KR100945149B1 - 초고층 건물의 방재 시스템 및 방법 - Google Patents

초고층 건물의 방재 시스템 및 방법 Download PDF

Info

Publication number
KR100945149B1
KR100945149B1 KR1020080130062A KR20080130062A KR100945149B1 KR 100945149 B1 KR100945149 B1 KR 100945149B1 KR 1020080130062 A KR1020080130062 A KR 1020080130062A KR 20080130062 A KR20080130062 A KR 20080130062A KR 100945149 B1 KR100945149 B1 KR 100945149B1
Authority
KR
South Korea
Prior art keywords
skyscraper
displacement
hydraulic
disaster prevention
rise building
Prior art date
Application number
KR1020080130062A
Other languages
English (en)
Inventor
김은종
Original Assignee
주식회사 금륜방재산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금륜방재산업 filed Critical 주식회사 금륜방재산업
Priority to KR1020080130062A priority Critical patent/KR100945149B1/ko
Priority to PCT/KR2009/000644 priority patent/WO2010071260A1/ko
Priority to US13/140,999 priority patent/US20110271606A1/en
Priority to CN2009801511209A priority patent/CN102317556A/zh
Application granted granted Critical
Publication of KR100945149B1 publication Critical patent/KR100945149B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

본 발명은 풍압에 따른 초고층 건물의 변위를 보정하는 방재 시스템에 관한 것이다. 상기 방재 시스템은 상기 초고층 건물의 변위를 감지하는 변위 감지부, 및 상기 감지된 변위가 기준치 이상인 경우 상기 초고층 건물을 중력 방향으로 당기는 변위 보정부를 포함한다. 여기서, 상기 변위 보정부는 지하층으로부터 지상층까지 형성된 복수의 앵커 구조물들을 가지며, 상기 감지된 변위가 상기 기준치 이상인 경우 상기 앵커 구조물들을 개별적으로 제어하여 상기 초고층 건물을 중력 방향으로 당긴다.
초고층 건물, 풍압, 방재, 흔들림, 유압, 변위

Description

초고층 건물의 방재 시스템 및 방법{SYSTEM AND METHOD OF PREVENTING DISASTER FOR A SKYSCRAPER}
본 발명은 초고층 건물의 방재 시스템 및 방법에 관한 것으로, 더욱 상세하게는 풍압에 따른 초고층 건물의 변위를 보정하는 방재 시스템 및 방법에 관한 것이다.
도시가 발달하면서 건물을 건설할 토지가 부족하게 됨에 따라 새롭게 건설되는 건물들의 높이가 높아지고 있다. 최근에는, 전세계적으로 수십층 이상의 초고층 건물이 많이 건설되고 있으며, 앞으로도 더 많이 건설될 예정이다.
이러한 초고층 건물은 높이가 높기 때문에 바람, 즉 풍압에 많은 영향을 받게 된다. 물론, 상기 초고층 건물은 어느 정도의 풍압은 견딜 수 있도록 설계되지만, 이러한 설계는 과거의 데이터를 기준으로 한 것이므로 이상 기후 등으로 인하여 예상치 못한 큰 풍압이 발생될 경우 상기 초고층 건물의 안전에 문제가 발생할 수 있다.
따라서, 예측하지 못한 큰 풍압이 발생할 경우에 상기 초고층 건물의 안전을 보장할 수 있는 방재 시스템이 요구된다.
본 발명의 목적은 큰 풍압으로부터 초고층 건물을 안전하게 보호할 수 있도록 큰 풍압 발생시 상기 초고층 건물의 변위를 보정하는 방재 시스템 및 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 초고층 건물의 방재 시스템은 상기 초고층 건물의 변위를 감지하는 변위 감지부; 및 상기 감지된 변위가 기준치 이상인 경우 상기 초고층 건물을 중력 방향으로 당기는 변위 보정부를 포함한다. 여기서, 상기 변위 보정부는 지하층으로부터 지상층까지 형성된 복수의 앵커 구조물들을 가지며, 상기 감지된 변위가 상기 기준치 이상인 경우 상기 앵커 구조물들을 개별적으로 제어하여 상기 초고층 건물을 중력 방향으로 당긴다.
본 발명의 일 실시예에 따른 초고층 건물의 방재 방법은 풍압에 따른 상기 초고층 건물의 변위를 측정하는 단계; 및 상기 측정된 변위가 기준치 이상인 경우 상기 초고층 건물을 중력 방향으로 당기는 단계를 포함한다. 여기서, 상기 초고층 건물이 내부에는 지하층으로부터 지상층까지 형성된 복수의 앵커 구조물들이 배열되며, 상기 측정된 변위가 상기 기준치 이상인 경우 상기 앵커 구조물들을 개별적으로 제어하여 상기 초고층 건물을 중력 방향으로 당긴다.
본 발명에 따른 방재 시스템 및 방법은 풍압에 의해 초고층 건물의 변위, 즉 경사각이 기준치 이상으로 커지면 상기 초고층 건물의 변위를 자동으로 보정하므로, 상기 초고층 건물이 풍압으로부터 안전하게 보호될 수 있다.
특히, 상기 방재 시스템이 GPS 통신 방법, 레이저 감지 방법, 응력 감지 방법 등 다양한 방법들을 통하여 상기 초고층 건물의 변위를 검출하므로, 상기 방재 시스템은 특정 방법의 사용이 제한되더라도 상기 초고층 건물의 상태를 정확하게 판단할 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시예들을 자세히 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 초고층 건물의 방재 시스템의 원리를 도시한 도면이다.
도 1에 도시된 바와 같이, 초고층 건물(100)은 높게 건설되기 때문에 바람(102), 즉 풍압에 영향을 받아 전후 또는 좌우로 흔들리게 되며, 즉 초고층 건물(100)의 변위가 변화된다. 이 경우, 약한 풍압은 초고층 건물(100)의 안전을 위협하지는 않으나, 예를 들어 지구 온난화로 인한 예상치 못한 태풍 등과 같은 강한 풍압은 초고층 건물(100)의 안전을 위협할 수 있다.
따라서, 본 실시예의 방재 시스템은 풍압에 따른 초고층 건물(100)의 변위(예를 들어, 경사각)를 검출하고, 상기 검출된 변위가 기준치 이상인 경우 초고층 건물(100)의 변위를 보정시킨다. 예를 들어, 강한 풍압에 의해 초고층 건물(100)이 도 1에 도시된 바와 같이 우측 방향(104)으로 기울어지는 경우, 상기 방재 시스템 은 초고층 건물(100)이 흔들림 방향(104)과 반대 방향(106)으로 이동하도록 제어한다. 바람직하게는, 상기 방재 시스템은 초고층 건물(100)을 중력 방향으로 잡아 당겨서(인장력을 가하여) 초고층 건물(100)을 원하는 방향(106)으로 이동시킨다. 결과적으로, 초고층 건물(100)은 강한 풍압에도 심하게 흔들리지 않게 되어(변위 변화가 작으므로) 안정성이 향상되고, 초고층 건물(100)에 거주하는 사람들도 심한 위험을 느끼지 않을 것이다. 이러한 초고층 건물(100)의 변위를 보정하는 과정에 대한 자세한 설명은 첨부된 도면들을 참조하여 후술하겠다.
이하, 초고층 건물(100)의 변위를 보정하는 과정 전에 실행되는 변위(경사각)를 검출하는 과정을 살펴보겠다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 초고층 건물의 변위를 검출하는 과정을 도시한 도면들이다.
첫번째 방법으로서, 본 실시예의 방재 시스템은 GPS 시스템을 사용하여 초고층 건물(100)의 변위를 아래와 같이 검출한다.
도 2(A)를 참조하면, 초고층 건물(100)의 곳곳에 GPS 통신을 위한 GPS부들(200)이 설치된다. 예를 들어, GPS부들(200)은 도 2(B)에 도시된 바와 같이 초고층 건물(100)의 사각 모서리 부분들 위에 설치될 수 있다.
각 GPS부들(200)은 GPS 위성(미도시)과 통신하여 자신의 현재 좌표를 검출한다. 여기서, GPS부들(200)이 도 2(A) 및 도 2(B)에 도시된 바와 같이 초고층 건물(100)의 곳곳에 설치되어 있으므로, GPS부들(200)은 하나의 망을 구성하게 된다. 결과적으로, GPS부들(200)의 현재 위치들이 검출되면, 초고층 건물들(200)의 전체 적인 위치 변동을 파악할 수 있게 된다. 즉, 상기 방재 시스템은 GPS부들(200)의 위치 변동들을 통하여 초고층 건물(100)의 변위, 즉 경사각을 검출할 수 있다.
이를 위해, 각 GPS부들(200)은 상기 검출된 자신의 현재 좌표들을 후술하는 바와 같이 중앙 관리부로 전송한다. 이 경우, 상기 중앙 관리부는 상기 전송된 좌표들을 통하여 초고층 건물(100)의 변위를 파악한다.
그러나, 이러한 GPS 통신을 통한 초고층 건물(100)의 변위 검출 방법은 GPS 통신이 불가능한 상황이나 수신율이 낮을 때는 사용하기 어렵다.
따라서, 본 실시예의 방재 시스템은 초고층 건물(100)의 변위를 검출하기 위하여 GPS 검출 방법 이외에 레이저 검출 방법을 또한 제시한다.
도 2(A)를 다시 참조하면, 초고층 건물(100)의 내부에 특정 공간(202)이 형성된다. 여기서, 특정 공간(202)은 레이저(302)가 공간(202)의 하부에서 상부로 직선으로 전달될 수 있도록 형성되기만 하면 그의 형성 방법 및 구조 등에 특별한 제한이 없다.
특정 공간(202) 중 하층부에는 레이저 출력부가 위치하며, 상기 레이저 출력부는 특정 공간(202) 내에서 상층부로 레이저(302)를 출력시킨다. 즉, 상기 레이저 출력부는 특정 공간(202) 내에서 도 3에 도시된 바와 같이 레이저(302)를 상층부로 출력시킨다. 이 경우, 특정 공간(202)의 상층부, 바람직하게는 종단에는 레이저 감지부(300)가 형성되어 있기 때문에, 레이저 감지부(300)로 수광되는 레이저(302)의 위치를 통하여 초고층 건물(100)의 변위를 검출할 수 있다. 예를 들어, 초고층 건물(100)이 흔들림이 없을 때에는 도 3(A)에 도시된 바와 같이 레이저(302)가 레이 저 감지부(300)의 중앙으로 입사되나, 초고층 건물(100)이 풍압에 따라 흔들림에 의해 레이저(302)가 도 3(B)에 도시된 바와 같이 레이저 감지부(300)의 중앙을 벗어난 지점으로 입사될 수 있다. 따라서, 상기 방재 시스템은 상기 벗어난 정도를 통하여 초고층 건물(100)의 변위를 파악할 수 있다.
본 발명의 다른 실시예에 따르면, 상기 레이저 출력부가 특정 공간(202)의 상층부에 위치하고 레이저 감지부(300)가 하층부에 위치할 수도 있다. 즉, 레이저(302)를 이용하여 초고층 건물(100)의 변위를 검출할 수 있는 한 다른 방법으로 변형이 가능하다.
또한, 도 2에서는 특정 공간(202)이 지상면으로부터 최상층부까지 형성되는 것으로 도시하였으나, 레이저 감지를 통하여 초고층 건물(100)의 변위를 검출할 수 있는 한 특정 공간(202)의 형성 구조 및 방법은 다양하게 변형될 수 있다. 예를 들어, 특정 공간(202)이 초고층 건물(100)의 중간층으로부터 최상층까지 형성될 수도 있다. 다만, 초고층 건물(100)의 공사 과정을 고려할 때 특정 공간(202)은 지상면으로부터 최상층까지 형성되는 것이 바람직하다.
요컨대, 본 실시예의 방재 시스템은 GPS 통신 방법과 레이저 검출 방법을 통하여 초고층 건물(100)의 변위를 검출한다. 물론, 상기 방재 시스템은 상기 GPS 통신 방법과 상기 레이저 검출 방법을 모두 사용할 수도 있지만 하나만을 사용할 수 있다.
위에서 언급하지는 않았지만, 상기 방재 시스템은 초고층 건물(100)의 내부에 3개의 제 1 통신 장치들을 설치하고, 외부에 3개의 제 2 통신 장치들을 설치하 여 삼각 측량법으로 초고층 건물(100)의 변위를 검출할 수도 있다. 즉, 초고층 건물(100)의 변위를 검출할 수 있는 한 다양한 방법들이 사용될 수 있다.
풍압이 초고층 건물(100)에 영향을 미치면, 초고층 건물(100)이 흔들리기도 하지만 동시에 곳곳에 변형이 발생할 수 있다. 따라서, 본 실시예의 방재 시스템은 이러한 변형(응력)을 감지하기 위한 응력 감지 센서를 또한 사용할 수 있다.
상세하게는, 초고층 건물(100)의 곳곳에, 예를 들어 콘크리트 내부에 응력 감지 센서들, 예를 들어 외부 조건에 따른 파장 변화로 응력을 감지하는 광섬유 센서들(특히, 여러개의 격자들이 하나의 광섬유에 포함되며 전자기 간섭에 영향을 받지 않으면서 감도가 높은 광섬유 격자 센서)이 설치될 수 있다. 이어서, 상기 응력 감지 센서들은 풍압에 따른 초고층 건물(100)의 부분들의 응력들을 감지하며, 상기 감지된 응력들에 대한 정보들을 상기 중앙 관리부로 전송한다. 이 경우, 상기 중앙 관리부는 상기 전송된 정보들을 분석하여 초고층 건물(100)의 전체 응력(변형 정도)을 검출한다.
본 발명의 일 실시예에 따르면, 상기 방재 시스템은 초고층 건물(100)의 부분들의 응력에 대한 정보들을 종합하여 초고층 건물(100)에 색상으로 표현할 수 있다. 예를 들어, 초고층 건물(100) 중 변형이 많이 일어난 부분은 빨간색으로 표시하고 변형이 거의 일어나지 않은 부분은 파란색으로 표시하여 관리자가 초고층 건물(100)의 상태를 한눈에 알아볼 수 있도록 표시할 수 있다.
위에 설명한 바와 같이, 본 실시예의 방재 시스템은 여러가지 방법들을 통하여 초고층 건물(100)의 변위(경사각) 및 전체 응력을 검출한다. 본 발명의 일 실시 예에 따르면, 상기 방재 시스템은 상기 관리자가 한눈에 알 수 있도록 상기 검출된 변위를 3D 영상으로 표시하고 3D 영상의 초고층 건물에 색상으로서 전체 응력을 표시할 수 있다.
도 4는 본 발명의 일 실시예에 따른 방재 시스템을 도시한 블록도이다.
도 4를 참조하면, 본 실시예의 방재 시스템은 초고층 건물(100)에 설치되며, 적어도 하나의 GPS부(200), 레이저 감지부(300), 하나 이상의 광섬유 격자 센서(400), 중앙 관리부(402) 및 변위 보정부(404)를 포함한다.
GPS부(200)는 GPS 위성과 통신하여 현재의 좌표를 검출하고, 검출 결과를 무선 또는 유선으로 중앙 관리부(402)로 전송한다.
레이저 감지부(300)는 상기 레이저 출력부로부터 출력된 레이저를 감지하고, 감지 결과를 무선 또는 유선으로 중앙 관리부(402)로 전송한다.
응력 감지 센서(응력 측정부)로서 광섬유 격자 센서(400)는 빛의 파장 변화를 통하여 초고층 건물(100)의 응력을 감지하고, 감지 결과를 광섬유 또는 유무선으로 중앙 관리부(402)로 전송한다. 여기서, 광섬유 격자 센서들(400)은 광섬유 격자(단주기 광섬유 격자, 장주기 광섬유 격자, chirped 광섬유 격자 등)를 이용하여 응력을 감지하는 소자로서 일반적으로 초고층 건물(100)의 콘크리트 내에 설치되며, 그들의 수 및 배치는 관리자의 의도에 따라 다양하게 변형될 수 있다.
중앙 관리부(402)는 GPS부(200), 레이저 감지부(300) 및 광섬유 격자 센서(400)로부터 전송된 정보들을 종합하여 현재의 초고층 건물(100)의 상태를 검출하고, 초고층 건물(100)의 상태를 상기 관리자에게 알린다. 바람직하게는, 중앙 관 리부(402)는 초고층 건물(100)을 3D 영상으로 디스플레이하되 광섬유 격자 센서(400)에 의해 감지된 응력을 색상으로 표현시킨다. 결과적으로, 상기 관리자는 초고층 건물(100)의 상태를 한눈에 파악할 수 있으며, 필요시 초고층 건물(100)의 변위를 보정시키거나 심한 응력으로 인하여 안전상 문제가 발생한 부분을 보수할 수 있다.
예를 들어, 중앙 관리부(402)는 초고층 건물(100)의 변위가 기준치 이상인 경우 변위 보정부(404)를 제어하여 초고층 건물(100)이 중력 방향으로 당겨지도록 제어한다. 물론, 이러한 제어 과정은 상기 관리자에 의해 수동으로 수행될 수도 있지만, 방재 설비의 특성상 중앙 관리부(402)에 의해 자동으로 수행되는 것이 바람직하다.
또한, 중앙 관리부(402)는 초고층 건물(100) 내에 위치할 수도 있지만, 외부에 별도로 존재할 수도 있다. 다만, 관리적인 측면에서 볼 때, 중앙 관리부(402)는 초고층 건물(100) 내에 위치하는 것이 바람직하다.
변위 보정부(404)는 중앙 관리부(402)의 제어에 따라 초고층 건물(100)의 변위를 보정한다. 예를 들어, 강한 풍력으로 인하여 초고층 건물(100)의 변위(경사각)가 기준치(기준 경사각) 이상인 경우, 변위 보정부(404)는 초고층 건물(100)을 중력 방향으로 잡아당긴다. 그런 후, 풍력이 약해짐에 따라 초고층 건물(100)의 변위가 상기 기준치보다 작아지는 경우, 변위 보정부(404)는 당기던 힘을 해제시킨다.
이하, 이러한 변위 보정부(404)의 상세 구조 및 동작 방법을 첨부된 도면들 을 참조하여 상술하겠다.
도 5는 본 발명의 일 실시예에 따른 변위 보정부를 개략적으로 도시한 도면이다.
도 5에 도시된 바와 같이, 본 실시예의 방재 시스템은 초고층 건물(100)의 변위가 기준치 이상이라 판단되는 경우, 변위 보정부(404)를 이용하여 초고층 건물(100)을 중력 방향으로 잡아당긴다.
본 발명의 일 실시예에 따르면, 변위 보정부(404)는 앵커 구조물들(500a 내지 500f)로 이루어지며, 상기 방재 시스템은 변위 보정시 앵커 구조물들(500a 내지 500f)의 일부 또는 전부가 초고층 건물(100)을 도 5에 도시된 바와 같이 중력 방향으로 잡아당기도록 제어한다. 예를 들어, 초고층 건물(100)이 풍력에 의해 우측으로 기울어지는 경우, 상기 방재 시스템은 앵커 구조물들(500a 내지 500f) 중 좌측의 앵커 구조물들(500a 내지 500c)만이 초고층 건물(100)을 중력 방향으로 잡아당기도록 제어한다.
물론, 초고층 건물(100)의 구조가 다양하므로, 앵커 구조물들의 배치 구조 및 수 등은 초고층 건물(100)에 구조에 맞춰서 설계되어야 할 것이다.
이하, 이러한 앵커 구조물(500)의 자세한 구조를 살펴보겠다.
도 6 내지 도 7은 본 발명의 일 실시예에 따른 앵커 구조물 및 유압부를 도시한 도면들이다.
앵커 구조물(500)은 도 6(A)에 도시된 바와 같은 상단부 및 도 7에 도시된 바와 같은 하단부로 이루어진다. 여기서, 앵커 구조물(500) 중 상단부는 초고층 건 물(100)의 지상층에 배치되고, 상기 하단부는 초고층 건물(100)의 지하층에 배치된다.
이하,앵커 구조물(500)의 상단부와 하단부를 구체적으로 살펴보겠다.
앵커 구조물(500) 중 상단부의 종단부(600), 즉 상부 정착부는 도 6에 도시된 바와 같은 구조를 가지고 초고층 건물(100) 중 "A" 부분(도 5 참조)에 설치된다. 물론, 앵커 구조물(500)의 상부 정착부(600)의 형태 및 결합 방법은 앵커 구조물(500)이 초고층 건물(100) 내에 고정되고 필요시 초고층 건물(100)을 중력 방향으로 잡아당길 수 있는 한 다양하게 변형될 수 있다.
앵커 구조물(500)의 상부 정착부(600)로부터 상기 하단부까지는 앵커 케이블(602)로 연결된다. 여기서, 앵커 케이블(602)은 도 6(B)에 도시된 바와 같이 인장을 위한 앵커 와이어(610)와 앵커 와이어(610)를 보호하기 위한 쉬스관(Sheath, 612)으로 이루어진다.
도 7을 참조하면, 초고층 건물(100)의 지하층까지 연장된 앵커 케이블(602)은 인장부(704)와 연결된다.
인장부(704)는 유압 실린더(700) 내로 삽입된 상태에서 유압에 따라 상부 또는 하부로 이동하는 부분으로서, 즉 피스톤 역할을 수행하며, 예를 들어 PC 강봉으로 이루어질 수 있다.
유압 실린더(700) 내에는 유압유(702)가 포함되어 있으며, 유압유(702)의 움직임에 따라 피스톤 역할을 하는 인장부(704)가 상승 또는 하강한다.
유압 실린더(700)의 하부에는 하부 정착부(706)가 연결된다. 여기서, 하부 정착부(706)는 지반에 삽입되어 앵커 구조물(500)을 고정시키는 역할을 수행한다.
즉, 앵커 구조물(500)은 하단으로부터 살펴보면 하부 정착부(706), 유압 실린더(700), 인장부(704), 인장 케이블(602) 및 상부 정착부(600)로 이루어진다. 따라서, 하부 정착부(706)와 상부 정착부(600)가 앵커 구조물(500)을 초고층 건물(100)에 안정적으로 고정된 상태에서, 초고층 건물(100)의 변위를 보정하기 위하여 인장부(704)가 가변된다. 상세하게는, 초고층 건물(100)의 변위를 보정하기 위하여 초고층 건물(100)을 중력 방향으로 당기고자 하는 경우, 상기 방재 시스템은 유압 실린더(700)의 유압유(702)를 하부 방향으로 흐르게 하여 인장부(704)를 중력 방향으로 움직이도록 한다. 결과적으로, 앵커 케이블(602)의 앵커 와이어(610)가 중력 방향으로 당겨지게 되며, 따라서 초고층 건물(100)이 중력 방향으로 당겨지게 된다.
이하, 앵커 구조물(500)에 인장력을 가하는 방법을 구체적으로 살펴보겠다.
도 7을 다시 살펴보면, 유압 실린더(700)는 수송관들을 통하여 유압 조정부(714), 유압 펌프(712) 및 유압 탱크(710)와 연결된다.
유압 탱크(710)는 유압유(702)를 저장하는 탱크이다.
유압 펌프(712)는 유압 탱크(710)와 연결되어 유압유(702)를 펌핑(pumping)하는 역할을 수행한다.
유압 조정부(712)는 유압 펌프(712)에 의해 펌핑된 유압유(702)를 조정하여 유압 실린더(700)로 공급한다. 특히, 유압 조정부(712)는 중앙 관리부(402)에 의해 직접 제어될 것이다.
게이트 밸브(716)는 유압 조정부(712)로부터 공급된 유압유(702)를 특정 방향으로 흐르도록 제어하며, 예를 들어 솔레노이드 밸브이다. 상세하게는, 인장부(704)를 중력 방향으로 내리고자 하는 경우, 게이트 밸브(716)는 도 7에 도시된 바와 같이 유압유(702)가 유압 실린더(700)의 상부로 공급되도록 제어한다. 반면에, 인장부(704)를 올리고자 하는 경우, 게이트 밸브(716)는 유압유(702)가 유압 실린더(700)의 하부로 공급되도록 제어한다.
드레인 밸브(718)는 유압 탱크(710)와 유압 실린더(700) 사이의 유압유(702)의 흐름을 제어한다. 예를 들어, 유압유(702)가 유압 실린더(700)의 상단부로 공급되면 인장부(704)가 중력 방향으로 하강하므로, 드레인 밸브(718)는 유압 실린더(700)의 하단부에 존재하는 유압유(702)가 유압 탱크(710)로 흐를 수 있도록 제어한다.
요컨대, 본 실시예의 방재 시스템은 초고층 건물(100)의 변위 보정시 유압 시스템을 이용하여 초고층 건물(100)을 중력 방향으로 당겨서 초고층 건물(100)을 안전하게 유지시킨다. 특히, 상기 방재 시스템은 초고층 건물(100)의 경사각을 측정하여 변위 보정이 필요하다고 판단되는 경우 관리자의 명령과 관계없이 상기 유압 시스템을 자동으로 제어하도록 설정될 수 있다.
위에서, 상기 방재 시스템이 초고층 건물(100)의 변위를 보정하기 위하여 유압 방식을 사용하였지만, 유압 방식은 가능한 여러 방식들 중 하나로서 다른 변위 보정 방법이 사용될 수도 있다.
도 8은 본 발명의 일 실시예에 따른 초고층 건물의 변위 보정 과정을 도시한 순서도이다.
도 8을 참조하면, 중앙 관리부(402)는 GPS부(200), 레이저 감지부(300) 및 응력 측정부(400)로부터 전송된 정보들을 수집하고, 상기 수집된 정보들을 통하여 풍압에 의한 초고층 건물(100)의 변위, 예를 들어 경사각을 측정한다(S800).
이어서, 중앙 관리부(402)는 상기 측정된 경사각이 기준각 이상인 지의 여부를 판단한다(S802).
상기 측정된 경사각이 상기 기준각보다 작으면, 단계 S800이 다시 수행된다. 즉, 초고층 건물(100)의 안전을 위협할 정도로 바람이 불지 않으므로, 중앙 관리부(402)는 초고층 건물(100)의 변위를 보정하지 않은 채로 계속적으로 풍압을 감시한다.
반면에, 상기 측정된 경사각이 상기 기준각 이상이면, 중앙 관리부(402)는 초고층 건물(100)의 변위를 보정하기 위하여 상기 수집된 정보들의 분석을 통하여 초고층 건물(100)의 변위값(경사각), 방향 및 응력 등을 검출한다(S804).
계속하여, 중앙 관리부(402)는 상기 검출 결과에 따라 복수의 앵커 구조물들(500) 중 인장력을 가할 앵커 구조물들을 선택한다(S806).
이어서, 상기 선택된 앵커 구조물들은 중앙 관리부(402)의 제어에 따라 초고층 건물(100)을 중력 방향으로 잡아당겨서 초고층 건물(100)의 변위를 보정한다(S808).
계속하여, 중앙 관리부(402)는 GPS부(200), 레이저 감지부(300) 및 응력 측정부(400)로부터 수집된 정보들을 통하여 초고층 건물(100)의 변위, 예를 들어 경 사각을 측정하고, 상기 측정된 경사각이 상기 기준각보다 작은 지의 여부를 판단한다(S810).
상기 측정된 경사각이 상기 기준각 이상인 경우에는, 계속적으로 바람이 불고 있는 상황이므로 변위 보정 단계인 S808이 계속적으로 수행된다.
반면에, 상기 측정된 경사각이 상기 기준각보다 작은 경우에는, 바람이 잦아든 상황이므로 인장력을 가하던 앵커 구조물들을 원 상태로 복귀시킨다(S812). 즉, 초고층 건물(100)을 중력 방향으로 잡아당기던 앵커 구조물들(500)이 상기 당기던 힘(인장력)을 해제한다.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 초고층 건물의 방재 시스템의 원리를 도시한 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 초고층 건물의 변위를 검출하는 과정을 도시한 도면들이다.
도 4는 본 발명의 일 실시예에 따른 방재 시스템을 도시한 블록도이다.
도 5는 본 발명의 일 실시예에 따른 변위 보정부를 개략적으로 도시한 도면이다.
도 6 내지 도 7은 본 발명의 일 실시예에 따른 앵커 구조물 및 유압부를 도시한 도면들이다.
도 8은 본 발명의 일 실시예에 따른 초고층 건물의 변위 보정 과정을 도시한 순서도이다.

Claims (10)

  1. 초고층 건물의 방재 시스템에 있어서,
    상기 초고층 건물의 변위를 감지하는 변위 감지부; 및
    상기 감지된 변위가 기준치 이상인 경우 상기 초고층 건물을 중력 방향으로 당기는 변위 보정부를 포함하되,
    상기 변위 보정부는 지하층으로부터 지상층까지 형성된 복수의 앵커 구조물들을 가지며, 상기 감지된 변위가 상기 기준치 이상인 경우 상기 앵커 구조물들을 개별적으로 제어하여 상기 초고층 건물을 중력 방향으로 당기는 것을 특징으로 하는 초고층 건물의 방재 시스템.
  2. 제 1 항에 있어서, 상기 변위 감지부는,
    상기 초고층 건물에 설치되며, GPS 위성과 통신하여 상기 초고층 건물의 흔들림에 따른 상기 초고층 건물의 위치를 검출하는 적어도 하나의 GSP부; 및
    레이저를 감지하는 레이저 감지부를 포함하되,
    상기 초고층 건물의 내부에는 하층으로부터 상층으로의 빈 공간이 형성되고, 상기 레이저 감지부는 상기 빈 공간 내에서 레이저 출력부로부터 출력된 레이저를 감지하는 것을 특징으로 하는 초고층 건물의 방재 시스템.
  3. 제 1 항에 있어서, 상기 방재 시스템은,
    상기 초고층 건물의 일부에 설치되며, 상기 초고층 건물의 흔들림에 따른 상기 초고층 건물의 응력/변형 정도를 감지하는 적어도 하나의 응력 감지부; 및
    상기 변위 감지부에 의한 감지 결과 및 상기 응력 감지부에 의한 감지 결과를 상기 변위 감지부와 상기 응력 감지부로부터 수신하고, 상기 수신된 결과들에 따라 상기 초고층 건물의 변위를 검출하며, 상기 검출된 변위에 따라 상기 변위 보정부의 동작을 제어하는 중앙 관리부를 더 포함하는 것을 특징으로 하는 초고층 건물의 방재 시스템.
  4. 제 3 항에 있어서, 상기 변위 보정부는 유압을 이용하여 상기 초고층 건물을 중력 방향으로 당기며, 상기 응력 감지부는 광섬유 격자 센서인 것을 특징으로 하는 초고층 건물의 방재 시스템.
  5. 제 4 항에 있어서, 상기 변위 보정부는 상기 앵커 구조물들을 각기 제어하는 유압 시스템을 더 포함하되,
    상기 앵커 구조물은,
    앵커 와이어;
    상기 앵커 와이어를 상층부에 고정시키는 정착부;
    유압 실린더; 및
    상기 앵커 와이어와 연결되며, 그의 일부가 상기 유압 실린더 내로 삽입된 인장부를 가지며,
    상기 유압 시스템의 조정에 따라 상기 유압 실린더 내로 삽입된 인장부가 상기 초고층 건물의 상층 방향 또는 중력 방향으로 움직이는 것을 특징으로 하는 초고층 건물의 방재 시스템.
  6. 제 5 항에 있어서, 상기 유압 시스템은,
    상기 유압 실린더 내로 특정 유압유를 공급하는 유압 탱크;
    상기 유압 탱크로부터 특정 유압유를 펌핑하는 유압 펌프; 및
    상기 유압 실린더와 상기 유압 펌프 사이에 연결되며, 상기 유압 펌프에 의해 펌핑된 유압유의 흐름을 조정하는 유압 조정부를 포함하는 것을 특징으로 하는 초고층 건물의 방재 시스템.
  7. 초고층 건물의 방재 방법에 있어서,
    풍압에 따른 상기 초고층 건물의 변위를 측정하는 단계; 및
    상기 측정된 변위가 기준치 이상인 경우 상기 초고층 건물을 중력 방향으로 당기는 단계를 포함하되,
    상기 초고층 건물이 내부에는 지하층으로부터 지상층까지 형성된 복수의 앵커 구조물들이 배열되며, 상기 측정된 변위가 상기 기준치 이상인 경우 상기 앵커 구조물들을 개별적으로 제어하여 상기 초고층 건물을 중력 방향으로 당기는 것을 특징으로 하는 초고층 건물의 방재 방법.
  8. 제 7 항에 있어서, 상기 변위를 측정하는 단계는,
    GPS 위성과 통신하여 상기 초고층 건물의 현재 위치를 실시간으로 측정하는 단계; 및
    상기 초고층 건물의 하층으로부터 상층으로 출력된 레이저의 수신 위치를 통하여 상기 초고층 건물의 변위를 측정하는 단계를 포함하는 것을 특징으로 하는 초고층 건물의 방재 방법.
  9. 제 7 항에 있어서, 상기 방재 방법은,
    응력 감지 센서를 이용하여 상기 초고층 건물의 응력/변형 정도를 감지하는 단계를 더 포함하되,
    상기 초고층 건물을 당기는 힘은 상기 측정된 변위와 상기 감지된 응력/변형 정도에 따라 결정되는 것을 특징으로 하는 초고층 건물의 방재 방법.
  10. 제 7 항에 있어서, 상기 초고층 건물의 당김은 유압을 이용하여 앵커 와이어를 하강시킴에 의해 실행되는 것을 특징으로 하는 초고층 건물의 방재 방법.
KR1020080130062A 2008-12-19 2008-12-19 초고층 건물의 방재 시스템 및 방법 KR100945149B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020080130062A KR100945149B1 (ko) 2008-12-19 2008-12-19 초고층 건물의 방재 시스템 및 방법
PCT/KR2009/000644 WO2010071260A1 (ko) 2008-12-19 2009-02-11 초고층 건물의 방재 시스템 및 방법
US13/140,999 US20110271606A1 (en) 2008-12-19 2009-02-11 System and method of preventing disaster for a skyscraper
CN2009801511209A CN102317556A (zh) 2008-12-19 2009-02-11 防止摩天大楼发生灾难的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080130062A KR100945149B1 (ko) 2008-12-19 2008-12-19 초고층 건물의 방재 시스템 및 방법

Publications (1)

Publication Number Publication Date
KR100945149B1 true KR100945149B1 (ko) 2010-03-08

Family

ID=42182861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080130062A KR100945149B1 (ko) 2008-12-19 2008-12-19 초고층 건물의 방재 시스템 및 방법

Country Status (4)

Country Link
US (1) US20110271606A1 (ko)
KR (1) KR100945149B1 (ko)
CN (1) CN102317556A (ko)
WO (1) WO2010071260A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267107B1 (ko) * 2011-01-18 2013-05-24 연세대학교 산학협력단 구조물의 횡방향 변형을 측정하는 장치 및 구조물의 횡방향 변형에 따른 보정값 산출 장치
KR101398605B1 (ko) * 2012-03-27 2014-05-26 삼성중공업 주식회사 구조물 관리 시스템
KR102280827B1 (ko) * 2021-03-05 2021-07-22 주식회사 제이엔케이안전진단연구원 안전진단 계측장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174320A (zh) * 2011-12-22 2013-06-26 谢宗谚 可瞬间启动免震机制的建筑物免震避震系统
CN107155335B (zh) 2014-09-24 2020-04-28 默罕默德·加拉尔·叶海亚·卡莫 超级高层建筑物中的负载的横向分布,以减少风力、地震和爆炸的影响,同时增加利用的区域

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941718A (ja) * 1995-08-01 1997-02-10 Ohbayashi Corp 制振装置
KR19990032608A (ko) * 1997-10-20 1999-05-15 김정웅 지피에스반송파를 이용한 구조물의 안전성 평가시스템
KR20010076953A (ko) * 2000-01-28 2001-08-17 김옥환 레이저 광선을 이용한 구조물의 변위량 측정 방법 및 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016726B (zh) * 1987-10-28 1992-05-20 中国建筑东北设计院 建筑物或结构物的减震装置
US4956947A (en) * 1988-04-01 1990-09-18 Middleton Leonard R Live tendon system inhibiting sway of high rise structures and method
US5398462A (en) * 1992-03-16 1995-03-21 Massachusetts Institute Of Technology Actively controlled structure and method
GB9317576D0 (en) * 1993-08-24 1993-10-06 British Aerospace Fibre optic damage detection system
US5526609A (en) * 1994-01-28 1996-06-18 Research Foundation Of State University Of New York Method and apparatus for real-time structure parameter modification
IT1274369B (it) * 1995-03-28 1997-07-17 Giorgio Vaia Sistema per la protezione di edifici
US5841353A (en) * 1995-08-16 1998-11-24 Trimble Navigation Limited Relating to the determination of verticality in tall buildings and other structures
GB9521957D0 (en) * 1995-10-26 1996-01-03 Limited Strain gauge
US5894291A (en) * 1996-12-05 1999-04-13 Lucent Technologies, Inc. System and method for dynamically counteracting sway in active antenna towers
EP1520159B1 (en) * 2002-07-01 2017-10-25 Smart Autonomous Solutions Inc. Measuring strain in a structure ( bridge ) with a ( temperature compensated ) electromagnetic resonator ( microwave cavity )

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941718A (ja) * 1995-08-01 1997-02-10 Ohbayashi Corp 制振装置
KR19990032608A (ko) * 1997-10-20 1999-05-15 김정웅 지피에스반송파를 이용한 구조물의 안전성 평가시스템
KR20010076953A (ko) * 2000-01-28 2001-08-17 김옥환 레이저 광선을 이용한 구조물의 변위량 측정 방법 및 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267107B1 (ko) * 2011-01-18 2013-05-24 연세대학교 산학협력단 구조물의 횡방향 변형을 측정하는 장치 및 구조물의 횡방향 변형에 따른 보정값 산출 장치
KR101398605B1 (ko) * 2012-03-27 2014-05-26 삼성중공업 주식회사 구조물 관리 시스템
KR102280827B1 (ko) * 2021-03-05 2021-07-22 주식회사 제이엔케이안전진단연구원 안전진단 계측장치

Also Published As

Publication number Publication date
US20110271606A1 (en) 2011-11-10
CN102317556A (zh) 2012-01-11
WO2010071260A1 (ko) 2010-06-24

Similar Documents

Publication Publication Date Title
KR100945149B1 (ko) 초고층 건물의 방재 시스템 및 방법
EP3102937B1 (en) Method of monitoring subsurface concrete structures
JP7471796B2 (ja) 光学センサ及び/又は電磁センサを使用してクレーン状態を判定するためのシステム
US20070175639A1 (en) Method and a device for monitoring an/or controlling a load on a tensioned elongated element
KR101123843B1 (ko) 가시설 구조체의 평형 상태 평가, 조정, 예측 방법 및 그 장치
KR101457649B1 (ko) 비탈면 붕괴 사전 감지시스템
US8672539B2 (en) Multiple sensor fiber optic sensing system
CN111998839B (zh) 一种基于逆作法的支撑柱定位及垂直度检测系统
JP7375156B2 (ja) 計測システム、計測方法および間隔決定方法
JP2015530577A (ja) モニタデバイスのためのリアルタイム構造測定(rtsm)
KR101375123B1 (ko) 송전, 변전, 배전용 지중 케이블의 안전진단 시스템
KR20100012359A (ko) 가시설 구조물의 위험 경보 장치 및 방법
KR101928332B1 (ko) 가설구조물 붕괴감지 모니터링 장치
JP5084203B2 (ja) 長大構造物の光学的変状計測装置
CN112187843A (zh) 一种基于bim深基坑基建风险自动监测的系统和方法
KR20200091219A (ko) 케이슨 제작용 슬립폼 시스템
JP3725513B2 (ja) 光ファイバケーブル使用の構造物変位・変状検知装置
US20080092656A1 (en) System for Monitoring Level Variations in a Soil Subjected to Erosive and Sedimentary Agents, and Monitoring Method and Element
CN107014328A (zh) 一种表面拉索测力式地质灾害自动化监测装置及方法
KR101379216B1 (ko) 구조물의 실시간 변위 자동 복원방법
KR102681428B1 (ko) 건설 현장의 조기경보 시스템
CN208669524U (zh) 拱桥塔架自平衡控制系统
WO2024135100A1 (ja) 表示方法、表示プログラム、及び診断装置
KR102353757B1 (ko) 열화상 카메라를 이용한 비탈면 붕괴 감지 시스템
KR101739118B1 (ko) 장력 및 하중 감지 천막 구조물

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140225

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150423

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190211

Year of fee payment: 10