KR100975008B1 - Compensating method for thermal deformation of Automatic lathe - Google Patents

Compensating method for thermal deformation of Automatic lathe Download PDF

Info

Publication number
KR100975008B1
KR100975008B1 KR1020080118589A KR20080118589A KR100975008B1 KR 100975008 B1 KR100975008 B1 KR 100975008B1 KR 1020080118589 A KR1020080118589 A KR 1020080118589A KR 20080118589 A KR20080118589 A KR 20080118589A KR 100975008 B1 KR100975008 B1 KR 100975008B1
Authority
KR
South Korea
Prior art keywords
amount
error
deformation
maximum
time
Prior art date
Application number
KR1020080118589A
Other languages
Korean (ko)
Other versions
KR20100060127A (en
Inventor
권병호
Original Assignee
한화테크엠주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크엠주식회사 filed Critical 한화테크엠주식회사
Priority to KR1020080118589A priority Critical patent/KR100975008B1/en
Publication of KR20100060127A publication Critical patent/KR20100060127A/en
Application granted granted Critical
Publication of KR100975008B1 publication Critical patent/KR100975008B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • B23Q11/0007Arrangements for preventing undesired thermal effects on tools or parts of the machine by compensating occurring thermal dilations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • B23Q2717/003Arrangements for indicating or measuring in lathes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49206Compensation temperature, thermal displacement, use measured temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49217Compensation of temperature increase by the measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

본 발명은 자동선반의 열변형에 따른 보정방법에 관한 것으로서, 더욱 상세하게는 공작물의 가공으로 모터, 볼스크류 및 공구대 등에 열이 발생하여 공구대의 열변형으로 가공되는 공작물에 오차가 발생되는 것을 방지하고자 샘플 가공으로 측정된 최대변형량(최대오차량)에 의해 제어부에서 계산하여 보정해줌으로써 더욱 정밀한 가공이 이루어질 수 있는 자동선반의 열변형에 따른 보정방법이다.The present invention relates to a correction method according to the thermal deformation of the automatic lathe, and more particularly, the heat generated in the motor, the ball screw, and the tool bar by the machining of the workpiece to generate an error in the workpiece that is processed by the thermal deformation of the tool bar. It is a correction method according to the thermal deformation of the automatic lathe that can be processed more precisely by calculating and correcting it by the maximum deformation amount (maximum error amount) measured by sample processing to prevent.

열변형, 열보정, 자동선반 Heat deformation, heat compensation, automatic lathe

Description

자동선반의 열변형에 따른 보정방법{Compensating method for thermal deformation of Automatic lathe}Compensating method for thermal deformation of Automatic lathe}

본 발명은 자동선반의 열변형에 따른 보정방법에 관한 것으로서, 더욱 상세하게는 공작물의 가공으로 모터, 볼스크류 및 공구대 등에 열이 발생하여 공구대의 열변형으로 가공되는 공작물에 오차가 발생되는 것을 방지하고자 샘플 가공으로 측정된 최대변형량(최대오차량)에 의해 제어부에서 계산하여 보정해줌으로써 더욱 정밀한 가공이 이루어질 수 있는 자동선반의 열변형에 따른 보정방법이다.The present invention relates to a correction method according to the thermal deformation of the automatic lathe, and more particularly, the heat generated in the motor, the ball screw, and the tool bar by the machining of the workpiece to generate an error in the workpiece that is processed by the thermal deformation of the tool bar. It is a correction method according to the thermal deformation of the automatic lathe that can be processed more precisely by calculating and correcting it by the maximum deformation amount (maximum error amount) measured by sample processing to prevent.

자동선반은 NC선반 또는 CNC선반이라고도 불리우며, 이런 자동선반에는 주축이나 서브축에 척킹된 소재를 가공하기 위해 절삭공구가 장착되는 공구대가 하나 이상 형성된다. Automatic lathes, also called NC lathes or CNC lathes, are provided with one or more tool posts equipped with cutting tools for machining chucked material on the main or sub-axes.

이런 공구대는 주로 x, y, z축의 3축 방향으로 움직이며, 공작물의 이송방향을 z축으로 지정하고 공작물의 상하방향(외경방향)을 x축, 좌우방향(외경방향)을 y축으로 지정해주게 된다.These tool bars move mainly in the three axes of the x, y, and z axes, designating the feed direction of the workpiece as the z axis, and designating the up and down direction (outer diameter direction) of the workpiece as the x axis and the left and right directions (outer diameter direction) as the y axis. You will.

이때 가공시 발생하는 오차는 공작물의 이송방향 즉, z축 방향에서 발생하는 오차보다는 x축이나 y축의 가공에서 발생하는 오차가 더욱 중요한 경우가 많으며, 이는 가공후 공작물의 외경에 발생하는 오차가 제품의 불량을 판가름하는 경우가 더욱 많기 때문이다.In this case, the error occurring during machining is more important than the error occurring in the feed direction of the workpiece, that is, in the z-axis direction. In this case, the error occurring in the outer diameter of the workpiece after machining This is because there are more cases where the defects of.

일반적인 자동선반의 경우 x축이나 y축 중 y축을 절대중심으로 지정하고 나머지 한 축 즉, x축을 움직여 공작물을 가공할 때 x축의 이동량에 따라 공작물 외경의 가공량이 달라지게 되고, x축의 이동을 제어하는 모터나 볼스크류 등의 부품에는 가공부하로 인해 열이 발생하게 되며 이 열로 인해 공구대에는 열변형이 일어나게 된다.In the case of general automatic lathes, the y-axis of the x-axis or the y-axis is designated as the absolute center, and when the workpiece is machined by moving the other axis, that is, the x-axis, the machining amount of the workpiece outer diameter varies according to the movement amount of the x-axis, and the movement of the x-axis is controlled. Part of the motor, ball screw, etc., heat is generated due to the processing load, and the heat causes deformation of the tool post.

열변형은 일반적인 공작기계의 특성상 발생하지 않을 수 없으며, 이러한 열변형은 x축의 이동량에 대해 오차를 발생시켜 결국 기계의 가공정도에 영향을 미치게 된다.Thermal deformation is inevitable due to the characteristics of general machine tools, and this thermal deformation causes an error in the amount of movement of the x-axis, which affects the degree of machining of the machine.

본 발명은 상술한 자동선반에서의 열변형과 관련된 문제점을 해결할 수 있는 자동선반의 열변형에 따른 보정방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide a correction method according to the thermal deformation of the automatic lathe that can solve the problems related to the thermal deformation in the above-mentioned automatic lathe.

또한, 샘플가공을 일정시간동안 행하여 최대변형량(최대오차량)을 측정한 뒤 가공시간 별로 변형량값을 산출하여 공구대의 이동량을 보정해줌으로써 열변형으로 발생하는 오차를 줄인 자동선반의 열변형에 따른 보정방법을 제공하는데 또 다른 목적이 있다.In addition, after the sample processing for a certain time to measure the maximum deformation amount (maximum error amount) and then calculate the deformation value for each machining time to compensate for the movement of the tool bar according to the thermal deformation of the automatic lathe that reduces the error caused by thermal deformation It is another object to provide a correction method.

본 발명은 샘플가공을 실시하여 안정화시간 및 최대변형량을 측정하고 이를 입력하여, 제어부에서 시간대 별로 자동 계산하여 공구대의 이동량을 보정함으로써 공작물의 가공오차를 줄일 수 있다.The present invention can measure the stabilization time and the maximum strain by performing a sample processing, and input it, the automatic calculation for each time zone in the control unit to correct the movement of the tool bar to reduce the machining error of the workpiece.

본 발명에 의한 자동선반의 열변형에 따른 보정방법은 샘플가공을 일정시간동안 행하여 최대변형량을 측정한 뒤 가공시간 별로 변형량값을 산출하여 공구대의 이동량을 보정해줌으로써 열변형으로 발생하는 오차를 줄일 수 있다.The correction method according to the thermal deformation of the automatic lathe according to the present invention is to reduce the error caused by the thermal deformation by measuring the maximum deformation amount by performing the sample processing for a certain time and then calculate the deformation value for each machining time to correct the movement of the tool bar Can be.

본 발명은 자동선반의 열변형에 따른 보정방법에 관한 것으로서, 더욱 상세하게는 공작물의 가공으로 모터, 볼스크류 및 공구대 등에 열이 발생하여 공구대의 열변형으로 가공되는 공작물에 오차가 발생되는 것을 방지하고자 샘플 가공으로 측정된 최대변형량에 의해 제어부에서 계산하여 보정해줌으로써 더욱 정밀한 가공이 이루어질 수 있는 자동선반의 열변형에 따른 보정방법으로서, 샘플 가공으로 시간 별로 공작물의 오차를 측정하여 오차량이 일정하게 유지되는 안정화시간 및 안정화시간에 대한 최대오차량을 측정하여, 안정화시간과 최대오차량에 따라 제어부에서 시간 별로 계산하여 열변형에 따른 오차량을 보정해주는 보정방법이다.The present invention relates to a correction method according to the thermal deformation of the automatic lathe, and more particularly, the heat generated in the motor, the ball screw, and the tool bar by the machining of the workpiece to generate an error in the workpiece that is processed by the thermal deformation of the tool bar. It is a compensation method according to the thermal deformation of the automatic lathe that can be processed more precisely by calculating and correcting it at the control part based on the maximum deformation measured by the sample processing to prevent the error. The maximum error amount for the stabilization time and stabilization time that is kept constant, and calculated by the control unit by the time according to the stabilization time and the maximum error amount correction method to correct the error amount due to thermal deformation.

이하, 첨부된 도면에 의해 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention by referring to the accompanying drawings in detail as follows.

도 1은 본 발명에 의한 자동선반의 열변형에 따른 보정방법의 플로우챠트이고, 도 2는 선반가공의 예시도로서, 본 발명은 공구대의 열변형에 따른 변형량을 측정하기 위해 샘플가공을 실시하는 단계(제1단계)와, 샘플 가공된 공작물의 오차량을 측정하는 단계(제2단계)와, 안정화시간 및 최대변형량(최대오차량)을 입력하는 단계(제3단계)와, 입력된 안정화시간 및 최대변형량에 따라 보정값을 제어부에서 계산하여 보정해주는 단계(제4단계)와, 상기 제4단계에서 계산된 보정값으로 공작물을 가공하는 단계(제5단계);로 이루어진다.1 is a flow chart of a correction method according to the thermal deformation of the automatic lathe according to the present invention, Figure 2 is an exemplary view of the lathe processing, the present invention is to perform a sample processing to measure the deformation amount according to the thermal deformation of the tool bar Step (first step), measuring the error amount of the sampled workpiece (second step), inputting the stabilization time and the maximum deformation amount (maximum error amount) (step 3), and input stabilization Comprising a step of calculating and correcting the correction value in the control unit according to the time and the maximum deformation amount (fourth step), and processing the workpiece with the correction value calculated in the fourth step (fifth step);

먼저, 제1단계는 공작물의 열변형에 따른 오차량을 측정하기 위해 샘플가공을 실시하는 단계로서, 본 발명의 샘플가공은 한 두개의 제품을 가공하는 것이 아니라 최소한 몇시간 동안 연속적인 가공을 행하여 모터와 볼스크류 및 공구대에 충분한 열이 발생한 상태까지의 가공을 의미한다. 즉, 샘플가공을 행하는 시간은 열변형이 최대한 일어나는 시간까지 진행하는 것이 바람직하다.First, the first step is to perform a sample processing to measure the error amount according to the heat deformation of the workpiece, the sample processing of the present invention is not processing one or two products, but by continuous processing for at least several hours It means the processing until the heat generated in the motor, ball screw and tool post is generated. In other words, it is preferable that the time for sample processing proceeds to the time at which thermal deformation occurs as much as possible.

일반적인 공작기계는 도 3과 같이 가공시간에 따른 열변형량(오차량)은 일정한 시간(안정화시간)이 될 때까지 급격히 증가되다가 일정한 시간에 도달하면 그 증감량이 거의 일정하게 유지된다. 따라서, 일정하게 유지되는 시간을 안정화시간으로 측정하고, 제2단계에서는 상기 안정화시간에 발생하는 가공오차량 즉, 최대열변형량값을 확인한다.In general machine tools, as shown in FIG. 3, the thermal deformation amount (error amount) according to the machining time increases rapidly until a constant time (stabilization time), and when the constant time is reached, the increase or decrease is almost constant. Therefore, the time that is kept constant is measured as the stabilization time, and in the second step, the amount of processing error occurring in the stabilization time, that is, the maximum thermal strain value is confirmed.

제3단계는 상기 제2단계에서 확인된 안정화시간 및 최대열변형량값을 입력하는 단계이고, 제4단계는 입력된 안정화시간 및 최대열변형량값에 따라 보정값을 제어부에서 계산하여 보정해주는 단계이다.The third step is a step of inputting the stabilization time and the maximum thermal strain value identified in the second step, the fourth step is a step of calculating and correcting the correction value in the control unit according to the input stabilization time and the maximum thermal strain value .

즉, 제어부에서는 안정화시간이 100분이고 그 때의 가공오차량이 0.02mm라면 기계가동후 100분이 되면 0.02mm만큼 보상을 해주어 공구대를 이송시켜 준다.That is, in the control unit, if the stabilization time is 100 minutes and the processing error amount is 0.02 mm, the tool stage is transferred by compensating 0.02 mm when 100 minutes after the machine is operated.

제5단계는 제4단계에서 계산된 보정값으로 공작물을 가공하는 단계이다.The fifth step is to process the workpiece with the correction value calculated in the fourth step.

도 2을 참조하여 설명하면, 공작물의 외경을 가공하여 최초 가공시에는 외경 이 오차가 없는 10mm였으나, 안정화시간에 도달했을 때의 가공된 공작물의 외경이 10.02mm였다면 최대변형량은 0.02mm가 되며, 이때의 보정은 공구대를 공작물 방향으로 0.02mm 옮겨야만 10mm로 외경가공이 이루어지게 된다.Referring to Figure 2, when the outer diameter of the workpiece is machined at the time of the initial machining was 10mm without error, the maximum deformation amount is 0.02mm if the outer diameter of the machined workpiece when the stabilization time is reached 10.02mm, At this time, the tool post should be moved 0.02mm in the direction of the workpiece to make the outer diameter 10mm.

반대로, 안정화시간에 도달했을 때의 가공된 공작물의 외경이 9.98mm였다면 최대변형량은 -0.02mm가 되며, 이때의 보정은 x축을 공작물에서 멀어지는 방향으로 0.02mm 옮겨야만 10mm의 외경가공이 이루어지게 된다.On the contrary, if the outer diameter of the machined workpiece was 9.98mm when the stabilization time was reached, the maximum deformation amount would be -0.02mm, and the correction should be done by moving the x-axis 0.02mm away from the workpiece to make the outer diameter of 10mm. .

결국, 사용자는 안정화시간과 최대변형량을 확인후 입력하게 되면 제어부에서 시간별로 보정량을 계산하여 공구대를 보정된 량 만큼 이송시켜 가공을 수행하게 된다.As a result, when the user inputs after checking the stabilization time and the maximum deformation amount, the control unit calculates the correction amount for each time and transfers the tool bar by the corrected amount to perform the machining.

일반적인 자동선반 등의 공작기계에서 시간 대비 발생되는 열변형에 따른 오차량은 도 3의 실제가공시 발생한 오차량과 비슷한 유형을 나타내게 되는데, 최초 가공시에는 오차량이 점차 증가되다가 일정한 시간(안정화시간)에 다다르면 오차량이 일정하게 유지된다.The error amount due to heat deformation generated in time in general machine tools such as automatic lathes is similar to the error amount generated in actual processing of FIG. 3. ), The amount of error remains constant.

본 발명은 이러한 점에 착안하여 제어부에서 입력된 안정화시간 및 최대변형량을 비교하여 가공시간에 대해 보정량을 결정해주되 다음의 수식을 유추하여 적용한다.The present invention focuses on this point and compares the stabilization time and the maximum deformation amount input from the control unit to determine the correction amount for the machining time, but applies the following equation by analogy.

Figure 112008081786811-pat00001
...(수식 1)
Figure 112008081786811-pat00001
... (Equation 1)

상기 수식은 로그함수 내에 [(시간/안정화시간)+1]을 넣어 최초 보정량은 LN(0/안정화시간 + 1)*최대오차량*1 = 0 이고, 최대보정량은 안정화시간이 될 때의 값인 LN(1+1)*최대오차량*k1 즉, 0.693*최대오차량*k1으로 그 범위를 제한해준다.The above formula puts [(time / stabilization time) +1] in the logarithmic function, and the initial correction amount is LN (0 / stabilization time + 1) * maximum error amount * 1 = 0, and the maximum correction amount is the value at the stabilization time. LN (1 + 1) * k 1 * maximum error amount i.e., up to 0.693 * o allows limiting of its scope as the vehicle 1 * k.

이때의 k1은 상수값이다.K 1 at this time is a constant value.

여기서 상기 로그함수의 값과 실제오차량값은 차이가 날 수 있으므로, 상기 로그함수 값에 다음의 수식과 같은 sin함수 값을 더하여 오차량을 줄일 수 있다.Since the log function value and the actual error value may be different from each other, an error amount may be reduced by adding a sin function value as shown in the following equation to the log function value.

Figure 112008081786811-pat00002
...(수식 2)
Figure 112008081786811-pat00002
... (Equation 2)

이때의 k2는 상수값이며, sin함수의 ()안에 들어가는 값은 각도 즉, degree값이다.In this case, k 2 is a constant value, and the value in () of the sin function is an angle, that is, a degree value.

즉, 최초가공시에는 sin 0˚= 0 이므로 별도의 오차보정값이 없으며, 안정화시간 역시 sin 180˚= 0 이므로 별도의 오차보정값이 없다.That is, at the time of initial processing, sin 0˚ = 0, so there is no separate error correction value, and the stabilization time is sin 180˚ = 0, so there is no separate error correction value.

하지만, 최초가공시와 안정화시간의 중간시간 즉, sin값이 최대인 90˚일 때 에는 sin 90˚=1이므로 오차보정값은 k2*최대오차량*sin(90/180*180˚) = k2*최대오차량*1 로서 그 값이 최대가 된다.However, the error correction value is k 2 * maximum error amount * sin (90/180 * 180˚) since sin 90˚ = 1 when the intermediate time between the initial processing and the stabilization time, that is, the maximum sin value is 90˚. The maximum value of k 2 * maximum error * 1.

따라서, 가장 바람직한 오차보정방법은 상술한 수식 1에 수식 2를 더한 아래의 수식으로 그 오차량을 보정해주는 것이다.Therefore, the most preferable error correction method is to correct the error amount by the following equation plus Equation 2 above.

Figure 112008081786811-pat00003
...(수식3)
Figure 112008081786811-pat00003
... (Equation 3)

상술한 수식들에서 k1과 k2는 상수인데, 상수값은 가공되는 공작물의 재질과 가공량에 따라 달라질 수 있다. 보통 k1 의 경우 0.5~2 사이의 값에서 정해지고, k2의 경우 0.1~1 사이의 범위가 적당하다.In the above formulas k 1 and k 2 are constants, and the constant value may vary depending on the material and the processing amount of the workpiece to be machined. Usually, k 1 is set at a value between 0.5 and 2, and in the case of k 2, a range of 0.1 to 1 is appropriate.

또한 최대오차량은 기계마다 차이가 있으나, 보통 0.001~0.1 사이의 값이다.The maximum error varies from machine to machine, but is usually between 0.001 and 0.1.

본 명세서에서 사용된 변형량과 오차량은 그 위미가 동일한 것으로서, 열변형에 따라 공구대 절대중심점의 위치가 달라지는 값은 변형량값이고, 공구대의 변형량에 따라 가공된 공작물에 발생된 오차량이 오차량값이다.As used herein, the amount of deformation and the amount of error are the same, the value at which the position of the tool center absolute center varies according to the thermal deformation is the amount of deformation, and the amount of error generated in the machined workpiece according to the amount of deformation of the tool is the amount of error. Value.

따라서, 공구대의 위치가 달라지게 되면 가공되는 공작물에도 당연히 오차가 발생되므로 변형량값과 오차량값은 같아지게 된다.Accordingly, when the position of the tool post is changed, an error occurs naturally in the workpiece to be machined, so that the deformation amount value and the error amount value are the same.

도 1은 본 발명에 의한 자동선반의 열변형에 따른 보정방법의 플로우챠트1 is a flow chart of the correction method according to the thermal deformation of the automatic lathe according to the present invention

도 2는 선반가공의 예시도Figure 2 is an illustration of turning

도 3은 시간 대비 발생되는 열변형에 따른 오차량표3 is an error amount table according to the heat deformation generated over time

Claims (4)

샘플 가공으로 시간 별로 공작물의 오차를 측정하여 오차량이 일정하게 유지되는 안정화시간 및 안정화시간에 대한 최대오차량을 측정하여, 안정화시간과 최대오차량에 따라 제어부에서 시간 별로 계산하여 열변형에 따른 오차량을 보정해주는 것이 특징인 자동선반의 열변형에 따른 보정방법Measure the error of the workpiece by time by sample processing, measure the maximum error amount for stabilization time and stabilization time that the error amount is kept constant, calculate the time by the controller according to stabilization time and maximum error amount Calibration method according to thermal deformation of automatic lathe characterized by correcting error 공구대의 열변형에 따른 변형량을 측정하기 위해 샘플가공을 실시하는 단계(제1단계)와, 샘플 가공된 공작물의 오차량을 측정하는 단계(제2단계)와, 안정화시간 및 최대변형량(최대오차량)을 입력하는 단계(제3단계)와, 입력된 안정화시간 및 최대변형량에 따라 보정값을 제어부에서 계산하여 보정해주는 단계(제4단계)와, 상기 제4단계에서 계산된 보정값으로 공작물을 가공하는 단계(제5단계);로 이루어지는 것이 특징인 자동선반의 열변형에 따른 보정방법In order to measure the deformation amount according to the thermal deformation of the tool bar, the step of performing sample processing (first step), the step of measuring the error amount of the sampled workpiece (second step), the stabilization time and the maximum deformation amount (maximum error Vehicle), a third step, a step of calculating and correcting a correction value in the controller according to the input stabilization time and the maximum deformation amount (step 4), and a work piece with the correction value calculated in the fourth step. Processing (step 5); the correction method according to the thermal deformation of the automatic lathe 제1항 또는 제2항 중 어느 한 항에 있어서,The method according to claim 1 or 2, 상기 제어부는 입력된 안정화시간 및 최대변형량을 비교하여 가공시간에 대해 보정량을 결정해주되, 다음의 수식으로 보정값을 정하는 것이 특징인 자동선반의 열변형에 따른 보정방법The control unit determines the correction amount for the machining time by comparing the input stabilization time and the maximum deformation amount, the correction method according to the thermal deformation of the automatic lathe characterized in that the correction value is determined by the following equation
Figure 112008081786811-pat00004
Figure 112008081786811-pat00004
제1항 또는 제2항 중 어느 한 항에 있어서,The method according to claim 1 or 2, 상기 제어부는 입력된 안정화시간 및 최대변형량을 비교하여 가공시간에 대해 보정량을 결정해주되, 다음의 수식으로 보정값을 정하는 것이 특징인 자동선반의 열변형에 따른 보정방법The control unit determines the correction amount for the machining time by comparing the input stabilization time and the maximum deformation amount, the correction method according to the thermal deformation of the automatic lathe characterized in that the correction value is determined by the following equation
Figure 112008081786811-pat00005
Figure 112008081786811-pat00005
KR1020080118589A 2008-11-27 2008-11-27 Compensating method for thermal deformation of Automatic lathe KR100975008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080118589A KR100975008B1 (en) 2008-11-27 2008-11-27 Compensating method for thermal deformation of Automatic lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080118589A KR100975008B1 (en) 2008-11-27 2008-11-27 Compensating method for thermal deformation of Automatic lathe

Publications (2)

Publication Number Publication Date
KR20100060127A KR20100060127A (en) 2010-06-07
KR100975008B1 true KR100975008B1 (en) 2010-08-09

Family

ID=42361081

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080118589A KR100975008B1 (en) 2008-11-27 2008-11-27 Compensating method for thermal deformation of Automatic lathe

Country Status (1)

Country Link
KR (1) KR100975008B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114131426B (en) * 2021-11-09 2023-05-16 中国人民解放军国防科技大学 Method, system and medium for processing weak-rigidity reflecting mirror based on quick servo cutter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246546A (en) * 1994-03-14 1995-09-26 Osaka Kiko Co Ltd Thermal displacement correction method for ball screw in nc machine tool
JP2000135653A (en) 1998-10-30 2000-05-16 Brother Ind Ltd Thermal displacement correcting method of machine tool and its thermal displacement correcting device
JP2001277073A (en) 2000-03-30 2001-10-09 Mitsubishi Heavy Ind Ltd Tool position correcting method for machining device
JP2004181540A (en) 2002-11-29 2004-07-02 Nakamura Tome Precision Ind Co Ltd Correction method for thermal deformation error of machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246546A (en) * 1994-03-14 1995-09-26 Osaka Kiko Co Ltd Thermal displacement correction method for ball screw in nc machine tool
JP2000135653A (en) 1998-10-30 2000-05-16 Brother Ind Ltd Thermal displacement correcting method of machine tool and its thermal displacement correcting device
JP2001277073A (en) 2000-03-30 2001-10-09 Mitsubishi Heavy Ind Ltd Tool position correcting method for machining device
JP2004181540A (en) 2002-11-29 2004-07-02 Nakamura Tome Precision Ind Co Ltd Correction method for thermal deformation error of machine tool

Also Published As

Publication number Publication date
KR20100060127A (en) 2010-06-07

Similar Documents

Publication Publication Date Title
US9448552B2 (en) Numerically-controlled machine tool and spindle error compensating method thereof
US5513113A (en) Method of and device for correcting position of cutting-edge of tool in numerically controlled machine tool
US20120283851A1 (en) Control parameter adjustment method and adjustment device
JP2942547B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP6982291B2 (en) Machine tool work processing method
US20180307200A1 (en) Method for compensating milling cutter deflection
WO2013073317A1 (en) Machine tool
CN112486092A (en) Method for correcting tool parameters of a machine tool for machining workpieces
KR20180116361A (en) Automatic transformation device and conversion method of thermal displacement correction parameters of a machine tool
KR101316864B1 (en) Cnc gear hobbing machine
KR100704050B1 (en) Method for compensation of tool alignment error
KR101960171B1 (en) Method for correcting of pivot of 5 axis equipment
Liu Repetitive measurement and compensation to improve workpiece machining accuracy
KR102053465B1 (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
KR100975008B1 (en) Compensating method for thermal deformation of Automatic lathe
US10955238B1 (en) In-process automatic recalibration
Nekrasov et al. Entering the operative correction machining processes CNC
KR101787347B1 (en) Control method of numerical control machine tool
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
WO2011024838A1 (en) Method for thermal displacement correction in machine tool and thermal displacement correction device
JP2019013996A (en) Workpiece machining method in machine tool
RU2677443C2 (en) Device of high-precision processing of details on lathe tools with numerical program control
KR102595030B1 (en) Workpiece Processing method
JP4082598B2 (en) Method and apparatus for correcting thermal displacement of numerically controlled machine tool
CN111660142A (en) Machine tool with automatic correction function for tool replacement

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130802

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140804

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180731

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 10