KR100987825B1 - 로드형 티타니아 나노입자의 제조방법 - Google Patents

로드형 티타니아 나노입자의 제조방법 Download PDF

Info

Publication number
KR100987825B1
KR100987825B1 KR1020080048502A KR20080048502A KR100987825B1 KR 100987825 B1 KR100987825 B1 KR 100987825B1 KR 1020080048502 A KR1020080048502 A KR 1020080048502A KR 20080048502 A KR20080048502 A KR 20080048502A KR 100987825 B1 KR100987825 B1 KR 100987825B1
Authority
KR
South Korea
Prior art keywords
rod
dihydroxyoxotitanium
solution
titania nanoparticles
type titania
Prior art date
Application number
KR1020080048502A
Other languages
English (en)
Other versions
KR20090122607A (ko
Inventor
석상일
백인찬
장정아
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020080048502A priority Critical patent/KR100987825B1/ko
Priority to US12/471,854 priority patent/US7887780B2/en
Publication of KR20090122607A publication Critical patent/KR20090122607A/ko
Application granted granted Critical
Publication of KR100987825B1 publication Critical patent/KR100987825B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 로드형 티타니아 나노입자의 제조방법에 관한 것으로, 상세하게 본 발명에 따른 제조방법은 (a) 사염화티탄(TiCl4)에 냉각(chilled) 증류수를 천천히 적하시켜 티타닐클로라이드(TiOCl2) 용액을 제조하는 단계; (b) 염기성 용액을 첨가하며 상기 티타닐클로라이드 용액의 pH를 3.5 내지 4로 유지하여 디하이드록시옥소티타늄(dihydroxy-oxotitanium, TiO(OH)2)침전액을 제조하는 단계; (c) 염기성 용액을 첨가하여 상기 디하이드록시옥소티타늄 침전액을 약 염기로 조절한 후, 80 내지 100℃로 가열 및 교반하는 단계; (d) 상기 가열 및 교반된 디하이드록시옥소티타늄 침전액에서 디하이드록시옥소티타늄을 분리 회수한 후, 약염기 수용액을 이용하여 세척(washing)하는 단계; 및 (e) 세척된 디하이드록시옥소티타늄에 증류수 및 디하이드록시옥소티타늄의 Ti4+ 1 몰을 기준으로 20 내지 500 배의 과산화수소(H2O2)를 첨가하여 90 내지 100℃의 온도로 1 내지 7일 동안 열처리하여 평균길이가 100nm 내지 300nm 인 로드형 티타니아 나노입자를 제조하는 단계;를 포함하여 제조되는 특징이 있다.
로드형 티타니아, 아나타제, 염료감응형 태양전지, 양자점 나노입자 감응형 태양전지, 사염화티탄

Description

로드형 티타니아 나노입자의 제조방법{Anatase Type Titanium dioxide Nanorods and Its Preparation Method}
본 발명은 염료(혹은 양자점 나노입자) 감응형 태양전지(Dye or quantum dot-sensitized solar cell)용 로드형 티타니아 나노입자의 제조방법에 관한 것으로, 상세하게 사염화티탄(TiCl4)을 이용하여 티타닐클로라이드 수용액을 제조하고, pH조절, 반응 속도 제어 및 열처리를 통해 입자크기 및 형상이 제어된 디하이드록시옥소티타늄 침전물을 제조한 후, 제조된 디하이드록시옥소티타늄에 과산화수소 및 물을 첨가하고 가열하여 평균길이가 100nm 내지 300nm 인 아나타제 구조의 로드형 티타니아 나노입자를 제조하는 방법에 관한 것이다.
티타니아(TiO2)는 물리적, 화학적으로 안정하며, 굴절율이 2.5 이상으로 천연 재료 중 가장 높은 굴절율을 가진 다이아몬드보다도 더 크다. 굴절율이 크면 광학재료에서 굴절율이 낮은 매질에서 밖으로 나오는 광의 양이 많아지게 되며, 광도파로형에서는 광도파로 코아의 크기나 광학 랜즈의 두께를 줄일 수 있다. 또한 고 굴절 입자를 고분자 매질에 분산 시키면 광을 산란시키는 능력이 우수하므로 백색도가 보다 증가한다. 티타니아는 고굴절 특성으로 인하여 오래 전부터 백색 안료로서 사용된 중요한 공업재료 중의 하나이다. 또 유전율이 큰 특성을 가지고 있어 전자공업의 발전에 따라 압전체, 유전체, 반도체 재료의 원료로서도 중요한 위치를 차지하고 있다. 또한, 최근에는 화학적 내부식성과 광촉매 효과에 의하여 유기오염물 제거용 촉매로서, 자외선 차단성 및 흡수성을 이용한 화장품, 박막, 포장재료, 도료, 윤활제 및 정밀 세라믹스 등에 그 응용이 빠른 속도로 확대되는 추세에 있다. 또한 티타니아를 광전극으로 염료를 태양광 흡수체로 한 염료감응형 태양전지가 효율대비 가격에서 우수성을 가짐에 따라 많은 연구가 진행되고 있다.
여기서 태양전지는 반도체가 빛을 흡수하여 전자와 정공이 발생되는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다. 초기 태양전지의 반도체로 실리콘이나 갈륨 아세나이드(GaAs)와 같은 무기물 반도체의 n-p 다이오드가 주로 사용되었으나, 그 제조 비용이 높아 태양전지의 실질적 활용에 걸림돌이 되어왔다.
이러한 문제점을 해결하고자 값이 저렴한 티타니아를 태양전지의 주요한 구성성분으로 사용한 염료(혹은 양자점 나노입자) 감응형 태양전지에 많은 관심이 집중되고 있다. 통상의 염료감응형 태양전지는 투명기판, 티타니아층, 광감응 염료층, 전해질층, 전극층 및 기판이 적층된 구조를 갖는다. 이때, 티타니아층은 염료가 용이하게 착색되도록 다공질 구조를 갖게 되며, 전자, 정공 분리반응에 의해 생성된 전자의 이동 통로가 된다.
따라서, 고효율의 염료(혹은 양자점 나노입자) 감응형 태양전지를 제조하기 위해서는 염료층이 착생되는 티타니아가 고 비표면적을 가져야 하며, 티타니아 자체의 전자 전달 특성이 우수해야 한다. 티타니아가 고 비표면적을 갖기 위해서는 나노 크기를 갖는 티티나아 입자의 제조기술이 필수적이나, 현재 염료(혹은 양자점 나노입자) 감응형 태양전지의 고효율화를 위해 가장 시급히 해결되어야할 문제는 티타니아의 전자전달 특성을 향상시키는 기술이다. 티타니아의 전자전달 특성은 입자의 형상, 결정구조, 결정입계(grain boundary) 분율, 결정 구조상의 결함, 표면 결함등에 의해 달라지어, 티타니아 나노입자의 제조방법에 따라 큰 영향을 받게 된다.
현재까지 염료(혹은 양자점 나노입자) 감응형 태양전지용 및 기타 용도로 사용하기 위한 티타니아제조에 대하여 많은 방법이 알려져 있으나, 출발물질로, 사염화티탄, 또는 티타닐클로라이드를 사용하여 티타니아를 제조하는 종래의 기술(한국특허2000-0066290, 미국특허 6,440,383, Bsaca 등[J. Am. Ceram.Soc., 79, 2185, 1996], C-C. Wang 등 [Chem. Mater., 11, 3113, 1999)], S. T. Aruna 등[J. Mater. Chem., 10, 2388, 2000], Y. Li 등[J. Mater. Chem., 10, 2388, 2002], J. Sun 등[J. Am. Ceram. Soc., 82, 927, 1999], W. Wang 등[J.Phys. Chem. B. 108, 14789, 2004])에 따른 상압 가수분해 및 열처리에 의한 티타니아의 제조는 구형이나 종횡비가 짧은 쌀알 형태의 티타니아가 제조될 뿐이다. 염료(혹은 양자점 나노입자) 감응형 태양전지에 유리한 긴 장축을 갖는 로드형 티타니아 제조방법은 문헌[A. Chemseddine 등, Eur. J. Inorg. Chem., 1999, 235, 1999; P. Davide CozzoliA 등, J. AM. CHEM. SOC., 125, 14539, 2003]에 일부 보고가 되어 있으나 tetramethylammonium hydroxide 혹은 oleic acid와 같은 계면 활성제를 특정 방향 성장제로 다량 사용하고 있어 로드형 티타니아 제조 후 세척이나 추가적인 열처리가 필요하다.
본 발명의 목적은 계면활성제나 고분자 주형체등을 사용하지 않고, 티타니아의 비표면적이 넓어 많은 양의 염료(혹은 양자점 나노입자)가 쉽게 부착가능하며, 한축 방향으로 긴 로드 형태를 가지게 하여 전자전달도 용이하게 하는 로드형 티타니아 나노입자의 제조방법을 제공하는 것이다.
본 발명에 따른 염료(혹은 양자점 나노입자) 감응형 태양전지용 로드형 티타니아 나노입자의 제조방법은 (a) 사염화티탄(TiCl4)에 냉각(chilled) 증류수를 천천히 적하시켜 티타닐클로라이드(TiOCl2) 용액을 제조하는 단계; (b) 염기성 용액을 첨가하며 상기 티타닐클로라이드 용액의 pH를 3.5 내지 4로 유지하여 디하이드록시옥소티타늄(TiO(OH)2) 침전액을 제조하는 단계; (c) 염기성 용액을 첨가하여 상기 디하이드록시옥소티타늄 침전액을 약염기로 조절한 후, 80 내지 100℃로 가열 및 교반하는 단계; (d) 상기 가열 및 교반된 디하이드록시옥소티타늄 침전액에서 디하이드록시옥소티타늄을 분리 회수한 후, 약염기 수용액을 이용하여 세척(washing)하는 단계; 및 (e) 세척된 디하이드록시옥소티타늄에 증류수 및 디하이드록시옥소티타늄의 Ti4 + 1 몰을 기준으로 20 내지 500배의 과산화수소(H2O2)를 첨가하여 90 내지 100℃의 온도로 1 내지 7일 동안 열처리하여 평균길이가 100nm 내지 300nm 인 로드형 티타니아 나노입자를 제조하는 단계;를 포함하여 제조된다.
본 발명에 따른 제조방법은 티타니아 나노입자를 장축의 평균길이가 100nm 내지 300nm 인 로드 형태를 갖도록 제조하는 방법이며, 형상의 제어를 위해 침전물인 디하이드록시옥소티타늄의 용해하는데 필요한 양보다 매 우 많은 양인 20 내지 500배의 과산화수소(H2O2)를 첨가한 후 특정 조건으로 열처리하여 한축 방향으로 큰 종횡비를 갖게하여 염료 혹은 양자점 나노입자에 의해 발생된 광전류를 효과적으로 전달되도록 하여 염료(혹은 양자점 나노입자) 감응형 태양전지의 고효율화를 이룰 수 있는 로드형 티타니아 나노입자를 제조하는 방법이다.
보다 상세하게는 광전류 전달 특성이 우수하도록, 큰 종횡비를 갖는 로드형 티타니아 나노입자를 제조하기 위해서는 균일 침전법을 통한 매우 미세한 침전 입자를 제조하는 것이 중요하다. 균일하며, 미세한 디하이드록시옥소티타늄 입자(침전 입자)를 제조하기 위해 (a) 단계와 같이 사염화티탄 원액을 이용하여 티타닐클로라이드 용액을 제조하여 가수분해반응에 대한 활성도를 낮추어 주고, (b) 단계와 같이 제조된 티타닐클로라이드 용액을 이용하여 제어된 형태로 디하이드록시옥소티 타늄의 침전물을 제조한 후, (c) 단계와 같이 슬러리형 침전물을 약 염기화하여 80℃ 내지 100℃에서 1차로 열처리한다. 상기 (c) 단계는 본 발명의 제조방법에 따른 로드형 티타니아 나노입자에 필요한 무정형 티타니아 수화물을 제조하기 위한 필수 단계중의 하나로 보다 큰 종횡비(aspect ratio)를 가지게 하기 위함이다. (c)단계가 수행되지 않는 경우 직경에 대한 길이비가 줄어들게 된다.
이후, (d)의 이온교환수에 의한 세척을 통해 분리 회수된 디하이드록시옥소티타늄 침전물에 존재하는 반응 후 잔여 이온(Cl- 이온)을 제거하게 된다. (e) 단계에서는 세척된 디하이드록시옥소티타늄에 증류수 및 대량의 과산화수소가 첨가되게 되는데, 이때, 디하이드록시옥소티타늄의 Ti4 + 1 몰을 기준으로 20 내지 500배의 과산화수소가 첨가됨으로써, 직경에 대한 길이 즉 종횡비가 10 이상인 로드형 티타니아 나노입자가 제조되게 된다. 이때, 20 배 미만의 과산화수소가 첨가되는 경우, 직경에 대한 길이 즉 종횡비가 2 이하인 구형이나 쌀알형 티타니아 나노입자가 제조되며, 500배를 초과한 과산화수소가 첨가된다 하더라도 더 이상의 종횡비 증가가 일어나지 않게 된다.
이후, 90℃ 내지 100℃의 온도로 1 내지 7일 동안 열처리하여 평균길이가 100 내지 300nm이며, 우수한 광전류 전달특성을 갖는 순수 아나타제 구조의 로드형 티타니아 나노입자가 제조되게 된다.
상세하게 상기 (a)단계는 사염화티탄 원액을 0℃ 이하로 유지하며, 사염화티탄 원액에 10℃ 이하의 이온교환수를 한방울씩 천천히 적하시키고 교반하여 노란색 의 투명한 티타닐클로라이드 용액을 제조한다.
이때, (a) 단계의 상기 티타닐클로라이드 용액은 상온에서 1년 이상 안정한 상태가 유지될 수 있도록 최종적으로 2 내지 4 몰 농도의 Ti4+ 이온 몰농도를 갖는 용액으로 제조되어, 보관용액(stock solution)으로 사용될 수 있다. 보관용액으로 제조된 경우, (a) 단계 이후, 이온교환수수를 첨가하여 티타닐클로라이드 용액의 Ti4+이온이 0.3 내지 0.8 몰 농도를 갖도록 조절하는 단계가 더 수행하는 것이 바람직하다. 티타닐클로라이드 용액을 상기와 같이 0.3 내지 0.8 몰 농도로 희석하는 것은 염기성 용액의 첨가에 생성된 디하이드록시옥소티타늄의 농도가 교반하기에 충분할 정도의 농도로 하기 위함이다.
상세하게 상기 (b) 단계는 제조된 티타닐클로라이드 용액을 비어있는 반응 용기에 천천히 적하시킴과 동시에 염기성 용액을 반응 용기에 첨가하여, 반응 용기 내부 적하된 티타닐클로라이드 용액의 pH를 3.5 내지 4로 유지하여 디하이드록시옥소티타늄(TiO(OH)2) 침전액을 제조한다. 상기 티타닐클로라이드 용액이 상기 반응 용기 내에 적하되는 속도는 0.5 내지 2 액적/초(drop/sec)인 것이 바람직하며, pH 제어를 위해 첨가되는 염기성 용액은 암모니아액(NH3OH)인 것이 바람직하다. 이때, 침전물의 안정화를 위해 반응이 완료된 후에도 약 10분간 더 교반해 줄 필요가 있으며, 상술한 조건을 통하여 균일한 크기를 가지며 제어된 형태를 갖는 디하이드록시옥소티타늄을 제조할 수 있다.
상세하게 (c) 단계는 (b) 단계에서 제조된 디하이드록시옥소티타늄 침전액에 염기성 용액을 첨가하여 침전액을 약염기 상태로 만들어 준 후, 80 내지 100℃로 2 내지 4시간 동안 가열 및 교반하여 수행된다. (c) 단계의 상기 약염기 상태는 pH 8 내지 10인 것이 바람직하며, pH의 조절을 위해 첨가되는 염기성 용액은 암모니아액(NH3OH)인 것이 바람직하다. 상기 약염기 상태에서의 디하이드록시옥소티타늄을 80 내지 100℃로 열처리함으로써 디하이드록시옥소티타늄의 추가적인 가수분해 반응이 일어나게 하여 향후 과산화수소수에 용해된 상태로 열처리하는 과정 중에 로드형 티타니아 나노입자이면서 아나타제 구조를 가지게 하는 무정형 티타니아로의 핵 형성이 일어나도록 한다.
상세하게 (d) 단계는 통상의 여과장치 또는 원심분리기 등을 이용하여 침전액으로부터 분리 회수된 디하이드록시옥소티타늄(케익 상태의 디하이드록시옥소티타늄, 분리 회수되어 건조된 디하이드록시옥소티타늄을 포함함)을 이온교환수에 다시 분산시키고 암모니아수를 한 방울씩 적하하여 용액의 pH가 약 염기성으로 되도록 하여 세척과 여과가 용이하게 하도록 하여 디하이드록시옥소티타늄을 재분리 회수하여 수행된다. 상기 (d) 단계의 세척은 반응 후 잔류하는 불순물 이온의 제거를 위해 2 내지 4회 반복되는 것이 바람직하며, 상기 약염기 수용액은 pH 8 내지 10인 것이 바람직하다.
상세하게 상기 (e) 단계는 상기 이온교환수로 세척된 디하이드록시옥소티타늄의 Ti4 + 1 몰을 기준으로 100 내지 400배의 증류수 및 20 내지 500배의 과산화수 소를 첨가하여 주황색의 현탁액이 제조될 때까지 교반한 후, 90℃ 내지 100℃의 온도로 1 내지 7일 동안 열처리하는 것이 바람직하다. 보다 상세하게는 상기 세척된 디하이드록시옥소티타늄의 Ti4 + 1 몰을 기준으로 100 내지 400배의 증류수를 첨가하여 약 10분간 교반한 후, 20 내지 500배의 과산화수소를 첨가하여 초기 짙은 노랑색의 현탁액이 투명도가 증가하며 주황색으로 변할 때까지 약 20 내지 40분 동안 재교반하고, 이후, 90 내지 100℃의 온도로 1 내지 7일 동안 열처리하는 것이 바람직하다.
상기 (e) 단계의 열처리시 열처리 온도가 90℃ 미만이면 보다 긴 열처리 시간이 필요하며, 온도가 100℃ 초과하는 것은 물의 비등 때문에 어렵다. 상기의 열처리 온도로 1일 이상 반응 시킨 후에 로드형의 티타니아 입자가 제조되기 시작하며, 3일 이내로 반응시키는 경우 액 내에 균일하게 분산된 형태로 로드형 티타니아 입자가 제조되며, 3일 이상 반응시키는 경우, 제조된 로드형 티타니아 입자의 침전이 발생하게 된다. 이때, 7일 이상 반응시켜도, 제조되는 티타니아 입자의 크기 또는 형태의 변화는 극히 미미하다. 따라서, 상기 (e) 단계의 열처리 시간은 1 내지 7일이 바람직하며, 1일 내지 3일이 더욱 바람직하다.
본 발명의 제조방법에 의해 제조된 로드형 티타니아 나노입자는 평균 길이가 100 내지 300nm 인 특징이 있으며, 그 종횡비(aspect ratio)가 10 내지 30인 특징이 있으며, 순수한 아나타제 구조를 갖는 특징이 있다. 또한, 제조된 로드형 티타니아 나노입자는 구형의 입자가 연결되어 이루어진 것보다 입계에 의한 결함이 적 어 염료 혹은 양자점 나노입자에 의해 생성된 광전류의 전달 특성이 우수할 것으로 예상된다.
본 발명의 제조방법은 계면활성제, 주형체등을 첨가하지 않고, 순수한 사염화티탄을 이용하여 한축의 길이가 긴 로드형태의 아나타제 구조의 티타니아 초미립 나노입자를 제조할 수 있으며, 제조된 로드형 티타니아 나노입자는 구형의 입자가 연결된 광전극 보다 입계에 의한 결함이 적어 염료 혹은 양자점 나노입자에 의해 생성된 광전류를 효과적으로 전달시키는 장점이 있다.
(실시예 1)
티타닐클로라이드(TiOCl 2 )용액의 제조
TiCl4 원액(Aldrich Chemical Co., Inc., Milwaukee, WI)은 0℃ 이하의 상태로 유지하였으며, 5℃의 냉각된 이온교환수를 Ti4+ 이온이 3 몰 농도가 되도록 방울방울 천천히 교반을 해주면서 첨가하였다. 반응이 종결된 후, 노란색의 투명하고 상온에서 1년 이상 안정한 상태를 유지하는 TiOCl2 용액을 얻을 수 있었으며, 이를 보관용액(stock solution)으로 사용하여 최종 200 mL의 Ti4+ 이온 0.5 몰 농도가 되 도록 추가적으로 물을 첨가하여 농도를 조절하였다.
디하이드록시옥소티타늄(TiO(OH) 2 )침전액의 제조
Ti4+ 이온 0.5 몰 농도의 투명한 용액은 peristaltic pump (WON Cop., BS-60101, Korea)를 이용하여 약 1 방울/초의 속도로 비어있는 반응용기에 첨가하였으며, 침전물을 얻기 위해 사용된 암모니아액(Samchun Pure Chemical Co., Ltd. Korea)은 반응용기 내 액의 pH가 3.5 ~ 4.0 범위가 되도록 원액을 첨가하였다. 상기의 반응이 종결되면, 침전물의 안정화를 위해 약 10분간 더 교반을 수행하였다.
디하이드록시옥소티타늄(TiO(OH) 2 ) 침전액의 pH조절 및 열처리
제조된 디하이드록시옥소티타늄 침전액에 암모니아액를 첨가하여 pH 9.0가 되도록 조절한 후, 2000 mL의 반응용기에 옮겨 90℃에서 3시간 교반을 수반하여 열처리를 행하였다.
디하이드록시옥소티타늄(TiO(OH) 2 ) 분리회수 및 세척
열처리가 끝난 후, 디하이드록시옥소티타늄(TiO(OH)2) 침전액의 여과를 통하여 침전물인 디하이드록시옥소티타늄을 분리 회수하였다. 회수된 디하이드록시옥소티타늄은 염화 암모니움의 형태로 남아있는 용액상의 Cl- 이온을 제거해 주기 위해 다시 200 mL의 증류수를 첨가하고 암모니아 수를 이용하여 pH = 9.0으로 맞추어 교반한 후, 여과하는 일련의 과정을 세 번 반복 하였다.
로드형 티타니아 나노입자의 제조
이온교환수를 이용한 세척 및 여과를 통하여 얻어진 침전물 5.28 g을 500 mL 둥근 플라스크에 자석교반 막대기(magnetic stirrer)를 넣고 증류수 100 mL를 첨가하고 약 10분을 교반 해준 후, 여기에 다시 90 mL의 H2O2 용액(Junsei Chemical Co., Ltd., Japan)을 첨가하였다. 초기 H2O2 용액을 첨가하면 짙은 노란색의 현탁액으로 변하며, 시간이 약 30분 정도 경과하면 투명도의 증가와 함께 주황색으로 변하였다. H2O2 용액의 첨가에 의한 발열반응을 안정화시키기 위하여 3시간 교반 해준 후, 반응온도 100℃로 맞추어진 Oil bath속에 담구고, 콘덴서를 연결하고 회전속도 1000 rpm 으로 맞추었다. 반응시간은 최초 100℃에서 1일 경과 후부터 로드 형태의 모양이 보이기 시작하였으며, 3일이 경과하자 입자가 서서히 가라앉음을 확인 할 수 있었으며, 7일 까지 반응시간을 증가시켰음에도 불구하고 더 이상 입자의 모양이나 크기의 변화가 없는 것을 알 수 있었다.
도 1은 입자가 가라앉지 않는 최대반응시간인 3일 반응에 의해 제조된 로드형 티타니아 나노입자의 투과 전자현미경(TEM,Tecnai, GII ,FEI operating at 200 kV) 사진이며, 도 2는 도 1과 동일한 3일 반응에 의해 제조된 티타니아 나노입자의 X-선 회절(Rigaku D/Max-2200V with CuKα radiation) 분석 결과이다.
도 1에서 알 수 있듯이, 장축의 길이가 매우 긴 로드형 티타니아 나노입자가 생성됨을 알 수 있으며, 그 종횡비(aspect ratio)가 약 10 이상인 로드형 티타니아가 제조됨을 알 수 있다. 또한 TEM의 전자회절패턴 및 도 2의 X선 회절결과를 통해 아나타제 구조의 로드형 티타니아가 제조됨을 알 수 있다.
이상과 같이 본 발명에서는 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
도 1은 본 발명에 따른 실시예 1에서 제조된 로드형 티타니아 나노입자의 투과전자현미경(TEM) 이미지이며,
도 2는 본 발명에 따른 실시예 1에서 제조된 로드형 티타니아 나노입자의 X-선 회절 결과를 도시한 것이다.

Claims (8)

  1. (a) 사염화티탄(TiCl4)에 냉각(chilled) 증류수를 천천히 적하시켜 티타닐클로라이드(TiOCl2) 용액을 제조하는 단계;
    (b) 염기성 용액을 첨가하며 상기 티타닐클로라이드 용액의 pH를 3.5 내지 4로 유지하여 디하이드록시옥소티타늄(TiO(OH)2) 침전액을 제조하는 단계;
    (c) 염기성 용액을 첨가하여 상기 디하이드록시옥소티타늄 침전액을 약염기로 조절한 후, 80 내지 100℃로 가열 및 교반하는 단계;
    (d) 상기 가열 및 교반된 디하이드록시옥소티타늄 침전액에서 디하이드록시옥소티타늄을 분리 회수한 후, 약염기 수용액을 이용하여 세척(washing)하는 단계; 및
    (e) 세척된 디하이드록시옥소티타늄에 증류수 및 디하이드록시옥소티타늄의 Ti4+ 1 몰을 기준으로 20 내지 500배의 과산화수소(H2O2)를 첨가하여 90℃ 내지 100℃의 온도로 1 내지 7일 동안 열처리하여 평균길이가 100nm 내지 300nm 인 로드형 티타니아 나노입자를 제조하는 단계;
    를 포함하여 제조되는 염료 또는 양자점 나노입자 감응형 태양전지용 로드형 티타니아 나노입자의 제조방법.
  2. 제 1항에 있어서,
    (a) 단계의 상기 티타닐클로라이드 용액은 Ti4+이온이 2 내지 3 몰 농도이며, (a) 단계 이후, 증류수를 첨가하여 티타닐클로라이드 용액의 Ti4+이온이 0.3 내지 0.8 몰 농도를 갖도록 조절하는 단계가 더 수행하는 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  3. 제 2항에 있어서,
    (c) 단계에서 상기 약염기는 pH 8 내지 10인 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  4. 제 1항에 있어서,
    (d) 단계의 상기 약염기 수용액은 pH 8 내지 10인 암모니아(NH4OH) 수용액이며, 상기 세척은 2~4회 반복되는 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  5. 제 1항에 있어서,
    (b) 단계 및 (c) 단계의 상기 염기성 용액은 암모니아액(NH4OH)인 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  6. 제 1항 내지 제 4항에서 선택된 어느 한 항에 있어서,
    (e) 단계는 상기 세척된 디하이드록시옥소티타늄의 Ti4 + 1 몰을 기준으로 100 내지 400배의 증류수를 첨가하여 교반한 후, 20 내지 500배의 과산화수소를 첨가하여 재교반하고, 이후, 90℃ 내지 100℃의 온도로 1 내지 7일 동안 열처리하는 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  7. 제 1항 내지 제 4항에서 선택된 어느 한 항에 있어서,
    상기 (e) 단계의 로드형 티타니아 나노입자의 종횡비(aspect ratio)는 10 내지 30 인 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
  8. 제 1항 내지 제 4항에서 선택된 어느 한 항에 있어서,
    상기 (e) 단계의 로드형 티타니아 나노입자는 아나타제 구조인 것을 특징으로 하는 로드형 티타니아 나노입자의 제조방법.
KR1020080048502A 2008-05-26 2008-05-26 로드형 티타니아 나노입자의 제조방법 KR100987825B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080048502A KR100987825B1 (ko) 2008-05-26 2008-05-26 로드형 티타니아 나노입자의 제조방법
US12/471,854 US7887780B2 (en) 2008-05-26 2009-05-26 Anatase type TiO2 nanorods and their preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080048502A KR100987825B1 (ko) 2008-05-26 2008-05-26 로드형 티타니아 나노입자의 제조방법

Publications (2)

Publication Number Publication Date
KR20090122607A KR20090122607A (ko) 2009-12-01
KR100987825B1 true KR100987825B1 (ko) 2010-10-18

Family

ID=41342276

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080048502A KR100987825B1 (ko) 2008-05-26 2008-05-26 로드형 티타니아 나노입자의 제조방법

Country Status (2)

Country Link
US (1) US7887780B2 (ko)
KR (1) KR100987825B1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126750B (zh) * 2010-12-31 2013-08-28 东莞市明天纳米科技有限公司 锐钛矿型纳米二氧化钛的制备方法
CN104168996B (zh) 2011-11-24 2017-03-15 印度理工学院 用于水纯化的多层有机模板化‑勃姆石‑纳米结构
CN104520706B (zh) * 2012-04-17 2017-03-01 印度理工学院 使用量子簇检测水流量
KR101436540B1 (ko) * 2012-06-22 2014-09-01 한국콜마주식회사 나노로드 형상의 티타니아를 포함하는 자외선 차단용 화장료 조성물
CN103771504B (zh) * 2012-10-24 2015-07-22 中国石油化工股份有限公司 一种二氧化钛光催化剂的合成方法
US20140363367A1 (en) * 2013-06-05 2014-12-11 E I Du Pont De Nemours And Company Process for making titanium compounds
CN104843786A (zh) * 2015-06-01 2015-08-19 山东大学 基于表面定向生长纳米棒的分等级二氧化钛微球及其制备方法
CN105600822A (zh) * 2016-03-31 2016-05-25 天津城建大学 荔枝状分级结构{001}面暴露TiO2粉体制备方法
CN107552035A (zh) * 2017-09-07 2018-01-09 张家港市山牧新材料技术开发有限公司 一种氧化锌‑碳纳米管复合材料的制备方法
US11253842B1 (en) 2021-04-02 2022-02-22 TiCoat, Inc. Titanium dioxide containing peroxo titanium complex and methods of manufacturing and application of the same
CN116532107A (zh) * 2023-01-17 2023-08-04 济南大学 一种TiO2-Ag复合纳米材料抗菌溶液的制备方法及所得产品和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066290A (ko) * 1999-04-15 2000-11-15 장인순 사염화티타늄을 이용하여 미세하고 균일한 크기의 루틸상 TiO₂구형 분말을 제조하는 방법
KR20020004131A (ko) * 2000-07-03 2002-01-16 이종국 나노튜브형 티타니아 분말 제조법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027775A (en) * 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
US7431903B2 (en) * 2001-10-30 2008-10-07 Catalysts & Chemicals Industries Co., Ltd. Tubular titanium oxide particles and process for preparing same
US7645439B2 (en) * 2003-10-10 2010-01-12 Instituto Mexicano Del Petroleo Nanostructured titanium oxide material and its synthesis procedure
JP4585212B2 (ja) * 2004-03-19 2010-11-24 Jx日鉱日石エネルギー株式会社 ナノチューブ形状を有するチタニア及びその製造方法
KR101097219B1 (ko) * 2007-10-01 2011-12-21 한국전자통신연구원 나노 복합체의 제조방법 및 이를 이용한 염료감응 태양전지의 제조방법
US20100139747A1 (en) * 2008-08-28 2010-06-10 The Penn State Research Foundation Single-crystal nanowires and liquid junction solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066290A (ko) * 1999-04-15 2000-11-15 장인순 사염화티타늄을 이용하여 미세하고 균일한 크기의 루틸상 TiO₂구형 분말을 제조하는 방법
KR20020004131A (ko) * 2000-07-03 2002-01-16 이종국 나노튜브형 티타니아 분말 제조법

Also Published As

Publication number Publication date
US7887780B2 (en) 2011-02-15
KR20090122607A (ko) 2009-12-01
US20090291044A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
KR100987825B1 (ko) 로드형 티타니아 나노입자의 제조방법
Gupta et al. Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities
Sasaki et al. Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties
JP4676877B2 (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法
JP5607167B2 (ja) 微粉状態の固体材料、該材料の製造方法及び太陽電池における該材料の使用
US20120152336A1 (en) Aggregate particles of titanium dioxide for solar cells
Gültekin Effect of Au nanoparticles doping on the properties of TiO2 thin films
US20090117384A1 (en) Titania Nanocavities and Method of Making
Soni et al. The effect of Ni2+ ions on energy band gap of TiO2 nanoparticles for solar cell applications
Venci et al. Investigation on the formation of self-assembled CdSe dendrite structures and their photocatalytic efficiency
Ismael et al. Concise Review of Nanomaterial Synthesis and Applications in Metal Sulphides
Ahmad et al. Copper-doped nickle-oxide nanoparticles for photocatalytic degradation of erichrome black-T and methylene blue and its solar cell applications
JP2020138871A (ja) 二酸化バナジウム粒子の製造方法
Choubey et al. Microwave assisted synthesis of CdS nanoparticles for structural and optical characterization
Khokhra et al. Effect of synthesis medium on aggregation tendencies of ZnO nanosheets and their superior photocatalytic performance
Marimuthu et al. A facile electrochemical–hydrothermal synthesis and characterization of zinc oxide hierarchical structure for dye sensitized solar cell applications
Duo et al. Fabrication, mechanism, formic acid− tuned degradation and photocatalytic hydrogen production of novel modified ZnO spheres by L− TA− DMF assisted hydrothermal method
Tang et al. Preparation and surface modification of uniform ZnO nanorods via a one-step process
Santhosh Kumar et al. Synthesis, structural and morphological studies of CdS nanopowder
Sajan et al. Template-free processing of Ag-anchored ZnO polyscale sheets and their application in the photocatalytic degradation of organics present in pharmaceutical waste
CN105562037B (zh) 一种铜锡硫镂空结构微米球及其制备方法与应用
Soosaimanickam et al. Role of Temperature and Growth Period in the Synthesis of Hydrothermally Grown TiO2 Nanorods
JP2011116646A (ja) 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子分散液
Abbas et al. Effect of using different preparation methods on the properties of CdS nanoparticles
KR101028506B1 (ko) 방사선 조사를 이용한 이산화티타늄의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131007

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161006

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191017

Year of fee payment: 10