KR100953579B1 - No flow underfill composition - Google Patents

No flow underfill composition Download PDF

Info

Publication number
KR100953579B1
KR100953579B1 KR1020047011760A KR20047011760A KR100953579B1 KR 100953579 B1 KR100953579 B1 KR 100953579B1 KR 1020047011760 A KR1020047011760 A KR 1020047011760A KR 20047011760 A KR20047011760 A KR 20047011760A KR 100953579 B1 KR100953579 B1 KR 100953579B1
Authority
KR
South Korea
Prior art keywords
epoxy
anhydride
imidazole
encapsulant
resin
Prior art date
Application number
KR1020047011760A
Other languages
Korean (ko)
Other versions
KR20040082402A (en
Inventor
샤오유에
통퀸케이.
모르가넬리폴
샤자예쉬
Original Assignee
내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션 filed Critical 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션
Publication of KR20040082402A publication Critical patent/KR20040082402A/en
Application granted granted Critical
Publication of KR100953579B1 publication Critical patent/KR100953579B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

A curable underfill encapsulant composition which is especially useful in the no-flow encapsulation process. The composition contains a thermal curable resin system comprising an admixing of at least one epoxy resin and a phenol-containing compound such as phenol or phenolic resin, an imidazole-anhydride adduct as a catalyst, and a fluxing agent. Various additives, such as air release agents, flow additives, adhesion promoters and rheology modifiers may also be added as desired.

Description

비유동성 언더필 조성물 {NO FLOW UNDERFILL COMPOSITION}Non-Fluid Underfill Composition {NO FLOW UNDERFILL COMPOSITION}

본 발명은 비유동성 언더필 공정에 이용될 수 있는 언더필 캡슐화제 조성물에 관한 것이다.The present invention relates to an underfill encapsulant composition that can be used in a non-flowable underfill process.

본 발명은 마이크로전자 소자 내의 전자 부품과 기재간의 배선(interconnections)을 보호 및 강화하기 위해 에폭사이드로부터 제조된 언더필 캡슐화제 화합물을 언더필기 위한 조성물에 관한 것이다. 마이크로전자 소자는 다양한 형태의 전기 회로 부품, 주로 집적 회로(IC: integrated circuit) 칩 내에 함께 조립된 트랜지스터뿐만 아니라, 레지스터, 커패시터 및 기타 부품을 포함한다. 이들 전자 부품은 상호 연결되어 회로를 형성하고, 최종적으로는 인쇄 와이어 기판(printed wire board)과 같은 캐리어 또는 기판에 연결된다. 집적 회로 부품은 단일 베어칩(bare chip), 캡슐화된 단일 칩 또는 캡슐화된 복수 개의 칩 패키지를 포함할 수 있다. 상기 단일 베어칩은 리드 프레임에 부착된 다음, 캡슐화되어 인쇄 와이어 기판에 부착될 수 있고, 또는 직접 인쇄 와이어 기판에 부착될 수 있다.The present invention relates to a composition for underfilling an underfill encapsulant compound prepared from epoxides to protect and strengthen interconnections between electronic components and substrates in microelectronic devices. Microelectronic devices include resistors, capacitors and other components, as well as various types of electrical circuit components, mainly transistors assembled together in integrated circuit (IC) chips. These electronic components are interconnected to form a circuit and finally connected to a carrier or substrate, such as a printed wire board. Integrated circuit components may include a single bare chip, a single encapsulated chip, or a plurality of encapsulated chip packages. The single bare chip may be attached to a lead frame and then encapsulated and attached to a printed wire substrate, or directly attached to a printed wire substrate.

상기 부품이 리드 프레임에 연결된 베어칩인 경우, 또는 인쇄 와이어 기판 또는 기타 기판에 연결된 패키지인 경우에도, 이들은 전자 부품 상의 전기 단자와 기판 상의 해당 전기 단자 사이에 연결된다. 전자 부품을 연결하는 방법 중 하나 는, 범프(bump) 내에서 상기 부품 또는 기판 단자에 적용된 폴리머 재료 또는 금속 재료를 사용하는 것이다. 상기 단자들을 배열하고 서로 접촉시켜, 얻어진 조립체를 가열하여 상기 금속 또는 폴리머 재료를 재유동화한 다음, 연결을 고정한다.Even when the component is a bare chip connected to a lead frame, or a package connected to a printed wire board or other substrate, they are connected between the electrical terminal on the electronic component and the corresponding electrical terminal on the substrate. One method of connecting electronic components is to use a polymer material or a metal material applied to the component or substrate terminal in a bump. The terminals are arranged and contacted with each other to heat the resulting assembly to refluid the metal or polymer material and then fix the connection.

상기 전자 조립체를 이용하는 동안, 상기 조립체에 다양한 온도 범위에서의 열 사이클 공정을 수행한다. 이 열 사이클 공정에서는 상기 전자 부품, 배선 재료 및 기판의 열 팽창 계수 차이로 인해, 상기 조립체 부품에 응력이 가해져 그 부품들이 파손될 수 있다. 이 같은 파손을 방지하기 위해, 상기 부품과 기판 사이의 갭(gap)을 폴리머 캡슐화제(이하, 언더필(underfill) 또는 언더필 캡슐화제(underfill encapsulant)로 칭함)로 충전하여, 배선 재료를 강화하고 열 사이클 공정에서 가해지는 어느 정도의 응력을 흡수할 수 있다. 아울러, 전술한 바와 같이 캡슐화제를 이용하여 충전함으로써 충격 에너지가 흡수되어, 이른바 "낙하 시험(drop test)" 성능을 향상시킬 수 있다.While using the electronic assembly, the assembly undergoes a thermal cycle process at various temperature ranges. In this thermal cycle process, due to the difference in coefficient of thermal expansion of the electronic component, the wiring material and the substrate, the assembly component may be stressed and the components may be broken. To prevent such breakage, the gap between the part and the substrate is filled with a polymer encapsulant (hereinafter referred to as an underfill or underfill encapsulant) to strengthen the wiring material and heat it. It can absorb some of the stress applied in the cycle process. In addition, the impact energy is absorbed by filling with the encapsulating agent as described above, so that the so-called "drop test" performance can be improved.

이러한 언더필 기술의 주된 두 가지 용도는, 산업적으로 칩 스케일 패키지(CSP: chip scale package)로 알려져 있는 것으로서 칩 패키지가 인쇄 와이어 기판에 부착된 패키지, 및 칩이 볼(ball)과 그리드 어레이(grid array)에 의해 인쇄 와이어 기판에 부착된 플립 칩 볼 그리드 어레이(flip-chip BGA)를 강화하기 위한 것이다.The two main uses of this underfill technology are industrially known as chip scale packages (CSPs), packages in which chip packages are attached to printed wire substrates, and chips in ball and grid arrays. It is for reinforcing the flip-chip BGA (attached chip-chip BGA) attached to the printed wire substrate.

종래의 모세관형 유동성 언더필을 적용하는 경우에는 금속 재료 또는 고분자 재료의 배선을 재유동화한 다음, 상기 언더필을 공급하고 경화시킨다. 이 과정에서 우선 상기 용융물(flux)을 기판 상의 금속 패드에 적용한다. 이어서, 솔더링 부위의 정상부인, 기판의 용융된 영역에 칩을 설치한다. 그런 다음, 상기 조립체를 가열하여 솔더링 접합부(soldering joint)를 재유동화한다. 이 때, 측정된 양의 언더필 캡슐화제 물질이 전자 부품 조립체의 하나 이상의 가장자리면을 따라 공급되고, 상기 부품과 기판 사이의 갭에서의 모세관 작용에 의해 상기 언더필 물질이 내부로 끌려 들어간다. 갭을 충전한 다음에는 응력의 집중을 저하시키고 조립된 구조물의 피로 수명(fatigue life)을 연장하기 위해, 완성된 조립체의 주변을 따라서 추가의 언더필 캡슐화제를 공급할 수도 있다. 언더필 캡슐화제를 공급한 다음, 상기 언더필 캡슐화제가 적절한 최종 물성을 갖도록 경화시킨다.In the case of applying a conventional capillary flow underfill, the wiring of the metal material or the polymer material is reflowed, and then the underfill is supplied and cured. In this process, the flux is first applied to a metal pad on the substrate. The chip is then placed in the molten region of the substrate, which is the top of the soldering site. The assembly is then heated to refluid the soldering joint. At this time, a measured amount of underfill encapsulant material is supplied along one or more edge surfaces of the electronic component assembly, and the underfill material is drawn into the interior by capillary action in the gap between the component and the substrate. After filling the gap, an additional underfill encapsulant may be supplied along the periphery of the finished assembly to reduce the concentration of stress and extend the fatigue life of the assembled structure. After the underfill encapsulant is fed, the underfill encapsulant is cured to have appropriate final properties.

한편, 비유동성 언더필 캡슐화 공정은 전자 부품을 기판에 부착하여 얻어진 조립체를 언더필 캡슐화제를 이용하여 보호하는 방식의 전술한 공정에 비해 더욱 효과적이다. 상기 비유동성 언더필 캡슐화 공정에서는 부품이 실장되기 전에 조립 부위에 적용된 언더필 내에 용융물이 포함된다. 그리고, 부품을 실장한 다음에는 전자 부품, 언더필 및 기판을 포함하는 완전한 조립체를 리플로우 오븐(reflow oven)에 통과시켜, 상기 조립체를 기판 상의 금속 패드 배선에 솔더링(soldering)한다. 전술한 공정의 수행 중에 상기 언더필이 솔더(solder) 및 금속 패드를 용융시켜, 솔더링 접합부가 다시 유동화된 다음, 언더필이 경화된다. 따라서, 전술한 비유동성 언더필 캡슐화 공정을 이용하는 경우에는 별도의 용융물 적용 공정 및 언더필의 후경화 공정을 수행하지 않아도 된다.On the other hand, the non-flowable underfill encapsulation process is more effective than the above-described process of protecting the assembly obtained by attaching the electronic component to the substrate using the underfill encapsulant. In the non-flowable underfill encapsulation process, the melt is contained in the underfill applied to the assembly site before the part is mounted. After mounting the component, a complete assembly comprising the electronic component, the underfill and the substrate is passed through a reflow oven to solder the assembly to metal pad wiring on the substrate. During the performance of the above process, the underfill melts the solder and the metal pad so that the soldering joint is fluidized again and the underfill is cured. Therefore, in the case of using the aforementioned non-flowable underfill encapsulation process, it is not necessary to perform a separate melt application process and a post-curing process of underfill.

전술한 비유동성 언더필 캡슐화 공정에서는 솔더링 및 언더필의 경화 반응이 수행되기 때문에, 언더필 재료의 적절한 점도 및 경화 속도를 유지시키는 것이 관 건이다. 상기 언더필은 솔더를 용융시켜 배선이 형성되도록 하기 위해 저점도 상태이어야 한다. 또한, 상기 언더필의 경화 반응은 솔더가 경화된 다음, 너무 늦게 일어나지 않도록 하는 것이 중요하다. 즉, 상기 비유동성 언더필 캡슐화 공정에서의 언더필은 솔더가 용융된 다음 신속하게 경화되는 것이 바람직하다. 상기 언더필의 점도는 시린지(syringe)를 이용하여 공급하는데 적당한 정도가 바람직할 수 있다.In the aforementioned non-flowable underfill encapsulation process, it is important to maintain the proper viscosity and cure rate of the underfill material because soldering and underfill curing reactions are performed. The underfill must be in a low viscosity state in order to melt the solder to form wiring. In addition, it is important that the underfill curing reaction does not occur too late after the solder has cured. That is, the underfill in the non-flowable underfill encapsulation process is preferably hardened after the solder is melted. The viscosity of the underfill may be preferably a suitable degree for supplying using a syringe (syringe).

상업적으로 입수 가능한 대부분의 언더필 캡슐화제는 에폭시 무수물의 화학 반응을 이용한다. 예를 들어, 미국 특허 제6,180,696호에는 각각의 무수물 성분을 포함하는 언더필에 대해 기재되어 있다. 그러나, 앞서 예시한 언더필 내에 포함된 무수물을 이용하는 경우에는 독성 물질이 유출되어 문제가 되어 왔다. 이에 따라, 무수물 성분을 포함하지 않는 언더필 캡슐화제의 개발이 필요한 실정이다. 상기 시스템은 재유동화 공정이 완료된 후, 완전히 경화되는 것이 바람직하다.Most commercially available underfill encapsulating agents utilize the chemical reaction of epoxy anhydrides. For example, US Pat. No. 6,180,696 describes an underfill that includes each anhydride component. However, in the case of using the anhydride contained in the underfill exemplified above, toxic substances have been leaked, which has been a problem. Accordingly, the development of an underfill encapsulant that does not contain anhydride components is required. The system is preferably fully cured after the refluidization process is complete.

본 발명은 특히 비유동성 캡슐화 공정에 유용한 경화성 언더필 캡슐화제 조성물에 관한 것이다. 본 발명의 조성물은 적어도 1종의 에폭시 수지와 페놀 또는 페놀 수지와 같은 페놀 함유 화합물의 혼합물을 포함하는 열경화성 수지 시스템, 촉매로서 이미다졸-무수물 부가 생성물, 및 용융제(fluxing agent)를 포함한다. 아울러, 상기 조성물은 바람직하다면, 첨가제로서 공기 방출제(air release agent), 흐름 첨가제(flow additive), 접착 촉진제(adhesion promoter) 및 유동성 개질제(rheology modifier)와 같은 각종 첨가제를 첨가할 수 있다. The present invention relates in particular to curable underfill encapsulant compositions useful for non-flowable encapsulation processes. The composition of the present invention comprises a thermosetting resin system comprising a mixture of at least one epoxy resin and a phenol-containing compound such as a phenol or phenol resin, an imidazole-anhydride adduct as a catalyst, and a fluxing agent. In addition, the composition may, if desired, add various additives such as air release agents, flow additives, adhesion promoters, and rheology modifiers as additives.                 

본 발명의 언더필 캡슐화제 조성물에 사용되는 수지는 경화가 가능한 화합물, 즉, 중합 가능한 화합물을 의미한다. 본 명세서에 사용되는 경화 반응은 가교 반응을 통한 중합 반응을 의미할 수 있다. 동 기술 분야에서 이해되는 바와 같이, 가교 반응은 원소, 분자의 작용기 또는 화합물의 브릿지(bridge)에 의해 2종의 폴리머가 결합하는 반응으로서, 가교 반응은 통상적으로 가열 시에 일어난다.Resin used in the underfill encapsulant composition of the present invention means a compound that is curable, that is, a polymerizable compound. As used herein, the curing reaction may mean a polymerization reaction through a crosslinking reaction. As is understood in the art, a crosslinking reaction is a reaction in which two polymers are bonded by an element, a functional group of a molecule, or a bridge of a compound, and the crosslinking reaction usually occurs upon heating.

본 발명에 따른 언더필 캡슐화제 조성물의 성분으로는 1종 이상의 에폭시 수지와 페놀 또는 페놀 수지와 같은 페놀 함유 화합물의 혼합물, 촉매로서 작용하는 이미다졸-무수물 부가 생성물, 및 용융제가 포함된다. 또한, 선택적으로 공기 방출제, 흐름 첨가제, 접착 촉진제, 유동성 개질제, 계면활성제 및 기타 성분이 포함될 수 있다. 특히, 전술한 첨가제는 특수 수지 용도에 이용하는데 바람직한 물성을 얻기 위해 선택된다.Components of the underfill encapsulant composition according to the invention include mixtures of one or more epoxy resins with phenol-containing compounds such as phenols or phenolic resins, imidazole-anhydride adducts acting as catalysts, and melters. It may also optionally include air release agents, flow additives, adhesion promoters, rheology modifiers, surfactants, and other components. In particular, the aforementioned additives are selected to obtain desirable physical properties for use in special resin applications.

본 발명의 언더필 조성물에 이용하는데 적합한 에폭시 수지를 예시하면, 비스페놀-A 및 비스페놀-F의 일관능성 및 다관능성 글리시딜에테르, 지방족 및 방향족 에폭시, 포화 및 불포화 에폭시, 지환식 에폭시 수지, 또는 그의 조합물을 들 수 있다. 상기 지환식 에폭시 수지를 예시하면 하기 화학식으로 표시되는 플렉스 에폭시 1(Flex epoxy 1)을 들 수 있다:Examples of suitable epoxy resins for use in the underfill compositions of the present invention include mono- and polyfunctional glycidyl ethers of bisphenol-A and bisphenol-F, aliphatic and aromatic epoxys, saturated and unsaturated epoxy, alicyclic epoxy resins, or their Combinations. Illustrative of the alicyclic epoxy resin may include a flex epoxy 1 represented by the following formula:

(플렉스 에폭시 1)(Flex epoxy 1)

Figure 112004034067840-pct00001
.
Figure 112004034067840-pct00001
.

상기 방향족 에폭시를 예시하면, RAS-1, RAS-5 및 플렉스 에폭시 3을 들 수 있다:Illustrative of such aromatic epoxies include RAS-1, RAS-5 and flex epoxy 3.

Figure 112004034067840-pct00002
.
Figure 112004034067840-pct00002
.

상기 불포화 에폭시를 예시하면 Cardolite NC513을 들 수 있다:Illustrative of such unsaturated epoxys include Cardolite NC513:

Figure 112004034067840-pct00003
.
Figure 112004034067840-pct00003
.

비(non)글리시딜에테르 에폭사이드를 예시하면, 고리 구조체의 일부분인 2개의 에폭사이드기와 에스테르 결합을 포함하는 3,4-에폭시사이클로헥실메틸-3,4-에폭시사이클로헥산 카르복실레이트, 2개의 에폭사이드기를 포함하고 그 중 하나가 고리 구조체의 일부분인 비닐사이클로헥센 디옥사이드, 3,4-에폭시-6-메틸사이클로헥실메틸-3,4-에폭시사이클로헥산 카르복실레이트 및 디사이클로펜타디엔 디옥사이드를 들 수 있다.Non-glycidyl ether epoxides are exemplified by 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, which contains an ester bond with two epoxide groups that are part of the ring structure. Vinylcyclohexene dioxide, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxycyclohexane carboxylate, and dicyclopentadiene dioxide, one of which is part of the ring structure; Can be mentioned.

상기 글리시딜에테르 에폭사이드는 상기 글리시딜에테르 에폭사이드 단독으 로 또는 상기 비글리시딜에테르 에폭사이드와의 조합물로서 이용되는 것이 바람직하다. 이러한 유형의 에폭시 수지로는 비스페놀 A 수지가 바람직하다. 또한, 바람직한 기타 에폭시 수지로서 플렉스-1을 포함하는 지방족 에폭시 수지가 있다. 본 발명에서 가장 바람직한 에폭시 수지는 비스페놀 F형 수지이다. 이러한 수지들은 통상적으로 비스페놀 F형 수지 1몰과 에피클로로히드린 2몰을 반응시켜 제조된다. 아울러, 바람직한 유형의 또 다른 에폭시 수지로는 에폭시 노볼락 수지를 들 수 있다. 이 에폭시 노볼락 수지는 통상적으로 페놀 수지와 에피클로로히드린의 반응에 의해 제조된다. 본 발명에 바람직한 노볼락 수지를 예시하면 폴리(페닐글리시딜에테르)-co-포름알데히드를 들 수 있다. 또한, 본 발명에서는 바이페닐형 에폭시 수지를 이용할 수도 있다. 상기 바이페닐형 에폭시 수지는 통상적으로 바이페닐 수지와 에피클로로히드린의 반응에 의해 제조된다. 그리고, 본 발명에 사용될 수 있는 추가적인 에폭시 수지를 예시하면, 디사이클로펜타디엔-페놀 에폭시 수지, 나프탈렌 수지, 에폭시 관능성 부타디엔 아크릴로니트릴 코폴리머, 에폭시 관능성 폴리디메틸 실록산 및 그의 혼합물을 들 수 있다. 상업적으로 입수 가능한 비스페놀-F형 수지를 예시하면 CVC Specialty Chemicals(미국, 뉴저지주, 메이플 셰이드 소재)로부터 입수 가능한 상품명 8230E, 및 Resolution Performance Products LLC로부터 입수 가능한 상품명 RSL 1739를 들 수 있다. 상기 비스페놀 A형 에폭시 수지를 예시하면 Resolution Technology로부터 입수 가능한 상품명 EPON 828을 들 수 있고, 상업적으로 입수 가능한 비스페놀-A와 비스페놀-F의 블렌드로서는 Nippon Chemical Company로부터 입수 가능한 상품명 ZX-1059가 있다. The glycidyl ether epoxide is preferably used alone or in combination with the aglycidyl ether epoxide. Preferred epoxy resins of this type are bisphenol A resins. Further preferred other epoxy resins are aliphatic epoxy resins comprising flex-1. The most preferable epoxy resin in this invention is bisphenol F type resin. Such resins are usually prepared by reacting 1 mol of bisphenol F-type resin with 2 mol of epichlorohydrin. In addition, another epoxy resin of the preferred type includes an epoxy novolac resin. This epoxy novolak resin is usually produced by the reaction of a phenol resin and epichlorohydrin. Preferred novolak resins for the present invention include poly (phenylglycidyl ether) -co-formaldehyde. In the present invention, a biphenyl type epoxy resin can also be used. The biphenyl type epoxy resin is usually produced by the reaction of biphenyl resin and epichlorohydrin. Further examples of additional epoxy resins that may be used in the present invention include dicyclopentadiene-phenol epoxy resins, naphthalene resins, epoxy functional butadiene acrylonitrile copolymers, epoxy functional polydimethyl siloxanes, and mixtures thereof. . Illustrative commercially available bisphenol-F type resins include trade name 8230E available from CVC Specialty Chemicals (Maple Shade, NJ, USA), and trade name RSL 1739 available from Resolution Performance Products LLC. Illustrative examples of the bisphenol A epoxy resins include trade name EPON 828 available from Resolution Technology, and commercially available blends of bisphenol-A and bisphenol-F include trade name ZX-1059 available from Nippon Chemical Company.                 

상기 페놀 또는 페놀 수지와 같은 페놀 함유 화합물은 전술한 에폭시 수지와의 혼합물을 형성하기 위해서 비(non)페놀 수지와 조합되는 것이 바람직하다. 상기 페놀 수지로서는 노볼락 수지가 특히 바람직하다. 상기 페놀로서는 비스페놀-A 및 디알릴비스페놀 A 페놀 수지가 특히 바람직하다. 상업적으로 입수 가능한 페놀 노볼락 수지를 예시하면, Durez 12686(Oxychem), HRJ-2190(Schenectady), SP-560(Schenectady), HRJ-2606(Schenectady), HRJ-1166(Schenectady), HRJ-11040(Schenectady), HRJ-2210(Schenectady), CRJ-406(Schenectady), HRJ-2163(Schenectady), HRJ-10739(Schenectady), HRJ-13172(Schenectady), HRJ-11937(Schenectady), HRJ-2355(Schenectady), SP-25(Schenectady), SP-1068(Schenectady), CRJ-418(Schenectady), SP-1090(Schenectady), SP-1077(Schenectady), SP-6701(Schenectady), HRJ-11945(Schenectady), SP-6700(Schenectady), HRJ-11995(Schenectady), SP-553(Schenectady), HRJ-2053(Schenectady), SP-560(Schenectady), BRWE5300(Georgia-Pacific Resins), BRWE5555(Georgia-Pacific Resins) 및 GP2074(Georgia-Pacific Resins)를 들 수 있다.The phenol-containing compound, such as the phenol or the phenol resin, is preferably combined with a nonphenol resin to form a mixture with the above-mentioned epoxy resin. As said phenol resin, a novolak resin is especially preferable. As said phenol, bisphenol-A and diallyl bisphenol A phenol resin are especially preferable. Examples of commercially available phenol novolac resins include Durez 12686 (Oxychem), HRJ-2190 (Schenectady), SP-560 (Schenectady), HRJ-2606 (Schenectady), HRJ-1166 (Schenectady), HRJ-11040 ( Schenectady), HRJ-2210 (Schenectady), CRJ-406 (Schenectady), HRJ-2163 (Schenectady), HRJ-10739 (Schenectady), HRJ-13172 (Schenectady), HRJ-11937 (Schenectady), HRJ-2355 (Schenectady) ), SP-25 (Schenectady), SP-1068 (Schenectady), CRJ-418 (Schenectady), SP-1090 (Schenectady), SP-1077 (Schenectady), SP-6701 (Schenectady), HRJ-11945 (Schenectady) , SP-6700 (Schenectady), HRJ-11995 (Schenectady), SP-553 (Schenectady), HRJ-2053 (Schenectady), SP-560 (Schenectady), BRWE5300 (Georgia-Pacific Resins), BRWE5555 (Georgia-Pacific Resins ) And GP2074 (Georgia-Pacific Resins).

전술한 수지 외에도, 본 발명의 언더필 조성물은 촉매로서 이미다졸-무수물 부가 생성물을 포함한다. 상기 이미다졸-무수물 부가 생성물은 본 발명의 언더필 조성물에, 이미다졸과 무수물을 각각의 성분으로서 포함하는 조성물에 의해 제공되는 물성과는 상이한 물성을 제공한다. 상기 부가 생성물에 포함될 수 있는 바람직한 이미다졸로는 2-페닐-4-메틸이미다졸, 2-페닐이미다졸 및 이미다졸과 같은 N-치 환되지 않은 이미다졸을 들 수 있다. 본 발명에 유용한 기타 이미다졸 성분을 예시하면, 알킬 치환된 이미다졸, N-치환된 이미다졸 및 그의 혼합물을 들 수 있다. 또한, 상기 부가 생성물은 무수물 성분을 포함한다. 상기 무수물로서는 지환식 무수물이 바람직하며, 가장 바람직한 것은 Aldrich로부터 상업적으로 입수 가능한 PMDA와 같은 피로멜리트산 이무수물이다. 본 발명에 바람직한 추가의 무수물을 예시하면 Lonza Inc.로부터 상업적으로 입수 가능한 메틸헥사-하이드로프탈산 무수물(MHHPA)인 Intermediates and Actives을 들 수 있다. 본 발명에 사용될 수 있는 기타 무수물을 예시하면, 메틸테트라-하이드로프탈산 무수물, 나드산메틸 무수물(nadic methyl anhydride), 헥사-하이드로프탈산 무수물, 테트라-하이드로프탈산 무수물, 프탈산 무수물, 도데실숙신산 무수물, 비스페닐 이무수물, 벤조페논 테트라카르복시산 이무수물 및 그의 혼합물을 들 수 있다.In addition to the resins described above, the underfill compositions of the invention comprise imidazole-anhydride addition products as catalysts. The imidazole-anhydride addition product provides the underfill composition of the present invention with different physical properties from those provided by the composition comprising imidazole and anhydride as respective components. Preferred imidazoles that may be included in the addition product include N-unsubstituted imidazoles such as 2-phenyl-4-methylimidazole, 2-phenylimidazole and imidazole. Illustrative other imidazole components useful in the present invention include alkyl substituted imidazoles, N-substituted imidazoles, and mixtures thereof. The adduct also includes an anhydride component. As the anhydride, alicyclic anhydrides are preferred, and most preferred are pyromellitic dianhydrides such as PMDA commercially available from Aldrich. Illustrative further anhydrides preferred for the invention include Intermediates and Actives, a methylhexa-hydrophthalic anhydride (MHHPA) commercially available from Lonza Inc. Other anhydrides that may be used in the present invention include methyltetra-hydrophthalic anhydride, methyl dic anhydride, hexa-hydrophthalic anhydride, tetra-hydrophthalic anhydride, phthalic anhydride, dodecylsuccinic anhydride, bis Phenyl dianhydride, benzophenone tetracarboxylic dianhydride, and mixtures thereof are mentioned.

또한, 본 발명의 언더필 조성물에 용융제(fluxing agent)를 배합할 수 있다. 상기 용융제는 우선 금속 산화물을 제거하여 재산화되는 것을 방지한다. 서로 다른 각종 용융제를 사용할 수 있으나, 본 발명에서는 상기 용융제가 카르복시산기로부터 선택되는 것이 바람직하다. 이 같은 카르복시산을 예시하면, 로진 검(Rosin Gum), 도데칸디오산(상품명 Corfree M2로서, Aldrich로부터 상업적으로 입수 가능함), 아디프산, 타르타르산 및 시트르산을 들 수 있다. 아울러, 상기 용융제는 알코올을 포함하는 기, 하이드록시산 및 하이드록시염기로부터 선택될 수 있다. 본 발명에 바람직한 용융제로는 에틸렌글리콜, 글리세롤, 3-[비스(글리시딜옥시메틸)메톡시]-1,2-프로판디올, D-리보오스, D-셀로바이오스(cellobiose), 셀룰로오스, 3-사이클로헥센-1,1-디메탄올 등과 같은 폴리올을 들 수 있다.In addition, a fluxing agent may be blended in the underfill composition of the present invention. The flux first removes metal oxides to prevent reoxidation. Various different melts may be used, but in the present invention, the melts are preferably selected from carboxylic acid groups. Examples of such carboxylic acids include rosin gum, dodecanedioic acid (commercially available from Aldrich under the trade name Corfree M2), adipic acid, tartaric acid and citric acid. In addition, the melter may be selected from alcohol-containing groups, hydroxy acids and hydroxybases. Preferred melters for the present invention include ethylene glycol, glycerol, 3- [bis (glycidyloxymethyl) methoxy] -1,2-propanediol, D-ribose, D-cellobiose, cellulose, 3- Polyols such as cyclohexene-1,1-dimethanol and the like.

바람직한 물성을 갖는 조성물을 제조하기 위해, 본 발명의 언더필 캡슐화제 조성물에 추가 성분을 첨가할 수 있다. 예를 들어, 일관능성의 반응성 희석제는 경화된 언더필의 물성에 바람직하지 않은 영향을 끼치지 않으면서 점도 증가를 점진적으로 지연시킬 수 있다. 기타 희석제를 사용할 수 있으나, 본 발명에 바람직한 희석제를 예시하면, p-tert-부틸-페닐-글리시딜에테르, 알릴글리시딜에테르, 글리세롤디글리시딜에테르, 알킬페놀의 글리시딜에테르(상품명 Cardolite NC513으로서, Cardolite Corporatoin으로부터 상업적으로 입수 가능함) 및 부탄디오디글리시딜에테르(상품명 BDGE로서, Aldrich로부터 상업적으로 입수 가능함)를 들 수 있다. 또한, 플립 칩 접합 공정과 후속하는 솔더 접합부의 재유동화 공정 및 재료의 경화 공정의 수행 중에 불필요한 공정의 수행을 방지하기 위해 계면활성제를 이용할 수 있다. 본 발명에 이용될 수 있는 각종 계면활성제를 예시하면, 유기 아크릴계 폴리머, 실리콘, 폴리옥시에틸렌/폴리옥시프로필렌 블록 코폴리머, 에틸렌디아민계 폴리옥시에틸렌/폴리옥시프로필렌 블록 코폴리머, 폴리올계 폴리옥시알킬렌, 지방산 알코올계 폴리옥시알킬렌, 지방산 알코올 폴리옥시알킬렌알킬에테르 및 그의 혼합물을 들 수 있다. 아울러, 바람직하다면, 커플링제, 공기 방출제, 흐름 첨가제, 접착 촉진제 및 기타 성분들 또한 본 발명의 조성물에 첨가될 수 있다.In order to prepare a composition having desirable physical properties, additional ingredients may be added to the underfill encapsulant composition of the present invention. For example, monofunctional reactive diluents can gradually delay viscosity increase without adversely affecting the physical properties of the cured underfill. Other diluents may be used, but examples of preferred diluents for the present invention include p-tert-butyl-phenyl-glycidyl ether, allyl glycidyl ether, glycerol diglycidyl ether, and glycidyl ethers of alkylphenols ( The trade names Cardolite NC513 are commercially available from Cardolite Corporatoin) and butanediodiglycidyl ether (trade name available from Aldrich under the trade name BDGE). In addition, a surfactant may be used to prevent unnecessary processing during the flip chip bonding process and the subsequent refluidization process of the solder joint and the hardening process of the material. Examples of various surfactants that can be used in the present invention include organic acrylic polymers, silicones, polyoxyethylene / polyoxypropylene block copolymers, ethylenediamine-based polyoxyethylene / polyoxypropylene block copolymers, and polyol-based polyoxyalkyls. Lene, fatty acid alcohol type polyoxyalkylene, fatty acid alcohol polyoxyalkylene alkyl ether, and mixtures thereof. In addition, coupling agents, air release agents, flow additives, adhesion promoters, and other components, if desired, may also be added to the compositions of the present invention.

본 발명의 바람직한 구현예에 따른 언더필 캡슐화제는 가교제로서, 적어도 1종의 에폭시 수지와 적어도 1종의 페놀/페놀 수지의 혼합물, 촉매로서 이미다졸-무수물의 부가 생성물, 용융제 및 바람직하다면 기타 성분들을 포함한다. 상기 수지 혼합물은 약 0.1 중량% 내지 약 99.9 중량% 범위의 에폭시 수지, 및 약 0.1 내지 약 99.9 중량% 범위의 페놀 수지를 포함할 수 있다. 상기 수지 혼합물은 약 40 중량% 내지 약 95 중량% 범위의 에폭시 수지, 및 약 5 중량% 내지 약 60 중량% 범위의 페놀/페놀 수지를 포함하는 것이 바람직하다. 상기 혼합물은 본 발명의 언더필 조성물에 대해 약 80 중량% 내지 약 99.9 중량% 범위의 양으로 포함될 수 있다. 아울러, 본 발명의 언더필 조성물에 촉매로서 이미다졸-무수물 부가 생성물을 첨가할 수 있다. 상기 부가 생성물은 본 발명의 언더필 조성물에 대해 약 0.01 중량% 내지 약 10 중량%의 범위, 바람직하게는 약 0.1 중량% 내지 약 5 중량% 범위의 양으로 포함될 수 있다. 상기 용융제는 본 발명의 조성물에 대해 약 0.5 중량% 내지 약 20 중량%의 범위, 바람직하게는 본 발명의 조성물에 대해 약 1 중량% 내지 약 10 중량% 범위의 양으로 포함된다. 계면활성제, 공기 방출제, 흐름 첨가제, 유동성 개질제 및 접착 촉진제와 같은 선택적인 성분들은 본 발명의 조성물에 대해 약 0.01 중량% 내지 약 5 중량% 범위의 양으로 첨가될 수 있다.The underfill encapsulating agent according to a preferred embodiment of the invention is a crosslinking agent, a mixture of at least one epoxy resin and at least one phenol / phenol resin, an adduct of an imidazole-anhydride as a catalyst, a melting agent and, if desired, other components. Include them. The resin mixture may comprise an epoxy resin in the range of about 0.1% to about 99.9% by weight, and a phenol resin in the range of about 0.1 to about 99.9% by weight. The resin mixture preferably comprises an epoxy resin in the range of about 40% to about 95% by weight, and a phenol / phenolic resin in the range of about 5% to about 60% by weight. The mixture may be included in an amount ranging from about 80% to about 99.9% by weight relative to the underfill composition of the present invention. In addition, an imidazole-anhydride addition product may be added as a catalyst to the underfill composition of the present invention. The adduct may be included in an amount ranging from about 0.01% to about 10% by weight, preferably from about 0.1% to about 5% by weight relative to the underfill composition of the present invention. The fluxing agent is included in an amount ranging from about 0.5% to about 20% by weight with respect to the composition of the present invention, preferably from about 1% to about 10% by weight with respect to the composition of the present invention. Optional components such as surfactants, air release agents, flow additives, flow modifiers, and adhesion promoters may be added in amounts ranging from about 0.01% to about 5% by weight relative to the compositions of the present invention.

도 1a는 이미다졸-무수물 부가 생성물을 갖는 언더필 제제를 이용하여 용융시킨 후의 공융 솔더 볼의 형상을 도시한 도면.1A shows the shape of a eutectic solder ball after melting using an underfill formulation with an imidazole-anhydride addition product.

도 1b는 이미다졸과 무수물을 물리적으로 블렌드한 언더필 제제를 이용하여 용융시킨 후의 공융 솔더 볼의 형상을 도시한 도면.1B shows the shape of a eutectic solder ball after melting using an underfill formulation that is physically blended with imidazole and anhydride.

하기 실시예를 들어 본 발명을 더욱 상세히 설명한다. The present invention is explained in more detail with reference to the following examples.                 

(실시예 1)(Example 1)

비스페놀 F 에폭시(RSL 1739), 페놀 에폭시(HRJ1166), 2-페닐-4-메틸이미다졸(2P4MZ) 및 피로멜리트산 이무수화물(PMDA)을 부가 생성물로서, 또한 각각의 성분으로서 이용하여 6개의 언더필 조성물을 제형화하였다. 각각의 조성물에 대해 에폭시 수지 및 페놀 수지를 칭량하여 유리병(glass jar)에 넣었다. 상기 유리병을 150℃의 핫 플레이트 상에서 가열하여, 상기 수지들을 혼합하였다. 그런 다음, 각각의 샘플을 주위 온도로 냉각시켰다. 촉매, 용융제 및 공기 방출제를 포함하는 기타 성분들을 상기 유리병에 첨가하였다. 나무 스틱을 이용하여 상기 샘플을 완전히 혼합한 다음, 진공 오븐에서 진공시켰다. PMDA 대 2P4MZ의 몰비는 상기 부가 생성물 내에서의 PMDA와 2P4MZ의 몰비와 동일한 1:2이다. 이렇게 하여 제조된 언더필 제제를 표 1에 나타낸다.Bisphenol F epoxy (RSL 1739), phenol epoxy (HRJ1166), 2-phenyl-4-methylimidazole (2P4MZ) and pyromellitic dianhydride (PMDA) were used as addition products and as individual components, respectively. Underfill compositions were formulated. Epoxy resins and phenolic resins were weighed into each glass jar for each composition. The glass bottle was heated on a 150 ° C. hot plate to mix the resins. Each sample was then cooled to ambient temperature. Other components, including catalyst, melt and air releasing agent were added to the vial. The samples were mixed thoroughly using a wooden stick and then vacuumed in a vacuum oven. The molar ratio of PMDA to 2P4MZ is 1: 2 which is equal to the molar ratio of PMDA and 2P4MZ in the adduct. The underfill formulation thus prepared is shown in Table 1.

표 1: 언더필 제제Table 1: Underfill Formulations

비스페놀-F 에폭시Bisphenol-F Epoxy 페놀 수지 HRJ1166Phenolic Resin HRJ1166 2P4MZ-PMDA 부가 생성물2P4MZ-PMDA Addition Product PMDAPMDA 2P4MZ2P4MZ Corfree M2Corfree M2 A1A1 100100 0.50.5 A2A2 100100 0.20450.2045 0.29550.2955 B1B1 9090 1010 0.50.5 B2B2 9090 1010 0.20450.2045 0.29550.2955 C1C1 9090 1010 0.50.5 1010 C2C2 9090 1010 0.20450.2045 0.29550.2955 1010

DSC(Differential Scanning Calorimeter)를 이용하여, 각각의 제제의 경화 반응에 대해 조사하였다. 표 2는 각각의 제제에 대한 경화 피크 및 엔탈피 결과를 나타낸다. 최고 온도에서 0.8℃의 표준 편차로 상기 실험을 4회 반복 수행하였다.Differential scanning calorimeter (DSC) was used to investigate the curing reaction of each formulation. Table 2 shows the cure peak and enthalpy results for each formulation. The experiment was repeated four times with a standard deviation of 0.8 ° C. at the highest temperature.

표 2: 언더필 제제의 경화 반응Table 2: Curing Reactions of Underfill Formulations

최고 온도(℃)Temperature (℃) ΔH(J/g)ΔH (J / g) A1A1 190.5190.5 25.525.5 A2A2 152.9152.9 5.35.3 B1B1 169.0169.0 190.6190.6 B2B2 156.9156.9 150.3150.3 C1C1 180.2180.2 222.3222.3 C3C3 173.7173.7 227.2227.2

표 2에 나타낸 결과를 통해서, 촉매로서 이미다졸-무수물 부가 생성물을 포함하는 언더필과, 이미다졸 및 무수물의 물리적 블렌드를 포함하는 것을 제외하고 기타 성분은 상기 언더필과 동일한 언더필 간에 상이한 경화 반응이 나타남을 확인할 수 있다.The results shown in Table 2 indicate that different cure reactions occur between the underfill comprising the imidazole-anhydride adduct as a catalyst and the other components except the physical blend of imidazole and anhydride, with the same underfill as the underfill. You can check it.

아울러, 조성물 C1 및 C2에 대해 용융 성능을 테스트했다. 각각의 제제 한 방울을 OSP(organic solderability preservative) Cu 기판에 공급하고, 20 mil 공융 솔더 볼(eutectic solder ball)을 액적형으로 놓았다. 전체 패키지를 150℃ 핫 플레이트 상에서 2분간 가열한 다음, 240℃의 핫 플레이트로 옮겼다. 상기 240℃의 핫 플레이트 상에서 상기 솔더 볼의 직경 확장 반응을 관찰하여, 용융 성능을 측정하였다. 도 1a 및 도 1b에 도시한 바와 같이, 이미다졸-무수물 부가 생성물을 포함하는 제제 C1을 이용하여 형성한 솔더 볼의 확장된 크기가 이미다졸과 무수물의 물리적 블렌드를 포함하는 조성물 C2를 이용하여 형성한 솔더 볼의 크기에 비해 훨씬 크게 나타났다. 이처럼, 조성물 C1에 의해 형성된 솔더 볼의 크기가 큰 것으로 보아, 이미다졸-무수물 부가 생성물을 이용하여 형성한 솔더 볼을 용융시키는 것이 더욱 쉽다는 것을 확인할 수 있다.In addition, melt performance was tested for Compositions C1 and C2. One drop of each formulation was fed to an organic solderability preservative (OSP) Cu substrate and 20 mil eutectic solder balls were placed in droplets. The entire package was heated on a 150 ° C. hot plate for 2 minutes and then transferred to a 240 ° C. hot plate. The diameter expansion reaction of the solder ball was observed on the hot plate at 240 ° C., and the melting performance was measured. As shown in FIGS. 1A and 1B, the expanded size of the solder balls formed using Formulation C1 comprising an imidazole-anhydride adduct is formed using Composition C2 comprising a physical blend of imidazole and anhydride. It was much larger than the size of one solder ball. As described above, the size of the solder balls formed by the composition C1 is large, and it can be confirmed that it is easier to melt the solder balls formed by using the imidazole-anhydride adduct.

(실시예 2) (Example 2)

실시예 1의 과정에 따라 6개의 언더필 조성물 제제를 제조하였다. 각각의 제제에 사용된 에폭시 수지는 RSL1739, Flex-1 에폭시 또는 RSL1739와 제2의 에폭시와의 블렌드이다. 상기 조성물 제제에는 에폭시 수지 외에도, 페놀 성분으로서 HRJ1166이 포함되며, 아울러, 2P4MZ-PMDA 이미다졸-무수물 부가 생성물 촉매 및 도데칸디오산 용융제(Corfree M2)도 첨가되었다. 각각의 조성물의 점도를 측정하여, 그 결과를 표 3에 나타낸다. Six underfill composition formulations were prepared according to the procedure of Example 1. The epoxy resin used in each formulation is RSL1739, Flex-1 epoxy or a blend of RSL1739 with a second epoxy. In addition to the epoxy resin, the composition formulation included HRJ1166 as the phenol component, as well as a 2P4MZ-PMDA imidazole-anhydride addition product catalyst and a dodecanedioic acid melt (Corfree M2). The viscosity of each composition is measured, and the result is shown in Table 3.

표 3: 에폭시 수지/페놀 수지/이미다졸-무수물 부가 생성물을 포함하는 언더필의 점도Table 3: Viscosity of underfill with epoxy resin / phenol resin / imidazole-anhydride adduct

에폭시 수지 (g)Epoxy resin (g) 페놀 수지 HRJ1166 (g)Phenolic Resin HRJ1166 (g) 2P4MZ-PMDA 부가 생성물 (g)2P4MZ-PMDA Addition Product (g) Corfree M2 (g)Corfree M2 (g) 점도 (cp)Viscosity (cp) C1C1 RSL 1739 90 RSL 1739 90 10  10                                      0.5  0.5                                      10  10                                      16091  16091                                      DD RSL 1739 85 NC513 5 RSL 1739 85 NC513 5 10  10                                                                                                                          0.5  0.5                                                                                                                          10  10                                                                                                                          7474  7474                                                                                                                          EE RSL 1739 85 BDGE 5 RSL 1739 85 BDGE 5 10  10                                                                                                                          0.5  0.5                                                                                                                          10  10                                                                                                                          5831  5831                                                                                                                          FF Flex-1 80 Flex-1 80 20  20                                      3  3                                      10  10                                      6158  6158                                      GG RSL 1739 45 Flex-1 45 RSL 1739 45 Flex-1 45 10  10                                                                                                                          1  One                                                                                                                          10  10                                                                                                                          3075  3075                                                                                                                          HH RSL 1739 70 Flex-1 20 RSL 1739 70 Flex-1 20 10  10                                                                                                                          0.5  0.5                                                                                                                          10  10                                                                                                                          6493  6493                                                                                                                         

표 3에 나타낸 바와 같이, 이미다졸-무수물 부가 생성물을 포함하는 각각의 언더필 조성물의 점도는 20,000 cp 이하로서, 시린지를 통해 공급하는데 양호했다.As shown in Table 3, the viscosity of each underfill composition comprising the imidazole-anhydride addition product was 20,000 cp or less, which was good for feeding through a syringe.

(실시예 3)(Example 3)

언더필 조성물은 공융의 Sn/Pb 솔더 범프의 융점인 183℃ 부근의 온도에서 경화 반응이 발생하는 것이 바람직하다. 상기 솔더 범프의 융점 미만의 온도에서는 이상적으로 최소한의 경화 반응이 발생해야 하며, 재유동화 공정에서 완전한 경화 반응이 일어나도록, 솔더 볼보다 높은 온도에서는 경화 반응이 신속하게 일어나야 한다. DSC를 사용하여 실시예 2의 언더필 조성물의 물성을 평가하고, 그 결과를 표 4에 나타낸다.It is preferable that a hardening reaction generate | occur | produces an underfill composition at the temperature of 183 degreeC which is melting | fusing point of eutectic Sn / Pb solder bump. Ideally, the minimum hardening reaction should occur at temperatures below the melting point of the solder bumps, and the hardening reaction should occur rapidly at temperatures higher than the solder balls so that a complete hardening reaction occurs in the refluidization process. The physical property of the underfill composition of Example 2 was evaluated using DSC, and the result is shown in Table 4.

표 4: 상기 언더필 조성물의 DSC 결과 Table 4: DSC Results of the Underfill Composition

최고 온도(℃)Temperature (℃) ΔH(J/g)ΔH (J / g) C2C2 180.2180.2 222.3222.3 DD 181.4181.4 227.7227.7 EE 181.7181.7 230.4230.4 FF 179.7179.7 139.2139.2 GG 184.04184.04 157.5157.5 HH 182.4182.4 271.4271.4

표 4에 나타낸 바와 같이, 이미다졸-무수물 부가 생성물을 포함하는 상기 제제의 최고 온도는 대체로 180℃ 내지 185℃ 범위이므로, 가교 네트워크가 형성되기 전에 솔더 볼을 용융시키는데 충분한 정도로, 상기 언더필 조성물의 경화 반응이 지연되도록 하는 양호한 물성을 나타냄을 확인할 수 있다.As shown in Table 4, the maximum temperature of the formulation comprising the imidazole-anhydride adduct is generally in the range of 180 ° C. to 185 ° C., so that the curing of the underfill composition is sufficient to melt the solder balls before the crosslinking network is formed. It can be seen that it exhibits good physical properties such that the reaction is delayed.

두 개의 상이한 기판으로서 OSP Cu 기판 및 Ni/Au 기판을 이용한 것을 제외하고, 실시예 1에서의 핫 플레이트 방법을 이용하여 실시예 3의 조성물의 용융 성능을 테스트하였다. 표 3에 기재된 바를 통해, 상기 표 3의 모든 제제에 있어서 솔더 범프가 약 100% 내지 약 300%의 범위의 비율로 확장되므로, 상기 언더필이 우수한 용융 성능을 부여함을 확인할 수 있다. 아울러, 상기 샘플들을 240℃의 핫 플레이트 상에서 1분간 가열시키고, 주위 온도로 냉각시킨 다음, 이들의 패키지의 표면 점착도(surface tackiness)를 확인하였다. 전술한 조건 하에서는 상기 모든 제제의 표면에서 비점착성을 나타내었다. 끝으로, PB8 및 TV46ps를 이용하여 Ni/Au 마무리된 기판 상에서 제제 D, 제제 F, 제제 G 및 제제 H를 테스트하였으며, 이 때, 상기 PB8은 다이(die) 크기가 200×200 mil, 피치 8 mil, 갭 4 mil 및 I/O가 88인 주변 배열 플립 칩(peripheral array flip chip)이고, 상기 TV-46은 다이 크기가 226×310 mil, 갭 13 mil 및 I/O가 46인 풀 에어리어 어레이 마이크로 BGA(full area array micro BGA)이다. 시린지를 이용하여 기판에 약 6 내지 14 ㎎의 샘플을 공급하였다. 이어서, 상기 기판을 픽 앤드 플레이스(pick-and-place) 장치(Universal Instrument 제조)에 놓고, 상기 장치에 의해 상기 칩을 자동으로 집어서 기판에 놓았다. 전체 패키지를 리플로우 오븐에 넣고, 150℃에서의 침지 반응 시간이 약 2분이고, 150℃ 내지 240℃로 승온시키면서 솔더 용융 반응 및 수지 경화 시간을 약 1분으로 하는 표준 재유동화 공정을 수행하였다. 이러한 재유동화 공정을 통해 솔더 범프를 용융시키고, 칩과 기판 사이에 배선을 형성하였다. 상기 PB8 칩을 이용한 네 개의 제제를 이용한 경우에는 모두 100% 배선이 얻어졌으며, 상기 TV46 칩을 이용한 경우에는 제제 F 및 제제 G에서 100% 배선이 얻어졌다. 상기 샘플들에 대해 재유동화 공정을 완료한 후, DSC를 이용하여 관찰한 결과, 잔여 경화 반응은 관찰되지 않았다.The melt performance of the composition of Example 3 was tested using the hot plate method in Example 1, except using an OSP Cu substrate and a Ni / Au substrate as two different substrates. Through the bar shown in Table 3, it can be seen that the solder bumps in all formulations of Table 3 in the proportion of about 100% to about 300%, so that the underfill gives excellent melting performance. In addition, the samples were heated on a hot plate at 240 ° C. for 1 minute, cooled to ambient temperature, and the surface tackiness of their packages was checked. Under the above conditions, all the above formulations exhibited non-tackiness. Finally, Formulation D, Formulation F, Formulation G and Formulation H were tested on Ni / Au finished substrates using PB8 and TV46ps, wherein the PB8 had a die size of 200 × 200 mil, pitch 8 Peripheral array flip chip with mil, gap 4 mil and I / O of 88, and the TV-46 is a full area array with die size of 226 × 310 mil, gap 13 mil and I / O of 46 Full area array micro BGA. A syringe was used to supply about 6-14 mg of sample to the substrate. The substrate was then placed in a pick-and-place device (manufactured by Universal Instrument) and the chip was automatically picked up by the device and placed on the substrate. The entire package was placed in a reflow oven and a standard reflow fluidization process was performed with the immersion reaction time at 150 ° C. being about 2 minutes and the solder melt reaction and resin cure time being about 1 minute while heating up from 150 ° C. to 240 ° C. This refluidization process melted the solder bumps and formed wiring between the chip and the substrate. In all four formulations using the PB8 chip, 100% wiring was obtained. In the case of the TV46 chip, 100% wiring was obtained in Formulation F and Formula G. After completion of the refluidization process for the samples, observation using DSC revealed no residual curing reaction.

(실시예 4)(Example 4)

표 3에 따른 각각의 언더필 조성물 한 방울을 1"×3"의 유리 슬라이드에 적하했다. 이어서, 4개의 20 mil 솔더 볼을 각각의 액적 내에 매립하고, 상기 유리 슬라이드 상의 각각의 액적을 1"×1"의 유리 슬릿으로 덮었다. 그 패키지를 150℃ 의 핫 플레이트에서 2분간 가열한 다음, 240℃의 핫 플레이트로 옮겨 추가적으로 1분간 가열하였다. 그런 다음, 상기 패키지를 주위 온도로 냉각시켰다. 상기 패키지를 냉각시킨 다음, 상기 패키지에 대해 임의의 기포 존재 또는 보이드(void)의 형성 여부를 관찰하였다. 상기 제제 E의 언더필 재료 내에 형성된 보이드를 제외하고는 기포나 보이드가 관찰되지 않았다. 이러한 결과로부터, 용융제와 함께 이미다졸-무수물 부가 생성물을 사용하고 에폭시 및 페놀 수지를 포함하는 조성물을 이용하여 보이드 및 기포를 최소화한 언더필을 생성할 수 있음을 확인할 수 있다.One drop of each underfill composition according to Table 3 was added dropwise to a 1 ″ × 3 ″ glass slide. Four 20 mil solder balls were then embedded in each droplet, and each droplet on the glass slide was covered with a 1 ″ × 1 ″ glass slit. The package was heated on a 150 ° C. hot plate for 2 minutes and then transferred to a 240 ° C. hot plate for an additional 1 minute. The package was then cooled to ambient temperature. After the package was cooled, any bubble presence or void formation was observed for the package. No bubbles or voids were observed except for voids formed in the underfill material of Formulation E above. From these results, it can be seen that an underfill with minimized voids and bubbles can be produced by using an imidazole-anhydride adduct with a melt and a composition comprising an epoxy and a phenol resin.

(실시예 5)(Example 5)

납을 함유하지 않은 솔더(Sn 96.5/Ag 3.5, 융점 225℃)를 사용하여 상기 언더필 조성물을 이용할 수도 있다. 실시예 1에서 수행한 공정에 따라서 4개의 언더필 조성물을 제조하였다. 그 조성물을 표 5에 나타낸다.The underfill composition may be used using a lead-free solder (Sn 96.5 / Ag 3.5, melting point of 225 ° C). Four underfill compositions were prepared according to the process carried out in Example 1. The composition is shown in Table 5.

표 5: 언더필 제제 및 점도Table 5: Underfill Formulations and Viscosities

에폭시 수지Epoxy resin 페놀 수지Phenolic resin Corfree M2Corfree M2 2P4MZ-PMDA 부가 생성물2P4MZ-PMDA Addition Product DSC (피크[℃]/ΔH[J/g])DSC (Peak [° C] / ΔH [J / g]) 점도 (cp)Viscosity (cp) II Flex-1 74 Flex-1 74 HRJ4626 26 HRJ4626 26 10  10                                      3  3                                      160/160  160/160                                      8724  8724                                      JJ Flex-1 66.4 Flex-1 66.4 디알릴비스페놀 A 33.6 Diallylbisphenol A 33.6 10  10                                      3  3                                      173/158  173/158                                      3031  3031                                      KK Flex-1 66.4 Flex-1 66.4 디알릴비스페놀 A 33.6 Diallylbisphenol A 33.6 10  10                                      5  5                                      172/180  172/180                                      3440  3440                                      LL RSL1 739 RSL1 739 디알릴비스페놀 A 48 Diallylbisphenol A 48 10  10                                      0.5  0.5                                      184/234  184/234                                      29450  29450                                                                               

주석/납 솔더 볼 및 OSP Cu 기판 대신, 납을 함유하지 않는 솔더 볼 및 Ni/Au 기판을 이용한 것을 제외하고는 실시예 1에 기재된 핫 플레이트 방법에 따라 상기 조성물들의 용융 성능을 테스트했다. 테스트한 각각의 조성물에서는 납을 함 유하지 않는 솔더 볼의 직경이 300% 확장된 것이 관찰되었다.The melting performance of the compositions was tested according to the hot plate method described in Example 1, except that instead of tin / lead solder balls and OSP Cu substrates, lead-free solder balls and Ni / Au substrates were used. In each of the compositions tested, a 300% extension of the lead-free solder balls was observed.

Claims (18)

a) 적어도 1종의 에폭시 수지와 적어도 1종의 페놀 함유 화합물을 포함하는 열경화성 수지 혼합물;a) a thermosetting resin mixture comprising at least one epoxy resin and at least one phenol containing compound; b) 이미다졸-무수물 부가생성물(adduct); 및b) imidazole-anhydride adducts; And c) 용융제(fluxing agent)c) fluxing agent 를 포함하는 비유동성 언더필 캡슐화제 재료.Non-flowable underfill encapsulant material comprising a. 제1항에 있어서,The method of claim 1, 상기 적어도 1종의 에폭시 수지가 비스페놀-A의 일관능성 및 다관능성 글리시딜에테르, 비스페놀-F의 일관능성 및 다관능성 글리시딜에테르, 지방족 에폭시, 방향족 에폭시, 포화 에폭시, 불포화 에폭시, 지환식 에폭시 수지, 하기 구조를 갖는 에폭시 및 그의 혼합물을 포함하는 군으로부터 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료:The at least one epoxy resin is a monofunctional and polyfunctional glycidyl ether of bisphenol-A, a monofunctional and polyfunctional glycidyl ether of bisphenol-F, aliphatic epoxy, aromatic epoxy, saturated epoxy, unsaturated epoxy, alicyclic Non-flowable underfill encapsulant material, characterized in that it is selected from the group comprising an epoxy resin, an epoxy having the structure:
Figure 112004034067840-pct00004
,
Figure 112004034067840-pct00004
,
Figure 112004034067840-pct00005
Figure 112004034067840-pct00005
Figure 112004034067840-pct00006
.
Figure 112004034067840-pct00006
.
제2항에 있어서,The method of claim 2, 상기 적어도 1종의 에폭시 수지가 3,4-에폭시사이클로헥실메틸-3,4-에폭시사이클로헥산 카르복실레이트, 비닐사이클로헥센 디옥사이드, 3,4-에폭시-6-메틸사이클로헥실메틸-3,4-에폭시사이클로헥산 카르복실레이트, 디사이클로펜타디엔 디옥사이드, 비스페놀 A형 수지, 비스페놀 F형 수지, 에폭시 노볼락 수지, 폴리(페닐글리시딜에테르)-co-포름알데히드, 바이페닐형 에폭시 수지, 디사이클로펜타디엔-페놀 에폭시 수지, 나프탈렌 에폭시 수지, 에폭시 관능성 부타디엔 아크릴로니트릴 코폴 리머, 에폭시 관능성 폴리디메틸실록산 및 그의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.The at least one epoxy resin is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, vinylcyclohexene dioxide, 3,4-epoxy-6-methylcyclohexylmethyl-3,4- Epoxycyclohexane carboxylate, dicyclopentadiene dioxide, bisphenol A type resin, bisphenol F type resin, epoxy novolak resin, poly (phenylglycidyl ether) -co-formaldehyde, biphenyl type epoxy resin, dicyclo A non-flowable underfill encapsulant material selected from the group consisting of pentadiene-phenol epoxy resins, naphthalene epoxy resins, epoxy functional butadiene acrylonitrile copolymers, epoxy functional polydimethylsiloxanes, and mixtures thereof. 제1항에 있어서,The method of claim 1, 상기 페놀 함유 화합물이 페놀 수지, 페놀 및 그의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.Non-flowable underfill encapsulant material, characterized in that the phenol-containing compound is selected from the group consisting of phenol resins, phenols and mixtures thereof. 제4항에 있어서,The method of claim 4, wherein 상기 페놀 함유 화합물이 페놀 노볼락 수지, 디알릴비스페놀-A, 비스페놀-A 또는 그의 혼합물을 포함하는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.A non-flowable underfill encapsulant material, wherein the phenol-containing compound comprises a phenol novolak resin, diallylbisphenol-A, bisphenol-A, or mixtures thereof. 제3항에 있어서,The method of claim 3, 상기 적어도 1종의 에폭시 수지가 상기 캡슐화제에 대해 약 0.1 중량% 내지 약 99.9 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.The at least one epoxy resin is included in an amount ranging from about 0.1% to about 99.9% by weight relative to the encapsulant. 제4항에 있어서,The method of claim 4, wherein 상기 에폭시 수지가 상기 캡슐화제에 대해 약 40 중량% 내지 약 95 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.Non-flowable underfill encapsulant material, characterized in that the epoxy resin is included in an amount ranging from about 40% to about 95% by weight relative to the encapsulant. 제1항에 있어서,The method of claim 1, 상기 이미다졸-무수물 부가 생성물이 피로멜리트산 이무수물, 메틸헥사-하이드로프탈산 무수물, 메틸테트라-하이드로프탈산 무수물, 나드산메틸 무수물(nadic methyl anhydride), 헥사-하이드로프탈산 무수물, 테트라-하이드로프탈산 무수물, 도데실숙신산 무수물, 프탈산 무수물, 비스페닐 이무수물, 벤조페논 테트라카르복시산 이무수물, 1-시아노에틸-2-에틸-4-메틸-이미다졸, 알킬 치환된 이미다졸, 트리페닐포스핀, 오늄 보레이트, N-치환되지 않은 이미다졸, 2-페닐-4-메틸이미다졸, 2-페닐이미다졸, 이미다졸, N-치환된 이미다졸 및 그의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.The imidazole-anhydride adducts include pyromellitic dianhydride, methylhexa-hydrophthalic anhydride, methyltetra-hydrophthalic anhydride, methyl dic anhydride, hexa-hydrophthalic anhydride, tetra-hydrophthalic anhydride, Dodecylsuccinic anhydride, phthalic anhydride, bisphenyl dianhydride, benzophenone tetracarboxylic dianhydride, 1-cyanoethyl-2-ethyl-4-methyl-imidazole, alkyl substituted imidazole, triphenylphosphine, onium borate , N-unsubstituted imidazole, 2-phenyl-4-methylimidazole, 2-phenylimidazole, imidazole, N-substituted imidazole and mixtures thereof. Flowable Underfill Encapsulant Material. 제8항에 있어서,The method of claim 8, 상기 이미다졸-무수물 부가 생성물이 2-페닐-4-메틸이미다졸과 피로멜리트산 이무수물의 부가 생성물을 포함하는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.Non-flowable underfill encapsulant material, characterized in that the imidazole-anhydride adduct comprises the adduct of 2-phenyl-4-methylimidazole and pyromellitic dianhydride. 제9항에 있어서,10. The method of claim 9, 상기 이미다졸-무수물 부가 생성물이 상기 캡슐화제에 대하여 약 0.01 중량% 내지 약 10 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.And wherein said imidazole-anhydride adduct is included in an amount ranging from about 0.01% to about 10% by weight relative to said encapsulant. 제9항에 있어서,10. The method of claim 9, 상기 이미다졸-무수물 부가 생성물이 상기 캡슐화제에 대하여 약 0.1 중량% 내지 약 5 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제 재료.And wherein said imidazole-anhydride adduct is included in an amount ranging from about 0.1% to about 5% by weight relative to said encapsulant. 제1항에 있어서,The method of claim 1, 상기 용융제 성분이 카르복시산, 로진 검, 도데칸디오산, 아디프산, 타르타르산, 시트르산, 알코올, H2O, 하이드록시산, 하이드록시염기; 에틸렌글리콜, 글리세롤, 3-[비스(글리시딜옥시메틸)메톡시]-1,2-프로판디올, D-리보오스, D-셀로바이오스, 셀룰로오스, 3-사이클로헥센-1,1-디메탄올과 같은 폴리올; 및 그의 혼합물을 포함하는 군으로부터 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제.The melter component is carboxylic acid, rosin gum, dodecanedioic acid, adipic acid, tartaric acid, citric acid, alcohol, H 2 O, hydroxy acid, hydroxy base; Ethylene glycol, glycerol, 3- [bis (glycidyloxymethyl) methoxy] -1,2-propanediol, D-ribose, D-cellobiose, cellulose, 3-cyclohexene-1,1-dimethanol Same polyols; And a non-flowable underfill encapsulating agent, characterized in that it is selected from the group comprising mixtures thereof. 제12항에 있어서,The method of claim 12, 상기 용융제 성분이 로진검, 도데칸디오산, 아디프산 또는 그의 혼합물을 포함하는 것을 특징으로 하는 비유동성 언더필 캡슐화제.A non-flowable underfill encapsulant, wherein said melt component comprises rosin gum, dodecanedioic acid, adipic acid, or mixtures thereof. 제12항에 있어서,The method of claim 12, 상기 용융제 성분이 상기 캡슐화제에 대해 약 0.5 중량% 내지 약 20 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제.Non-flowable underfill encapsulant, wherein the melt component is included in an amount ranging from about 0.5% to about 20% by weight relative to the encapsulant. 제14항에 있어서,The method of claim 14, 상기 용융제 성분이 상기 캡슐화제에 대해 약 1 중량% 내지 약 10 중량% 범위의 양으로 포함되는 것을 특징으로 하는 비유동성 언더필 캡슐화제.Non-flowable underfill encapsulant, wherein the melter component is included in an amount ranging from about 1% to about 10% by weight relative to the encapsulant. 제1항에 있어서,The method of claim 1, 상기 캡슐화제가 계면활성제, 커플링제, 반응성 희석제, 공기 방출제(air release agent), 흐름 첨가제(flow additive), 접착 촉진제(adhesion promoter) 및 그의 혼합물로 이루어진 군에서 선택되는 1종 이상을 추가로 포함하는 것을 특징으로 하는 비유동성 언더필 캡슐화제.The encapsulant further comprises one or more selected from the group consisting of surfactants, coupling agents, reactive diluents, air release agents, flow additives, adhesion promoters and mixtures thereof. Non-flowable underfill encapsulating agent, characterized in that. 제16항에 있어서,The method of claim 16, 상기 계면활성제가 유기 아크릴계 폴리머, 실리콘, 폴리옥시에틸렌/폴리옥시프로필렌 블록 코폴리머, 에틸렌디아민계 폴리옥시에틸렌/폴리옥시프로필렌 블록 코폴리머, 폴리올계 폴리옥시알킬렌, 지방산 알코올계 폴리옥시알킬렌, 지방산 알코올 폴리옥시알킬렌알킬에테르 및 그의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제.The surfactant is an organic acrylic polymer, silicone, polyoxyethylene / polyoxypropylene block copolymer, ethylenediamine polyoxyethylene / polyoxypropylene block copolymer, polyol polyoxyalkylene, fatty alcohol alcohol polyoxyalkylene, Non-flowable underfill encapsulant, characterized in that it is selected from the group consisting of fatty alcohol polyoxyalkylene alkyl ethers and mixtures thereof. 제15항에 있어서,The method of claim 15, 상기 반응성 희석제가 p-tert-부틸-페닐-글리시딜에테르, 알릴글리시딜에테르, 글리세롤디글리시딜에테르, 알킬의 글리시딜에테르, 부탄디오디글리시딜에테르 및 그의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 비유동성 언더필 캡슐화제.The reactive diluent is selected from the group consisting of p-tert-butyl-phenyl-glycidyl ether, allyl glycidyl ether, glycerol diglycidyl ether, glycidyl ether of alkyl, butanediodiglycidyl ether and mixtures thereof Non-flowable underfill encapsulant, characterized in that it is selected.
KR1020047011760A 2002-01-31 2003-01-21 No flow underfill composition KR100953579B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/062,902 2002-01-31
US10/062,902 US20030162911A1 (en) 2002-01-31 2002-01-31 No flow underfill composition
PCT/US2003/001676 WO2003064493A1 (en) 2002-01-31 2003-01-21 No flow underfill composition

Publications (2)

Publication Number Publication Date
KR20040082402A KR20040082402A (en) 2004-09-24
KR100953579B1 true KR100953579B1 (en) 2010-04-21

Family

ID=27658617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047011760A KR100953579B1 (en) 2002-01-31 2003-01-21 No flow underfill composition

Country Status (8)

Country Link
US (1) US20030162911A1 (en)
EP (1) EP1470176B1 (en)
JP (1) JP4481651B2 (en)
KR (1) KR100953579B1 (en)
CN (1) CN100586980C (en)
AT (1) ATE365758T1 (en)
DE (1) DE60314596T2 (en)
WO (1) WO2003064493A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037399B2 (en) * 2002-03-01 2006-05-02 National Starch And Chemical Investment Holding Corporation Underfill encapsulant for wafer packaging and method for its application
US20060194064A1 (en) * 2002-03-01 2006-08-31 Xiao Allison Y Underfill encapsulant for wafer packaging and method for its application
US6882058B2 (en) * 2002-11-05 2005-04-19 Henkel Corporation Organic acid containing compositions and methods for use thereof
US7026376B2 (en) * 2003-06-30 2006-04-11 Intel Corporation Fluxing agent for underfill materials
CN1802603A (en) 2003-07-17 2006-07-12 霍尼韦尔国际公司 Planarization films for advanced microelectronic applications and devices and methods of production thereof
JP4402718B2 (en) * 2005-05-17 2010-01-20 パナソニック株式会社 Flip chip mounting method
KR101117757B1 (en) * 2009-02-26 2012-03-15 도레이첨단소재 주식회사 Resin composition for no-flow underfill and no-flow underfill film using the same
KR20140058557A (en) 2011-07-15 2014-05-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Semiconductor package resin composition and usage method thereof
CN102382625A (en) * 2011-09-22 2012-03-21 长春工业大学 Modified dicyclopentadiene dioxide epoxy resin potting material and preparation method thereof
CN102516963B (en) * 2011-10-17 2013-07-31 中国石油天然气股份有限公司 Chemical composite resin mounting agent for oil-water well casing restoration
WO2013165324A2 (en) 2012-04-05 2013-11-07 Mektec Manufacturing Corporation(Thailand)Ltd Encapsulant materials and a method of making thereof
JP2014091744A (en) 2012-10-31 2014-05-19 3M Innovative Properties Co Underfill composition, semiconductor device and manufacturing method thereof
CN104650788A (en) * 2015-02-04 2015-05-27 江苏大力士投资有限公司 Caulking adhesive with favorable retractility and preparation method thereof
JP2018024832A (en) * 2016-07-29 2018-02-15 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6836740B2 (en) * 2016-10-13 2021-03-03 三菱瓦斯化学株式会社 Resin composition, resin sheet, printed wiring board and semiconductor device
CN107459608B (en) * 2017-09-14 2020-03-24 中国林业科学研究院林产化学工业研究所 Acrylic acid rosin-based high-molecular surfactant and preparation method and application thereof
CN110591622B (en) * 2019-09-12 2022-11-22 深圳市百丽春粘胶实业有限公司 High-weather-resistance low-temperature thermosetting epoxy module adhesive and preparation method thereof
CN111394053B (en) * 2020-03-03 2021-10-26 华南理工大学 Non-flowing underfill with welding assisting function and preparation method thereof
TW202216834A (en) * 2020-06-01 2022-05-01 德商漢高智慧財產控股公司 Flux-compatible epoxy-anhydride adhesive compositions for low-gap underfill applications
CN112280509B (en) * 2020-09-14 2023-07-25 深圳市安伯斯科技有限公司 Single-component epoxy resin packaging transparent adhesive tape and application thereof
CN113072100B (en) * 2021-03-26 2022-07-29 天津市捷威动力工业有限公司 Preparation method of high-nickel lithium ion battery positive electrode material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037134A1 (en) * 1997-02-19 1998-08-27 Georgia Tech Research Corporation Low-cost high-performance no-flow underfills for flip-chip applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877000A (en) * 1972-01-17 1973-10-16
JPS63251420A (en) * 1987-04-07 1988-10-18 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH04248827A (en) * 1991-01-08 1992-09-04 Matsushita Electric Works Ltd Sealing epoxy resin molding material
JP3139333B2 (en) * 1995-07-24 2001-02-26 信越化学工業株式会社 Epoxy resin composition
EP0780435A1 (en) * 1995-12-21 1997-06-25 National Starch and Chemical Investment Holding Corporation Flexible epoxy adhesives with low bleeding tendency
US6833629B2 (en) * 2001-12-14 2004-12-21 National Starch And Chemical Investment Holding Corporation Dual cure B-stageable underfill for wafer level

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037134A1 (en) * 1997-02-19 1998-08-27 Georgia Tech Research Corporation Low-cost high-performance no-flow underfills for flip-chip applications

Also Published As

Publication number Publication date
WO2003064493A1 (en) 2003-08-07
KR20040082402A (en) 2004-09-24
DE60314596T2 (en) 2008-03-13
US20030162911A1 (en) 2003-08-28
JP2005516090A (en) 2005-06-02
JP4481651B2 (en) 2010-06-16
CN100586980C (en) 2010-02-03
ATE365758T1 (en) 2007-07-15
EP1470176A1 (en) 2004-10-27
DE60314596D1 (en) 2007-08-09
EP1470176B1 (en) 2007-06-27
CN1643023A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
KR100953579B1 (en) No flow underfill composition
JP4276085B2 (en) Underfill encapsulant for wafer packaging and coating method thereof
US7608487B2 (en) B-stageable underfill encapsulant and method for its application
EP1818351B1 (en) Underfill encapsulant for wafer packaging and method for its application
US7056978B2 (en) Toughened epoxy-anhydride no-flow underfill encapsulant
US6624216B2 (en) No-flow underfill encapsulant
JP2005516090A5 (en)
US7004375B2 (en) Pre-applied fluxing underfill composition having pressure sensitive adhesive properties
US20070287775A1 (en) Low viscosity curable compositions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130321

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140319

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee