KR100959475B1 - Producing method for reinforcing steel - Google Patents

Producing method for reinforcing steel Download PDF

Info

Publication number
KR100959475B1
KR100959475B1 KR1020070109238A KR20070109238A KR100959475B1 KR 100959475 B1 KR100959475 B1 KR 100959475B1 KR 1020070109238 A KR1020070109238 A KR 1020070109238A KR 20070109238 A KR20070109238 A KR 20070109238A KR 100959475 B1 KR100959475 B1 KR 100959475B1
Authority
KR
South Korea
Prior art keywords
cooled
strength
high strength
rolling
steel
Prior art date
Application number
KR1020070109238A
Other languages
Korean (ko)
Other versions
KR20090043401A (en
Inventor
홍석우
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020070109238A priority Critical patent/KR100959475B1/en
Publication of KR20090043401A publication Critical patent/KR20090043401A/en
Application granted granted Critical
Publication of KR100959475B1 publication Critical patent/KR100959475B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 거대화 구조물에 상용화될 수 있도록 고강도 고인성의 기계적 성질을 만족하는 초고강도 철근의 제조방법에 관한 것이다. The present invention relates to a method for producing an ultrahigh strength steel reinforced with high strength and high mechanical properties so as to be commercialized in a huge structure.

상기 초고강도 철근의 제조방법은 합금원소를 첨가한 슬라브를 재가열로에서 대략 1000~1150℃사이의 온도에서 대략 2ㅁ0.5시간 가열하고, 조압연, 중간압연, 사상압연을 통하여 원하는 두께와 폭으로 압연한 후 900~1000℃에서 수냉하여 500~600℃로 냉각함으로써 조직을 마르텐사이트화 한 다음 이를 공랭하여 내부응력을 제거함으로써 중심 조직을 펄라이트와 페라이트로 만들어 경화층의 조직을 안정화한다.The method for producing an ultra-high strength steel bar according to the present invention is characterized in that the slab to which the alloy element is added is heated in a reheating furnace at a temperature of about 1000 to 1150 DEG C for about 2 to 0.5 hours and then subjected to rough rolling, After rolling, it is water-cooled at 900 to 1000 ° C. and cooled to 500 to 600 ° C. to martensite the structure. Then, the structure is air-cooled to remove internal stress to stabilize the structure of the hardened layer by making pearlite and ferrite.

본 발명에 의하면, 합금원소의 함량조절과 열처리 및 냉각방법에 의해 고강도와 고인성의 조건이 충족되는 철근의 생산이 가능하다. 따라서 비교적 저렴한 비용으로 상기 철근을 초고층 빌딩 및 거대 구조물 등에 널리 사용할 수 있는 이점이 있다.According to the present invention, it is possible to produce reinforcing bars that satisfy the conditions of high strength and high tensile strength by controlling the content of alloying elements and by heat treatment and cooling methods. Therefore, there is an advantage that the reinforcing bars can be widely used for high-rise buildings and large structures at a relatively low cost.

초고강도 철근, 고인성, 고강도, 열처리 Ultra high strength steel, high toughness, high strength, heat treatment

Description

초고강도 철근의 제조방법{Producing method for reinforcing steel}{Producing method for reinforcing steel}

본 발명은 초고강도 철근에 관한 것으로, 보다 상세하게는 합금과 열처리를 통하여 항복강도 785MPa 이상의 고강도와 고인성의 조건을 충족시킬 수 있도록 한 초고강도 철근의 제조방법에 관한 것이다.More particularly, the present invention relates to a method of manufacturing an ultrahigh strength steel reinforcing bar capable of satisfying a high strength and high tensile strength of at least 785 MPa through a heat treatment with an alloy.

현재는 미래 사회의 인구증가에 따른 인간활동의 공간 확보 및 공간의 활용성을 위한 구조물의 거대화 (예를 들어 초고층 빌딩, 장대 교량, 대공간 구조물, 거대 해양 구조물, 거대 지하 구조물)가 필연적이다. 이러한 거대한 구조물에 들어가는 철근은 고강도 고인성등의 성질을 만족해야 한다. 현재는 항복강도 500MPa급의 철근이 상용화되어 100층 높이의 초고층 구조물에 쓰이고 있으며 이러한 추세는 향후 더욱 가속화될 것으로 전망된다. Currently, it is inevitable to secure space for human activities in accordance with the population growth of the future society and to make huge structures for space utilization (for example, skyscrapers, long bridges, large space structures, huge ocean structures and huge underground structures). Reinforcing bars in these huge structures must satisfy the requirements of high strength and high toughness. Currently, reinforcing bars with a yield strength of 500 MPa are commercialized and used for 100-story high-rise structures. This trend is expected to accelerate further in the future.

일본의 경우 전기로 혹은 고로에서 제강하여 만든 SD785 초고강도 철근의 기계적 성질을 만족하는 합금설계를 위해 고가의 V,Nb을 다량 첨가하여 열간압연후 공랭하여 만든다. 상기 SD785 초고강도 철근은 항복강도 785MPa, 인장강도 932MPa, 연신율 10% 이상 그리고 굽힘시험(D=2.5,3d)인 기계적 성질을 가진다.In Japan, high-priced V and Nb are added in large quantities to design the alloy satisfying the mechanical properties of the SD785 ultra-high-strength steel produced by an electric furnace or a blast furnace. The SD785 super high strength steel has mechanical properties such as a yield strength of 785 MPa, a tensile strength of 932 MPa, an elongation of 10% or more and a bending test (D = 2.5,3d).

또한 유럽 및 국내에서는 수냉설비(Tempcore)를 이용하여 철근의 외곽부(경 화층)와 중심부의 조직을 다르게 만들어 고가의 합금원소(V,Nb,Mn)을 줄임으로써 가격 경쟁력에 우위를 점하고 있다. 하지만 일정한 합금조성과 가혹한 수냉조건에서는 연신 및 굽힘시험 시에 파단등의 문제가 발생되고 있으므로 새로운 합금설계 및 냉각조건이 필요한 실정이다. 따라서 대형화 구조물에서 널리 사용될 수 있는 항복강도 785MPa이상의 철근 개발을 위한 합금설계 및 제조방법에 대한 연구의 중요성이 부각되고 있다. In Europe and Korea, by using water-cooling equipment (Tempcore), the structure of the outer part (hardened layer) and the center part of the reinforcing steel are made different from each other, thereby reducing expensive alloying elements (V, Nb, Mn) . However, in the case of constant alloy composition and severe water-cooling conditions, problems such as fracture occur during stretching and bending tests, and therefore new alloying design and cooling conditions are required. Therefore, it is important to study the design and fabrication methods of alloys for the development of rebars with a yield strength of 785 MPa or more, which can be widely used in large-scale structures.

이에 본 발명의 목적은 V원소함량과 열처리조건을 조절하여 항복강도 785MPa 이상, 인장강도 932MPa 이상, 연신율 10% 이상이고, 굽임시험시 철근의 직경이 25mm 이하의 경우 D=2.5d/90°만족하며 철근의 직경이 25mm 초과인 경우에는 D=3d/90°만족할 수 있도록 한 초고강도 철근의 제조방법을 제공함에 있다.Accordingly, it is an object of the present invention to provide a steel sheet which has a yield strength of 785 MPa or more, a tensile strength of 932 MPa or more, an elongation of 10% or more by controlling the V element content and heat treatment conditions and satisfies D = 2.5d / 90 ° when the diameter of the reinforcing bars is 25 mm or less And when the diameter of the reinforcing bar exceeds 25 mm, D = 3d / 90 ° can be satisfied.

상기한 목적을 달성하기 위한 본 발명은, 중량 %로, 탄소(C) 0.3~0.35, 규소(Si) 0.3~0.36, 망간(Mn) 1.3~1.35, 바나듐(V) 0.10~0.15, 질소(N) 0.01~0.012를 함유하고, 나머지는 전기로 제강시에 불가피하게 포함되는 불순물로 구성되는 강이 열간압연을 통해 철근 형태로 형성되고 냉각처리되는 초고강도 철근의 제조방법에 있어서,In order to accomplish the above object, the present invention provides a method of manufacturing a semiconductor device, which comprises, by weight, 0.3 to 0.35 carbon (C), 0.3 to 0.36 silicon (Si), 1.3 to 1.35 manganese (Mn), 0.10 to 0.15 vanadium ) Of 0.01 to 0.012 and the remainder is formed of a reinforcing steel through a hot rolling process, wherein the steel is inevitably included in an electric furnace,

상기 중량 %의 합금원소 및 불가피하게 포함되는 불순물을 포함하는 강은 1000~1150 ℃의 온도에서 2±0.5시간 동안 가열하고 조압연, 중간압연, 사상압연 공정을 거쳐 냉각처리되는 것을 특징으로 한다. The steel containing the above-mentioned weight% of the alloying element and inevitably contained impurities is characterized in that the steel is heated at a temperature of 1000 to 1150 캜 for 2 ± 0.5 hours and subjected to cooling treatment after rough rolling, intermediate rolling and finishing rolling.

특히, 상기 냉각처리는 표면은 마르텐사이트 조직이 되고 중심은 펄라이트와 페라이트 조직이 되도록 900~1000℃에서 수냉시켜 500~600℃로 냉각후 공냉시키는 것이 바람직하다.Particularly, it is preferable that the cooling treatment is performed by cooling the surface to a martensite structure and water-cooling at 900 to 1000 ° C so that the center becomes a pearlite and a ferrite structure, cooling to 500 to 600 ° C, followed by air cooling.

위에서 상세하게 설명한 바와 같이 본 발명의 초고강도 철근의 제조방법에 따르면, 바나듐(V)원소의 함량조절과 열처리에 의해 고강도와 고인성의 조건을 충족시킬 수 있는 철근을 생산할 수 있다. 상기 철근은 종래에 만족하지 못했던 인장강도, 연신율 및 굽힘시험의 조건등을 만족하므로 비교적 저렴한 비용으로 초고층 빌딩 및 거대 구조물 등에 널리 상용화될 수 있는 효과가 있다. As described in detail above, according to the method for producing ultra-high strength steel of the present invention, it is possible to produce reinforcing bars capable of satisfying high strength and high tensile strength by adjusting the content of vanadium (V) element and heat treatment. The reinforcing bars satisfy the requirements of tensile strength, elongation and bending test which have not been satisfactorily satisfied in the past, so that they can be widely commercialized at a relatively low cost in high-rise buildings and large-scale structures.

이하, 본 발명에 의한 초고강도 철근의 제조방법을 바람직한 실시 예를 참조하여 상세하게 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method of producing an ultrahigh strength steel bar according to the present invention will be described in detail with reference to preferred embodiments.

본 발명은 합금원소가 고가이고 첨가해도 영향이 없는 니켈, 몰리브덴, 구리를 제외한 합금원소를 포함한다. 상기 합금원소는 탄소, 규소, 망간, 바나듐, 질소 및 크롬이 포함되며, 철(Fe) 및 불가피한 불순물로 조성된 강에 상기 합금원소를 첨가하고 열간압연하여 수냉시킨 후 공랭시킴으로써 항복강도 785MPa이상, 인장강도 932MPa이상, 연신율10%이상 및 굽힘시험의 물성치를 만족하도록 제조하는 것이다.The present invention includes alloying elements other than nickel, molybdenum, and copper which are expensive and have no effect even when added. The alloying element includes carbon, silicon, manganese, vanadium, nitrogen, and chromium. The alloying element is added to steel composed of iron (Fe) and unavoidable impurities, hot-rolled and water-cooled, Tensile strength of 932 MPa or more, elongation of 10% or more, and physical properties of the bending test.

더 상세히 설명하면 상기 강에 첨가되는 상기 합금원소 중 바나듐의 함량을 0.10%과 0.15% 사이로 설정하여 결정립의 미세화를 촉진하고, 열간압연된 상기 합 금강을 수냉과 공냉을 통해 마르텐사이트와 펄라이트 페라이트로 이루어진 2상 조직을 가지도록 하여 표면강도와 내부인성이 고강도 고인성이 되도록 조절할 수 있다. More specifically, the content of vanadium in the alloying elements added to the steel is set to be between 0.10% and 0.15%, thereby promoting the miniaturization of the crystal grains. The hot-rolled alloy steel is subjected to water cooling and air cooling to produce martensite and pearlite ferrite So that the surface strength and the internal toughness can be adjusted to be high strength and high toughness.

본 발명의 합금 원소들의 기능과 함유량은 다음과 같다.The function and content of the alloying elements of the present invention are as follows.

탄소(C):0.30~0.35%Carbon (C): 0.30 to 0.35%

탄소는 강에 고강도를 부여하기 위한 불가결한 원소이다. 상기 탄소의 함량이 0.3% 이하인 경우는 고강도를 얻을 수 없고, 0.35% 이상인 경우에는 수냉조건에 따라 경화층의 경도가 높아지나 연성이 좋지 않아 굽힘시험시 파단이 될 수 있는 특성을 갖는다. 따라서 상기 탄소의 함량은 0.30~0.35% 사이인 것이 바람직하다.Carbon is an indispensable element for imparting high strength to the steel. When the carbon content is 0.3% or less, high strength can not be obtained. When the carbon content is 0.35% or more, the hardness of the cured layer is high according to the water-cooling condition, but the ductility is poor and the steel can be broken at the bending test. Therefore, the content of carbon is preferably between 0.30 and 0.35%.

규소(Si):0.3~0.35%Silicon (Si): 0.3 to 0.35%

규소는 강에 탈산 및 페라이트를 강화한다. 상기 규소는 그 함유량이 0.3%이하에서는 원하는 강도를 얻을 수 없고 함량이 많아지면 인성을 저하하게 된다. SD785물성치를 만족하기 위해서는 0.3~0.35%내로 조절하는 것이 바람직하다.Silicones deoxidize the steel and strengthen the ferrite. If the content of the silicon is 0.3% or less, desired strength can not be obtained, and if the content is increased, the toughness is lowered. In order to satisfy the SD785 physical property, it is preferable to adjust it to 0.3 to 0.35%.

망간(Mn):1.3~1.35%Manganese (Mn): 1.3 to 1.35%

망간은 탈탄 및 적열취성을 방지하며 강의 강도를 향상시키고 200~700℃ 사이에서 형성되는 시멘타이트를 안정되게 한다. 상기 망간은 함유량이 0.3%미만이면 효과를 볼 수 없으므로 상기 망간의 최적의 조성은 1.3~1.35%내로 조절하는 것이 바람직하다.Manganese prevents decarburization and red-hot brittleness, improves the strength of the steel and stabilizes the cementite formed between 200 and 700 ° C. If the content of manganese is less than 0.3%, the effect can not be obtained. Therefore, it is preferable that the optimum composition of manganese is controlled within 1.3 to 1.35%.

바나듐(V):0.10~0.15%Vanadium (V): 0.10 to 0.15%

바나듐은 오스테나이트 상으로부터 페라이트 상으로 변태할 때에 탄질화물을 분산 석출시켜 상기 강의 강도를 상승시키는 역할을 한다. 또한 결정립의 미세화를 촉진하고 인장강도와 탄성한계를 높여 낮은 항복비에서 우수한 강도를 얻을 수 있도록 한다. 상기 바나듐의 함량이 0.1미만이면 상기 강은 너무 높은 경화층의 경도로 인해 연신율이 저하되거나 굽힘시험 시 파단의 원인이 되므로, 상기 바나듐의 함량은 0.10~0.15%로 설정하는 것이 바람직하다. 왜냐하면 상기 강에 상기 바나듐을 첨가하면 변태점 및 변태속도가 변화하므로 중심부의 강도상승 및 고강도 고인성의 조건을 만족하는 상기 강의 적정 냉각조건을 설정할 수 있기 때문이다.Vanadium plays a role of increasing the strength of the steel by dispersing and precipitating carbonitride when it transforms from an austenite phase to a ferrite phase. In addition, it promotes the miniaturization of crystal grains and increases the tensile strength and the elastic limit so that excellent strength can be obtained at a low yield ratio. If the content of vanadium is less than 0.1, the steel may have a too high hardness, which may result in a decrease in elongation or a break in the bending test. Therefore, the content of vanadium is preferably set to 0.10 to 0.15%. This is because when the vanadium is added to the steel, the transformation point and the transformation speed change, so that appropriate cooling conditions for the steel satisfying the conditions of the strength increase at the center portion and the high strength and high toughness can be set.

질소(N):0.01~0.012%Nitrogen (N): 0.01 to 0.012%

상기 질소는 바나듐과 질화물 혹은 탄질화물을 석출시켜 강도를 상승시키는 원소로 그 함량이 너무 많을 경우 오히려 인성을 저해하는 원소로 작용하므로 상기 질소의 함량은 0.01~0.012%의 범위로 규제하는 것이 바람직하다.The nitrogen is an element that increases the strength by precipitating vanadium and nitride or carbonitride. If the content of nitrogen is too high, the nitrogen acts as an element which hinders toughness. Therefore, the content of nitrogen is preferably regulated in a range of 0.01 to 0.012% .

크롬(Cr):0.10~0.15%Chromium (Cr): 0.10 to 0.15%

크롬은 망간과 유사하게 강도를 상승시키므로, 최소한 0.10% 첨가되어야만 펄라이트 콜로니를 세분하고 연성을 향상시킬 수 있다. 또한 펄라이트 콜로니를 세 분하고 연성을 향상시키는 원소로 작용하지만 2.0% 이상 첨가시에는 소입성을 증가시켜 원하는 조직을 얻을 수 없으므로 상기 Cr의 함량은 0.10~0.15%의 범위로 규제하는 것이 바람직하다.Since chromium increases the strength similar to manganese, at least 0.10% should be added so that the pearlite colonies can be subdivided and ductility improved. In addition, the pearlite colony functions as an element for improving the softness. However, when 2.0% or more of the pearlite colony is added, the desired texture can not be obtained by increasing the incombustibility. Therefore, the content of Cr is preferably regulated in the range of 0.10 to 0.15%.

본 발명은 상기 합금강의 성분들을 포함하고, 나머지는 철(Fe) 및 불가피한 원소들이며 원료, 자재, 제조설비 등의 상황에 따라 함유되는 원소로서 산소(O), 구리(Cu), 몰리브덴(Mo) 등 불가피한 불순물의 미세한 혼입도 허용된다. (O), copper (Cu), molybdenum (Mo), and molybdenum (Mo) as elements contained in the raw materials, materials, Etc. are also allowed.

상기와 같은 조성을 가지는 슬라브는 압연공정을 통해 조압연, 중간압연, 사상압연을 순차적으로 거쳐 철근 형태로 구성된 후에, 아래에서 설명될 수냉 및 공냉을 통해 원하는 기계적 성질을 얻게 된다.The slab having the above composition is subjected to rough rolling, intermediate rolling and finishing rolling sequentially through a rolling process to form a reinforcing bar shape, and then the desired mechanical properties are obtained through water cooling and air cooling, which will be described below.

열간압연 공정;Hot rolling process;

상기 합금원소가 첨가된 슬라브를 주조시 편석된 성분을 재고용하기 위하여 재가열로에서 대략 1000~1150℃사이의 온도에서 가열하고, 조압연, 중간압연, 사상압연을 통하여 원하는 두께와 폭으로 압연하여 철근을 제조한다. 이때 상기 슬라브는 합금원소에 의해 변태점 및 변태속도가 변화하여 임계 냉각속도가 변하도록 2±0.5시간 동안 가열하는 것이 바람직하다. The slab to which the alloy element is added is heated in a reheating furnace at a temperature of about 1000 to 1150 DEG C in order to reuse the segregated components during casting, and rolled to a desired thickness and width through rough rolling, intermediate rolling, . At this time, it is preferable that the slab is heated for 2 ± 0.5 hours by changing the transformation point and transformation speed by the alloying element and changing the critical cooling rate.

열처리의 냉각 공정;Cooling process of heat treatment;

상기 철근의 최종 원하는 조직을 얻기 위해 냉각속도를 조절하는 단계로서, 900~1000℃에서 수냉하여 500~600℃로 냉각하여 마르텐사이트화한 후 공랭하여 내부응력을 제거함으로서 경화층의 조직을 안정화한다. 이때, 상기 철근의 수냉후 자기 템프링된 외부표면에 형성되는 마르텐사이트의 경도값은 350~370Hv이고, 그 두께는 8~12% 사이인 것이 바람직하다. 그리고 상기 철근의 펄라이트와 페라이트로 이루어지는 중심부의 경도는 300~320Hv인 것이 바람직하다. 더욱 바람직하게는 실제 현장에서 원하는 경도값을 얻도록 상기 실험에 의한 경도 값은 상술한 값 이상인 것이 바람직하다.Adjusting the cooling rate in order to obtain the final desired structure of the reinforcing bars, which is water-cooled at 900 to 1000 占 폚, cooled to 500 to 600 占 폚 to be martensized, air cooled to remove internal stress, and the structure of the cured layer is stabilized . At this time, the hardness value of the martensite formed on the self-templated outer surface of the reinforcing bar after water cooling is preferably 350 to 370 Hv, and the thickness thereof is preferably between 8 and 12%. It is preferable that the hardness of the center portion of the reinforcing bars of pearlite and ferrite is 300 to 320 Hv. More preferably, the hardness value according to the above experiment is preferably equal to or higher than the above-mentioned value so as to obtain a desired hardness value at the actual site.

이하, 표 1 및 표 2는 본 발명 이전의 합금설계안에 의한 철근의 합금성분과 냉각조건 및 기계적 성질과의 관계에 대한 결과치를 나타낸 것이다. Table 1 and Table 2 below show the results of the relationship between the alloying elements of the reinforcing bars, the cooling conditions and the mechanical properties according to the alloy design before the present invention.

CC SiSi MnMn PP SS NiNi CrCr MoMo CuCu VV NN SD785-19SD785-19 0.360.36 0.240.24 1.251.25 0.0260.026 0.0180.018 0.070.07 0.090.09 0.020.02 0.210.21 0.0820.082 0.0120.012 SD785-22SD785-22 0.350.35 0.240.24 1.271.27 0.0250.025 0.0180.018 0.070.07 0.090.09 0.020.02 0.200.20 0.0830.083 0.0110.011 SD785-29SD785-29 0.350.35 0.230.23 1.241.24 0.0250.025 0.0190.019 0.070.07 0.090.09 0.020.02 0.210.21 0.0770.077 0.0130.013

냉각 수량
(t/hr)
Cooling water
(t / hr)
압연 속도
(m/s)
Rolling speed
(m / s)
입구온도
(℃)
Inlet temperature
(° C)
출구 온도
(℃)
Outlet temperature
(° C)
Roll pass
(회)
Roll pass
(time)
항복강도
(N/nm2)
Yield strength
(N / nm 2)
인장 강도
(N/nm2)
The tensile strength
(N / nm 2)
연신율
(%)
Elongation
(%)
굽힘 결과Bending result
SD785-19SD785-19 995995 8.58.5 922922 490490 1818 811811 898898 8.78.7 SD785-22SD785-22 960960 5.55.5 910910 485485 1717 952952 999999 7.47.4 ×× SD785-29SD785-29 895895 5.25.2 950950 495495 1818 824824 919919 8.98.9 ××

표1 및 표2는 SD785-19, SD785-22 및 SD785-29에 각각 함금원소의 첨가량을 조절한 상태로 가열로에서 1000~1150℃ 사이로 가열하여 압연한 후 냉각하는 과정에서 냉각수량, 압연속도, 입구온도, 출구온도, 항복강도, 인장강도, 연신율, 및 굽힘결과를 측정한 것이다. Table 1 and Table 2 show the relationship between the amount of cooling water, the rolling speed and the rolling speed in the course of cooling the steel sheet by heating at 1000 to 1150 ° C in a heating furnace while adjusting the addition amount of the ingot element in SD785-19, SD785-22 and SD785-29, , Inlet temperature, outlet temperature, yield strength, tensile strength, elongation, and bending results.

이와 같이 바람직한 합금원소의 최적비율을 슬래브에 첨가하고, 열처리를 통해 철근을 만들게 되면 표면은 마르텐사이트화되고, 중심조직은 펄라이트와 페라이트조직으로 되어 고강도와 고인성의 조건을 만족하게 된다. 특히, 본 발명에서는 바나듐(V)의 중량%과 냉각조건에 따라 상기 철근(SD785)의 항복강도, 인장강도, 및 연신율의 차이가 발생된다. When the optimum ratio of the alloying elements is added to the slab and the reinforcing bars are formed through the heat treatment, the surface is martensized and the core structure becomes pearlite and ferrite structure to satisfy the conditions of high strength and high toughness. Particularly, in the present invention, the yield strength, tensile strength and elongation of the reinforcing bar (SD785) differ depending on the weight% of vanadium (V) and the cooling conditions.

본 발명의 속하는 기술 분야의 통상 지식을 가진 자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.It will be apparent to those skilled in the art that various changes, modifications, and other equivalent embodiments may be made without departing from the spirit and scope of the invention. Therefore, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (2)

중량 %로, 탄소(C) 0.3~0.35, 규소(Si) 0.3~0.36, 망간(Mn) 1.3~1.35, 바나듐(V) 0.10~0.15, 질소(N) 0.01~0.012를 함유하고, 나머지는 전기로 제강시에 불가피하게 포함되는 불순물로 구성되는 강이 열간압연을 통해 철근 형태로 형성되고 냉각처리되는 초고강도 철근의 제조방법에 있어서,(Si) 0.3 to 0.36, manganese (Mn) 1.3 to 1.35, vanadium (V) 0.10 to 0.15, and nitrogen (N) 0.01 to 0.012 in terms of weight% A method of manufacturing an ultrahigh strength steel reinforcing bar comprising the steps of: (a) 상기 중량 %의 합금원소 및 불가피하게 포함되는 불순물을 포함하는 강은 1000~1150 ℃의 온도에서 2±0.5시간 동안 가열하고 조압연, 중간압연, 사상압연 공정을 거쳐 냉각처리되되,The steel containing the above-mentioned weight% of the alloying element and inevitably contained impurities is heated at a temperature of 1000 to 1150 ° C for 2 ± 0.5 hours and subjected to cooling treatment through rough rolling, intermediate rolling and finishing rolling, 상기 냉각처리는, 표면은 마르텐사이트 조직이 되고 중심은 펄라이트와 페라이트 조직이 되도록 900~1000℃에서 수냉시켜 500~600℃로 냉각후 공냉시키는 것을 특징으로 하는 초고강도 철근의 제조방법.Wherein the cooling treatment is water cooled at 900 to 1000 占 폚 so as to have a surface of a martensite structure and a center of pearlite and a ferrite structure, cooled to 500 to 600 占 폚 and then air-cooled. 삭제delete
KR1020070109238A 2007-10-29 2007-10-29 Producing method for reinforcing steel KR100959475B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070109238A KR100959475B1 (en) 2007-10-29 2007-10-29 Producing method for reinforcing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070109238A KR100959475B1 (en) 2007-10-29 2007-10-29 Producing method for reinforcing steel

Publications (2)

Publication Number Publication Date
KR20090043401A KR20090043401A (en) 2009-05-06
KR100959475B1 true KR100959475B1 (en) 2010-05-26

Family

ID=40854248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070109238A KR100959475B1 (en) 2007-10-29 2007-10-29 Producing method for reinforcing steel

Country Status (1)

Country Link
KR (1) KR100959475B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185242B1 (en) 2010-06-28 2012-09-21 현대제철 주식회사 Method for producing of ultra high strength reinforcing steel
CN103498104B (en) * 2013-09-26 2015-06-24 江苏天舜金属材料集团有限公司 630 MPa-grade high-strength hot-rolled reinforced bar and production process thereof
CN105296853B (en) * 2015-11-30 2017-07-04 石横特钢集团有限公司 A kind of 930MPa high-intensity fine rollings screw-thread steel and its preparation technology
CN110846583A (en) * 2019-12-24 2020-02-28 江苏永钢集团有限公司 Nb microalloying high-strength steel bar and preparation method thereof
CN111979486B (en) * 2020-08-10 2022-04-19 南京钢铁股份有限公司 500 Mpa-grade large-size straight-bar deformed steel bar and preparation method thereof
CN115747663A (en) * 2022-12-05 2023-03-07 中交第二航务工程局有限公司 High-toughness easy-to-weld steel bar and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308033A (en) * 1991-04-04 1992-10-30 Nkk Corp Production of refractory steel material for structural use excellent in high temperature strength characteristic after reheating
JPH0995735A (en) * 1995-10-04 1997-04-08 Sumitomo Metal Ind Ltd Production of steel for reinforcing bar excellent in earthquake resistance
JPH09125143A (en) * 1995-09-01 1997-05-13 Sumitomo Metal Ind Ltd Production of reinforcing steel product having high strength and low yield ratio
JPH11335735A (en) 1998-03-24 1999-12-07 Sumitomo Metal Ind Ltd Manufacture of extra thick shape steel excellent in weldability, strength and toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308033A (en) * 1991-04-04 1992-10-30 Nkk Corp Production of refractory steel material for structural use excellent in high temperature strength characteristic after reheating
JPH09125143A (en) * 1995-09-01 1997-05-13 Sumitomo Metal Ind Ltd Production of reinforcing steel product having high strength and low yield ratio
JPH0995735A (en) * 1995-10-04 1997-04-08 Sumitomo Metal Ind Ltd Production of steel for reinforcing bar excellent in earthquake resistance
JPH11335735A (en) 1998-03-24 1999-12-07 Sumitomo Metal Ind Ltd Manufacture of extra thick shape steel excellent in weldability, strength and toughness

Also Published As

Publication number Publication date
KR20090043401A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
KR101940873B1 (en) Steel wire rod and steel wire having high toughness and method for manufacturing thereof
KR101271974B1 (en) High-strength steel having excellent cryogenic toughness and method for production thereof
JP5657790B2 (en) Ultra-high strength rebar and manufacturing method thereof
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
KR101490567B1 (en) High manganese wear resistance steel having excellent weldability and method for manufacturing the same
KR101390612B1 (en) Method for producing hot-rolled high carbon steel sheet
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
KR100959475B1 (en) Producing method for reinforcing steel
JP4005517B2 (en) High-strength composite steel sheet with excellent elongation and stretch flangeability
KR20150109461A (en) High Strength Steel Sheet and Manufacturing Method Therefor
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
KR100987347B1 (en) Method for manufacturing high-strength deformed bar with low yield ratio
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR20120132829A (en) Method for manufacturing high-strength deformed bar with low yield ratio
KR20110066281A (en) Producing method for reinforcing steel and reinforcing steel using the same
KR101344651B1 (en) Manufacturing method of steel-sheet
KR101795882B1 (en) Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR101736590B1 (en) Non heat treated wire rod having excellent high strength and method for manafacturing thereof
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
JP7018138B2 (en) Heat treatment curable high carbon steel sheet and its manufacturing method
KR101372707B1 (en) High strength high carbon steel sheet having excellent uniformity and mehtod for production thereof
KR20080060979A (en) Hot-rolled steel sheet for line pipe having low anisotropy of low temperature toughness and yield strength and the method for manufacturing the same
EP4332265A1 (en) Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same
KR20220041504A (en) Hot rolled steel having high strength and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130326

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160420

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190425

Year of fee payment: 10