KR100975358B1 - Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this - Google Patents
Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this Download PDFInfo
- Publication number
- KR100975358B1 KR100975358B1 KR1020100008196A KR20100008196A KR100975358B1 KR 100975358 B1 KR100975358 B1 KR 100975358B1 KR 1020100008196 A KR1020100008196 A KR 1020100008196A KR 20100008196 A KR20100008196 A KR 20100008196A KR 100975358 B1 KR100975358 B1 KR 100975358B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- cement
- parts
- marine structure
- carbon dioxide
- Prior art date
Links
- 239000004568 cement Substances 0.000 title claims abstract description 63
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 20
- 239000001569 carbon dioxide Substances 0.000 title claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 10
- 239000002131 composite material Substances 0.000 title 2
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000002893 slag Substances 0.000 claims abstract description 30
- 239000010881 fly ash Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229940037003 alum Drugs 0.000 claims abstract description 3
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 3
- 239000010802 sludge Substances 0.000 claims abstract description 3
- 239000002699 waste material Substances 0.000 claims abstract description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 16
- 239000003063 flame retardant Substances 0.000 claims description 16
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 10
- 239000010457 zeolite Substances 0.000 claims description 10
- 229910021536 Zeolite Inorganic materials 0.000 claims description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000049 pigment Substances 0.000 claims description 6
- 238000009628 steelmaking Methods 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 abstract description 11
- 241000251468 Actinopterygii Species 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 1
- 239000011505 plaster Substances 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 239000004567 concrete Substances 0.000 description 34
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 22
- 230000035515 penetration Effects 0.000 description 16
- 238000006703 hydration reaction Methods 0.000 description 12
- 230000036571 hydration Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 229910052602 gypsum Inorganic materials 0.000 description 9
- 239000010440 gypsum Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 239000013535 sea water Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910052925 anhydrite Inorganic materials 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000011150 reinforced concrete Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- -1 Cl- Chemical class 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001653 ettringite Inorganic materials 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000004131 Bayer process Methods 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011388 polymer cement concrete Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/70—Artificial fishing banks or reefs
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/046—Artificial reefs
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/06—Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ocean & Marine Engineering (AREA)
- Environmental Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Zoology (AREA)
- Marine Sciences & Fisheries (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Artificial Fish Reefs (AREA)
Abstract
Description
본 발명은 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물에 관한 것으로서, 더욱 상세하게는 해양에 설치되는 인공어초와 소파블록의 골격인 철근부식을 막고 해조류의 뿌리의 활착이 빨리 이루어지고 양호한 서식환경을 조성할 수 있는 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 및 이 조성물에 의해 제조된 인공어초와 소파블록을 포함하는 해양 구조체에 관한 것이다.The present invention relates to an marine structure composition comprising environmentally friendly artificial reefs and sofa blocks using flame retardant cement for carbon dioxide reduction, and more particularly, to prevent reinforcing corrosion, which is a skeleton of artificial reefs and sofa blocks installed in the ocean, Marine structure composition including eco-friendly artificial reef and sofa block using flame retardant cement for carbon dioxide reduction that can make roots stick quickly and create a good habitat environment, and artificial reef and sofa block manufactured by the composition It relates to an offshore structure.
수중생태계 및 해안가를 보호하기 위하여 수중 및 해안가에는 인공어초와 소파블록 등이 설치된다.In order to protect the aquatic ecosystem and the coast, artificial reefs and sofa blocks are installed in the underwater and the coast.
인공어초는 수중에 인공적으로 수산생물을 위해 산란장이나 서식장을 조성하기 위하여 시설하는 구조체로서, 일반적으로 철근콘크리트를 내부에 빈 공간을 형성토록 다양한 형상으로 양생하여 제작되고 있다.Artificial reefs are structures that are constructed to create a spawning ground or habitat for aquatic organisms in the water, and are generally manufactured by curing reinforced concrete in various shapes to form empty spaces inside.
소파블록은 제방이나 방파제(이하 '제방"이라 한다)에는 파도가 밀려오는 외항쪽에 설치되는 것으로, 일명 테트라 포드(tetrapod)라 불리기도 한다.The sofa block is installed on the bank of a wave or breakwater (hereinafter referred to as 'dike') and is installed on the outer port where waves are pushed. It is also called a tetrapod.
소파블록은 파도에 의한 유실 및 이동을 방지하기 위하여 콘크리트 등으로 제작되고 있다.The sofa block is made of concrete to prevent loss and movement caused by waves.
그러나, 인공어초 및 소파블록과 같은 철근콘크리트 구조체는 주기적, 장기적으로 해양환경에 노출되어 해수 중에 존재하는 염화물 이온(Cl-)이 콘크리트 속으로 직접 침투되며, 그 침투량이 허용값(철근부식 임계염화물량, 약 1.2kg/m3)을 초과하면 전기화학적 작용에 의해 철근이 부식되고 그에 따라 피복 콘크리트의 균열을 유발하는 염해를 일으키게 된다. 통상 건전한 철근 콘크리트 구조체에 배근되어 있는 보강 철근은 콘크리트에 포함된 pH 12.5의 Ca(OH)2에 의해 표면피막(1×10-6 mm 두께)이 형성되어 안정 상태를 유지하지만, 콘크리트의 내부로 해수 성분에 존재하는 Cl-, F-, S2- SO42- 등의 음이온이 침투하거나 고온 상태가 지속되면 부분적으로 강재 표면의 부동태 피막이 파괴되어 부식이 시작된다. 이중 특히 염화물 이온(Cl-)이 강재의 부식에 가장 유해한 성분으로 알려져 있다.However, reinforced concrete structures such as artificial reefs and sofa blocks are exposed to the marine environment periodically and over a long period of time, so that chloride ions (Cl-) present in seawater directly penetrate into the concrete, and the permeation amount is allowed (rebar corrosion critical chloride). If the amount exceeds about 1.2 kg / m3), the reinforcing steel will be corroded by electrochemical action, which will cause salt causing cracking of the coated concrete. In general, reinforcing bars reinforcement in sound reinforced concrete structures have a surface coating (1 × 10-6 mm thickness) formed by Ca (OH) 2 of pH 12.5 contained in the concrete to maintain a stable state. When anions such as Cl-, F- and S2-SO42- present in seawater penetrate or persist at high temperature, the passivation film on the steel surface is partially destroyed and corrosion starts. Of these, chloride ions (Cl-) are known to be the most harmful to corrosion of steel.
따라서 해양콘크리트 구조체의 염해를 방지하기 위하여 콘크리트 표준 시방서에서는 해양 콘크리트용 시멘트 재료를 KS L5201에 규정된 고로슬래그 시멘트, 플라이애쉬 시멘트와 같은 혼합시멘트, 또는 중용열 포틀랜드 시멘트의 사용을 추천하고 있다. 또한, 해수의 영향을 심하게 받는 위치에 건설되는 해양 콘크리트의 경우 시멘트계 재료만으로 소요의 품질을 확보할 수 없으므로 시멘트와 폴리머를 혼합한 폴리머시멘트 콘크리트와 폴리머만을 사용하는 수지 콘크리트, 또는 염화물Therefore, in order to prevent the damage of marine concrete structures, the concrete standard specification recommends the use of mixed cements such as blast furnace slag cement, fly ash cement, or medium heat portland cement as specified in KS L5201. In addition, in the case of marine concrete that is constructed in a location severely affected by seawater, the quality of requirements cannot be secured only with cement-based materials. Therefore, polymer cement concrete and resin concrete using only cement and polymer, or chlorides are used.
이온의 주요한 침투경로가 되는 콘크리트의 공극을 합성수지로 함침시킨 폴리머함침 콘크리트를 사용하도록 제시되어 있다.It is proposed to use polymer-impregnated concrete impregnated with synthetic resin with pores of concrete, which is the main penetration path of ions.
그러나 이러한 재료 중 일부는 콘크리트 제조, 경제성 및 시공성의 문제로 건설현장에서는 현실적으로 사용할 수 없으며, 실제로 해양구조체에 적용한 사례는 거의 없는 실정이다. 또한 고로슬래그 시멘트나 플라이애쉬 시멘트를 해양 콘크리트에 사용하는 경우 고로슬래그나 플라이애쉬가 시멘트보다 초기 반응성이 떨어지기 때문에 시멘트가 충분히 수화하기 전까지는 오히려 시멘트만을 사용하는 콘크리트보다 염화물 이온의 침투저항성이 떨어지는 것으로 알려져 있다. 그러므로 해양 환경에 노출되는 시기에 무관하게 해양 콘크리트에 차염성을 부여할 수 있는 실제적이고 보편적으로 사용할 수 있는 해양구조체용 시멘트 조성물이 요망되고 있다However, some of these materials cannot be practically used in the construction site due to the problems of concrete manufacturing, economics and constructability, and there are few cases of actually applying them to offshore structures. In addition, when blast furnace slag cement or fly ash cement is used in marine concrete, blast furnace slag or fly ash is less responsive than cement, so the penetration resistance of chloride ions is lower than that of cement-only concrete until cement is fully hydrated. It is known. Therefore, there is a need for a practical and universally available cement composition for marine structures that can provide flame retardancy to marine concrete regardless of when it is exposed to the marine environment.
이에 본 출원인은 해양 환경과 같은 염해성 환경에서 염화물 이온의 침투에 대한 높은 저항성을 갖는 차염성 시멘트 조성물(특허 제0654095호)을 특허받은 바 있다.The present applicant has patented a flame retardant cement composition (Patent No. 0654095) having high resistance to the penetration of chloride ions in a salty environment such as a marine environment.
종래 차염성 시멘트 조성물에 의하면, 우수한 차염 특성을 나타내므로 기존의 시멘트 조성에 비해 해양 구조체에 적합하다. 특히, 일반적으로 해양 구조체에 우수하다고 알려져 있는 혼합계 시멘트와 비교할 때, 초기 재령에서의 탁월한 차염 특성(염화물이온 침투저항성 및 확산 특성)을 나타내며, 장기재령에서의 차염 특성 또한 우수하다.According to the conventional flame retardant cement composition, because it shows excellent flame retardant properties, it is suitable for marine structures compared to the conventional cement composition. In particular, when compared with mixed cements, which are generally known to be excellent for marine structures, they exhibit excellent flame resistance characteristics (chloride ion penetration resistance and diffusion characteristics) at early age, and also excellent flame resistance characteristics at long age.
또한, 해양구조체의 경우 균열발생시 염화물이온의 직접적인 침투에 의해 열화가 급속히 진행되기 때문에 균열 저감이 무엇보다도 중요한데 종래 시멘트 조성물은 통상의 혼합계 시멘트 대비 콘크리트의 수화조직이 치밀하기 때문에 콘크리트의 건조수축 균열저감에도 우수한 효과를 기대할 수 있다.In addition, in the case of marine structures, crack reduction is most important because deterioration proceeds rapidly due to the direct penetration of chloride ions during the occurrence of cracks.In the conventional cement composition, since the hydration structure of the concrete is dense as compared to conventional mixed cements, dry shrinkage cracking of concrete An excellent effect can also be expected in reduction.
그러나, 종래 차염성 시멘트 조성물에 따르면, 차염의 효과는 기대할 수 있지만, 해조류의 서식환경을 조성하지는 못하여 해조류의 활착이 이루어지지 않는 문제점이 있다.However, according to the conventional flame retardant cement composition, the effect of flame retardation can be expected, but there is a problem that the algae is not slid because it does not create a habitat environment of algae.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 인공어초와 소파블록 등의 해양 구조체를 염해로부터 보호함과 아울러, 부식을 막고 수중 식물의 뿌리가 빨리 활착되고 활착을 오랫동안 유지하도록 한 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 및 이 조성물에 의해 제조된 인공어초와 소파블록을 포함하는 해양 구조체를 제공하는데 그 목적이 있다.The present invention is to solve the above problems, and to protect the marine structures such as artificial reefs and sofa blocks from salt damage, and to prevent corrosion and to reduce the carbon dioxide so that the roots of the underwater plants quickly stick and maintain the sticking for a long time. It is an object of the present invention to provide a marine structure composition comprising environmentally friendly artificial reefs and sofa blocks using flame retardant cement and marine structures including artificial reefs and sofa blocks produced by the composition.
전술한 바와 같은 목적을 달성하기 위한 본 발명에 의한 인공어초와 소파블록을 포함하는 해양구조체 조성물은, 보통 시멘트 30~50중량%, 고로슬래그 30~50중량%, 플라이애쉬 10~30중량%, 무수석고 4~20중량%, 제강슬래그 또는 레드머드 중 하나 이상 5~10중량%가 혼합되어 이루어지는 것을 특징으로 한다.Marine structure composition comprising an artificial reef and a sofa block according to the present invention for achieving the above object, usually 30 to 50% by weight cement, blast furnace slag 30 to 50% by weight, fly ash 10-30% by weight, Anhydrous gypsum 4-20% by weight, at least one of steelmaking slag or red mud is characterized in that 5 to 10% by weight is mixed.
본 발명에 따른 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 및 이 조성물에 의해 제조된 인공어초와 소파블록을 포함하는 해양 구조체에 의하면, 염분의 침투를 효과적으로 차단하여 염분에 의한 철근의 부식을 극소화함으로써 내구성을 향상할 수 있고, 여기에 철성분 및 인성분을 통해 유독성 알칼리성 화합물의 용출을 막고 영양분을 공급하여 해조류의 뿌리가 빠른 시간 내에 활착되도록 함으로써 어초로서의 효용성과 신뢰성을 향상할 수 있다.According to the marine structure composition comprising environmentally friendly artificial reef and sofa block using flame retardant cement for carbon dioxide reduction according to the present invention and the marine structure comprising artificial reef and sofa block produced by the composition, the penetration of salt effectively Durability can be improved by minimizing the corrosion of reinforcing bars by salt, and preventing the elution of toxic alkaline compounds through iron and phosphorus and supplying nutrients so that the roots of seaweeds can stick to them quickly. It can improve the utility and reliability.
도 1은 본 발명에 의한 해양 구조체 중 소파블록의 사진.1 is a photograph of a sofa block of the marine structure according to the present invention.
본 발명에 의한 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양구조체 조성물은, 보통 시멘트 30~50중량%, 고로슬래그 30~50중량%, 플라이애쉬 10~30중량%, 무수석고 4~20중량%, 제강슬래그 또는 레드머드 중 하나 이상 5~10중량% 혼합되어 이루어진다.Marine structure composition comprising environmentally friendly artificial reef and sofa block using flame retardant cement for carbon dioxide reduction according to the present invention, usually cement 30-50% by weight, blast furnace slag 30-50% by weight, fly ash 10-30% by weight 4 to 20% by weight of anhydrous gypsum, steel slag or red mud at least one of 5 to 10% by weight of the mixture is made.
본 발명에 의한 해양구조체 조성물은, 출발원료로서 1종 보통포틀랜드시멘트에 콘크리트용 혼화재료로 초기 잠재수경성을 가지는 고로슬래그 미분말과 장기 포졸란반응을 하는 플라이애쉬를 적정비율로 혼합한 것에, 시멘트의 수화물 개선 및 혼화재의 수화촉진재로서 무수 석고를 첨가하는 것이다. 종래의 시멘트 조성물에서도 석고가 첨가된 것이 있기는 하나 그 이유는 일반적으로 시멘트의 경화를 지연시키고자 하거나 또는 슬래그 미분말이 함유된 경우 슬래그의 수경성을 촉진하고자 하는 목적이며 이러한 경우 석고의 첨가량은 일반적으로 4% 이하이다.In the marine structure composition according to the present invention, a cement hydrate is prepared by mixing a fine blast furnace slag powder having an initial latent rigidity and a fly ash for a long-term pozzolanic reaction as a starting material of one common portland cement as a starting material. It is to add anhydrous gypsum as a hydration accelerator of the improved and admixture. Although gypsum is added in the conventional cement composition, the reason is generally to delay the hardening of cement or to promote the hydraulic properties of the slag when the slag fine powder is contained. In this case, the amount of gypsum added is generally 4% or less.
본 발명의 조성물은 이러한 일반적인 석고량에 비해 보다 많은 양의 석고가 첨가된 조성을 갖는다. 기존의 조성물에 비해 과량 첨가된 무수석고는 시멘트의 수화물중 에트린자이트(Ettringite)의 생성을 촉진하고 그 결과 생성된 많은 양의 에트린자이트가 콘크리트의 공극을 채움으로써 염화물이온의 침투저항성을 향상시키게 된다. 또한 이러한 에트린자이트가 수화초기부터 다량으로 생성되기 때문에 기존의 슬래그를 사용할 때 가장 문제시되었던 초기 재령에서의 염화물 침투 저항성도 대폭 향상된다. 또한 생성된 에트린자이트가 콘크리트 내의 C3A 등과 반응시 수화물중 모노설페이트(Monosulfate)(C3A·CaSO4·12H2O)를 생성하는데, 생성된 모노 설페이트는 해수 중의 염화물 이온과 반응하여 프리델염(Fridel Salt)(C3A·CaCl2·10H2O)를 형성한다. 이 반응은 결과적으로 염화물 이온을 염내에 고정화하므로 콘크리트의 차염 특성을 보다 향상시킨다. The composition of the present invention has a composition in which a larger amount of gypsum is added compared to this general gypsum amount. Anhydrous gypsum added in excess of the existing composition promotes the formation of ettringite in the hydrate of cement, and the resulting large amount of ettringite fills the pores of the concrete, thereby preventing the penetration of chloride ions. Will improve. In addition, since the ethrinzite is produced in a large amount from the beginning of hydration, the resistance of chloride penetration at the early age, which is most problematic when using the existing slag, is greatly improved. In addition, when the produced ethrinzite reacts with C3A and the like in concrete, it produces monosulfate (Mosulfate) (C3A · CaSO4 · 12H2O) in hydrate, and the produced monosulfate reacts with chloride ions in seawater to form Friedel salt. (C3A.CaCl2.10H2O) is formed. This reaction consequently immobilizes the chloride ions in the salt, thus further improving the flame retardant properties of the concrete.
따라서 본 발명에 의한 조성물은 기존의 내해수성이 우수한 것으로 알려져 있는 고로슬래그 시멘트나 3성분계 시멘트 등 혼합계 시멘트에 비해서 보다 우수한 침투저항성을 나타내게 되며 아울러 상기의 혼합계 시멘트의 최대 단점인 초기 재령에서의 낮은 침투저항성을 대폭 향상시킬 수 있다.Therefore, the composition according to the present invention exhibits better penetration resistance than mixed cement such as blast furnace slag cement or tricomponent cement, which is known to have excellent seawater resistance, and at the early age, which is the biggest disadvantage of the mixed cement. Low penetration resistance can be greatly improved.
본 발명에서 출발원료인 시멘트는 KS L 5201에 적합한 1종 보통 포틀랜드시멘트와 같은 통상의 시멘트가 사용될 수 있으며, 고로슬래그는 분말도(비표면적)가 4,000~6,000 cm2/g 범위의 미분말인 것이 바람직하며, 정제 플라이애쉬는 분말도 3,000~5,000 cm2/g의 범위에 있고 강열 감량이 5% 이하인 것이 바람직하며, 무수 석고는 분말도가 4,000~6,000cm2/g 범위에 있는 것이 좋다.In the present invention, the starting material cement may be a conventional cement such as one ordinary portland cement suitable for KS L 5201, and the blast furnace slag is preferably a fine powder having a powder degree (specific surface area) of 4,000 to 6,000 cm 2 / g. In addition, the refined fly ash powder is preferably in the range of 3,000 ~ 5,000 cm2 / g and the loss on ignition is 5% or less, and dry gypsum is preferably in the range of 4,000 ~ 6,000 cm2 / g powder.
이하에서는 본 발명의 조성물을 구성하는 각 구성 요소가 본 발명의 시멘트 조성물에 의해 제조된 콘크리트의 차염 특성을 향상시키는 메커니즘을 보다 상세히 설명한다. 다만, 본 발명의 명세서 전체에 걸쳐 설명되고 있는 메커니즘은 본 발명자의 지식에 근거하여 본 발명의 이해를 돕기 위해 제공되는 것이며, 본 발명의 효과가 후술하는 메커니즘에 반드시 얻어져야 한다는 한정적 의미로 제공되는 것은 아니다.Hereinafter, each of the components constituting the composition of the present invention will be described in more detail the mechanism for improving the flame retardant properties of the concrete produced by the cement composition of the present invention. However, the mechanisms described throughout the specification of the present invention are provided to aid the understanding of the present invention based on the knowledge of the present inventors, and are provided in a limited sense that the effects of the present invention must be obtained in the mechanisms described below. It is not.
시멘트의 구성 성분중 시멘트 제조시 첨가되는 이수석고(CaSO4·2H2O) 또는 이와 별도로 첨가되는 무수석고(CaSO4)는 시멘트 중의 성분, 특히 C3A(3CaO·Al2 O3)과 반응하여 초기에 에트린 자이트(AFt상, C3A·3CaSO4·32H2O)를 생성하게 되는데, 생성된 에트린자이트는 수화가 진행됨에 따라 그 양이 감소하거나 또는 그 일부가 모노 설페이트(AFm상,C3A·CaSO4·12H2O)로 전이된다. 본 발명에서와 같이 다량의 석고가 첨가될 경우 에트린자이트가 초기부터 충분히 생성되어 시멘트의 구조를 치밀화시킴으로써 초기 재령에서 염화물 이온에 대한 침투 저항성을 증가시키게 된다.Among the constituents of cement, dihydrate gypsum (CaSO4 · 2H2O) added in the manufacture of cement or anhydrous gypsum (CaSO4) added separately is reacted with the components in the cement, in particular C3A (3CaO · Al2O3), so that the early In the AFt phase, C3A, 3CaSO4, 32H2O) is produced, and the amount of the produced ethrinzine decreases as the hydration proceeds or a part thereof is transferred to the mono sulfate (AFm phase, C3A, CaSO4, 12H2O). When a large amount of gypsum is added as in the present invention, ethrinzite is sufficiently produced from the beginning to densify the structure of the cement, thereby increasing penetration resistance to chloride ions in early age.
또한 일반 시멘트의 경우 생성된 에트린자이트가 초기에만 주로 존재하게 되지만 본 발명의 조성물의 경우 석고량이 충분히 첨가되기 때문에 장기재령에 있어서도 에트린자이트가 일정 부분 존재하게 되거나 또는 일부의 에트린자이트가 연속적으로 생성되기도 한다. 이와 같이 생성된 에트린자이트는 콘크리트 구조체내의 공극을 치밀하게 채워줌으로써 장기 재령에 있어서도 염화물에 대한 침투 저항성을 증가시키게 된다.In addition, in the case of general cement, the produced ethrinzite is mainly present only at the beginning, but in the composition of the present invention, since a sufficient amount of gypsum is added, ethrinzite is also present in a part of the organs, or part of the ethrinzai The nets may be generated continuously. The ethrinzite thus produced densely fills the voids in the concrete structure, thereby increasing resistance to chloride penetration even at long-term age.
또한 본 조성물에서 사용되는 고로슬래그 미분말은 제철공장에서 부산물로 생성되는 것으로, 이러한 고로슬래그 미분말은 잠재 수경성을 가지고 있어 그 자체는 경화하는 성질이 미약하지만 시멘트중의 OH-이온이나 SO42-이온과 같은 알카리성 또는 황산염에 의해 자극을 받으면 고로슬래그 자체가 수화반응을 일으키게 된다. 일반적으로 고로슬래그 미분말이나 플라이애쉬와 같은 광물질혼화재는 시멘트에 비하여 수화 반응성이 떨어지기 때문에 초기 강도발현이 느리고, 이러한 혼화재를 치환한 콘크리트의 경우 오히려 초기재령에서는 염화물이온에 대한 침투저항성이 떨어지는 것으로 알려져 있다. 그러나 본 발명의 조성물은 비교적 많은 양의 무수석고를 첨가하기 때문에 고로슬래그의 초기 수화를 충분히 촉진시킴으로써 콘크리트의 공극이 치밀하게 충진되어, 그 결과 강도증진은 물론 초기재령에서 염화물이온에 대한 침투 저항성이 현저히 개선되는 특성을 가지고 있다.In addition, the blast furnace slag powder used in the composition is produced as a by-product in the steel mill, and the blast furnace slag powder has latent hydrophobic properties and thus has a hard curing property. When stimulated by alkaline or sulfate salts, the blast furnace slag itself causes a hydration reaction. In general, mineral admixtures such as blast furnace slag powder and fly ash have lower hydration reactivity compared to cement, which results in slow initial strength development.In the case of concrete substituted with these admixtures, the penetration resistance against chloride ions is known to be poor at early age. have. However, since the composition of the present invention adds a relatively large amount of anhydrous gypsum, the pores of the concrete are densely packed by sufficiently promoting the initial hydration of the blast furnace slag, resulting in increased strength as well as penetration resistance against chloride ions at an early age. Remarkably improved properties.
한편 시멘트나 고로슬래그 미분말의 반응에 의해 생성된 에트린자이트는 C3A 성분 등과 다시 반응을 일으킬 경우 모노 설페이트(AFm상)으로도 전이하게 되며, 이러한 모노 설페이트가 염화물과 만날 경우 불용성염인 프리델염(C3A·CaCl2·10H2O)을 생성하게 된다. 본 발명의 조성물은 불용성염의 생성을 통하여 콘크리트로 침투한 염화물이온을 콘크리트 내에 고정화할 수 있기 때문에 해수중의 염화물이 더 이상 침투를 하지 못하고 결과적으로 콘크리트의 내염 특성을 향상시킬 수 있다. 에트린자이트가 모노 설페이트로 전이하기 위해서는 콘크리트내의 C3A 즉 Al2O 3 함량이 중요한 변수가 된다. 본 발명의 조성물에서는 일반적인 시멘트에 비해 Al2O3 함량이 훨씬 높은 고로스래그 미분말이나 플라이애쉬 등을 조합하여 사용함으로써, 모노 설페이트로의 전이를 위한 보다 나은 환경을 제공하며, 콘크리트 내부로 침투한 염화물이온과의 반응 생성물인 프리델염의 생성을 촉진하며, 염화물 이온의 고정화 효과를 거둘 수가 있다.On the other hand, the ethrinzite produced by the reaction of cement or blast furnace slag fine powder is also converted to mono sulfate (AFm phase) when it reacts with C3A component again, and when the mono sulfate meets chloride, Friedel salt, an insoluble salt ( C3A.CaCl2.10H2O). Since the composition of the present invention can immobilize chloride ions penetrated into concrete through the generation of insoluble salts in concrete, chlorides in seawater can no longer penetrate and consequently improve the flame resistance of concrete. For the transformation of ethrinzite to mono sulfate, the C3A or Al2O3 content in concrete is an important variable. In the composition of the present invention, by using a combination of high-loss rag fine powder or fly ash, which has a much higher Al2O3 content than a general cement, it provides a better environment for the transition to mono sulfate and provides chloride ions penetrated into concrete. It promotes the formation of the Friedel salt, which is a reaction product of, and has an immobilization effect of chloride ions.
플라이애쉬의 경우, 그 자체에서 용출되는 SiO3-2나 Al2O4-2이 시멘트의 1차 수화물인 Ca(OH)2와 장기간에 걸쳐 2차적인 포졸란 반응을 일으킨다. 이 반응에 의해 생성된 칼슘실리케이트(C-S-H)나 칼슘알루미네이트(C-A-H) 수화물은 시멘트의 자체의 수화물인 Ca(OH)2보다도 수화 조직이 치밀하고, 또한 염화물 이온의 주요한 이동 경로가 되는 모세관 공극을 치밀하게 충진하기 때문에 장기재령에서 염화물이온에 대한 침투저항성을 향상시킨다. 또한 플라이애쉬는 미리 생성된 에트린자이트의 침상 조직사이를 치밀하게 채움으로써 결과적으로 콘크리트의 내염 특성을 향상시키게 된다.In the case of fly ash, SiO 3-2 or Al 2 O 4-2 eluted on its own causes secondary pozzolanic reactions over a long period with Ca (OH) 2, the primary hydrate of cement. The calcium silicate (CSH) and calcium aluminate (CAH) hydrates produced by this reaction have a denser hydration structure than Ca (OH) 2, which is a hydrate of cement itself, and has a capillary pore that is a major migration path of chloride ions. Because of its compact filling, it improves the penetration resistance against chloride ions at long-term age. Fly ash also densely fills the needle tissue of pre-generated ethrinzite, resulting in improved flame resistance of the concrete.
이와 같이 시멘트와 광물질 혼화재와의 반응 메커니즘과 반응의 순서를 충분히 이용하기 위하여 본 조성물은 이러한 재료조합에 비교적 많은 양의 무수석고를 첨가하였는데 이러한 첨가의 결과 보통포틀랜드시멘트는 물론 기타 고슬래그시멘트나 플라이애쉬시멘트와 같은 혼합계시멘트에서 확보할 수 없는 초기 및 장기재령에서의 우수한 차염성을 가지게 된다. 한편 본 발명의 조성물에서 제시한 범위 이상의 석고첨가는 과도한 에트린자이트의 생성을 초래하게 되는데, 과도하게 생성된 에트린자이트는 팽창에 의해 그 구조체의 강도를 저하시킬 우려가 있다.In order to take full advantage of the reaction mechanism and the sequence of reaction between cement and mineral admixtures, the composition added relatively large amount of anhydrous gypsum to these material combinations. As a result of this addition, ordinary portland cement as well as other high slag cement or ply It has excellent flame retardancy at early and long age which cannot be secured in mixed cement such as ash cement. On the other hand, gypsum addition over the range suggested by the composition of the present invention causes excessive generation of ethrinzite, but excessively produced ethrinzite may reduce the strength of the structure by expansion.
본 조성물의 또 다른 특징은 균열저감 및 수화 발열에 있어서도 우수한 특징을 가지고 있다는 점이다. 일반적인 해양구조체의 경우 균열 발생시 염화물이온의 직접적인 침투에 의해 열화가 급속히 진행되기 때문에 균열 저감이 매우 중요하다 할 수 있는데, 본 발명에서 제시하고 있는 조성물의 경우 통상의 시멘트 및 혼합계시멘트와 비교해도 콘크리트의 수화 조직이 보다 치밀하기 때문에 콘크리트의 건조 수축 균열 저감에도 우수한 효과를 기대할 수 있다. 또한 본 조성물은 수화발열량이 낮은 광물질 혼화재를 사용하므로 수화열 상승에 따른 온도 균열도 매우 낮게 나타난다. 해양 환경하의 콘크리트 구조체가 주로 매스구조체기 때문에 수화열 상승이 커다란 문제점임을 감안할 때, 본 발명에서 제시한 조성물은 온도균열 저감효과도 크게 기대할 수 있어 해양환경 하에 있는 콘크리트 구조체의 시멘트재료로서 매우 적합하다 할 수 있다.Another feature of the composition is that it has excellent characteristics in reducing cracking and hydrating heat generation. In the case of general marine structures, cracking is very important because degradation proceeds rapidly due to the direct penetration of chloride ions when cracks are generated. In the case of the composition of the present invention, concrete can be compared with cement and mixed cement. Since the hydration structure of denser is more dense, excellent effect can be expected to reduce the dry shrinkage cracking of concrete. In addition, since the present composition uses a mineral admixture having a low hydration calorific value, temperature cracking due to the rise of hydration heat is also very low. Considering the fact that the heat of hydration is a big problem because the concrete structure in the marine environment is mainly a mass structure, the composition proposed in the present invention can be expected to greatly reduce the temperature cracking effect, which is very suitable as a cement material for the concrete structure in the marine environment. Can be.
제강슬래그는 잘 알려진 바와 같이, 선철을 전로에서 정련하여 불순물인 탄소, 인, 유황을 제거하는 과정 중에 발생되는 것으로, 다량의 철(Fe)성분을 갖고 있으며, 100mesh이하인 것이 사용된다.Steelmaking slag, which is well known, is generated during the process of refining pig iron in a converter to remove carbon, phosphorus, and sulfur as impurities, and has a large amount of iron (Fe), and less than 100 mesh is used.
레드머드는 보오크사이트로부터 수산화알루미늄을 추출하는 바이어(Bayer)공정시 알루미늄 침출 후 다량의 잔사(철성분을 다량 함유한 불용성 보오크사이트)인 부산물을 말하며, 중금속등의 용출을 최소화할 수 있다.Red mud refers to a by-product of a large amount of residue (insoluble bauxite containing a large amount of iron) after leaching of aluminum during the Bayer process of extracting aluminum hydroxide from bauxite, and can minimize the elution of heavy metals. .
레드머드는 입자 크기가 100mesh 이하일 것을 사용한다. 왜냐하면 100mesh 이하인 경우에는 해양구조체에서 요구하는 강도를 만족할 수 있다. Red mud has a particle size of 100 mesh or less. Because less than 100 mesh can satisfy the strength required for offshore structures.
제강슬래그와 레드머드는 각각 단독으로 사용될 수도 있고 혼합되어 사용될 수도 있다. 이는 인공어초의 넓은 표면에서 용출되는 철이온은 식물성 플랑크톤의 필수 영양분으로 양호한 식물성장의 환경을 제공하며 결국 어류의 위집효과를 높일 수 있기 때문이다.Steelmaking slag and red mud may be used alone or in combination. This is because iron ions eluted from the large surface of artificial reefs are essential nutrients of phytoplankton, which provides a good environment for plant growth and, in turn, can increase the counterfeiting effect of fish.
제강슬래그와 레드머드가 단독으로 사용되는 경우, 제강슬래그와 레드머드의 혼합물이 사용되는 경우 모두 5~10중량%가 혼합된다. 5중량% 이하로 혼합되면 수산화칼슘 등의 유독성 알칼리성 화합물의 용출을 막을 수 없고 10중량%이상 혼합되면 효과가 큰 변화가 없기 때문이다.
When steelmaking slag and red mud are used alone, when the mixture of steelmaking slag and red mud is used, 5 to 10% by weight of both. This is because when mixed at 5 wt% or less, elution of toxic alkaline compounds such as calcium hydroxide cannot be prevented, and when mixed at 10 wt% or more, the effect does not change significantly.
본 발명은 수중생태계에 인성분을 추가로 공급하여 주여 수생식물의 번식, 뿌리 활착을 활성화하기 위해 제올라이트가 첨가될 수 있다.In the present invention, the zeolite may be added to further supply the phosphorus component to the aquatic ecosystem to activate the propagation and root swelling of the aquatic plant.
상기 제올라이트는 본 출원인에 의해 특허받은 특허 제0702602호에 의한 제올라이트이다.The zeolite is a zeolite according to Patent No. 0070602 patented by the applicant.
제올라이트는 다음과 같은 공정을 통해 제조되며, 구체적인 설명은 특허 제0702602호에 나타나 있으므로 생략한다.Zeolite is manufactured through the following process, and detailed description thereof is omitted since it is shown in Patent No. 0702602.
알럼계열의 정수장 슬러지, 플라이애쉬, 폐실리카중 선택된 어느 하나의 처리물 100 중량부, 상기 처리물 대비 인산10~14 중량부, 상기 처리물 대비 물 100중량부를 각각 혼합하는 혼합 단계와; 상기 혼합물을 1~3시간 동안 교반기를 통해 교반시켜 반응시키되, 100~120℃의 온도를 유지하며 상기 혼합물의 수분만을 증발시키는 반응 단계와; 반응이 완료되면 반응물을 1~3시간동안 상온에서 교반기를 통해 교반시켜 냉각시키는 냉각 단계; 및 냉각이 완료되면 상기 반응물에 함유된 수분이 완전 증발되도록 110~140℃의 유지된 조건의 건조기에서 건조시켜 최종물인 제올라이트를 얻어내는 건조 단계로 이루어진다.A mixing step of mixing 100 parts by weight of any one selected from a treatment plant sludge, fly ash and waste silica of alum series, 10 to 14 parts by weight of phosphoric acid relative to the treatment, and 100 parts by weight of water relative to the treatment; Reacting the mixture by stirring for 1 to 3 hours through a stirrer, while maintaining a temperature of 100 ~ 120 ℃ and evaporating only the moisture of the mixture; A cooling step of cooling the reaction by stirring through a stirrer at room temperature for 1 to 3 hours when the reaction is completed; And when the cooling is complete consists of a drying step of obtaining a final product zeolite by drying in a drier under the maintained conditions of 110 ~ 140 ℃ so that the water contained in the reaction is completely evaporated.
이와 같은 방법으로 제조된 제올라이트는 해양구조체 조성물 100중량부에 대하여 3~7중량부가 첨가될 수 있다. 3중량부 이하로 혼합되면 영양분 공급의 효능이 발휘되지 않고 7중량부 이상 혼합되면 인성분의 과다공급으로 해양구조체 성형에 변화를 줄 수 있다.또한 해양환경에 인성분의 과다공급으로 적조현상의 원인을 제공할 수 있으므로 주의해야 한다. Zeolite prepared in this manner may be added 3 to 7 parts by weight based on 100 parts by weight of the marine structure composition. When it is mixed below 3 parts by weight, the effect of nutrient supply is not exerted, and when it is mixed by 7 parts by weight or more, the oversupply of phosphorus may change the formation of marine structures. Care should be taken as this may provide a cause.
제올라이트는 인성분을 용출하여 해조류가 빨리 뿌리를 내릴 수 있도록 영양분을 보충하며, 해조류의 번식으로 인해 전복이나 소라와 같은 수중 생물이 주변에 모이게 되어 어류의 산란장을 제공함으로써 인공어초의 기능을 향상시킬 수 있다.Zeolites elute phosphorus to replenish nutrients so that algae can take root quickly, and breeding of algae causes aquatic organisms such as abalone and conch to gather around, providing a spawning ground for fish to enhance the function of artificial reefs. have.
본 발명에 의한 해양구조체 조성물은 수중에 잠기는 인공어초, 수면 위로 노출되는 소파블록 등의 원료이며, 소파블록의 경우 수면 위에 콘크리트의 색상이 그대로 노출되어 불쾌감을 줄 수 있으므로 안료가 첨가될 수 있다.The marine structure composition according to the present invention is a raw material such as an artificial reef submerged in water, a sofa block exposed to the surface of the water, and, in the case of the sofa block, the color of concrete may be exposed as it is on the surface of the water so that pigment may be added.
안료는 분말(입도는 다른 재료들과 비슷한 정도로 한다), 액상 등의 적색, 녹색, 청색 등이 사용 가능하며, 해양 구조체 조성물 100중량부에 대하여 3~10중량부가 혼합된다. 3 중량부 이하로 혼합되면 안료의 색상을 표현할 수 없고 10 중량부 이상 혼합되면 과도한 첨가로 인하여 다른 색상을 표현할 수 있기 때문이다.
The pigment may be used in powder (particle size is similar to other materials), liquid, red, green, blue, etc., and 3 to 10 parts by weight is mixed with 100 parts by weight of the marine structure composition. This is because when the mixture is mixed in an amount of 3 parts by weight or less, the color of the pigment cannot be expressed, and when mixed in an amount of 10 parts by weight or more, other colors may be expressed due to excessive addition.
<실시예><Examples>
1. 원료 배합(단위 kg)1. Raw material formulation (unit kg)
실시예 2,3에서는 제올라이트와 안료가 시멘트, 고로슬래그, 플라이애쉬, 무수석고, 레드머드의 혼합량에 대해 첨가된 것이다.In Examples 2 and 3, zeolite and pigment were added to the mixed amount of cement, blast furnace slag, fly ash, anhydrous gypsum and red mud.
(mg/L)division
(mg / L)
(도1참조)Sofa block
(See Fig. 1)
Claims (4)
상기 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 100중량부에 대하여,
알럼계열의 정수장 슬러지, 플라이애쉬, 폐실리카중 선택된 어느 하나의 처리물 100 중량부, 상기 처리물 대비 인산10~14 중량부, 상기 처리물 대비 물 100중량부를 각각 혼합하는 혼합 단계와; 상기 혼합물을 1~3시간 동안 교반기를 통해 교반시켜 반응시키되, 100~120℃의 온도를 유지하며 상기 혼합물의 수분만을 증발시키는 반응 단계와; 반응이 완료되면 반응물을 1~3시간동안 상온에서 교반기를 통해 교반시켜 냉각시키는 냉각 단계; 및 냉각이 완료되면 상기 반응물에 함유된 수분이 완전 증발되도록 110~140℃의 유지된 조건의 건조기에서 건조하는 건조단계를 통해 제조되는 제올라이트가 3~7중량부 혼합되는 것을 특징으로 하는 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물.
Reduction of carbon dioxide by mixing 30 ~ 50% by weight of cement, 30 ~ 50% by weight of blast furnace slag, 10 ~ 30% by weight of fly ash, 4 ~ 20% by weight of anhydrous gypsum, at least 5-10% by weight of steelmaking slag or red mud As an offshore structure composition comprising an eco-friendly artificial reef and a sofa block using flame retardant cement for
With respect to 100 parts by weight of the marine structure composition comprising an environmentally friendly artificial reef and sofa block using flame retardant cement for carbon dioxide reduction,
A mixing step of mixing 100 parts by weight of any one selected from a treatment plant sludge, fly ash and waste silica of alum series, 10 to 14 parts by weight of phosphoric acid relative to the treatment, and 100 parts by weight of water relative to the treatment; Reacting the mixture by stirring for 1 to 3 hours through a stirrer, while maintaining a temperature of 100 ~ 120 ℃ and evaporating only the moisture of the mixture; A cooling step of cooling the reaction by stirring through a stirrer at room temperature for 1 to 3 hours when the reaction is completed; And 3 to 7 parts by weight of the zeolite prepared through a drying step of drying in a drier at 110 to 140 ° C. in order to completely evaporate the moisture contained in the reactant when cooling is completed. Marine structure composition comprising environmentally friendly artificial reef and sofa block using flame retardant cement for.
The marine structure composition according to claim 2, wherein environmentally friendly artificial reef and sofa blocks using flame retardant cement for carbon dioxide reduction are formed by mixing 3 to 10 parts by weight of powder pigment with respect to 100 parts by weight of the marine structure composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100008196A KR100975358B1 (en) | 2010-01-29 | 2010-01-29 | Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100008196A KR100975358B1 (en) | 2010-01-29 | 2010-01-29 | Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100975358B1 true KR100975358B1 (en) | 2010-08-11 |
Family
ID=42759525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100008196A KR100975358B1 (en) | 2010-01-29 | 2010-01-29 | Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100975358B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106977158A (en) * | 2017-04-26 | 2017-07-25 | 中交天航港湾建设工程有限公司 | A kind of prefabricated duplex monolith coordination in works and its manufacture craft |
KR102011245B1 (en) | 2019-03-08 | 2019-08-14 | 전라남도 | A Street Tree Apparatus for Aquatic Plants. |
CN110698102A (en) * | 2019-10-31 | 2020-01-17 | 上海宝田新型建材有限公司 | Marine admixture |
CN112279583A (en) * | 2020-10-12 | 2021-01-29 | 绍兴文理学院 | Self-compacting concrete prepared from aluminum sludge |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654095B1 (en) * | 2004-06-29 | 2006-12-05 | 쌍용양회공업(주) | Chloride-shielding cement for marine concrete and its composition |
KR100693391B1 (en) * | 2006-07-14 | 2007-03-12 | 이행우 | A color concrete composites for structures including basic oxygen furnace slag and blast-furnace slag and a manufacturing method thereof |
-
2010
- 2010-01-29 KR KR1020100008196A patent/KR100975358B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654095B1 (en) * | 2004-06-29 | 2006-12-05 | 쌍용양회공업(주) | Chloride-shielding cement for marine concrete and its composition |
KR100693391B1 (en) * | 2006-07-14 | 2007-03-12 | 이행우 | A color concrete composites for structures including basic oxygen furnace slag and blast-furnace slag and a manufacturing method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106977158A (en) * | 2017-04-26 | 2017-07-25 | 中交天航港湾建设工程有限公司 | A kind of prefabricated duplex monolith coordination in works and its manufacture craft |
KR102011245B1 (en) | 2019-03-08 | 2019-08-14 | 전라남도 | A Street Tree Apparatus for Aquatic Plants. |
CN110698102A (en) * | 2019-10-31 | 2020-01-17 | 上海宝田新型建材有限公司 | Marine admixture |
WO2021082105A1 (en) * | 2019-10-31 | 2021-05-06 | 上海宝田新型建材有限公司 | Maritime work aggregate |
CN112279583A (en) * | 2020-10-12 | 2021-01-29 | 绍兴文理学院 | Self-compacting concrete prepared from aluminum sludge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102850081B (en) | Foam cement insulation board containing industrial solid waste and preparation method thereof | |
KR101783063B1 (en) | Cement admixture, process for producing same, and cement composition, mortar, and concrete each containing the admixture | |
CN102910889B (en) | Aerated concrete wall material containing river silt and preparation method thereof | |
KR100749926B1 (en) | Fiber reinforced earthquake proof mortar and self leveling using oyster shells on the beach | |
KR100975358B1 (en) | Sea structure composite including eco-friendly artificial fishing reef for reducing carbon dioxide using anti-salinity cement and sea structure composite manufactured by this | |
KR100917452B1 (en) | The methods to manufacture an environmentally friendly, highly durable and high-functional concrete utilizing multi-component-blended cement, na type - artificial zeolite and new-materials for performance improvement | |
CN101891440B (en) | Special finish coat mortar with desulfurized gypsum as base material for wall insulation system | |
CN101952217A (en) | Cement admixture, and cement composition and concrete containing the cement admixture | |
KR101258269B1 (en) | Concrete composition for preparing eco-friendly embankment block, eco-friendly embankment block and method of preparing the eco-friendly embankment block using the same | |
CN109592948A (en) | A kind of corrosion resistance concrete and its preparation process | |
KR100654095B1 (en) | Chloride-shielding cement for marine concrete and its composition | |
CN102503295B (en) | Non-sintered brick prepared from river and lake silt and preparation process thereof | |
Islam et al. | Strength behavior of concrete using slag with cement in sea water environment | |
CN110835249A (en) | Ocean engineering rust-resisting and anti-cracking mortar and preparation and use methods thereof | |
KR101296305B1 (en) | Outstanding of chemical resistance precast for using concrete binder composition | |
KR102269372B1 (en) | Manufacturing Method of Undersea Concrete Anchor with High Durability | |
KR100894587B1 (en) | Manufacturing method for soil blocks to be used for environmetal artificial fish selters | |
JPH08311446A (en) | Solidifier for soil conditioning | |
CN111943546A (en) | Coral aggregate and low-cost modification method thereof | |
KR20180033782A (en) | Artificial reef having structure of plane concrete | |
KR102299985B1 (en) | Shotcrete composition for structure | |
KR100519605B1 (en) | The manufacturing method and composition of Restoration mortar with function of sulfuric acid resistance | |
JP2015063420A (en) | Salt damage-resistant cement hardened body | |
Aswin et al. | Consideration on Use of the Corn Plant Ash-Based Concrete related to the Salt and Acid Attack: A Review | |
KR101380327B1 (en) | Solidified agent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131105 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160802 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20171010 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20180725 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20190731 Year of fee payment: 10 |