대응하여 직경(지름)이 줄어들게 된다. At this time, the PTIs 13 are reduced in diameter (diameter) in response to the increase in the ambient temperature according to the increase in the process temperature of the chamber 10.

사용자는 상기와 같이 장착된 피티씨알(13)을 수거하여 마이크로메타로 직경을 측정하게 되는데, 아래의 표는 이들의 측정 결과를 예시적으로 나타낸 것이다.(S3) The user collects the PTI seeds 13 mounted as described above, and measures the diameter by micrometer. The following table shows the measurement results by way of example.

즉, 아래의 첫 번째 표는 챔버(10)의 맨 상측의 동일 수평면상에 소정 간격으로 설치된 5개의 피티씨알(13)의 측정된 직경값과 그에 따른 온도값이고, 그 아래의 3개의 표는 2~4번째의 수평면상에 소정 간격으로 설치된 5개의 피티씨알(13)의 측정된 직경값과 그에 따른 온도값이다. 그리고, 마지막 표는 챔버(10)의 바닥면 하부에 장착된 티씨알(13)의 측정된 직경값과 그에 따른 온도값이다.That is, the first table below shows the measured diameter values and the corresponding temperature values of the five PTI seeds 13 installed at predetermined intervals on the same horizontal plane on the top of the chamber 10, and the three tables below the The measured diameter values and the corresponding temperature values of the five PTI seeds 13 provided at predetermined intervals on the second to fourth horizontal planes. And, the last table is the measured diameter value and the corresponding temperature value of the TLC 13 mounted on the bottom surface of the chamber 10.

Figure 112010051484366-pat00002
Figure 112010051484366-pat00002

Figure 112010051484366-pat00003
Figure 112010051484366-pat00003

상기 표들을 살펴보면, 위로부터 두 번째 표의 3번째 피티씨알의 직경값이 상대적으로 작게 나타나고, 위로부터 세 번째 표의 첫 번째 및 두 번째, 네 번째 및 다섯 번째 피티씨알의 직경값이 상대적으로 작게 나타난 것을 알 수 있다. 그리고, 마지막 표의 두 번째 및 네 번째 티피씨알의 직경값이 상대적으로 작게 나타난 것을 알 수 있다.Looking at the tables, the diameter value of the third PTI seeds of the second table from the top appears relatively small, and the diameter values of the first and second, fourth and fifth PTI seeds of the third table from the top appeared relatively small. Able to know. And, it can be seen that the diameter values of the second and fourth TIPS of the last table are relatively small.

상기 설명에서와 같이 측정된 직경값이 작게 나타난 피티씨알은 해당 부분의 온도구배가 다른 부분에 비하여 심하게 나타난 것을 의미한다. 따라서, 사용자는 해당 부분에 단열재를 보강하는 방식으로 공정온도를 보정하게 된다.As shown in the above description, the PTI seed having a small measured diameter value means that the temperature gradient of the corresponding portion is more severe than other portions. Therefore, the user corrects the process temperature by reinforcing the heat insulating material in the corresponding portion.

결국, 상기와 같은 과정을 통해 측정된 온도구배 데이터(1,450~1,750℃)를 근거로 2000~2100℃ 구간의 온도구배를 추정하여 공정온도를 보정할 수 있게 된다.(S4),(S5) As a result, it is possible to correct the process temperature by estimating the temperature gradient of the 2000 ~ 2100 ℃ section based on the temperature gradient data (1,450 ~ 1,750 ℃) measured through the above process. (S4), (S5)

이상에서 본 발명의 바람직한 실시예에 대하여 상세히 설명하였지만, 본 발명의 권리범위가 이에 한정되는 것이 아니라 다음의 청구범위에서 정의하는 본 발명의 기본 개념을 바탕으로 보다 다양한 실시예로 구현될 수 있으며, 이러한 실시예들 또한 본 발명의 권리범위에 속하는 것이다.
Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and may be implemented in various embodiments based on the basic concept of the present invention defined in the following claims. Such embodiments are also within the scope of the present invention.

10 : 챔버
11 : 원통형 측벽
12 : 몰리브덴 와이어
13 : 피티씨알
14 : 히터
15 : 도가니
10: chamber
11: cylindrical sidewall
12: molybdenum wire
13: Pitial
14: heater
15: crucible

Claims (7)

(a) 챔버의 측벽에 수평 및 수직 방향으로 기 설정된 간격을 두고 피티씨알을 장착하는 단계;
(b) 히터를 구동하여 상기 챔버 내부의 공정온도가 기 설정된 온도에 도달되도록 하는 단계;
(c) 상기 피티씨알들을 수거하여 직경을 측정하는 단계 및,
(d) 상기 측정된 직경값을 근거로 온도구배를 추정하여 해당 부분에 단열재를 보강하는 방식으로 공정온도를 보정하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
(a) mounting the PTs at predetermined intervals in the horizontal and vertical directions on the sidewalls of the chamber;
(b) driving a heater so that a process temperature inside the chamber reaches a preset temperature;
(c) measuring the diameter by collecting the PTI seeds,
(d) estimating the temperature gradient based on the measured diameter value and correcting the process temperature in such a manner as to reinforce the heat insulating material in the corresponding portion; and measuring the temperature gradient of the chamber using a PTI grains. .
제1항에 있어서, 피티씨알의 온도측정 범위는 1,450~1,750℃인 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the temperature measurement range of the PTI seeds is 1,450 to 1,750 ° C.
제1항에 있어서, (a) 단계는 피티씨알을 몰리브덴 와이어로 연결된 형태로 수평, 수직 방향으로 장착되는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the step (a) comprises mounting the PTI seeds in a horizontal and vertical direction by connecting the PTI seeds with molybdenum wire.
제1항에 있어서, (a) 단계는 챔버의 바닥면 하부에 상기 피티씨알을 장착하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the step (a) further comprises the step of mounting the PTI seed at the bottom of the bottom surface of the chamber.
제1항에 있어서, (a) 단계는 챔버의 측벽에 설치된 단열재들의 사이에 피티씨알을 장착하는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the step (a) comprises mounting the PTI seeds between the heat insulating materials installed on the sidewalls of the chamber.
제1항에 있어서, (b) 단계의 기 설정된 공정온도는 2000~2100℃를 포함하는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the preset process temperature of step (b) comprises 2000 to 2100 ° C. 7.
제1항에 있어서, (c) 단계는 상기 직경을 마이크로메타로 측정하는 것을 특징으로 하는 피티씨알을 이용한 챔버의 온도구배 측정 방법.
The method of claim 1, wherein the step (c) comprises measuring the diameter by micrometer.
KR1020100077037A 2010-08-10 2010-08-10 Method for measuring temperature gradient of chamber using ptcr KR101056774B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100077037A KR101056774B1 (en) 2010-08-10 2010-08-10 Method for measuring temperature gradient of chamber using ptcr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100077037A KR101056774B1 (en) 2010-08-10 2010-08-10 Method for measuring temperature gradient of chamber using ptcr

Publications (1)

Publication Number Publication Date
KR101056774B1 true KR101056774B1 (en) 2011-08-16

Family

ID=44933286

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100077037A KR101056774B1 (en) 2010-08-10 2010-08-10 Method for measuring temperature gradient of chamber using ptcr

Country Status (1)

Country Link
KR (1) KR101056774B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074670A (en) * 2013-02-05 2013-05-01 元亮科技有限公司 Crystal growth temperature gradient testing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001391A (en) 1998-06-11 2000-01-07 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and its production
KR100852686B1 (en) 2007-01-19 2008-08-19 주식회사 글로실 Apparatus for manufacturing poly crystaline silicon ingot for solar battery
KR100931018B1 (en) 2007-10-05 2009-12-14 주식회사 글로실 Device for manufacturing polycrystalline silicon ingot for solar cell equipped with door opening and closing device using hanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001391A (en) 1998-06-11 2000-01-07 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and its production
KR100852686B1 (en) 2007-01-19 2008-08-19 주식회사 글로실 Apparatus for manufacturing poly crystaline silicon ingot for solar battery
KR100931018B1 (en) 2007-10-05 2009-12-14 주식회사 글로실 Device for manufacturing polycrystalline silicon ingot for solar cell equipped with door opening and closing device using hanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074670A (en) * 2013-02-05 2013-05-01 元亮科技有限公司 Crystal growth temperature gradient testing method

Similar Documents

Publication Publication Date Title
KR101951136B1 (en) Manufacturing method of silicon carbide single crystal
CN108138359A (en) Sic single crystal ingot
CN102971624B (en) Polycrystalline silicon rod and production method for polycrystalline silicon rod
US20130255568A1 (en) Method for manufacturing silicon carbide single crystal
US20200063286A1 (en) Crystal growth apparatus, method for manufacturing silicon carbide single crystal, silicon carbide single crystal substrate, and silicon carbide epitaxial substrate
JP2018510831A (en) Furnace for sublimation recrystallization of wide band gap crystals
KR101056774B1 (en) Method for measuring temperature gradient of chamber using ptcr
US9777400B2 (en) Method for producing single crystal
US20170121844A1 (en) Method for manufacturing silicon carbide single crystal and silicon carbide substrate
JP6678437B2 (en) Method for producing SiC single crystal ingot, SiC single crystal ingot, and SiC single crystal wafer
US20210262119A1 (en) Silicon carbide single crystal growth apparatus and method for manufacturing silicon carbide single crystal
US9856583B2 (en) Method of manufacturing silicon carbide single crystal
JP6869077B2 (en) Method for manufacturing silicon carbide single crystal ingot
US10985042B2 (en) SiC substrate, SiC epitaxial wafer, and method of manufacturing the same
US20160083865A1 (en) Method for manufacturing silicon carbide single crystal
US20180254323A1 (en) Silicon carbide substrate
US20160326669A1 (en) Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
US9845549B2 (en) Method of manufacturing silicon carbide single crystal
JP2020007163A (en) Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
KR101464561B1 (en) Sapphire ingot growing apparatus and rod heater using the same
JP4962406B2 (en) Method for growing silicon single crystal
US20200332436A1 (en) Method for manufacturing silicon carbide single crystal
CN106783545A (en) A kind of adjusting method of flat board epitaxial furnace thermal field
KR20160049432A (en) HEAT TREATING METHOD OF SiC INGOT

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150209

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee