JPH0995735A - Production of steel for reinforcing bar excellent in earthquake resistance - Google Patents

Production of steel for reinforcing bar excellent in earthquake resistance

Info

Publication number
JPH0995735A
JPH0995735A JP25765495A JP25765495A JPH0995735A JP H0995735 A JPH0995735 A JP H0995735A JP 25765495 A JP25765495 A JP 25765495A JP 25765495 A JP25765495 A JP 25765495A JP H0995735 A JPH0995735 A JP H0995735A
Authority
JP
Japan
Prior art keywords
rolling
steel
steel material
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25765495A
Other languages
Japanese (ja)
Other versions
JP3022280B2 (en
Inventor
Yasuo Kurokawa
八寿男 黒川
Yoshihiko Kamata
芳彦 鎌田
Norihito Kunitani
法仁 訓谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7257654A priority Critical patent/JP3022280B2/en
Publication of JPH0995735A publication Critical patent/JPH0995735A/en
Application granted granted Critical
Publication of JP3022280B2 publication Critical patent/JP3022280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel for a concrete reinforcing bar excellent in earthquake resistance by subjecting a carbon steel having a specified compsn. to hot rough rolling, intermediate rolling and finish rolling under specified temp. conditions and thereafter executing accelerated cooling by water cooling. SOLUTION: A slab having a compsn. contg., by weight, 0.10 to 0.40% C, 0.05 to 0.60% Si, 0.60 to 2.00% Mn and specified amounts of Al, N, B, P, S, Cu, Ni, Mo and Ti or furthermore contg. one or more kinds of V and Nb is heated at 950 to 1,250 deg.C and is subjected to rough rolling. Successively, the treatment of rapidly cooling the surface of the steel to the temp. range of 600 to 700 deg.C by water cooling between the passes in the subsequent intermediate rolling and finish rolling is repeated for one to five times to form the structure of the surface of the steel into fine ferrite-bainite, furthermore, the finish rolling is finished at 750 to 950 deg.C, and after that, it is rapidly cooled to 550 to 400 deg.C at a cooling rate of 3 to 10 deg.C/sec. The objective steel for a reinforcing bar having >345MPa yield strength, <0.8 yield ratio, >1.4% yield elongation and >=27J/cm<2> Charpy impact value and excellent in earthquake resistance can be produced in a relatively easy way under high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐震性に優れる鉄
筋用鋼材の製造方法に関し、より詳しくは降伏強度が3
45MPa以上、降伏比が0.8以下、降伏伸びが1.
4%以上、且つ、シャルピー衝撃値が27J/cm2
上である耐震性に優れたコンクリート鉄筋用鋼材の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a steel material for reinforcing bars which is excellent in earthquake resistance, and more specifically, a yield strength of 3
45 MPa or more, yield ratio 0.8 or less, yield elongation 1.
The present invention relates to a method for producing a steel material for concrete rebar, which has an excellent earthquake resistance of 4% or more and a Charpy impact value of 27 J / cm 2 or more.

【0002】[0002]

【従来の技術】従来コンクリート用鉄筋には、JIS G 31
12に「鉄筋コンクリ−ト用棒鋼」としてその化学成分と
機械的性質が規格化された鋼材が用いられてきた。現
在、この規格鋼材は通常の一般ビル建築構造用鉄筋とし
て使用されている。
BACKGROUND ART Conventionally, JIS G 31 has been used for reinforcing bars for concrete.
Steel materials with standardized chemical components and mechanical properties have been used as “bars for reinforcing steel concrete” in 12. At present, this standard steel material is used as a normal reinforcing bar for building construction.

【0003】しかしながら、先の兵庫県南部地震を始め
とした巨大地震の発生を契機に、耐震基準の見直しが行
われており、その結果、従来の鉄筋用鋼材よりも高強度
で高靭性を有する鉄筋用鋼材に対する要求が大きくなっ
ている。
However, the earthquake resistance standards have been reviewed in response to the occurrence of the huge earthquakes such as the Hyogoken Nanbu Earthquake mentioned above, and as a result, they have higher strength and higher toughness than conventional steel for reinforcing bars. The demand for steel for reinforcing bars is increasing.

【0004】高強度鉄筋用鋼材に関しては、例えば特公
平7−26152号公報に「降伏伸びの大きい高強度鉄
筋用鋼の製造方法」が提案されている。この公報に記載
の方法で製造すれば、確かに鉄筋用鋼に高い降伏強度と
大きな降伏伸びを付与することが可能ではある。しか
し、鉄筋用鋼の靭性について配慮された製造方法にはな
っていない。そのため、前記の公報に提案された方法で
製造された高強度鉄筋用鋼は、建物に衝撃的に大きな応
力がかかる巨大地震が発生した際の備えとしては必ずし
も充分なものとは言えない。
Regarding the steel for high-strength reinforcing bars, for example, Japanese Patent Publication No. 7-26152 proposes a "method for producing steel for high-strength reinforcing bars having a large yield elongation". If it is manufactured by the method described in this publication, it is certainly possible to impart high yield strength and large yield elongation to steel for reinforcing bars. However, it is not a manufacturing method that considers the toughness of steel for reinforcing bars. Therefore, the steel for high-strength rebar produced by the method proposed in the above-mentioned publication is not necessarily sufficient in preparation for a large earthquake in which a large stress is applied to a building by impact.

【0005】特公昭63−64494号公報には「降伏
棚比の大きい高強度鉄筋用鋼の製造法」が提案されてい
る。この公報に記載の技術では高強度鉄筋用鋼の靭性に
対して配慮はなされているものの、所謂「降伏棚比」を
規定して靭性を確保しようとするものである。そのた
め、建物に衝撃的に複雑で大きな応力がかかる巨大地震
に対しては、前記公報に提案された方法で製造された高
強度鉄筋用鋼も必ずしも充分な備えになるとは言い難
い。
Japanese Patent Publication No. 63-64494 proposes a "method for producing high-strength reinforcing steel having a large yield shelf ratio". Although the technique described in this publication takes into consideration the toughness of the high-strength steel for reinforcing steel, it attempts to secure the toughness by defining the so-called “yield shelf ratio”. For this reason, it is difficult to say that a high-strength steel for a reinforcing steel bar manufactured by the method proposed in the above-mentioned gazette is not always sufficiently prepared for a huge earthquake in which a complex and large stress is applied to a building by impact.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記現状に鑑
みなされたもので、その目的は降伏強度が345MPa
以上、降伏比が0.8以下、降伏伸びが1.4%以上で
あって、且つ、2mmVノッチシャルピー衝撃値が27
J/cm2 以上である耐震性に優れる鉄筋用鋼材を、高
い生産性の下に製造する方法を提供することにある。特
に、上記特性を満足させることで耐震性能を大幅にアッ
プし、先の兵庫県南部地震のような巨大地震が発生して
も充分耐え得るような、耐震性に優れたコンクリート用
鉄筋の製造方法を提供することを最大の目的とするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and its purpose is to provide a yield strength of 345 MPa.
As described above, the yield ratio is 0.8 or less, the yield elongation is 1.4% or more, and the 2 mmV notch Charpy impact value is 27.
An object of the present invention is to provide a method for producing a steel material for reinforcing bars having J / cm 2 or more and excellent in earthquake resistance with high productivity. In particular, a method for manufacturing concrete rebar with excellent earthquake resistance that can significantly endure the earthquake resistance performance by satisfying the above characteristics and can withstand even a huge earthquake such as the Hyogoken Nanbu Earthquake mentioned above. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決するために先ず現行のJIS G 3112規格鋼材の常温
における衝撃試験及び引張試験を行い、耐震性能上の問
題点を検討した。その結果、JIS規格鋼材は耐震鉄筋
用鋼材に必要な機械的特性、なかでも靭性、引張伸び及
び降伏比が低く、耐震鉄筋用として使用するにはあまり
好ましくないことが明らかとなった。従って、構造物の
安全性を高めるためには靭性に優れ、且つ、引張伸びと
降伏比の高い高強度鉄筋を使用することが重要であると
の結論に達した。
[Means for Solving the Problems] In order to solve the above problems, the present inventor first carried out an impact test and a tensile test of a current JIS G 3112 standard steel material at room temperature, and examined problems in seismic performance. . As a result, it became clear that the JIS standard steel material has low mechanical properties required for the steel material for seismic reinforcing bar, especially toughness, tensile elongation and yield ratio, and is not so preferable for use as seismic reinforcing bar. Therefore, it was concluded that it is important to use high-strength reinforcing bars having excellent toughness and high tensile elongation and yield ratio in order to enhance the safety of the structure.

【0008】そこで本発明者は次に、耐震性能と機械的
特性の関係、更には靭性、引張伸び及び降伏比を高める
ことのできる組織に関して検討を重ねた結果、下記〜
の知見を得た。
Then, the present inventor next conducted a study on the relationship between the seismic performance and the mechanical properties, and further on the structure capable of increasing the toughness, the tensile elongation and the yield ratio.
I got the knowledge of.

【0009】衝撃的に複雑で大きな応力がかかる場
合、鋼材の靭性としては所謂「降伏棚比」を確保するよ
りも衝撃値そのものを大きくすることが重要である。
When an impact is complicated and a large stress is applied, it is important for the toughness of the steel material to increase the impact value itself rather than to secure a so-called "yield shelf ratio".

【0010】鋼材の表面近傍を微細なフェライト・パ
−ライト組織とすれば衝撃値、引張伸び及び降伏比を高
めることができる。
The impact value, the tensile elongation and the yield ratio can be increased by forming a fine ferrite-pearlite structure near the surface of the steel material.

【0011】上記の組織とするには中間圧延及び/又
は仕上げ圧延のパス間で水冷して鋼材の表面を600〜
700℃の温度域に急冷すればよい。
In order to obtain the above structure, the surface of the steel material is cooled to 600 to 600 by water cooling between the intermediate rolling and / or finish rolling passes.
It may be rapidly cooled to a temperature range of 700 ° C.

【0012】上記の処理に続いて圧延仕上げ温度を
750〜950℃の範囲に制御し、その後3℃/sを超
え10℃/sまでの冷却速度で550〜400℃の温度
域の温度まで加速冷却すれば効果が大きい。
Following the above treatment, the rolling finishing temperature is controlled in the range of 750 to 950 ° C., and then accelerated to a temperature in the range of 550 to 400 ° C. at a cooling rate of more than 3 ° C./s and 10 ° C./s. The effect is great if cooled.

【0013】兵庫県南部地震クラスの巨大地震に対し
て高層ビルや橋梁などが耐え得るためには、少なくとも
コンクリート鉄筋用鋼材には、(イ)降伏強度345M
Pa以上、降伏比0.8以下、降伏伸び1.4%以上の
引張特性と、(ロ)2mmVノッチシャルピー衝撃値2
7J/cm2 以上の衝撃特性、の双方が必要である。
In order for a high-rise building and a bridge to withstand a huge earthquake of the Hyogo-ken Nanbu Earthquake class, (a) Yield strength of 345 M is necessary for at least concrete reinforcing steel.
Tensile properties of Pa or more, yield ratio of 0.8 or less, yield elongation of 1.4% or more, and (b) 2 mm V notch Charpy impact value 2
Both impact properties of 7 J / cm 2 or more are required.

【0014】上記との処理を行えば、サイズが呼
び名D32以上の太径であっても、降伏強度が345M
Pa以上、降伏比が0.8以下、降伏伸びが1.4%以
上、2mmVノッチシャルピー衝撃値が27J/cm2
以上を有する微細なフェライト・パ−ライト組織からな
る鉄筋用鋼材が得られる。
If the above process is performed, the yield strength is 345 M even if the size is larger than the nominal diameter D32.
Pa or more, yield ratio of 0.8 or less, yield elongation of 1.4% or more, 2 mm V notch Charpy impact value of 27 J / cm 2
A steel material for reinforcing bars having the above-mentioned fine ferrite-pearlite structure can be obtained.

【0015】上記知見に基づく本発明は、下記(1)と
(2)に示す耐震性に優れる鉄筋用鋼材の製造方法を要
旨とする。
The gist of the present invention based on the above findings is a method for manufacturing a steel material for reinforcing bars, which is excellent in earthquake resistance as shown in the following (1) and (2).

【0016】(1)圧延工程が粗圧延、中間圧延及び仕
上げ圧延の各工程からなる耐震性に優れる鉄筋用鋼材の
製造方法であって、重量%で、C:0.10〜0.40
%、Si:0.05〜0.60%、Mn:0.60〜
2.00%、Al:0.005〜0.080%、N:
0.001〜0.007%、B:0〜0.0080%、
P:0.030%以下、S:0.030%以下、Cu:
0.3%以下、Ni:0.3%以下、Mo:0.1%以
下、Ti:0.01%以下、残部Fe及び不可避不純物
の組成を有する鋼材を、950〜1250℃の温度域に
加熱して粗圧延を行い、次いで中間圧延及び/又は仕上
げ圧延のパス間で水冷して鋼材の表面を600〜700
℃の温度域に急冷することを1回〜5回繰り返しながら
圧延し、更に、圧延仕上げ温度を750〜950℃の範
囲に制御して圧延を終了し、その後3℃/sを超え10
℃/sまでの冷却速度で550〜400℃の温度域の温
度まで加速冷却することを特徴とする耐震性に優れる鉄
筋用鋼材の製造方法。
(1) A method for producing a steel material for reinforcing bars having excellent earthquake resistance, wherein the rolling step comprises rough rolling, intermediate rolling and finish rolling, in which C: 0.10 to 0.40 in% by weight.
%, Si: 0.05 to 0.60%, Mn: 0.60
2.00%, Al: 0.005-0.080%, N:
0.001-0.007%, B: 0-0.0080%,
P: 0.030% or less, S: 0.030% or less, Cu:
A steel material having a composition of 0.3% or less, Ni: 0.3% or less, Mo: 0.1% or less, Ti: 0.01% or less, the balance Fe and unavoidable impurities is placed in a temperature range of 950 to 1250 ° C. The steel material is heated to rough rolling, and then water-cooled between passes of intermediate rolling and / or finish rolling to make the surface of the steel material 600 to 700.
Rolling is performed by repeating rapid cooling to a temperature range of ℃ 1 to 5 times, and further, the rolling finishing temperature is controlled within a range of 750 to 950 ° C. to finish the rolling, and thereafter, the rolling finish temperature exceeds 3 ° C./s and exceeds 10 ° C.
A method for producing a steel material for reinforcing bars having excellent earthquake resistance, which comprises accelerating cooling to a temperature in a temperature range of 550 to 400 ° C at a cooling rate of up to ° C / s.

【0017】(2)圧延工程が粗圧延、中間圧延及び仕
上げ圧延の各工程からなる耐震性に優れる鉄筋用鋼材の
製造方法であって、上記(1)に記載の成分、並びに重
量%で、V:0.01〜0.20%及びNb:0.01
〜0.10%の1種以上、残部Fe及び不可避不純物の
組成を有する鋼材を、950〜1250℃の温度域に加
熱して粗圧延を行い、次いで中間圧延及び/又は仕上げ
圧延のパス間で水冷して鋼材の表面を600〜700℃
の温度域に急冷することを1回〜5回繰り返しながら圧
延し、更に、圧延仕上げ温度を750〜950℃の範囲
に制御して圧延を終了し、その後3℃/sを超え10℃
/sまでの冷却速度で550〜400℃の温度域の温度
まで加速冷却することを特徴とする耐震性に優れる鉄筋
用鋼材の製造方法。
(2) A method for producing a steel material for reinforcing bars having excellent earthquake resistance, wherein the rolling step comprises rough rolling, intermediate rolling and finish rolling steps, wherein the components and weight% are the same as described in (1) above. V: 0.01 to 0.20% and Nb: 0.01
Steel material having a composition of 0.1 to 0.10% of balance Fe and unavoidable impurities is heated to a temperature range of 950 to 1250 ° C. for rough rolling, and then between intermediate rolling and / or finish rolling passes. Water-cooled the surface of steel to 600-700 ℃
It is rolled while repeating the rapid cooling to the temperature range of 1 to 5 times, and further, the rolling finish temperature is controlled in the range of 750 to 950 ° C. to finish the rolling, and then the rolling finish temperature exceeds 3 ° C./s and 10 ° C.
A method for producing a steel material for reinforcing bars having excellent earthquake resistance, which comprises accelerating cooling to a temperature in a temperature range of 550 to 400 ° C. at a cooling rate up to / s.

【0018】[0018]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、成分含有量の「%」は「重量%」
を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Each requirement of the present invention will be described in detail below. In addition, “%” of the component content is “% by weight”.
Means

【0019】(A)鋼材の化学組成 C:Cは強度を高めるのに有効な元素である。しかし、
その含有量が0.10%未満では添加効果に乏しく所望
の強度が得られない。一方、0.40%を超えると、本
発明の製造方法によっても製品鋼材の靭性が目標値に達
しない。従って、Cの含有量を0.10〜0.40%と
した。
(A) Chemical Composition of Steel Material C: C is an element effective for increasing strength. But,
If its content is less than 0.10%, the effect of addition is poor and desired strength cannot be obtained. On the other hand, if it exceeds 0.40%, the toughness of the product steel material does not reach the target value even by the manufacturing method of the present invention. Therefore, the content of C is set to 0.10 to 0.40%.

【0020】Si:Siは焼入れ性と強度を向上させる
のに有効な元素である。しかし、その含有量が0.05
%未満では所望の強度が確保できず、0.60%を超え
ると靭性の劣化を招くことになるので、その含有量を
0.05〜0.60%とした。
Si: Si is an element effective for improving hardenability and strength. However, the content is 0.05
If it is less than 0.1%, the desired strength cannot be ensured, and if it exceeds 0.60%, the toughness is deteriorated. Therefore, the content is set to 0.05 to 0.60%.

【0021】Mn:Mnは鋼の焼入れ性向上及び熱間延
性向上に有効な元素である。しかし、その含有量が0.
60%未満では充分な焼入れ性が得られず、2.00%
を超えて含有させると偏析を起こし、却って熱間延性が
低下するようになる。従って、Mnの含有量を0.60
〜2.00%とした。
Mn: Mn is an element effective for improving the hardenability and hot ductility of steel. However, when its content is 0.1.
If it is less than 60%, sufficient hardenability cannot be obtained, and 2.00%
If it is contained in excess of 1.0, segregation will occur, and conversely the hot ductility will decrease. Therefore, if the Mn content is 0.60
˜2.00%.

【0022】Al:Alは鋼の脱酸の安定化及び均質化
を図る作用がある。更に、Nと結合して微細なAlNを
形成し結晶粒を微細にして靭性と強度を向上させる効果
も有する。
Al: Al acts to stabilize and homogenize deoxidation of steel. Further, it also has the effect of forming fine AlN by combining with N to make the crystal grains fine and improve the toughness and strength.

【0023】しかし、その含有量が0.005%未満で
は所望の効果が得られず、0.080%を超えると前記
効果が飽和するばかりか、却って熱間圧延中に鋼材表面
に割れを生ずることとなるので、Alの含有量を0.0
05〜0.080%とした。
However, if the content is less than 0.005%, the desired effect cannot be obtained, and if it exceeds 0.080%, the above effect is not only saturated, but rather cracks occur on the surface of the steel during hot rolling. Therefore, the content of Al is 0.0
It was set to 05 to 0.080%.

【0024】N :NはAlと結合して微細なAlNを
形成し、結晶粒を微細にして靭性と強度を向上させる作
用を有する。しかし、その含有量が0.007%未満で
は結晶粒を微細化するのに有効な量のAlNが生成しな
くなり、一方、0.007%を超えると、靭性の劣化を
招く。従って、Nの含有量を0.001〜0.007%
とした。
N: N has a function of forming fine AlN by combining with Al and making crystal grains fine to improve toughness and strength. However, if the content is less than 0.007%, an amount of AlN effective for refining crystal grains is not generated, while if it exceeds 0.007%, toughness is deteriorated. Therefore, the content of N is 0.001 to 0.007%
And

【0025】B:Bは添加しなくても良い。添加すれば
焼入れ性を高める作用がある。この効果を確実に得るに
はBは0.0003%以上の含有量とすることが望まし
い。しかし、その含有量が0.0080%を超えると前
記効果が飽和することに加えて、結晶粒の粗大化をきた
して靭性の劣化を招く場合がある。従って、Bの含有量
を0〜0.0080%とした。
B: B may not be added. If added, it has the effect of enhancing hardenability. In order to surely obtain this effect, it is desirable that the content of B be 0.0003% or more. However, if the content exceeds 0.0080%, the above effect may be saturated, and in addition, coarsening of crystal grains may occur, resulting in deterioration of toughness. Therefore, the content of B is set to 0 to 0.0080%.

【0026】P、S、Cu、Ni、Mo及びTi:本発
明で用いる鋼が上記の成分元素に加えて、P、S、C
u、Ni、Mo及びTiを通常の不純物のレベルで含ん
でいても、本発明によって得られる耐震性に優れる鉄筋
用鋼材の特性に対しては何ら影響がない。従って、不純
物元素としてP:0.030%以下、S:0.030%
以下、Cu:0.3%以下、Ni:0.3%以下、M
o:0.1%以下及びTi:0.01%以下とした。な
お、鉄筋用鋼材の靭性を高めておけば、衝撃的に複雑で
大きな応力が加わった場合でもコンクリート構造物の安
全性は大きなものとなるので、2mmVノッチシャルピ
ー衝撃値のより大きな値を確保するために、特に不純物
元素としてのPは0.015%以下に、又、Sも0.0
15%以下に規制することが好ましい。
P, S, Cu, Ni, Mo and Ti: The steel used in the present invention contains P, S, C in addition to the above-mentioned constituent elements.
Even if u, Ni, Mo, and Ti are contained at the usual impurity levels, there is no effect on the characteristics of the steel material for reinforcing bars which is excellent in earthquake resistance obtained by the present invention. Therefore, as an impurity element, P: 0.030% or less, S: 0.030%
Below, Cu: 0.3% or less, Ni: 0.3% or less, M
o: 0.1% or less and Ti: 0.01% or less. If the toughness of the steel for reinforcing bars is increased, the safety of the concrete structure will be great even if a complicated and large stress is applied in shock, so a larger value of the 2mmV notch Charpy impact value is secured. Therefore, especially P as an impurity element is 0.015% or less, and S is 0.0
It is preferable to regulate it to 15% or less.

【0027】本発明に係る鋼にはその組成として、上記
の成分に加えて、更に、V及びNbのうちの1種以上を
含んでいても良い。これらの合金元素の作用効果と望ま
しい含有量は下記のとおりである。
The composition of the steel according to the present invention may further contain one or more of V and Nb in addition to the above components. The effects and desirable contents of these alloy elements are as follows.

【0028】V、Nb:V及びNbは鋼の焼入れ性を向
上させるとともに、鋼中で炭化物を形成して結晶粒を微
細化して靭性と強度を向上させる効果を有する。従っ
て、V及びNbは必要に応じて一方又は両方を添加して
も良い。しかし、Vの場合には0.01%未満の含有量
では所望の効果が得られず、0.20%を超えて含有す
ると前記効果が飽和するばかりか、却って脆化現象を引
き起こし常温衝撃値の大きな低下を招く。一方、Nbの
場合にも、0.01%未満の含有量では所望の効果が得
られず、0.10%を超えて含有すると前記効果が飽和
するばかりか、却って脆化現象を引き起こし靭性の低下
を招く。従って、これらの合金元素を1種以上添加する
場合には、V:0.01〜0.20%、Nb:0.01
〜0.10%の含有量とするのが良い。
V, Nb: V and Nb have the effects of improving the hardenability of the steel and forming carbides in the steel to refine the crystal grains to improve the toughness and strength. Therefore, one or both of V and Nb may be added as required. However, in the case of V, if the content is less than 0.01%, the desired effect is not obtained, and if it exceeds 0.20%, the above effect is not only saturated, but rather the embrittlement phenomenon is caused and the room temperature impact value is rather increased. Result in a large decrease. On the other hand, in the case of Nb as well, if the content is less than 0.01%, the desired effect cannot be obtained, and if it is more than 0.10%, the above effect is not only saturated, but rather causes an embrittlement phenomenon and causes toughness. Cause decline. Therefore, when one or more of these alloy elements are added, V: 0.01 to 0.20%, Nb: 0.01
It is preferable to set the content to 0.10%.

【0029】(B)熱間圧延 (B−1)加熱 熱間での連続圧延に際しての加熱温度は、オーステナイ
ト結晶粒の粗大化を防ぐため低温であることが望ましい
が、950℃未満では圧延時に割れを生ずる恐れがあ
り、又低温ほど圧延抵抗が高くなって圧延機に過度の負
荷がかかる。一方、加熱温度が1250℃を超えると圧
延素材の表面酸化が著しくなって圧延時に表面割れを生
ずる。従って、加熱温度を950〜1250℃とした。
(B) Hot rolling (B-1) Heating It is desirable that the heating temperature during continuous hot rolling is low in order to prevent coarsening of austenite crystal grains, but if it is less than 950 ° C. during rolling. There is a risk of cracking, and the rolling resistance increases as the temperature decreases, and the rolling mill is overloaded. On the other hand, when the heating temperature exceeds 1250 ° C., the surface of the rolled material is significantly oxidized and surface cracking occurs during rolling. Therefore, the heating temperature is set to 950 to 1250 ° C.

【0030】(B−2)中間圧延及び/又は仕上げ圧延
のパス間水冷 熱間連続圧延工程は、粗圧延、中間圧延及び仕上げ圧延
の3工程からなるが、このうち中間圧延及び/又は仕上
げ圧延のパス間において水冷を行い、鋼材の表面を60
0〜700℃の温度域に急冷することを1〜5回繰り返
しながら圧延することが重要である。すなわち、中間圧
延及び/又は仕上げ圧延のパス間で水冷して鋼材の表面
をAr1点を下回る700℃以下に急冷してオ−ステナイ
トからフェライトとパ−ライトに変態させる処理と、鋼
材内部の保有熱により復熱させてフェライト・パ−ライ
トからオ−ステナイトへ逆変態させる処理を繰り返すこ
とにより、最終的な鋼材の組織を微細なフェライト・パ
ーライト組織にすることが必要である。前記の処理によ
って鋼材の表面を微細なフェライト・パーライト組織に
することで始めて鋼材の靭性と強度を著しく改善するこ
とが可能となる。
(B-2) Inter-pass water cooling of intermediate rolling and / or finish rolling The hot continuous rolling step comprises three steps of rough rolling, intermediate rolling and finish rolling. Of these, intermediate rolling and / or finish rolling are performed. Water cooling between the passes of the
It is important to roll while repeating rapid cooling to a temperature range of 0 to 700 ° C. 1 to 5 times. That is, water cooling is performed between passes of intermediate rolling and / or finish rolling to rapidly cool the surface of the steel material to 700 ° C. or lower below the Ar 1 point to transform austenite into ferrite and pearlite. It is necessary to make the final microstructure of the steel material a fine ferrite-pearlite structure by repeating the process of reconverting the ferrite pearlite to austenite by recuperating the retained heat. The toughness and strength of the steel material can be remarkably improved only after the surface of the steel material is made into a fine ferrite-pearlite structure by the above treatment.

【0031】パス間水冷した場合の鋼材表面温度が70
0℃を上回る場合はオ−ステナイトからフェライトとパ
−ライトへの変態が充分起こらないので所望の組織が得
られず、600℃を下回る場合は鋼材内部の保有熱によ
る復熱による再加熱が充分でないためフェライト・パ−
ライトからオ−ステナイトへの逆変態が不十分となって
やはり所望の組織が得られない。従って、前記のパス間
水冷を行う場合に鋼材の表面を急冷する温度は600〜
700℃の温度域としなければならない。
The steel surface temperature when water-cooled between passes is 70
If the temperature is higher than 0 ° C, the transformation from austenite to ferrite and pearlite does not occur sufficiently and the desired structure cannot be obtained. If the temperature is lower than 600 ° C, reheating by recuperation due to the heat retained inside the steel is sufficient. Not a ferrite power
The reverse transformation from light to austenite is insufficient and the desired structure cannot be obtained. Therefore, the temperature at which the surface of the steel material is rapidly cooled in the case of performing water cooling between passes is 600 to
The temperature range must be 700 ° C.

【0032】前記したパス間水冷を1回以上行うことに
より、鋼材表面を微細なフェライト・パ−ライト組織に
することが可能であるが、6回以上繰り返してもフェラ
イト・パーライト組織を微細化する効果が飽和する。従
って、パス間水冷は1〜5回繰り返すこととした。
It is possible to make the surface of the steel material into a fine ferrite-pearlite structure by performing water cooling between passes at least once, but the ferrite-pearlite structure can be made fine even if it is repeated 6 times or more. The effect is saturated. Therefore, the water cooling between passes was repeated 1 to 5 times.

【0033】ところで、パス間水冷する「鋼材表面」は
単に鋼材の表面に留まらず、鋼材表面から半径比で0.
3の深さの部位までであっても良い。パス間水冷によっ
て600〜700℃の温度域に急冷される部位が前記深
さまでの場合には所謂「表面部」の組織が微細となっ
て、降伏強度345MPa以上、降伏比0.8以下、降
伏伸び1.4%以上、2mmVノッチシャルピー衝撃値
が27J/cm2 以上という耐震鉄筋用鋼材に必要な特
性を付与することができるためである。これに対して前
記深さが鋼材表面から半径比で0.3の深さを超える
と、内部保有熱量が小さくなって復熱による再加熱が充
分起こらなくなって所望の組織が得られなくなるととも
に、急冷後の圧延時に変形抵抗が大きくなって圧延機に
過度の負荷がかかってしまう。
By the way, the "steel material surface" that is water-cooled between passes is not limited to the surface of the steel material, and the radius ratio of the steel material surface from the steel surface is 0.
It may be up to a depth of 3. When the portion rapidly cooled to a temperature range of 600 to 700 ° C. by water cooling between passes is up to the above-mentioned depth, the so-called “surface portion” has a fine structure, yield strength of 345 MPa or more, yield ratio of 0.8 or less, and yield. This is because elongation of 1.4% or more and a 2 mm V notch Charpy impact value of 27 J / cm 2 or more can impart necessary characteristics to the steel material for earthquake-proof reinforcing bars. On the other hand, when the depth exceeds the depth of 0.3 from the surface of the steel material in terms of the radius ratio, the internal retained heat amount becomes small and reheating due to recuperation does not sufficiently occur and the desired structure cannot be obtained, Deformation resistance increases during rolling after quenching, resulting in excessive load on the rolling mill.

【0034】(B−3)圧延仕上げ温度 結晶粒微細化のためには圧延仕上げ温度を低くするほど
効果があるが、750℃を下回ると圧延機に対する負荷
が過大となることに加えて鋼材に表面割れが生じるよう
になり、一方、950℃を超えると結晶粒が粗大化して
所望の微細な組織が得られなくなるので、圧延仕上げ温
度を750〜950℃とした。なお、この圧延仕上げ温
度は、被圧延鋼材自身の復熱及び圧延時の加工発熱によ
って確保できる。
(B-3) Rolling Finishing Temperature A lower rolling finishing temperature is more effective for grain refinement, but if the rolling finishing temperature is lower than 750 ° C., the load on the rolling mill becomes excessive and the steel material is On the other hand, when surface cracking occurs, on the other hand, when the temperature exceeds 950 ° C., the crystal grains become coarse and a desired fine structure cannot be obtained, so the rolling finishing temperature was set to 750 to 950 ° C. This rolling finish temperature can be ensured by the recuperation of the rolled steel material itself and the heat generated during rolling.

【0035】(C)圧延後の冷却 圧延終了後は鋼材を3℃/sを超え10℃/sまでの冷
却速度で550〜400℃の温度域の温度まで加速冷却
する必要がある。10℃/sを超える冷却速度で加速冷
却した場合には、表層部は焼きが入った所謂「低温変態
組織」となり内部はフェライト・パ−ライト組織となっ
て、組織が不均一となるため靭性並びに引張り特性の劣
化を招く。一方、3℃/s以下の冷却速度では中心部の
組織が粗大なフェライト・パ−ライト組織となるため所
望の機械的特性(靭性並びに引張特性)が得られない。
従って、圧延後の冷却速度は3℃/sを超え10℃/s
までとした。
(C) Cooling after rolling After the completion of rolling, it is necessary to accelerate and cool the steel material to a temperature in the range of 550 to 400 ° C at a cooling rate of more than 3 ° C / s and 10 ° C / s. When accelerated cooling is performed at a cooling rate of more than 10 ° C./s, the surface layer portion becomes a so-called “low-temperature transformation structure” with quenching, and the inside becomes a ferrite-pearlite structure, and the structure becomes non-uniform, resulting in toughness. In addition, the tensile properties are deteriorated. On the other hand, at a cooling rate of 3 ° C./s or less, the structure of the central portion becomes a coarse ferrite-pearlite structure, and desired mechanical properties (toughness and tensile properties) cannot be obtained.
Therefore, the cooling rate after rolling exceeds 3 ° C / s and is 10 ° C / s.
Up to

【0036】加速冷却する温度が550℃を超える場合
にはたとえ3℃/sを超え10℃/sまでの冷却速度で
加速冷却しても所望の組織とならず、そのため所望の機
械的特性が得られない。一方、加速冷却する温度が40
0℃を下回れば鋼材の内部まで焼きの入った組織となっ
て、やはり所望の機械的特性が得られなくなる場合があ
る。従って、3℃/sを超え10℃/sまでの冷却速度
で加速冷却する温度を550〜400℃の温度域の温度
とした。この加速冷却を行った後は放冷すれば良い。
When the temperature for accelerated cooling exceeds 550 ° C., even if accelerated cooling is performed at a cooling rate of more than 3 ° C./s and up to 10 ° C./s, a desired structure is not obtained, and therefore desired mechanical properties are not obtained. I can't get it. On the other hand, the temperature for accelerated cooling is 40
If the temperature is lower than 0 ° C, the inside of the steel material may be hardened and the desired mechanical properties may not be obtained. Therefore, the temperature for accelerated cooling at a cooling rate of more than 3 ° C./s to 10 ° C./s is set to a temperature in the temperature range of 550 to 400 ° C. After performing this accelerated cooling, it may be allowed to cool.

【0037】なお、ここでいう冷却速度とは鋼材表面に
おける冷却速度のことである。
The cooling rate referred to here is the cooling rate on the surface of the steel material.

【0038】上記の(A)に示した成分組成を有する鋼
材に、上記の(B)及び(C)に示した条件によって制
御圧延・加速冷却を行うことにより、降伏強度が345
MPa以上、降伏比が0.8以下、降伏伸びが1.4%
以上、2mmVノッチシャルピー衝撃値が27J/cm
2 以上という特性を有する耐震性に優れる高強度・高靭
性鉄筋を製造することができる。
By subjecting the steel material having the component composition shown in (A) above to controlled rolling and accelerated cooling under the conditions shown in (B) and (C) above, the yield strength is 345.
MPa or more, yield ratio 0.8 or less, yield elongation 1.4%
Above, 2mmV notch Charpy impact value is 27J / cm
It is possible to manufacture high-strength, high-toughness rebars that have characteristics of 2 or more and are excellent in earthquake resistance.

【0039】[0039]

【実施例】表1に示す化学組成の鋼を通常の方法により
70t転炉溶製した。表1において、鋼A〜Cは成分の
いずれかが本発明で規定する含有量の範囲から外れた比
較鋼であり、鋼D〜Hは本発明の対象鋼(以下、本発明
鋼という)である。
Example A steel having a chemical composition shown in Table 1 was smelted in a 70 t converter by a usual method. In Table 1, steels A to C are comparative steels in which any of the components is out of the range of the content specified in the present invention, and steels D to H are steels of the present invention (hereinafter referred to as steels of the present invention). is there.

【0040】次いで、これらの鋼を連続鋳造法により鋼
片となし、更に、通常の方法で3tビレットに分塊圧延
した。
Next, these steels were made into billets by a continuous casting method, and further slab-rolled into 3t billets by a usual method.

【0041】この後、前記の3tビレットに表2〜8に
示す条件で連続圧延と冷却を施し、直径が32、35、
38、41及び51mmの棒鋼を製造した。
Thereafter, the 3t billet was continuously rolled and cooled under the conditions shown in Tables 2 to 8 to have diameters of 32, 35,
Steel bars of 38, 41 and 51 mm were produced.

【0042】こうして得られた棒鋼から制御圧延・冷却
したままの直径で長さが30mmの組織観察用試験片を
切り出し、表面から半径比で0.3の深さの部位の組織
を光学顕微鏡によって観察した。
From the steel bar thus obtained, a test piece for microstructure observation having a diameter of 30 mm in length with controlled rolling and cooling was cut out, and the microstructure of a portion having a depth of 0.3 in radius ratio from the surface was observed by an optical microscope. I observed.

【0043】又、棒鋼の表面部からJIS4号引張試験
片及びJIS4号衝撃試験片(2mmVノッチシャルピ
ー衝撃試験片)を採取し、常温(20℃)での衝撃特性
及び引張特性を調査した。
Further, JIS No. 4 tensile test pieces and JIS No. 4 impact test pieces (2 mm V notch Charpy impact test pieces) were sampled from the surface of the steel bar, and the impact properties and tensile properties at room temperature (20 ° C.) were investigated.

【0044】試験結果の一例を表9〜15に示す。表9
〜15によれば、本発明で規定する化学組成を有する鋼
を、本発明で規定する条件で「熱間圧延−加速冷却」す
れば所望の降伏強度、降伏比、降伏伸び及びシャルピー
衝撃値が得られることが明らかである。
Tables 9 to 15 show examples of test results. Table 9
According to 15 to 15, if the steel having the chemical composition specified in the present invention is "hot rolled-accelerated cooled" under the conditions specified in the present invention, desired yield strength, yield ratio, yield elongation and Charpy impact value can be obtained. It is clear that it can be obtained.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【表7】 [Table 7]

【0052】[0052]

【表8】 [Table 8]

【0053】[0053]

【表9】 [Table 9]

【0054】[0054]

【表10】 [Table 10]

【0055】[0055]

【表11】 [Table 11]

【0056】[0056]

【表12】 [Table 12]

【0057】[0057]

【表13】 [Table 13]

【0058】[0058]

【表14】 [Table 14]

【0059】[0059]

【表15】 [Table 15]

【0060】[0060]

【発明の効果】本発明の耐震性に優れる鉄筋用鋼材の製
造方法によれば、比較的容易に、且つ高い生産性の下
に、降伏強度が345MPa以上、降伏比が0.8以
下、降伏伸びが1.4%以上で、且つ、2mmVノッチ
シャルピー衝撃値が27J/cm以上を有する耐震性
に優れた鉄筋用鋼材を製造することが可能である。従っ
て、ビルなどの鉄筋コンクリート用として使用される場
合にも安全性の高い耐震性能に優れた構造用鉄筋を提供
することができる。
EFFECTS OF THE INVENTION According to the method for producing a steel material for reinforcing bars having excellent earthquake resistance of the present invention, the yield strength is 345 MPa or more, the yield ratio is 0.8 or less, and the yield ratio is relatively easy and with high productivity. It is possible to manufacture a steel material for reinforcing bars having an elongation of 1.4% or more and a 2 mmV notch Charpy impact value of 27 J / cm 2 or more and excellent in earthquake resistance. Therefore, it is possible to provide a structural reinforcing bar that is highly safe and has excellent seismic resistance even when it is used for reinforced concrete such as a building.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧延工程が粗圧延、中間圧延及び仕上げ圧
延の各工程からなる耐震性に優れる鉄筋用鋼材の製造方
法であって、重量%で、C:0.10〜0.40%、S
i:0.05〜0.60%、Mn:0.60〜2.00
%、Al:0.005〜0.080%、N:0.001
〜0.007%、B:0〜0.0080%、P:0.0
30%以下、S:0.030%以下、Cu:0.3%以
下、Ni:0.3%以下、Mo:0.1%以下、Ti:
0.01%以下、残部Fe及び不可避不純物の組成を有
する鋼材を、950〜1250℃の温度域に加熱して粗
圧延を行い、次いで中間圧延及び/又は仕上げ圧延のパ
ス間で水冷して鋼材の表面を600〜700℃の温度域
に急冷することを1回〜5回繰り返しながら圧延し、更
に、圧延仕上げ温度を750〜950℃の範囲に制御し
て圧延を終了し、その後3℃/sを超え10℃/sまで
の冷却速度で550〜400℃の温度域の温度まで加速
冷却することを特徴とする耐震性に優れる鉄筋用鋼材の
製造方法。
1. A method for producing a steel material for reinforcing bars having excellent earthquake resistance, wherein the rolling step comprises rough rolling, intermediate rolling and finish rolling, in which C: 0.10 to 0.40% by weight, S
i: 0.05 to 0.60%, Mn: 0.60 to 2.00
%, Al: 0.005-0.080%, N: 0.001
~ 0.007%, B: 0 to 0.0080%, P: 0.0
30% or less, S: 0.030% or less, Cu: 0.3% or less, Ni: 0.3% or less, Mo: 0.1% or less, Ti:
A steel material having a composition of 0.01% or less and the balance of Fe and unavoidable impurities is heated to a temperature range of 950 to 1250 ° C. to perform rough rolling, and then water cooled between passes of intermediate rolling and / or finish rolling. The surface of the steel sheet is rapidly cooled to a temperature range of 600 to 700 ° C. while repeating 1 to 5 times, and further, the rolling finishing temperature is controlled in the range of 750 to 950 ° C. to finish the rolling, and then 3 ° C. / A method for producing a steel material for reinforcing bars having excellent earthquake resistance, which comprises accelerating cooling to a temperature in a temperature range of 550 to 400 ° C at a cooling rate of more than s and 10 ° C / s.
【請求項2】圧延工程が粗圧延、中間圧延及び仕上げ圧
延の各工程からなる耐震性に優れる鉄筋用鋼材の製造方
法であって、請求項1に記載の成分、並びに重量%で、
V:0.01〜0.20%及びNb:0.01〜0.1
0%の1種以上、残部Fe及び不可避不純物の組成を有
する鋼材を、950〜1250℃の温度域に加熱して粗
圧延を行い、次いで中間圧延及び/又は仕上げ圧延のパ
ス間で水冷して鋼材の表面を600〜700℃の温度域
に急冷することを1回〜5回繰り返しながら圧延し、更
に、圧延仕上げ温度を750〜950℃の範囲に制御し
て圧延を終了し、その後3℃/sを超え10℃/sまで
の冷却速度で550〜400℃の温度域の温度まで加速
冷却することを特徴とする耐震性に優れる鉄筋用鋼材の
製造方法。
2. A method for producing a steel material for reinforcing bars having excellent earthquake resistance, wherein the rolling step comprises rough rolling, intermediate rolling and finish rolling steps, wherein the components and weight% are as set forth in claim 1.
V: 0.01 to 0.20% and Nb: 0.01 to 0.1
A steel material having a composition of 0% of one kind or more, the balance of Fe and unavoidable impurities is heated to a temperature range of 950 to 1250 ° C. to perform rough rolling, and then water-cooled between passes of intermediate rolling and / or finish rolling. Rolling is performed by repeating 1 to 5 times of rapidly cooling the surface of the steel material to a temperature range of 600 to 700 ° C., and further, rolling finish temperature is controlled in a range of 750 to 950 ° C. to finish rolling, and then 3 ° C. / S, a method for producing a steel material for reinforcing bars having excellent earthquake resistance, which comprises performing accelerated cooling to a temperature in a temperature range of 550 to 400 ° C at a cooling rate of 10 ° C / s to 10 ° C / s.
JP7257654A 1995-10-04 1995-10-04 Manufacturing method of steel for rebar with excellent earthquake resistance Expired - Fee Related JP3022280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7257654A JP3022280B2 (en) 1995-10-04 1995-10-04 Manufacturing method of steel for rebar with excellent earthquake resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7257654A JP3022280B2 (en) 1995-10-04 1995-10-04 Manufacturing method of steel for rebar with excellent earthquake resistance

Publications (2)

Publication Number Publication Date
JPH0995735A true JPH0995735A (en) 1997-04-08
JP3022280B2 JP3022280B2 (en) 2000-03-15

Family

ID=17309260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7257654A Expired - Fee Related JP3022280B2 (en) 1995-10-04 1995-10-04 Manufacturing method of steel for rebar with excellent earthquake resistance

Country Status (1)

Country Link
JP (1) JP3022280B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959475B1 (en) * 2007-10-29 2010-05-26 현대제철 주식회사 Producing method for reinforcing steel
CN102876968A (en) * 2012-09-29 2013-01-16 攀钢集团成都钢钒有限公司 High-strength anti-seismic HRB500E hot-rolled ribbed bar and production process thereof
KR101290441B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 Earthquake-proof steel and method of manufacturing the earthquake-proof steel
CN103409683A (en) * 2013-08-28 2013-11-27 武汉钢铁(集团)公司 600MPa hot rolled ribbed steel bar and production method thereof
CN103451525A (en) * 2013-09-10 2013-12-18 武汉钢铁(集团)公司 Corrosion-resistant hot-rolled ribbed steel bar with yield strength not less than 600Mpa and production method thereof
CN109504902A (en) * 2019-01-10 2019-03-22 山东莱钢永锋钢铁有限公司 A kind of high strength cast iron and preparation method thereof
CN112210714A (en) * 2020-09-01 2021-01-12 陕钢集团产业创新研究院有限公司 High-strength anti-seismic reinforcing steel bar with yield strength of more than 650MPa and production method thereof
CN114717477A (en) * 2021-06-10 2022-07-08 广西柳钢华创科技研发有限公司 HRB400E general hot-rolled ribbed steel bar with tensile strength above 700Mpa
CN115181904A (en) * 2021-11-05 2022-10-14 柳州钢铁股份有限公司 High-safety hot-rolled steel bar
CN115852248A (en) * 2022-09-28 2023-03-28 马鞍山钢铁股份有限公司 V-Nb composite microalloyed 650 MPa-level anti-seismic steel bar and production method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959475B1 (en) * 2007-10-29 2010-05-26 현대제철 주식회사 Producing method for reinforcing steel
KR101290441B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 Earthquake-proof steel and method of manufacturing the earthquake-proof steel
CN102876968A (en) * 2012-09-29 2013-01-16 攀钢集团成都钢钒有限公司 High-strength anti-seismic HRB500E hot-rolled ribbed bar and production process thereof
CN103409683A (en) * 2013-08-28 2013-11-27 武汉钢铁(集团)公司 600MPa hot rolled ribbed steel bar and production method thereof
CN103409683B (en) * 2013-08-28 2015-05-20 武汉钢铁(集团)公司 600MPa hot rolled ribbed steel bar and production method thereof
CN103451525A (en) * 2013-09-10 2013-12-18 武汉钢铁(集团)公司 Corrosion-resistant hot-rolled ribbed steel bar with yield strength not less than 600Mpa and production method thereof
CN109504902A (en) * 2019-01-10 2019-03-22 山东莱钢永锋钢铁有限公司 A kind of high strength cast iron and preparation method thereof
CN112210714A (en) * 2020-09-01 2021-01-12 陕钢集团产业创新研究院有限公司 High-strength anti-seismic reinforcing steel bar with yield strength of more than 650MPa and production method thereof
CN114717477A (en) * 2021-06-10 2022-07-08 广西柳钢华创科技研发有限公司 HRB400E general hot-rolled ribbed steel bar with tensile strength above 700Mpa
CN114717477B (en) * 2021-06-10 2022-12-06 广西柳钢华创科技研发有限公司 HRB400E general speed hot rolling ribbed steel bar with tensile strength of more than 700MPa
CN115181904A (en) * 2021-11-05 2022-10-14 柳州钢铁股份有限公司 High-safety hot-rolled steel bar
CN115181904B (en) * 2021-11-05 2023-02-24 柳州钢铁股份有限公司 High-safety hot-rolled steel bar
CN115852248A (en) * 2022-09-28 2023-03-28 马鞍山钢铁股份有限公司 V-Nb composite microalloyed 650 MPa-level anti-seismic steel bar and production method thereof
CN115852248B (en) * 2022-09-28 2024-02-23 马鞍山钢铁股份有限公司 V-Nb composite microalloyed 650 MPa-level anti-seismic steel bar and production method thereof

Also Published As

Publication number Publication date
JP3022280B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP4888277B2 (en) Hot rolled steel bar or wire rod
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
EP0058016A1 (en) Process for producing steel wire or rods of high ductility and strength
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP3724119B2 (en) Rolled steel bar for building structure and manufacturing method thereof
KR102318036B1 (en) Non-heat treated wire rod having excellent machinability and impact toughness and method for manufacturing thereof
JP3022280B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP6679935B2 (en) Steel for cold work parts
JP2022510212A (en) High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method
JPH09111340A (en) High strength and low yield ratio steel for reinforcing bar and its production
WO2014034070A1 (en) Steel for reinforcing bars, and reinforcing bar
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH05105957A (en) Production of heat resistant high strength bolt
JPH09137222A (en) Production of steel for high strength and low yield ratio reinforcing bar
JP3772382B2 (en) Manufacturing method for high strength and low yield ratio steel
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar
JP3867471B2 (en) Strengthening method of steel
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
CN115323265B (en) Superfine crystal steel plate and preparation method thereof
KR102318035B1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
JP2023510129A (en) Wire rod excellent in spheroidizing heat treatment and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees