KR100951633B1 - Process for SiC coating on graphite foam - Google Patents

Process for SiC coating on graphite foam Download PDF

Info

Publication number
KR100951633B1
KR100951633B1 KR1020070101203A KR20070101203A KR100951633B1 KR 100951633 B1 KR100951633 B1 KR 100951633B1 KR 1020070101203 A KR1020070101203 A KR 1020070101203A KR 20070101203 A KR20070101203 A KR 20070101203A KR 100951633 B1 KR100951633 B1 KR 100951633B1
Authority
KR
South Korea
Prior art keywords
graphite foam
coating
silicon carbide
polyphenylcarbosilane
foam
Prior art date
Application number
KR1020070101203A
Other languages
Korean (ko)
Other versions
KR20090036180A (en
Inventor
김영희
김수룡
권우택
조광연
경재진
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020070101203A priority Critical patent/KR100951633B1/en
Publication of KR20090036180A publication Critical patent/KR20090036180A/en
Application granted granted Critical
Publication of KR100951633B1 publication Critical patent/KR100951633B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides

Abstract

본 발명은 그라파이트 폼 상에 폴리페닐카보실란을 출발물질로 하여 제조된 실리콘카바이드를 코팅하는 공정을 포함하는 실리콘카바이드 코팅 형성방법을 제공한다. 본 발명에 의해 제조된 실리콘카바이드가 코팅된 그라파이트 폼은 가볍고 열전도도가 높으며 기존의 알루미늄 폼과 비교시 약 5배정도 가벼워 소형화 대용량화 추세인 전자기기의 열 방출 재료 및 고온 열교환기 소재로 사용이 가능하다.The present invention provides a method for forming a silicon carbide coating comprising a step of coating a silicon carbide prepared by using a polyphenyl carbosilane as a starting material on the graphite foam. The silicon carbide coated graphite foam manufactured by the present invention is light, has high thermal conductivity, and is about 5 times lighter than conventional aluminum foam, and can be used as a heat dissipation material and a high temperature heat exchanger material of electronic devices, which are becoming smaller and larger in size. .

그라파이트 폼, 실리콘카바이드, 발열재 Graphite Foam, Silicon Carbide, Heating Material

Description

그라파이트 폼 상에 실리콘카바이드 코팅형성방법. {Process for SiC coating on graphite foam} A method of forming a silicon carbide coating on graphite foam. {Process for SiC coating on graphite foam}

본 발명은 그라파이트 폼 상에 실리콘카바이드를 코팅하는 방법에 관한 것이다.The present invention relates to a method of coating silicon carbide on graphite foam.

산업사회가 고도의 정보화 시대로 발전함에 따라 고속 CPU, 대형 LCD, 대용량 메모리를 탑재한 전자기기들이 증가하고 있으며, 이러한 전자기기로부터 발생하는 열을 효과적으로 방출할 수 있는 발열재가 요구되고 있다. As the industrial society evolves into a high information age, electronic devices equipped with high-speed CPUs, large LCDs, and large-capacity memories are increasing, and heating materials that can effectively release heat generated from such electronic devices are required.

그라파이트 폼 재료는 비강도가 높고, 열 충격과 부식에 대단히 강하며 높은 열전도율과 전기전도율을 갖춘 소재다. 또한 환원분위기에서 열처리하는 동안의 저비점 화합물의 휘발과 중·축합을 거치는 동안의 높은 열분해로 인하여 낮은 밀도를 갖춘 폼(foam) 형태를 갖게 되는데 이는 열변환기로 사용될 때 필요한 높은 비표면적을 가능케 함으로써 높은 열전도율과 큰 비표면적, 낮은 밀도의 3가지 열 방출 소재로서의 필요조건을 충족시킬 수 있는 이상적인 소재이다. 또한 기존의 알루미늄 소재보다 약 5배정도 가벼워 중량에 있어서도 월등한 이점을 갖추어 소형화 대용량 화 추세인 전자기기의 열 방출 재료로 활발히 연구가 진행되고 있다. Graphite foam materials are materials with high specific strength, extremely resistant to thermal shock and corrosion, and high thermal and electrical conductivity. In addition, due to the volatilization of low-boiling compounds during heat treatment in the reducing atmosphere and high thermal decomposition during the condensation and condensation, they have a low density foam form, which enables high specific surface area required for use as a thermal converter. It is an ideal material to meet the requirements of three heat dissipating materials: thermal conductivity, large specific surface area and low density. In addition, it is about 5 times lighter than the existing aluminum material, which has superior advantages in weight, and is being actively researched as a heat dissipation material for electronic devices, which is becoming smaller and larger in capacity.

그러나 그라파이트 폼 재료는 400℃ 이상의 온도에서 산화가 진행되어 물리적 특성이 급격히 감소하는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 그라파이트 폼 상의 산화방지 처리방법이 여러 가지로 검토되고 있다.However, graphite foam material has a disadvantage in that the oxidation proceeds at a temperature of 400 ° C. or more, and the physical properties rapidly decrease. In order to compensate for these disadvantages, various methods for treating antioxidants on graphite foam have been studied.

그라파이트 폼 상의 산화방지를 위한 코팅방법으로는 화학기상증착공정(CVD)을 이용한 실리콘카바이드(SiC), 질화규소(Si3N4), 실리콘청동(SiBC), Mullite등의 코팅 및 플라즈마 용사를 통한 마그네시아(MgO), 알루미나(Al2Cl3) 및 산화크롬(Cr2O3)등의 코팅이 활발히 진행되고 있다. Coating method for oxidation prevention on graphite foam is magnesia by coating with silicon carbide (SiC), silicon nitride (Si 3 N 4 ), silicon bronze (SiBC), Mullite using chemical vapor deposition (CVD) and magnesia through plasma spraying Coatings such as (MgO), alumina (Al 2 Cl 3 ), and chromium oxide (Cr 2 O 3 ) are actively underway.

그러나 상기 플라즈마 용사에 의한 코팅 방법은 재료와의 접착이 불량하여 박리가 일어나기 쉬우므로 코팅층을 두껍게 하지 않으면 안되는 단점이 있다.However, the coating method by plasma spraying has a disadvantage in that the coating layer needs to be thickened because it is easy to peel off due to poor adhesion to the material.

한편, 실리콘카바이드가 피복된 그라파이트 폼은 실리콘과 카바이드로 강한 공유 결합을 하고 있으므로 2000℃ 이상의 온도에서도 물리적 성질이나 화학적 성분상의 변화가 없는 성분으로 기존 그라파이트 폼에 비하여 강도, 경도, 내마모성, 내산화성이 우수하여 주된 코팅재료로 사용되고 있다. 그러나 실리콘 카바이드는 비산화물 세라믹을 이용한 용사코팅 등의 코팅이 불가능하며 함침, 스핀코팅에 적합한 전구체 물질이 알려지지 않아 그 사용이 제한되어 왔었다. On the other hand, since silicon carbide-coated graphite foam has strong covalent bonds with silicon and carbide, there is no change in physical properties or chemical composition even at temperatures over 2000 ℃, and it has higher strength, hardness, abrasion resistance, and oxidation resistance than conventional graphite foam. It is excellent and is used as the main coating material. However, silicon carbide can not be coated, such as thermal spray coating using a non-oxide ceramic, and the precursor material suitable for impregnation and spin coating has not been known, and its use has been limited.

일반적으로 실리콘카바이드를 그라파이트 폼 상에 코팅하는 방법으로는 유기 규소 화합물을 이용한 화학증착법 또는 용융 규소나 규소 가스의 침투를 이용한 방법 및 일산화규소(SiO2)가스에 의한 기체-고체반응 방법 등이 있다. 화학증착법으로 실리콘카바이드를 코팅하는 경우 메틸트리클로로실란(Methyltrichrolosilane: MTS)이 주로 전구체로 사용되어지고 있는데, 이때 메틸트리클로로실란 전구체에서 염소성분을 제거하기 위하여 수소가스를 함께 흘려보내는 공정으로 인하여 고온에서 수소가스 사용시 화재 발생 등의 위험요소를 가지고 있으며 또한 부산물로 나오는 염산(HCl)가스의 부식성 때문에 장비의 부식 및 최종제품의 염소오염문제 등의 이유로 취급의 어려움이 많이 따른다. Generally, silicon carbide is coated on graphite foam by chemical vapor deposition using organosilicon compounds or by infiltration of molten silicon or silicon gas and gas-solid reaction by silicon monoxide (SiO 2 ) gas. . In the case of coating silicon carbide by chemical vapor deposition, methyltrichlorosilane (MTS) is mainly used as a precursor. At this time, a high temperature is caused by flowing hydrogen gas together to remove chlorine from the methyltrichlorosilane precursor. Has risk factors such as fire when using hydrogen gas, and due to corrosion of hydrochloric acid (HCl) gas as a by-product, it is difficult to handle due to corrosion of equipment and chlorine pollution of end product.

상기한 종래 기술의 문제점을 해결하기 위해 본 발명은, 안전하고 효과적인 방법을 통하여 그라파이트 폼 상에 실리콘카바이드를 코팅하는 방법을 제공하고자 한다. In order to solve the above problems of the prior art, the present invention is to provide a method for coating silicon carbide on the graphite foam through a safe and effective method.

또한, 본 발명은 그라파이트 폼을 높은 열전도를 가지며 고온에서도 안정하여 전자기기의 열 방출소재 및 고온 열교환기 소재로 사용이 가능한 방법을 제공하고자 한다. In addition, the present invention is to provide a method that can be used as a heat dissipation material and a high temperature heat exchanger material of the electronic device has a high thermal conductivity and stable at high temperatures.

이에 본 발명은 바람직한 일 구현예로서 그라파이트 폼 상에 폴리페닐카보실란 용액을 코팅하는 공정을 포함하는 실리콘카바이드 코팅형성방법을 제공하고자 한다. Accordingly, the present invention is to provide a method for forming a silicon carbide coating comprising the step of coating a polyphenyl carbosilane solution on the graphite foam as a preferred embodiment.

상기 구현예에서 코팅 공정이 그라파이트 폼 상에 폴리페닐카보실란 용액을 함침, 스프레이, 스핀 코팅 방법을 이용하여 도포하는 단계; 200℃ ~ 400℃에서 경화시키는 단계; 및 600℃ ~ 1500℃에서 열처리하는 단계를 포함할 수 있다.In the above embodiment, the coating process comprises applying the polyphenylcarbosilane solution on the graphite foam by using an impregnation, spray, or spin coating method; Curing at 200 ° C. to 400 ° C .; And a heat treatment at 600 ° C. to 1500 ° C.

상기 구현예에서 열처리 단계는 불활성 가스 또는 진공분위기 중에서 수행되는 것일 수 있다.In the above embodiment, the heat treatment step may be performed in an inert gas or a vacuum atmosphere.

상기 구현예에서 폴리페닐카보실란 용액은 분자량이 2000 ~ 6000인 폴리페닐카보실란을 용매에 녹인 것일 수 있다.In the above embodiment, the polyphenylcarbosilane solution may be one in which a polyphenylcarbosilane having a molecular weight of 2000 to 6000 is dissolved in a solvent.

본 발명은 폴리페닐카보실란을 실리콘카바이드의 전구체로서 사용함으로써 용이하게 그라파이트 폼 상에 실리콘카바이드를 코팅하는 방법을 제공할 수 있다.The present invention can provide a method for easily coating silicon carbide on graphite foam by using polyphenylcarbosilane as a precursor of silicon carbide.

본 발명은 가볍고 열전도도가 높으며 내산화성이 우수하여 전자기기의 열 방출 재료 및 고온 열교환기 소재로 사용이 가능하게 하는 그라파이트 폼 상에 실리콘카바이드를 코팅하는 방법을 제공할 수 있다.The present invention can provide a method of coating silicon carbide on the graphite foam that is light, high thermal conductivity and excellent oxidation resistance to be used as a heat release material and a high temperature heat exchanger material of the electronic device.

본 발명은 그라파이트 폼 상에 폴리페닐카보실란 용액을 코팅함으로써 실리콘카바이드를 코팅하는 방법에 관한 것이다. The present invention relates to a method of coating silicon carbide by coating a polyphenylcarbosilane solution on graphite foam.

일반적으로 그라파이트 폼 상에 폴리페닐카보실란 용액을 코팅할 때에는 함침법, 스프레이 코팅법, 스핀코팅법등 공지된 코팅방법을 이용할 수 있다. 함침법, 스프레이 코팅법 및 스핀코팅법으로 그라파이트 폼 상에 폴리페닐카보실란 용액을 도포한 뒤 경화 및 열처리 단계를 수행한다. In general, when coating the polyphenyl carbosilane solution on the graphite foam, a known coating method such as an impregnation method, a spray coating method, or a spin coating method may be used. The polyphenylcarbosilane solution is applied onto the graphite foam by impregnation, spray coating, and spin coating, followed by curing and heat treatment steps.

폴리페닐카보실란의 전구체로는 특별히 한정되지는 않으며, 예를들면, 페닐트리클로로실란, 디페닐디클로로실란, 폴리디메틸실란, 폴리메틸페닐실란을 이용하여 제조할 수 있다. 그 중 바람직하게는 폴리메틸페닐실란을 이용하여 제조할 수 있으며 이에 의한 폴리페닐카보실란의 제조방법은 다음과 같다. It does not specifically limit as a precursor of polyphenyl carbosilane, For example, it can manufacture using phenyl trichlorosilane, diphenyl dichlorosilane, polydimethylsilane, and polymethylphenylsilane. Among them, preferably, polymethylphenylsilane may be prepared, and the method for producing polyphenylcarbosilane is as follows.

질소 등의 불활성 분위기하에서, 페닐메틸디클로로실란을 알칼리 금속, 바람직하게는 나트륨 금속으로 축합 반응시켜 폴리메틸페닐실란을 제조한다. Under an inert atmosphere such as nitrogen, phenylmethyldichlorosilane is condensed with an alkali metal, preferably sodium metal, to produce polymethylphenylsilane.

구체적으로는, 불활성 분위기하에서 크실렌(Xylene), 테트라하이드로퓨란(Tetrahydrofuran, THF), 톨루엔(Toluene) 등의 용매에 나트륨 금속을 잘게 썰어 넣은 후 가열 교반하여 나트륨 금속을 완전히 분산시키고, 여기에 페닐메틸디클로로실란을 주입 후 가열하여 중합체를 형성한 다음 잔여 금속 나트륨 및 용매를 제거함으로써 제조할 수 있다. Specifically, in an inert atmosphere, the sodium metal is finely chopped in a solvent such as xylene, tetrahydrofuran (THF), toluene, and the like, followed by heating and stirring to disperse the sodium metal completely, where phenylmethyl Dichlorosilane can be prepared by injecting and heating to form a polymer and then removing residual metal sodium and solvent.

제조한 폴리메틸페닐실란을 고온 가압반응기를 이용하여 폴리페닐카보실란으로 전환할 수 있다. 전환 반응온도는 300~350℃가 바람직하며 400~450℃에서 중합함으로써 코팅에 적합한 분자량을 갖는 폴리페닐카보실란을 제조할 수 있다. The polymethylphenylsilane thus prepared may be converted to polyphenylcarbosilane using a high temperature pressurization reactor. The conversion reaction temperature is preferably 300 to 350 ° C, and polyphenylcarbosilane having a molecular weight suitable for coating may be prepared by polymerization at 400 to 450 ° C.

상기 폴리페닐카보실란은 분자량이 2000~6000인 것이 바람직하며, 더욱 바람직하게는 2500~4000이다. 폴리페닐카보실란의 분자량이 클수록 열처리 후 두꺼운 실리콘카바이드 코팅막을 얻을 수 있으나 분자량이 6000을 초과하면 폴리페닐카보실란이 핵산 등의 유기용매에 완전히 용해되지 않는 문제가 있다. 반대로 분자량이 2000 미만인 경우는 코팅층의 두께가 얇아 원하는 산화방지효과를 만족하는 코팅층을 얻지 못하게 된다. 상기와 같이 폴리페닐카보실란을 전구체로 사용하여 제조된 실리콘카바이드 코팅층의 두께는 1㎛~100㎛가 바람직하다.The polyphenylcarbosilane preferably has a molecular weight of 2000 to 6000, more preferably 2500 to 4000. As the molecular weight of the polyphenyl carbosilane increases, a thick silicon carbide coating film may be obtained after the heat treatment. However, when the molecular weight exceeds 6000, the polyphenyl carbosilane may not be completely dissolved in an organic solvent such as nucleic acid. On the contrary, when the molecular weight is less than 2000, the thickness of the coating layer is thin so that a coating layer that satisfies the desired antioxidant effect cannot be obtained. As described above, the thickness of the silicon carbide coating layer prepared using polyphenylcarbosilane as a precursor is preferably 1 μm to 100 μm.

본 발명에서 폴리페닐카보실란의 용매로 사용되는 유기용매로는 특별히 한정되지는 않으며 핵산, 싸이클로핵산, 테트라하이드로퓨란, 벤젠등을 들 수 있다. 상기 폴리페닐카보실란은 상기 유기용매 중에 10~30% 희석하여 사용하는 것이 바람직하다. 코팅용액의 농도가 10% 미만일 경우 1회에 가능한 코팅막의 두께가 너무 얇으며 30%를 초과하면 코팅, 열처리 후 코팅막에 생기는 균열을 피할 수 없다.The organic solvent used as the solvent of the polyphenyl carbosilane in the present invention is not particularly limited and may include nucleic acids, cyclonucleic acid, tetrahydrofuran, benzene and the like. The polyphenyl carbosilane is preferably used diluted 10 to 30% in the organic solvent. When the concentration of the coating solution is less than 10%, the thickness of the coating film that is possible at one time is too thin. If the coating solution exceeds 30%, cracks in the coating film after coating and heat treatment cannot be avoided.

본 발명에서 폴리페닐카보실란을 그라파이트 폼에 코팅한 뒤 불용화 공정인 경화 공정을 거치게 되는데, 이때 경화온도는 200℃ ~ 400℃가 바람직하며 더욱 바람직하기로는 250℃ ~ 300℃이며 공기중에서 이루어지는 것이 바람직하다. In the present invention, the polyphenyl carbosilane is coated on the graphite foam and then subjected to a curing process which is an insolubilization process, wherein the curing temperature is preferably 200 ° C. to 400 ° C., more preferably 250 ° C. to 300 ° C., which is made in air. desirable.

상기 경화 공정 후 열처리 공정을 통하여 폴리페닐카보실란 고분자가 실리콘카바이 드로 변환되는 유·무기전환 반응이 수행된다. 열처리온도는 600℃ ~ 1500℃가 바람직하며 더욱 바람직하기로는 800℃ ~ 1200℃이며 질소, 아르곤 헬륨 등의 불활성 가스 또는 진공분위기 중에서 이루어지는 것이 바람직하다. 열처리 온도가 600℃ 미만이면 유·무기전환 반응이 완결되지 않으며 1500℃를 초과하면 불필요한 전력의 낭비를 초래하게 된다.After the curing process, an organic-inorganic conversion reaction in which the polyphenylcarbosilane polymer is converted to silicon carbide is performed. The heat treatment temperature is preferably 600 ° C. to 1500 ° C., more preferably 800 ° C. to 1200 ° C., preferably in an inert gas such as nitrogen or argon helium or in a vacuum atmosphere. If the heat treatment temperature is less than 600 ℃, the organic / inorganic conversion reaction is not completed, if it exceeds 1500 ℃ will cause unnecessary waste of power.

이하, 본 발명을 실시예를 통하여 보다 상세히 설명하나, 본 발명의 범위가 하기 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

<실시예 1><Example 1>

출발원료로 콜타르피치(coal tar pitch)(연화점 110 ℃, 비중 1.03, 고정 탄소 함량 45중량%) (동양제철화학 석탄계 피치) 500g을 300℃에서 1시간동안 열처리 한 뒤, 450℃에서 다시 30분간 열처리 하고, 24시간 동안 볼밀과정을 거쳐 분쇄시킨 후 500℃에서 600psi로 1시간 가압한 뒤 불활성 분위기에서 2600℃에서 1시간 열처리하여 그라파이트 폼(graphite foam) 220g을 얻었다. As a starting material, 500g of coal tar pitch (softening point 110 ℃, specific gravity 1.03, fixed carbon content 45wt%) (Dongyang Steel Chemical Coal Pitch) was heat treated at 300 ℃ for 1 hour, and then again at 450 ℃ for 30 minutes. After heat treatment, the ball mill was pulverized for 24 hours, pressurized at 500 psi for 1 hour at 500 ° C., and then heat treated at 2600 ° C. for 1 hour in an inert atmosphere to obtain 220 g of graphite foam.

분자량 3,000의 폴리페닐카보실란(polyphenylcarbosilane) 20g을 싸이클로핵산 100g에 녹여 농도 20% 폴리페닐카보실란 용액을 제조하였다.20 g of polyphenylcarbosilane having a molecular weight of 3,000 was dissolved in 100 g of cyclonucleic acid to prepare a 20% polyphenylcarbosilane solution.

상기의 그라파이트 폼의 표면을 에탄올로 세척한 후 80℃에서 30분간 건조하였다. 이를 딥코터를 이용하여 상기의 20% 폴리페닐카보실란 용액에 5분간 함침시키고 시료를 1㎜/sec로 끌어올린 후 250℃에서 30분 동안 공기 중에 열경화 시키고 불활성 기체 분위기 하에서 800℃에서 1시간 동안 열처리하여 실리콘카바이드가 코팅된 그라파이트 폼을 얻었다. 열처리 공정을 거친 폴리페닐카보실란을 X-ray 회절분석기로 측정하여 도 1에 나타내었으며, 수득한 그라파이트 폼의 표면을 전자현미경으로 촬영하여 도 3에 나타내었다. The surface of the graphite foam was washed with ethanol and dried at 80 ° C. for 30 minutes. The 20% polyphenylcarbosilane solution was impregnated with the dip coater for 5 minutes, the sample was pulled up to 1 mm / sec, and then thermally cured in air at 250 ° C. for 30 minutes and at 800 ° C. under an inert gas atmosphere for 1 hour. After heat treatment to obtain a silicon carbide coated graphite foam. Polyphenyl carbosilanes subjected to the heat treatment process were measured in an X-ray diffractometer, and are shown in FIG. 1, and the surface of the obtained graphite foam was photographed by electron microscopy.

<실시예 2><Example 2>

실시예 1에서 폴리페닐카보실란 용액에 함침시킨 그라파이트 폼의 열경화 후의 열처리 온도를 800℃에서 1000℃로 변경한 것을 제외하고 같은 조건과 방법으로 제조하였다. 수득한 실리콘카바이드가 코팅된 그라파이트 폼을 전자현미경으로 촬영하여 도 4에 나타내었다. Except for changing the heat treatment temperature after thermal curing of the graphite foam impregnated in the polyphenyl carbosilane solution in Example 1 was prepared in the same conditions and methods. The obtained silicon carbide coated graphite foam was photographed with an electron microscope and shown in FIG. 4.

<실시예 3><Example 3>

실시예 1에서 폴리페닐카보실란 용액에 함침시킨 그라파이트 폼의 열경화 후의 열처리 온도를 800℃에서 1200℃로 변경한 것을 제외하고 같은 조건과 방법으로 제조하였다. 수득한 실리콘카바이드가 코팅된 그라파이트 폼을 전자현미경으로 촬영하여 도 5에 나타내었다. Except for changing the heat treatment temperature after thermal curing of the graphite foam impregnated in the polyphenyl carbosilane solution in Example 1 was prepared in the same conditions and methods. The obtained silicon carbide coated graphite foam was photographed with an electron microscope and shown in FIG. 5.

<실시예 4> <Example 4>

분자량이 1000이하의 폴리페닐카보실란을 사용한 것을 제외하고는 실시예 1과 방법으로 제조하였다.  Except for using a polyphenyl carbosilane having a molecular weight of 1000 or less was prepared in Example 1 and the method.

<비교예 1>Comparative Example 1

실시예 1과 같은 조건과 방법으로 그라파이트 폼을 제조하였으며, 코팅처리하지 않았다. Graphite foams were prepared under the same conditions and methods as in Example 1, but were not coated.

상기 실시예 및 비교예에 의하여 제조된 그라파이트 폼에 대한 물성평가는 아래와 같이 실시하였다.The physical property evaluation of the graphite foam prepared by the said Example and the comparative example was performed as follows.

(1) 열전도도 (W/mk)(1) thermal conductivity (W / mk)

열전도도는 열전도도 측정기 (Netzch Co. LFA 4204)를 사용하여 KSL4204측정방법에 의거하여 측정하였으며, 그 결과는 표 1과 같다.Thermal conductivity was measured according to the KSL4204 measurement method using a thermal conductivity meter (Netzch Co. LFA 4204), the results are shown in Table 1.

구분division 코팅두께 (㎛)Coating thickness (㎛) 열전도도 (w/mk)Thermal conductivity (w / mk) 실시예 1Example 1 33 160.63160.63 실시예 2Example 2 33 174.09174.09 비교예 1Comparative Example 1 -- 148.24148.24

(2) 내산화도 (%)(2) oxidation resistance (%)

내산화도 테스트는 실시예 및 비교예에서 제조된 그라파이트 폼을 800℃에서 1시간 동안 공기분위기에서 산화시켜 중량 차를 비교하였으며, 하기 식 1로 표시되는 내산화도를 측정하였다. 측정 결과는 표 2 및 도 6에 나타내었다.In the oxidation resistance test, the graphite foams prepared in Examples and Comparative Examples were oxidized in an air atmosphere at 800 ° C. for 1 hour to compare the weight difference, and the oxidation resistance represented by Equation 1 was measured. The measurement results are shown in Table 2 and FIG. 6.

<식 1><Equation 1>

내산화도 (%) = 산화처리 후 그라파이트 폼 중량(wtf) / 초기 그라파이트 폼 중량(wti)Degree of oxidation (%) = weight of graphite foam after oxidation (wt f ) / weight of initial graphite foam (wt i )

구분division 코팅두께 (㎛)Coating thickness (㎛) 내산화도 (%)Oxidation degree (%) 실시예 1Example 1 33 8282 실시예 2Example 2 33 9595 실시예 3Example 3 33 9090 실시예 4Example 4 0.50.5 5353 비교예 1Comparative Example 1 -- 1010

(3) XRD 분석(3) XRD analysis

XRD분석은 X-ray 회절분석기(MAC Science Co. Ltd. MO3XMF, 일본)를 이용하였으며, 그 결과는 도 1에 나타내었다. XRD analysis was performed using an X-ray diffractometer (MAC Science Co. Ltd. MO3XMF, Japan), and the results are shown in FIG. 1.

상기 물성평가결과, 본 발명의 실시예에서 제조된 그라파이트 폼은 우수한 열전도도를 나타내고 있음을 알 수 있으며, 실리콘카바이드가 코팅되지 않은 비교예의 경우보다 높은 열전도도를 나타내고 있다.As a result of the physical property evaluation, it can be seen that the graphite foam prepared in the embodiment of the present invention exhibits excellent thermal conductivity, and shows higher thermal conductivity than that of the comparative example in which the silicon carbide is not coated.

또한 내산화도 평가에 있어서도 코팅되지 않은 그라파이트 폼의 경우 대부분의 그라파이트가 CO2로 산화되어 잔존량이 거의 없었으나 실시예의 경우 이에 비하여 내산화도가 현저히 증가한 것을 알 수 있다. In addition, in the evaluation of the oxidation resistance, in the case of the uncoated graphite foam, most of the graphite was oxidized to CO 2 and there was almost no residual amount. However, in the case of the example, the oxidation resistance was significantly increased.

도 1은 본 발명의 실시예에서 사용된 폴리페닐카보실란을 열처리 공정 후 X-ray 회절분석기로 측정한 그래프,1 is a graph measured by the X-ray diffractometer after the heat treatment process for the polyphenyl carbosilane used in the embodiment of the present invention,

도 2는 본 발명의 실시예 1에서 제조된 그라파이트 폼의 표면을 50배로 확대하여 촬영한 전자현미경 사진, 2 is an electron micrograph taken at 50 times the surface of the graphite foam prepared in Example 1 of the present invention,

도 3은 본 발명의 실시예 1에서 제조된 그라파이트 폼의 표면을 200배로 확대하여 촬영한 전자현미경 사진,3 is an electron micrograph taken at 200 times the surface of the graphite foam prepared in Example 1 of the present invention,

도 4는 본 발명의 실시예 2에서 제조된 그라파이트 폼의 표면을 500배로 확대하여 촬영한 전자현미경 사진,4 is an electron micrograph taken at 500 times the surface of the graphite foam prepared in Example 2 of the present invention,

도 5는 본 발명의 실시예 3에서 제조된 그라파이트 폼의 표면을 500배로 확대하여 촬영한 전자현미경 사진,5 is an electron micrograph taken at 500 times the surface of the graphite foam prepared in Example 3 of the present invention,

도 6은 본 발명의 실시예 및 비교예에서 제조된 그라파이트 폼의 내산화성 테스트 후 촬영한 시료의 사진이다.6 is a photograph of a sample taken after the oxidation resistance test of the graphite foam prepared in Examples and Comparative Examples of the present invention.

Claims (4)

폴리페닐카보실란이 유기 용매 중량 대비 10~30중량% 포함된 폴리페닐카보실란 용액을 함침방법, 스프레이 코팅방법 및 스핀 코팅방법 중에서 선택된 어느 하나의 코팅방법을 이용하여 그라파이트 폼 상에 도포하는 단계;Applying a polyphenylcarbosilane solution containing 10 to 30% by weight of polyphenylcarbosilane on the graphite foam using any one of a coating method selected from an impregnation method, a spray coating method, and a spin coating method; 상기 폴리페닐카보실란 용액이 도포된 그라파이트 폼을 200℃ ~ 400℃에서 30분 동안 경화시키는 단계; 및Curing the graphite foam to which the polyphenylcarbosilane solution is applied at 200 ° C. to 400 ° C. for 30 minutes; And 상기 경화된 그라파이트 폼을 600℃ ~ 1500℃에서 열처리하는 단계를 포함하는 그라파이트 폼 상에 실리콘카바이드 코팅형성방법.Method for forming a silicon carbide coating on the graphite foam comprising the step of heat-treating the cured graphite foam at 600 ℃ ~ 1500 ℃. 삭제delete 제 1 항에 있어서,The method of claim 1, 열처리 단계는 불활성 가스 또는 진공분위기 중에서 수행되는 것임을 특징으로 하는 그라파이트 폼 상에 실리콘카바이드 코팅형성방법.Process for forming a silicon carbide coating on the graphite foam, characterized in that the heat treatment step is carried out in an inert gas or vacuum atmosphere. 제 1 항에 있어서,The method of claim 1, 폴리페닐카보실란 용액은 중량평균분자량이 2000 ~ 6000인 폴리페닐카보실란을 용매에 녹인 것임을 특징으로 하는 그라파이트 폼 상에 실리콘카바이드 코팅형성방법.Polyphenyl carbosilane solution is a method of forming a silicon carbide coating on a graphite foam, characterized in that the polyphenyl carbosilane having a weight average molecular weight of 2000 ~ 6000 dissolved in a solvent.
KR1020070101203A 2007-10-09 2007-10-09 Process for SiC coating on graphite foam KR100951633B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070101203A KR100951633B1 (en) 2007-10-09 2007-10-09 Process for SiC coating on graphite foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070101203A KR100951633B1 (en) 2007-10-09 2007-10-09 Process for SiC coating on graphite foam

Publications (2)

Publication Number Publication Date
KR20090036180A KR20090036180A (en) 2009-04-14
KR100951633B1 true KR100951633B1 (en) 2010-04-09

Family

ID=40761220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070101203A KR100951633B1 (en) 2007-10-09 2007-10-09 Process for SiC coating on graphite foam

Country Status (1)

Country Link
KR (1) KR100951633B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045479A (en) 2017-10-24 2019-05-03 한국세라믹기술원 Process for Forming SiC Coating on Graphite Foam
KR20190057958A (en) 2017-11-21 2019-05-29 한국세라믹기술원 Process for Forming High Density SiC Coating on Graphite Foam And Coating Agent For The Same
KR20190109912A (en) 2018-03-19 2019-09-27 주식회사 카보넥스 Method for SiC Coating on Graphite using Hybrid Coating Method
KR20200072051A (en) 2018-12-12 2020-06-22 한국세라믹기술원 Carbon material coated by a layer having improved oxidation stability, and a method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145841B1 (en) * 2010-02-10 2012-05-17 한국세라믹기술원 The method of low dieletric constant film using polyphenylcarbosilane and low dieletric constant film thereby
KR101331403B1 (en) * 2010-04-05 2013-11-21 한국세라믹기술원 Process for silicon carbide coating on graphite
KR101297575B1 (en) * 2010-12-09 2013-08-20 한국세라믹기술원 Method of manufacturing moisture barrier film using polyphenylcarbosilane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354179A (en) * 1989-07-21 1991-03-08 Mitsubishi Materials Corp Coating of alumina sheet with silicon carbide
JP2002274830A (en) 2001-03-14 2002-09-25 Shin Etsu Chem Co Ltd METHOD FOR PRODUCING FINE beta-SILICON CARBIDE POWDER
KR20070087390A (en) * 2006-02-23 2007-08-28 요업기술원 Method of producing polyphenylcarbosilane using multistage reaction process and polyphenylcarbosilane prepared thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354179A (en) * 1989-07-21 1991-03-08 Mitsubishi Materials Corp Coating of alumina sheet with silicon carbide
JP2002274830A (en) 2001-03-14 2002-09-25 Shin Etsu Chem Co Ltd METHOD FOR PRODUCING FINE beta-SILICON CARBIDE POWDER
KR20070087390A (en) * 2006-02-23 2007-08-28 요업기술원 Method of producing polyphenylcarbosilane using multistage reaction process and polyphenylcarbosilane prepared thereby
KR100776251B1 (en) * 2006-02-23 2007-11-13 요업기술원 Method of producing polyphenylcarbosilane using multistage reaction process and polyphenylcarbosilane prepared thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045479A (en) 2017-10-24 2019-05-03 한국세라믹기술원 Process for Forming SiC Coating on Graphite Foam
KR20190057958A (en) 2017-11-21 2019-05-29 한국세라믹기술원 Process for Forming High Density SiC Coating on Graphite Foam And Coating Agent For The Same
KR20190109912A (en) 2018-03-19 2019-09-27 주식회사 카보넥스 Method for SiC Coating on Graphite using Hybrid Coating Method
KR20200072051A (en) 2018-12-12 2020-06-22 한국세라믹기술원 Carbon material coated by a layer having improved oxidation stability, and a method therefor

Also Published As

Publication number Publication date
KR20090036180A (en) 2009-04-14

Similar Documents

Publication Publication Date Title
KR100951633B1 (en) Process for SiC coating on graphite foam
Chiu et al. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite
US6171703B1 (en) Hermetic substrate coatings in an inert gas atmosphere
US5635240A (en) Electronic coating materials using mixed polymers
JP2009513805A (en) Silicon carbide precursor and its use
Sokolowski et al. Ceramic coating formation during carbothermic reaction of polysiloxanes with carbon and graphite materials
JPH09100174A (en) Method for forming ceramic composite material, prepreg and fiber-reinforced ceramic matrix composite material
Smokovych et al. Polymer derived ceramic materials from Si, B and MoSiB filler-loaded perhydropolysilazane precursor for oxidation protection
KR101331403B1 (en) Process for silicon carbide coating on graphite
Tong et al. Coating of poly (carborane-carbosilane-phenylacetylene) on carbon fibers with excellent oxidation protection
KR102215074B1 (en) Carbon material coated by a layer having improved oxidation stability, and a method therefor
Ma et al. Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressureless reaction sintering
CZ341595A3 (en) Abrasion-resistant protective layer against oxidation of bodies made of silicon carbide
JP2004067480A (en) Material coated with ceramic thin film having gradient composition and method for manufacturing the same
KR102058875B1 (en) Process for Forming High Density SiC Coating on Graphite Foam And Coating Agent For The Same
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
Lee et al. A novel method of silicon carbide coating to protect porous carbon against oxidation
Wang et al. SiC fiber with low electrical resistivity and oxygen content
KR101110351B1 (en) Structures of the graphite foam
KR101856145B1 (en) Process for SiC coating on graphite foam containing silicon
KR102134406B1 (en) Graphite Mold with Coating layer of SiC and SiOC/C
KR20120011300A (en) stainless steel coated by polyphenylcarbosilane with silicon carbide powder and method of producing the same
KR20100024623A (en) Process for metal bodies comprising siliconeoxycarbide(sioc) layer
JPH032271A (en) Preceramic composition and ceramic product
CN114746380B (en) Method for producing passivation coatings based on silicon compounds and composite materials having such coatings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140306

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180313

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 11