KR100988490B1 - A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel - Google Patents

A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel Download PDF

Info

Publication number
KR100988490B1
KR100988490B1 KR1020080060996A KR20080060996A KR100988490B1 KR 100988490 B1 KR100988490 B1 KR 100988490B1 KR 1020080060996 A KR1020080060996 A KR 1020080060996A KR 20080060996 A KR20080060996 A KR 20080060996A KR 100988490 B1 KR100988490 B1 KR 100988490B1
Authority
KR
South Korea
Prior art keywords
steel sheet
stainless steel
zinc
aluminum
temperature
Prior art date
Application number
KR1020080060996A
Other languages
Korean (ko)
Other versions
KR20100001179A (en
Inventor
김중봉
이종도
임헌동
윤재관
서현용
Original Assignee
포스코강판 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코강판 주식회사 filed Critical 포스코강판 주식회사
Priority to KR1020080060996A priority Critical patent/KR100988490B1/en
Publication of KR20100001179A publication Critical patent/KR20100001179A/en
Application granted granted Critical
Publication of KR100988490B1 publication Critical patent/KR100988490B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명은 건축 판넬재 및 지붕재, 농업설비, 산업기기, 자동차 부품 등에 사용되는 알루미늄-아연 도금 스테인레스 도금강판을 제조하는 방법에 관한 것으로서, 도금 밀착성 및 가공성이 우수한 알루미늄-아연 도금 스테인레스 강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing an aluminum-zinc plated stainless steel plate used for building panel materials and roofing materials, agricultural equipment, industrial equipment, automobile parts, etc., and a method of manufacturing an aluminum-zinc plated stainless steel sheet having excellent plating adhesion and workability. It is intended to provide a purpose.

본 발명은 스테인레스 강판을 전처리한 후, 강판에 활성화된 Fe, Cr 복합산화층이 생성되도록 예열온도: 550℃이상, 공기분압비: 1.3 이상, 및 수소 농도: 1 ~ 5%의 조건으로 예열한 후, 상기 Fe, Cr 복합 산화물이 환원되도록 가열온도: 900℃ 이하, 수소농도: 40%이상, 및 이슬점 온도: 35 ~ -45℃로 가열하고, 그 온도에서 유지한 다음, 20-40%의 수소 농도를 유지한 상태에서 600-700℃ 부근까지 냉각하여 소둔한 다음, 소둔된 강판을 용융 알루미늄-아연 도금욕에서 도금한 후, 냉각하는 단계를 포함하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법을 그 요지로 한다.In the present invention, after pre-treating the stainless steel sheet, the preheating temperature: 550 ℃ or more, the air partial pressure ratio: 1.3 or more, and hydrogen concentration: 1 to 5% so that the activated Fe, Cr composite oxide layer is produced on the steel sheet Heating temperature: 900 ° C. or lower, hydrogen concentration: 40% or higher, and dew point temperature: 35 to −45 ° C. so as to reduce the Fe and Cr composite oxides, and then maintain the temperature at 20-40% hydrogen. The method of manufacturing a molten aluminum-zinc plated stainless steel sheet comprising the step of cooling to annealing by maintaining the concentration to around 600-700 ℃, then annealing the steel sheet in a molten aluminum-zinc plating bath, and then cooling. That's the point.

본 발명에 의하면, 표면이 미려하고, 도금 밀착성 및 가공성이 우수한 알루미늄-아연 도금 스테인레스 강판을 제공할 수 있다.According to the present invention, it is possible to provide an aluminum-zinc plated stainless steel sheet having a beautiful surface and excellent plating adhesion and workability.

용융, 알루미늄, 아연, 스테인레스, 공기분압비, 수소, 크롬산화물 Hot dip, aluminum, zinc, stainless steel, partial pressure ratio, hydrogen, chromium oxide

Description

용융 알루미늄-아연 도금 스테인레스 강판의 제조방법{A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel}A method for manufacturing a hot dip aluminum-zinc coated stainless steel

본 발명은 건축 판넬재 및 지붕재, 농업설비, 산업기기, 자동차 부품 등에 사용되는 알루미늄-아연 도금 스테인레스 강판을 제조하는 방법에 관한 것으로서, 보다 상세하게는 도금 밀착성 및 가공성이 우수한 알루미늄-아연 도금 스테인레스 강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing an aluminum-zinc plated stainless steel sheet used in building panel materials and roofing materials, agricultural equipment, industrial equipment, automobile parts, and the like, and more particularly, aluminum-zinc plated stainless steel sheet having excellent plating adhesion and processability. It relates to a method of manufacturing.

용융 알루미늄-아연도금 강판, 예를 들면 용융 55%알루미늄-아연도금 강판을 입힌 갈바륨(Galvalume) 제품은 알루미늄 도금강판의 내구성, 내열성 및 열반사성과 아연도금이 지니는 희생방식 효과를 동시에 갖추고 있는 제품으로 건축 판넬재, 지붕재, 농업설비, 산업기기 및 자동차 부품 등에 많이 사용되고 있다.Galvalume coated with hot-dip galvanized steel sheet, for example hot-dip 55% aluminum-galvanized steel sheet, combines the durability, heat resistance and heat reflectivity of galvanized steel with sacrificial anticorrosive effects. It is widely used in building panel materials, roofing materials, agricultural equipment, industrial equipment and automobile parts.

특히, 도시에 건설되고 있는 지붕재의 경우, 산성비 및 산성안개와 같은 환경적 요인에 의한 건물의 부식을 막기 위해 고내식성 소재가 요구되고 있다. In particular, in the case of roofing materials being constructed in the city, high corrosion resistance materials are required to prevent corrosion of buildings due to environmental factors such as acid rain and acid fog.

크롬이 함유된 스테인레스 강판을 용융 알루미늄-아연 용융도금을 하는 것에는 까다로운 표면처리 제어기술이 요구된다. Hot-dip aluminum-zinc plating of stainless steel sheets containing chromium requires demanding surface treatment control techniques.

이는 스테인레스강판 표면에 도금부착성을 저해하는 크롬 산화물이 쉽게 생 성되며, 형성된 산화물은 쉽게 제거되지 않고, 스테인레스 강판 표면에 잔류하여 알루미늄-아연 도금욕으로 강판을 침지시킬 때 스테인레스 강판과 용융 알루미늄-아연 도금층과의 합금반응을 차단하여 미도금과 같은 도금결함을 유발하기 때문이다.It is easy to generate chromium oxide that inhibits plating adhesion on the surface of stainless steel sheet, and the formed oxide is not easily removed, and it remains on the surface of stainless steel sheet and when it is immersed in the aluminum-zinc plating bath, the stainless steel sheet and molten aluminum- This is because blocking the alloy reaction with the zinc plating layer causes plating defects such as unplated.

이러한 크롬산화피막을 도금 젖음성이 우수한 표면으로 제어하기 위한 기술로는 소둔공정에서 크롬산화막을 환원하여 제거하는 기술, 선도금으로 크롬산화막과 도금층의 접촉을 차단하는 기술, 소둔로를 약산화 분위기로 형성시킴으로써 스테인레스 강판 표면에 산화막을 생성하고 그 후 환원로에서 가열 및 연화 소둔을 통해 산화막을 환원시키는 기술로 구분할 수 있다. As a technique for controlling the chromium oxide film to a surface having excellent plating wettability, a technique of reducing and removing the chromium oxide film in the annealing process, a technique of blocking contact between the chromium oxide film and the plating layer with a leading gold, and annealing furnace as a weak oxidation atmosphere By forming the oxide film on the surface of the stainless steel sheet, it can be divided into a technique for reducing the oxide film through heating and soft annealing in the reduction furnace.

상기한 소둔공정에서 크롬산화막을 환원하여 제거하는 기술은 작업온도가 높아 관련 설비의 노화가 쉽게 일어나는 문제점이 있다.In the annealing process, the technique of reducing and removing the chromium oxide film has a problem in that aging of the related equipment occurs easily due to a high working temperature.

또한, 선도금으로 크롬산화막과 도금층의 접촉을 차단하는 기술은 선도금하는 공정이 추가되어 원가상승을 초래하는 문제점이 있다.In addition, the technology of blocking the contact between the chromium oxide film and the plating layer with the leading gold has a problem that the leading gold is added to increase the cost.

또한, 스테인레스 강판 표면에 산화막을 생성하고 그 후 환원로에서 가열 및 연화 소둔을 통해 산화막을 환원시키는 기술의 예로는 일본 특허출원 평4-117534호를 들 수 있으며, 여기서는 10 ~ 25%의 Cr을 함유하는 스테인레스 강판을 소둔로내 가열 버너의 공기비 0.9 ~ 1.5의 산화성 또는 약산화성 분위기에서 550~700℃로 예열한 다음, 추가로 300℃이내로 상승하도록 가열하고, 이 온도에서 유지하는 연화소둔을 행하며 동시에 산화막만을 환원하고 그 뒤 냉각을 하면서 연속 도금을 실시한다.In addition, an example of a technique of forming an oxide film on the surface of a stainless steel plate and then reducing the oxide film through heating and soft annealing in a reduction furnace is described in Japanese Patent Application No. Hei 4-117534, where 10-25% Cr is used. The preheated stainless steel sheet is preheated to 550-700 ° C. in an oxidizing or weakly oxidizing atmosphere with an air ratio of 0.9-1.5 in an annealing furnace, and then heated to rise to 300 ° C. or lower, and softened annealing is maintained at this temperature. At the same time, only the oxide film is reduced, followed by cooling while performing continuous plating.

그러나, 상기 일본 기술은 산화크롬피막의 두께의 미세 조절 및 도금 후 합금층 성장의 조절이 어려워 도금 밀착성 및 가공성 향상에 한계가 있다.However, the Japanese technique is difficult to finely control the thickness of the chromium oxide film and to control the growth of the alloy layer after plating, and thus there is a limitation in improving the plating adhesion and processability.

본 발명은 소둔로에서의 공기분압비 및 수소 농도의 조절을 통해 스테레인스 표면산화층의 두께를 보다 미세하게 조절하고, 도금 후 수냉함으로써 도금 밀착성 및 가공성이 우수한 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법을 제공하고자 하는데 그 목적이 있다.The present invention provides a method of manufacturing a molten aluminum-zinc plated stainless steel sheet having excellent plating adhesion and workability by controlling the air pressure ratio and hydrogen concentration in the annealing furnace to more finely control the thickness of the surface oxide layer and further cooling the plated water. Its purpose is to provide it.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 스테인레스 강판에 용융알루미늄-아연 도금을 행하여 용융 알루미늄-아연 도금 스테인레스 강판을 제조하는 방법으로서, 상기 스테인레스 강판을 전처리하는 단계;The present invention provides a method for producing a molten aluminum-zinc plated stainless steel sheet by performing molten aluminum-zinc plating on a stainless steel sheet, the method comprising: pretreating the stainless steel sheet;

상기와 같이, 전처리한 스테인레스 강판에 활성화된 Fe, Cr 복합산화층이 생성되도록 예열온도: 550℃이상, 공기분압비: 1.3 이상, 및 수소 농도: 1 ~ 5%의 조건으로 예열한 후, 상기 Fe, Cr 복합 산화물이 환원되도록 가열온도: 900℃ 이하, 수소농도: 40%이상, 및 이슬점 온도: 35 ~ -45℃로 가열하고, 그 온도에서 유지한 다음, 20-40%의 수소 농도를 유지한 상태에서 600-700℃ 부근까지 냉각하여 소둔하는 단계;As described above, the pre-heated stainless steel sheet is preheated to produce an activated Fe, Cr composite oxide layer, preheated at a temperature of at least 550 ° C., an air partial pressure ratio of at least 1.3, and a hydrogen concentration of 1 to 5%. Heating temperature: 900 ° C. or lower, hydrogen concentration: 40% or higher, and dew point temperature: 35 to −45 ° C. to reduce the Cr composite oxide, and maintained at that temperature, followed by 20-40% hydrogen concentration. Annealing by cooling to around 600-700 ° C. in one state;

상기와 같이 소둔된 강판을 용융 알루미늄-아연 도금욕에서 도금하는 단계; 및Plating the steel sheet annealed as described above in a molten aluminum-zinc plating bath; And

상기 도금 후 냉각하는 단계를 포함하는 용융 알루미늄-아연 도금 스테인레 스 강판의 제조방법에 관한 것이다.It relates to a method of manufacturing a molten aluminum-zinc plated stainless steel sheet comprising the step of cooling after the plating.

상술한 바와 같이, 본 발명에 의하면, 표면이 미려하고, 도금 밀착성 및 가공성이 우수한 알루미늄-아연 도금 스테인레스 강판을 제공할 수 있다.As described above, according to the present invention, it is possible to provide an aluminum-zinc plated stainless steel sheet having a beautiful surface and excellent plating adhesion and workability.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명이 적용되는 소재는 스테인레스 강판이며, 이 강판 위에 행해지는 도금은 용융알루미늄-아연 도금이며, 도금욕의 조성은 30∼78%알루미늄 및 나머지 아연을 포함하는 것이며, 바람직한 도금욕의 조성은 52∼58%알루미늄 및 나머지 아연을 포함하는 것이다.The material to which the present invention is applied is a stainless steel sheet, and the plating performed on the steel sheet is molten aluminum-zinc plating, and the composition of the plating bath contains 30 to 78% aluminum and the remaining zinc. 58% aluminum and the remaining zinc.

삭제delete

상기 도금욕에는 3.0%이하의 실리콘을 추가로 함유될 수 있다.The plating bath may further contain less than 3.0% of silicon.

보다 바림작한 도금욕 조성은 일반적으로 산업분야에서 널리 알려진 갈바륨(Galvalume)도금으로, 55%알루미늄, 43.4% 아연 및 1.6% 실리콘을 함유하고 있는 것이다.A more preferred plating bath composition is galvalume plating, which is generally known in the industry, containing 55% aluminum, 43.4% zinc and 1.6% silicon.

본 발명은 전처리 단계, 소둔 단계, 도금단계 및 수냉단계를 포함하는 것으로서, 이에 대하여 설명하면 다음과 같다.The present invention includes a pretreatment step, an annealing step, a plating step and a water cooling step, which will be described below.

(전처리 단계)(Pretreatment step)

본 발명에서는 도금효율 및 도금공정을 더욱 개선하기 위하여 스테인레스 강판이 직접가열 단계를 통과하기 전에 스테인레스 강판을 전처리하는 것이 바람직한데, 이 전처리는 강판표면의 이물질을 제거하고, 다음 공정인 가열로 전단부 예열대의 산화분위기 내에서 즉각적인 표면반응을 유도하기 위함이다.In the present invention, in order to further improve the plating efficiency and plating process, it is preferable to pretreat the stainless steel sheet before the stainless steel sheet passes the direct heating step. This is to induce immediate surface reaction in the oxidizing atmosphere of the preheat zone.

상기 전처리로는 전해 청정방법이 바람직하며, 이에 대하여 상세히 설명하면 다음과 같다.The pretreatment is preferably an electrolytic cleaning method, which will be described in detail below.

전해 청정방법을 이용하는 경우에는 표면 이물질을 완벽하게 제거하여 도금공정에서 강판의 미려한 표면품질을 확보할 수 있다.In the case of using the electrolytic cleaning method, it is possible to completely remove foreign substances on the surface to secure the beautiful surface quality of the steel sheet in the plating process.

상기 전해 청정방법은 표면활성화 단계, 전해 청정단계 및 세척단계를 포함한다.The electrolytic cleaning method includes a surface activation step, an electrolytic cleaning step, and a washing step.

상기 표면활성화 단계에서는 고온입욕탱크(Hot Dipping Tank)에서 50℃이상, 바람직하게는 60∼80℃에서 1%이상, 바람직하게는 2∼5%의 농도를 갖는 가성소다 용액에 입욕(Dipping)하여 청정과 예열을 수행함과 동시에 비누화 작용 원리에 의해 표면 활성화를 꾀한다. In the surface activation step, by dipping in a caustic soda solution having a concentration of 50% or more, preferably 60 to 80 ° C or more and 1% or more and 2 to 5% in a hot dipping tank. The surface is activated by the principle of saponification while performing cleaning and preheating.

상기 전해 청정단계에서는 스크러빙 유니트(Scurbbing Unit)에서 활성화된 표면 유분을 물리적 마찰로 강제 탈지시키며, 이어 전기분해 원리를 이용한 전해청정탱크(Electrolytic cleaning tank)에서 양극[Anode(+)], 음극[Cathode(-)] 전극 활용으로 수소와 산소 화학반응을 유도하여 청정화를 더욱 개선한다.In the electrolytic cleaning step, the surface oil activated in the scrubbing unit is forcedly degreased by physical friction, and then the anode [Anode (+)] and the cathode [Cathode] in an electrolytic cleaning tank using the electrolysis principle. (-)] Electrode utilization induces hydrogen and oxygen chemical reaction to further improve the cleansing.

이러한 전해청정 단계는 일반 탄소강에서는 볼 수 없는 스테인레스 강판 특유의 표면 오일피트 및 브라이트 조도에 의한 오일 밀림을 완벽히 제거함으로서 탈 지미흡에 의한 미도금을 사전에 차단하는데 그 목적이 있다. This electrolytic cleaning step aims to completely block unplated by desorption by completely removing the oil surface due to the surface oil pits and bright roughness unique to the stainless steel sheet, which is not found in ordinary carbon steel.

이후, 상기 세척단계에서는 고온세정탱크(Hot Water Rinse tank)에서 최종 세척 과정을 거친 다음, 소둔로 내의 직접가열대로 스테인레스 강판이 이송된다. Thereafter, in the washing step, after the final washing process in a hot water rinse tank, the stainless steel sheet is transferred to the direct heating in the annealing furnace.

상기 소둔 단계는 예열단계, 가열 및 유지단계 및 냉각단계를 포함한다.The annealing step includes a preheating step, a heating and holding step, and a cooling step.

(예열단계)(Warm up)

상기와 같이 전처리된 스테인레스 강판에 Fe, Cr 복합산화물이 생성되도록 예열온도: 550℃이상, 바람직하게는 600∼700℃, 공기분압비: 1.3 이상, 바람직하게는 1.3∼1.6 및 수소 농도: 1 ~ 5%의 조건으로 가열한다.Preheating temperature: 550 ° C. or higher, preferably 600 to 700 ° C., air partial pressure ratio: 1.3 or higher, preferably 1.3 to 1.6 and hydrogen concentration: 1 to so that Fe and Cr composite oxides are formed on the pretreated stainless steel sheet. Heat to 5% condition.

상기 예열온도가 550℃ 미만인 경우에는 저열로 인한 복합산화물이 균일하게 생성되지 않는 문제가 있기 때문에, 예열온도는 550℃ 이상으로 제한하며, 너무 높은 경우에는 과산화가 진행되어 가열단계에서의 열량과 수소만으로 과산화된 표면을 완벽하게 환원시킬 수 없는 문제가 있기 때문에 600∼700℃로 제한하는 것이 바람직하다.If the preheating temperature is less than 550 ° C., there is a problem in that the composite oxide due to low heat is not uniformly produced. Therefore, the preheating temperature is limited to 550 ° C. or more. If the preheating temperature is too high, the amount of heat and hydrogen in the heating step is increased. It is preferable to limit the temperature to 600 to 700 ° C. because there is a problem in that the peroxidized surface cannot be reduced completely.

상기 공기 분압비가 1.3 미만인 경우에는 산화분위기 온도는 적합하더라도 표면복합산화물을 충분히 생성시킬 수 있는 산소량이 부족하게 되는 문제점이 있기 때문에, 1.3 이상이어야 하고, 1.6를 초과하는 경우에는 과다한 산소 인입으로 과산화를 초래하게 되어 온도가 과다하게 높을 경우와 같은 문제점을 가져오기 때문에, 상기 공기 분압비는 1.3 - 1.6으로 제한하는 것이 바람직하다.If the air partial pressure ratio is less than 1.3, there is a problem in that the amount of oxygen capable of sufficiently producing the surface complex oxide is insufficient, even if the oxidation atmosphere temperature is appropriate, and should be 1.3 or more, and if it exceeds 1.6, peroxidation may occur due to excessive oxygen inflow. It is preferable to limit the air partial pressure ratio to 1.3 to 1.6, because it causes problems such as when the temperature is excessively high.

산화분위기 조성을 위해 투입된 공기와 반응하여 이슬점을 -10℃ 부근으로 조정하여야 하나 상기 수소농도가 1%미만인 경우에는 H2O 생성이 억제되어 산화가 되지 않는 문제점이 있고, 5%를 초과하는 경우에는 공기중 O2와 반응후 H2O가 되므로 산화에 필요한 O2가 부족하게 되는 문제점이 있기 때문에, 상기 수소농도는 1- 5%로 제한하는 것이 바람직하다.When the hydrogen concentration is less than 1%, H 2 O formation is suppressed because the reaction with air introduced for the composition of the oxidation atmosphere is less than -10 ° C. Since there is a problem that the O 2 required for oxidation is insufficient since H 2 O is reacted with O 2 in the air, the hydrogen concentration is preferably limited to 1-5%.

(가열 및 균열단계)(Heating and cracking stage)

상기와 같이 직접 가열된 강판을 Fe, Cr 복합 산화물이 환원되도록 가열온도: 900℃ 이하, 바람직하게는 800∼900℃, 수소농도: 30%이상, 바람직하게는, 30-45% 및 이슬점 온도: 35 ~ -45℃로 가열하고, 그 온도에서 유지한다.The steel sheet directly heated as described above is heated to reduce the Fe and Cr composite oxides at a heating temperature of 900 ° C. or lower, preferably 800 to 900 ° C., and a hydrogen concentration of 30% or higher, preferably, 30-45% and a dew point temperature: Heat to 35-45 [deg.] C. and hold at that temperature.

상기 가열온도가 너무 높은 경우에는 Cr피막 자체를 환원시켜 도금욕 인입후에도 Cr이 탈락되지 않아 표면결함이 발생되는 문제가 있기 때문에, 가열온도는 900℃ 이하로 제한하지만, 너무 낮은 경우에는 너무 낮은 경우에는 충분한 소둔이 이루어 지지 않아 가공성 불량문제가 있으므로 800∼900℃로 제한하는 것이 바람직하다.If the heating temperature is too high, since the Cr film itself is reduced and Cr is not dropped even after the plating bath is drawn in, there is a problem that surface defects occur. It is preferable to limit the temperature to 800 to 900 ° C. because there is a problem of poor workability due to insufficient annealing.

상기 수소농도가 30%미만인 경우에는 예열단계에서 생성된 복합산화피막중 Fe가 완벽하게 환원되지 않아 표면결함이 발생되는 문제점이 있기 때문에, 30%이상으로 제한하며, 너무 높은 경우에는 적정수준 이상의 환원성 분위기 과다 조성으로 필요이상의 에너지낭비가 초래되는 경제성 문제가 있기 때문에 30-45%로 제한하는 것이 바람직하다.If the hydrogen concentration is less than 30%, Fe is not completely reduced in the composite oxide film generated in the preheating step, so that there is a problem in that surface defects are generated. It is preferable to limit the amount to 30-45% because there is an economic problem that causes excessive energy consumption due to excessive atmosphere composition.

상기 이슬점 온도가 35℃를 초과하는 경우에는 수분함량이 높아 가열로내 전체 분위기를 흩뜨려 미도금이 발생될 우려가 있고, -45℃ 미만인 경우에는 건조한 조건에서 공기에 의한 산화량 부족으로 목표로 하는 복합산화물의 발생량이 적게 되는 문제점이 있기 때문에, 상기 이슬점 온도는 35 ~ -45℃로 제한하는 것이 바람직하다.If the dew point temperature exceeds 35 ℃, the moisture content is high, it may disperse the whole atmosphere in the furnace, and unplating may occur, if the temperature is below -45 ℃, the target is due to lack of oxidation by air under dry conditions Since there is a problem that the generation amount of the composite oxide to be reduced, the dew point temperature is preferably limited to 35 ~ -45 ℃.

(냉각단계) (Cooling stage)

상기와 같이 가열 및 균열된 강판을 20-40%의 수소 농도를 유지한 상태에서 600∼700℃ 까지 냉각한다.The steel sheet heated and cracked as described above is cooled to 600-700 ° C. while maintaining a hydrogen concentration of 20-40%.

상기 냉각종료온도가 600℃ 미만인 경우에는 용탕내에서 Fe와 Al, Zn 용융금속과의 반응성이 약해져 Cr산화물을 떼어내기 어려운 문제가 있고, 700℃를 초과하는 경우에는 POT Inductor 가동성이 저하되어 용탕의 유동성 하락에 따른 불균일 스팽글(Spangle) 및 Strip 잠열에 의한 합금층 성장이 두드러져 가공성에 문제가 있기 때문에, 600∼700℃로 제한한다.If the cooling end temperature is less than 600 ℃, there is a problem that the reactivity of Fe, Al, Zn molten metal in the molten metal is weak to remove the Cr oxide, if the cooling end temperature exceeds 700 ℃ POT Inductor mobility is lowered Since the growth of the alloy layer due to the uneven spangle and latent heat of the strip due to the fluidity drop is prominent and the workability is a problem, it is limited to 600 to 700 ° C.

상기 수소농도가 20%미만인 경우에는 가열 및 균열단계에서 완전하게 환원시키지 못한 Fe의 환원을 추가적으로 진행시키지 못하여 발생될 수 있는 미도금 문제가 있고, 40%를 초과하는 경우에는 필요 이상의 에너지낭비로서 경제성 문제가 있기 때문에 20-40%로 제한한다.If the hydrogen concentration is less than 20%, there is an unplating problem that may occur due to the inability to further proceed with the reduction of Fe that is not completely reduced in the heating and cracking stages. Limited to 20-40% because of problems.

상기와 같이 함으로써, 강판은 도금욕에 인입되기 전까지 활성화된 표면을 유지시키고 있을 뿐만 아니라 미 환원된 소지철의 추가적인 환원반응이 이루어지게 된다.By doing so, the steel sheet not only maintains the activated surface until it is introduced into the plating bath, but further reduction of the unreduced iron is made.

(알루미늄-아연 도금단계)(Aluminium-Zinc Plating Step)

상기와 같이 소둔된 강판을 알루미늄-아연 도금을 행한다. The steel sheet annealed as described above is subjected to aluminum-zinc plating.

상기와 같이 전처리 및 소둔공정을 거치므로써 산화크롬피막인 Fe, Cr 복합산화물의 결합력이 약화되게 되며, 소둔시 가열대에서 약화된 결합이 끊어지며 Fe가 수소와 반응하여 표면 활성화가 이루어지면서 도금욕 인입직전 순수질소를 이용하여 산화크롬 피막이 제거되도록 분위기를 조성하는 것이 바람직하다.Through the pretreatment and annealing process as described above, the bonding strength of the Fe and Cr composite oxides, which are chromium oxide films, is weakened, and the weakened bonds are broken at the heating zone during annealing, and Fe reacts with hydrogen to activate the surface of the plating bath. It is preferable to form an atmosphere such that the chromium oxide film is removed using pure nitrogen immediately before.

상기와 같이, 산화크롬피막인 Fe, Cr 복합산화물이 제거됨으로써 도금 젖음성이 충분한 조건의 스테인레스강판을 확보한 후, 연속적으로 55% 알루미늄-아연 도금을 행한다.As described above, after the Fe and Cr composite oxides, which are chromium oxide films, are removed, a stainless steel sheet having sufficient plating wettability is secured, and then 55% aluminum-zinc plating is continuously performed.

상기 도금 욕의 온도는 520∼650℃가 바람직하고, 도금욕의 조성은 30∼78%알루미늄 및 나머지 아연을 포함하는 것이며, 바람직한 도금욕의 조성은 52∼58%알루미늄 및 나머지 아연을 포함하는 것이다.The temperature of the plating bath is preferably 520 to 650 ° C., and the composition of the plating bath is 30 to 78% aluminum and the remaining zinc, and the preferred plating bath is 52 to 58% aluminum and the remaining zinc. .

상기 도금욕에는 3.0%이하의 실리콘을 추가로 함유될 수 있다.The plating bath may further contain less than 3.0% of silicon.

보다 바림작한 도금욕 조성은 55%알루미늄, 43.4% 아연 및 1.6% 실리콘을 함유하는 것이다.More preferred plating bath compositions contain 55% aluminum, 43.4% zinc and 1.6% silicon.

본 발명에서는 표면 산화크롬층과 소지철과의 결합력보다 소지철과 용융 도금층과의 반응에 의한 도금층 확산력이 우수하며 이로 인해 산화크롬층은 도금욕으 로 이탈되어 상부 드로스화 되거나 도금층 위에 잔류되어 다층(Multi-Layer)을 형성함으로서 내식성이 보완되도록 공정 설계되어 있다.In the present invention, the plated layer diffusion force by the reaction between the base iron and the hot-dip galvanizing layer is superior to the bonding force between the surface chromium oxide layer and the base iron, so that the chromium oxide layer is separated into the plating bath to be top dross or remain on the plated layer to Process design is made to complement corrosion resistance by forming (Multi-Layer).

(냉각 단계)(Cooling stage)

상기와 같이, 용융 도금한 후 도금강판을 20∼40℃/sec의 냉각속도로 냉각을 하며, 바람직한 냉각속도는 25∼35℃/sec이다.As described above, the plated steel sheet is cooled at a cooling rate of 20 to 40 ° C./sec after hot dip plating, and a preferable cooling rate is 25 to 35 ° C./sec.

상기 냉각 방식에는 공랭방식 또는 수냉후 공랭하는 방식을 들 수 있다.Examples of the cooling method include air cooling or air cooling after water cooling.

여기서 공랭방식은 찬 공기를 분사시켜 냉각하는 방식을 의미하고, 수냉방식은 수증기나 물 입자를 분사시켜 냉각하는 방식을 의미한다.Here, air cooling means cooling by injecting cold air, and water cooling means cooling by spraying water vapor or water particles.

상기 냉각속도가 빠를수록 좋으며 너무 느린 경우에는 도금층 표면의 스팽글 사이즈(Spangle Size)의 편차가 커지고 합금층의 성장으로 제품의 가공성이 떨어지는 문제가 있다.If the cooling rate is faster and is too slow, the variation of the spangle size on the surface of the plating layer is increased and the workability of the product is degraded due to the growth of the alloy layer.

이 때, 냉각종료온도는 350℃이하가 바람직하다.At this time, the cooling end temperature is preferably 350 ° C or less.

그 이유는 냉각종료온도가 350℃를 초과하는 경우에는 도금층이 견고하지 않아 외부 롤(Touch Roll, Top Roll)과의 접촉에 의한 무늬 전사로 표면 결함이 발생될 소지가 있으며, 충분한 냉각이 이루어 지지 않으면 합금층 성장으로 가공성에 문제가 있기 때문이다.The reason for this is that when the cooling end temperature exceeds 350 ° C, the plated layer is not firm, so that surface defects may occur due to transfer of the pattern by contact with the outer rolls (Touch Roll, Top Roll), and sufficient cooling is achieved. This is because there is a problem in workability due to growth of the alloy layer.

상기와 같이 도금 후에 수냉함으로써 우수한 도금 밀착성, 스팽글 사이즈 편차 감소, 스팽글 미세화 및 가공성 향상을 확보할 수 있다.By water-cooling after plating as mentioned above, the outstanding plating adhesiveness, sequin size deviation reduction, sequin refinement, and workability improvement can be ensured.

즉, 수냉식 냉각 공정을 통해 우수한 도금 밀착성을 확보함과 동시에 도금층과 소지철 사이의 Fe-Al-Si 합금층 생성 억제를 통해 가공성을 향상시키고, 스팽글 사이즈 편차 제어 및 스팽글 미세화를 통해 미려한 외관을 가진 제품을 생산할 수 있다.In other words, it ensures excellent plating adhesion through the water-cooled cooling process and improves workability by suppressing the Fe-Al-Si alloy layer formation between the plating layer and the base iron, and has a beautiful appearance by controlling the sequin size deviation and miniaturizing the sequins. Produce a product.

상기 냉각종료온도 이하의 온도구간은 공기 중에서 냉각시킨다.The temperature section below the cooling end temperature is cooled in air.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1과 같은 조건으로 스테인레스 강판을 전처리하고, 하기 표 2와 같은 조건으로 소둔한 다음, 하기 표 3과 같은 조건으로 도금 및 냉각을 행하여 용융 알루미늄- 아연 도금강판을 제조한 후, 도금 밀착성, 표면특성 및 가공성을 조사하고, 그 결과를 하기 표 4에 나타내었다.After pretreating the stainless steel sheet under the conditions as shown in Table 1, annealing under the conditions as shown in Table 2, and then performing a plating and cooling under the conditions as shown in Table 3 to produce a molten aluminum-zinc plated steel sheet, plating adhesion, Surface properties and workability were investigated, and the results are shown in Table 4 below.

하기 표 3의 냉각조건에서 수냉식 + 공랭식은 수냉후 공냉하는 것을 의미하며, 이때, 평균냉각속도는 30℃/sec 이었다.In the cooling conditions shown in Table 3, the water-cooled + air-cooled type means air-cooled after water cooling, and the average cooling rate was 30 ° C./sec.

공랭식의 경우의 냉각속도는 20℃/sec이었다.In the case of air cooling, the cooling rate was 20 ° C / sec.

하기 표 4에서 밀착성, 표면특성 및 가공성은 다음과 같이 평가하였다.In Table 4, the adhesion, surface properties and workability were evaluated as follows.

1) 밀착성1) Adhesion

Δ: 도금박리 발생Δ: plating peeling occurs

○ : 헤어 크랙(Hair crack)은 있으나 도금 박리는 없음○: Hair cracks but no plating peeling

◎ : 도금박리 없음◎: No plating peeling

2) 표면특성2) Surface characteristics

Δ: 직경 2mm 이상으로 10% 이상 미도금 발생Δ: Unplated more than 10% with a diameter of 2 mm or more

○:직경 20mm 이내로 전체 5% 이내 미도금 발생 ○: Unplated within 5% of the diameter within 20mm

◎: 미도금 없음◎: no plating

3) 가공성 3) Machinability

Δ: 로크 포밍(LOCK FORMING) 실시 후 크랙(Crack)이 여러 곳에서 발생하고 Δ: Cracks occur in several places after LOCK FORMING

크랙부위를 문질렀을 때 Al층이 조금씩 일어남    Al layer is little by little when rubbed crack part

○: 로크 포밍 실시 후 표면에 부분적으로 극소하게 크랙이 나타남○: Partially minimal cracks appear on the surface after performing the lock forming.

◎: 로크 포밍 실시 후 표면에 전혀 이상이 없는 것◎: No abnormality on the surface after performing the rock forming

시편 No.Psalm No. 전처리 조건Pretreatment conditions 전처리 종류Pretreatment Type 전처리 용액(가성소다 용액)농도(%)Pretreatment solution (caustic soda solution) concentration (%) 전처리온도(℃)Pretreatment temperature (℃) 1One Brush세정Brush cleaning 33 6565 22 전해청정Electrolytic cleaning 33 6565 33 Brush세정Brush cleaning 33 7575 44 전해청정Electrolytic cleaning 33 7575 55 Brush세정Brush cleaning 33 6565 66 전해청정Electrolytic cleaning 33 6565 77 Brush세정Brush cleaning 33 6565 88 전해청정Electrolytic cleaning 33 6565 99 Brush세정Brush cleaning 33 6565 1010 전해청정Electrolytic cleaning 33 6565

시편 No.

Psalm No.

소둔조건Annealing Condition
예열 조건Preheating condition 가열 및 유지조건Heating and maintenance conditions 냉각조건Cooling condition 온도
(℃)
Temperature
(℃)
공기분압비Air partial pressure ratio 수소농도
(%)
Hydrogen concentration
(%)
온도
(℃)
Temperature
(℃)
수소농도
(%)
Hydrogen concentration
(%)
이슬점
온도(℃)
dew point
Temperature (℃)
냉각종료
온도(℃)
Cooling end
Temperature (℃)
수소농도
(%)
Hydrogen concentration
(%)
1 One 400400 1.31.3 1One 820820 3535 -40-40 620620 3030 22 500500 1.11.1 33 900900 3535 -40-40 620620 4040 33 500500 1.31.3 1One 800800 3535 -40-40 620620 3030 44 500500 1.31.3 33 900900 3535 -40-40 620620 4040 55 600600 1.11.1 1One 800800 2525 -30-30 620620 3030 66 600600 1.11.1 33 920920 2525 -30-30 620620 4040 77 600600 1.11.1 1One 800800 3535 -35-35 545545 3535 88 600600 1.31.3 33 900900 4040 -40-40 650650 4040 99 600600 1.31.3 1One 800800 4040 -30-30 620620 3030 1010 600600 1.31.3 33 900900 3535 -40-40 620620 4040

시편 No.
Psalm No.
도금조건Plating condition 냉각조건Cooling condition
도금욕온도(℃)Plating bath temperature (℃) 도금욕 조성Plating bath composition 냉각방식Cooling method 냉각종료온도(℃)Cooling end temperature (℃) 1One 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 공랭식Air cooling 350350 22 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 공랭식Air cooling 355355 33 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 공랭식Air cooling 350350 44 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 수냉식+ 공랭식Water cooled + air cooled 315315 55 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 공랭식Air cooling 355355 66 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 수냉식+ 공랭식Water cooled + air cooled 310310 77 534534 35 %Al, 65%Zn    35% Al, 65% Zn 수냉식+ 공랭식Water cooled + air cooled 270270 88 635635 70 %Al, 30%Zn    70% Al, 30% Zn 수냉식+ 공랭식Water cooled + air cooled 320320 99 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 공랭식Air cooling 350350 1010 600600 55%Al, 43.4%Zn, 1.6% Si55% Al, 43.4% Zn, 1.6% Si 수냉식+ 공랭식Water cooled + air cooled 315315

시편 No.Psalm No. 밀착성Adhesion 표면특성Surface characteristics 가공성Machinability 1One ΔΔ ΔΔ ΔΔ 22 ΔΔ ΔΔ 33 ΔΔ ΔΔ 44 ΔΔ 55 ΔΔ ΔΔ ΔΔ 66 ΔΔ ΔΔ 77 ΔΔ 88 99 1010

상기 표 4에 나타난 바와 같이, 본 발명에 따라 스테인레스 강판을 전처리하고, 소둔한 다음, 도금 및 냉각을 행하여 용융 알루미늄- 아연 도금강판을 제조하는 경우(시편 No. 8-10)에는 우수한 도금 밀착성, 표면특성 및 가공성을 얻을 수 있음을 알 수 있다.As shown in Table 4, in the case of manufacturing a molten aluminum-zinc plated steel sheet by pretreating, annealing, plating and cooling according to the present invention (Sample No. 8-10), excellent plating adhesion, It can be seen that surface characteristics and workability can be obtained.

Claims (14)

스테인레스 강판에 용융알루미늄-아연 도금을 행하여 용융 알루미늄-아연 도금 스테인레스 강판을 제조하는 방법으로서, 상기 스테인레스 강판을 전처리하는 단계;A method of manufacturing a molten aluminum-zinc plated stainless steel sheet by performing molten aluminum-zinc plating on a stainless steel sheet, the method comprising: pretreating the stainless steel sheet; 상기와 같이 전처리한 스테인레스 강판에 활성화된 Fe, Cr 복합산화층이 생성되도록 예열온도: 600∼700℃, 공기분압비: 1.3 ∼1.6, 및 수소 농도: 1 ~ 5%의 조건으로 예열한 후, 상기 Fe, Cr 복합 산화물이 환원되도록 가열온도: 800∼900℃, 수소농도: 30∼45%, 및 이슬점 온도: 35 ~ -45℃로 가열하고, 그 온도에서 유지한 다음, 20-40%의 수소 농도를 유지한 상태에서 600-700℃까지 냉각하여 소둔하는 단계;After preheating to a preheating temperature of 600 to 700 ° C., an air partial pressure ratio of 1.3 to 1.6, and a hydrogen concentration of 1 to 5% to generate an activated Fe and Cr composite oxide layer on the pretreated stainless steel sheet as described above. Heating temperature: 800-900 ° C., hydrogen concentration: 30-45%, and dew point temperature: 35-45 ° C. so as to reduce the Fe and Cr composite oxides, and maintained at that temperature, followed by 20-40% hydrogen. Annealing by cooling to 600-700 ° C. while maintaining the concentration; 상기와 같이 소둔된 강판을 욕 온도가 550∼650℃인 용융 알루미늄-아연 도금욕에서 도금하는 단계; 및Plating the steel sheet annealed as described above in a molten aluminum-zinc plating bath having a bath temperature of 550 to 650 ° C .; And 상기 도금된 용융 알루미늄-아연 도금강판을 20∼40℃/sec의 냉각속도로 350℃이하의 온도구간까지 냉각하는 단계를 포함하고,Cooling the plated molten aluminum-zinc plated steel sheet to a temperature section of 350 ° C. or less at a cooling rate of 20 to 40 ° C./sec, 상기 도금된 용융 알루미늄-아연 도금강판의 냉각은 수증기나 물 입자를 분사시켜 냉각한 후, 찬 공기를 분사시켜 냉각하는 방식으로 이루어지는 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The plated molten aluminum-zinc plated steel sheet is cooled by spraying water vapor or water particles, and then cooled by spraying cold air to cool the molten aluminum-zinc plated stainless steel sheet. 제1항에 있어서, 도금욕은 30∼78%알루미늄 및 나머지 아연을 포함하는 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method of claim 1, wherein the plating bath comprises 30 to 78% aluminum and the remaining zinc. 제2항에 있어서, 도금욕은 52∼58%알루미늄 및 나머지 아연을 포함하는 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method of claim 2, wherein the plating bath comprises 52 to 58% aluminum and the remaining zinc. 제1항 내지 제3항 중의 어느 한 항에 있어서, 상기 도금욕에는 3.0%(0%는 제외함)이하의 실리콘이 추가로 함유되는 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method for producing a hot-dip aluminum-galvanized stainless steel sheet according to any one of claims 1 to 3, wherein the plating bath further contains 3.0% or less of silicon (excluding 0%). 제4항에 있어서, 도금욕은 55%알루미늄, 43.4% 아연 및 1.6% 실리콘으로 이루어지는 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method of claim 4, wherein the plating bath is made of 55% aluminum, 43.4% zinc and 1.6% silicon. 삭제delete 삭제delete 삭제delete 제1항 내지 제3항 중의 어느 한 항에 있어서, 강판의 전처리는 표면활성화 단계, 전해 청정단계 및 세척단계를 포함하는 전해 청정방법에 의하여 이루어지고; 그리고 상기 표면활성화 단계에서 사용되는 용액은 강판 표면 활성화 용액으로서 2∼5%의 농도를 갖는 60∼80℃의 가성소다 용액인 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The steel sheet according to any one of claims 1 to 3, wherein the pretreatment of the steel sheet is performed by an electrolytic cleaning method including a surface activation step, an electrolytic cleaning step and a washing step; And the solution used in the surface activation step is a method of manufacturing a molten aluminum-zinc plated stainless steel sheet, characterized in that the caustic soda solution of 60 ~ 80 ℃ having a concentration of 2 to 5% as a steel sheet surface activation solution. 제4항에 있어서, 강판의 전처리는 표면활성화 단계, 전해 청정단계 및 세척단계를 포함하는 전해 청정방법에 의하여 이루어지고; 그리고 상기 표면활성화 단계에서 사용되는 용액은 강판 표면 활성화 용액으로서 2∼5%의 농도를 갖는 60∼80℃의 가성소다 용액인 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method of claim 4, wherein the pretreatment of the steel sheet is performed by an electrolytic cleaning method including a surface activation step, an electrolytic cleaning step, and a washing step; And the solution used in the surface activation step is a method of manufacturing a molten aluminum-zinc plated stainless steel sheet, characterized in that the caustic soda solution of 60 ~ 80 ℃ having a concentration of 2 to 5% as a steel sheet surface activation solution. 제5항에 있어서, 강판의 전처리는 표면활성화 단계, 전해 청정단계 및 세척단계를 포함하는 전해 청정방법에 의하여 이루어지고; 그리고 상기 표면활성화 단계에서 사용되는 용액은 강판 표면 활성화 용액으로서 2∼5%의 농도를 갖는 60∼80℃의 가성소다 용액인 것을 특징으로 하는 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법The method according to claim 5, wherein the pretreatment of the steel sheet is performed by an electrolytic cleaning method including a surface activation step, an electrolytic cleaning step and a washing step; And the solution used in the surface activation step is a method of manufacturing a molten aluminum-zinc plated stainless steel sheet, characterized in that the caustic soda solution of 60 ~ 80 ℃ having a concentration of 2 to 5% as a steel sheet surface activation solution. 삭제delete 삭제delete 삭제delete
KR1020080060996A 2008-06-26 2008-06-26 A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel KR100988490B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080060996A KR100988490B1 (en) 2008-06-26 2008-06-26 A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080060996A KR100988490B1 (en) 2008-06-26 2008-06-26 A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel

Publications (2)

Publication Number Publication Date
KR20100001179A KR20100001179A (en) 2010-01-06
KR100988490B1 true KR100988490B1 (en) 2010-10-20

Family

ID=41811504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080060996A KR100988490B1 (en) 2008-06-26 2008-06-26 A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel

Country Status (1)

Country Link
KR (1) KR100988490B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016100648B4 (en) 2015-12-23 2018-04-12 Benteler Automobiltechnik Gmbh A heat treatment furnace and method for heat treating a precoated sheet steel plate and method of making a motor vehicle component
CN114411077A (en) * 2022-01-18 2022-04-29 辽宁石源科技有限公司 High-corrosion-resistance stainless steel plated with zinc aluminum or zinc aluminum magnesium alloy and hot-dip plating process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177446A (en) * 1982-04-09 1983-10-18 Nisshin Steel Co Ltd Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability
JPH03111546A (en) * 1989-09-27 1991-05-13 Nippon Steel Corp Production of highly corrosion resistant aluminized cr-containing steel sheet excellent in adhesive strength of plating
KR20050104667A (en) * 2004-04-29 2005-11-03 주식회사 포스코 Process for hot dip aluminum coated stainless steel through the control of gas partial pressure
JP2007070725A (en) * 2005-09-02 2007-03-22 Korea Bundy Co Ltd Steel pipe superior in corrosion resistance and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177446A (en) * 1982-04-09 1983-10-18 Nisshin Steel Co Ltd Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability
JPH03111546A (en) * 1989-09-27 1991-05-13 Nippon Steel Corp Production of highly corrosion resistant aluminized cr-containing steel sheet excellent in adhesive strength of plating
KR20050104667A (en) * 2004-04-29 2005-11-03 주식회사 포스코 Process for hot dip aluminum coated stainless steel through the control of gas partial pressure
JP2007070725A (en) * 2005-09-02 2007-03-22 Korea Bundy Co Ltd Steel pipe superior in corrosion resistance and manufacturing method therefor

Also Published As

Publication number Publication date
KR20100001179A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP7122045B2 (en) Method for manufacturing corrosion resistant hot stamped parts
KR100988491B1 (en) A Method for Manufacturing a Hot Dip Aluminum Coated Stainless Steel
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
CN101082132A (en) Production technique for belt steel continuous zinc/aluminium/aluminium zinc coating
CN100593581C (en) Method for manufacturing high-strength galvannealed steel sheet
KR100988490B1 (en) A Method for Manufacturing a Hot Dip Aluminum-Zinc Coated Stainless Steel
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
KR102071322B1 (en) A Method for Manufacturing a Hot Dip Aluminum Coated Stainless Steel Sheet
KR20140081617A (en) Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same
JP3514837B2 (en) Hot-dip galvanizing method
JP4280181B2 (en) Steel plate for welding cans with excellent weldability, adhesion and corrosion resistance
JP2006299309A (en) Method for separately manufacturing hot-dip galvanized steel sheet and galvannealed steel sheet in the same bath
CN110760771B (en) Hot-dip galvanized high-strength steel with excellent Fe-Al alloy layer characteristics and manufacturing method thereof
KR101188065B1 (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
KR101647221B1 (en) Method for manufacturing hot-rolled galvanizing steel sheet having excellent surface quality and good adhesion
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
KR100815813B1 (en) Method of improving surface roughness of galvanized steel sheet, and processor for steel sheet
JP3461684B2 (en) Manufacturing method of steel plate for laminated welding can
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH111755A (en) Galvanized steel sheet and its production
CN115058675A (en) Method for improving coating quality of hot-dip high-strength steel
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
CN116568422A (en) Plated steel sheet for hot stamping, method for producing hot stamped steel, and hot stamped steel
KR100627480B1 (en) Method of manufacturing high strength hot dip zinc plated steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131014

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150917

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161109

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170926

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190821

Year of fee payment: 10