KR100917058B1 - Method for fabricating triple gate oxide of semiconductor device - Google Patents

Method for fabricating triple gate oxide of semiconductor device Download PDF

Info

Publication number
KR100917058B1
KR100917058B1 KR1020020086134A KR20020086134A KR100917058B1 KR 100917058 B1 KR100917058 B1 KR 100917058B1 KR 1020020086134 A KR1020020086134 A KR 1020020086134A KR 20020086134 A KR20020086134 A KR 20020086134A KR 100917058 B1 KR100917058 B1 KR 100917058B1
Authority
KR
South Korea
Prior art keywords
forming
gate oxide
oxide film
region
logic
Prior art date
Application number
KR1020020086134A
Other languages
Korean (ko)
Other versions
KR20040059729A (en
Inventor
신일재
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020020086134A priority Critical patent/KR100917058B1/en
Publication of KR20040059729A publication Critical patent/KR20040059729A/en
Application granted granted Critical
Publication of KR100917058B1 publication Critical patent/KR100917058B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 로직 영역 및 I/O 블록에 영향을 주지 않도록 하여 로직 프로세스에 고전압 프로세스를 추가할 수 있도록 한 반도체 소자의 트리플 게이트 산화막 형성 방법에 관한 것으로, 반도체 기판의 소자 격리 영역에 소자 격리층을 형성하는 단계; 전면에 나이트라이드층을 형성하고 고전압 소자 형성 영역이 노출되도록 패터닝하는 단계; 상기 고전압 형성 영역의 표면에 제 1 두께의 제 1 게이트 산화막을 형성하는 단계; 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상의 나이트라이드를 제거하고 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역에 각각 웰 영역들을 형성하는 단계; 제 2 두께의 제 2 게이트 산화막을 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역 상에 형성하고, 로직 영역상의 제 2 게이트 산화막을 제거하는 단계; 상기 로직 영역 상에 제 3 두께의 제 3 게이트 산화막을 형성하는 단계를 포함한다.
The present invention relates to a method for forming a triple gate oxide film of a semiconductor device in which a high voltage process can be added to a logic process without affecting the logic region and the I / O block. Forming; Forming a nitride layer on the front surface and patterning the high voltage device forming region to be exposed; Forming a first gate oxide film having a first thickness on a surface of the high voltage forming region; Removing nitride on the logic transistor formation region, the I / O transistor formation region and forming well regions in the logic transistor formation region and the I / O transistor formation region, respectively; Forming a second gate oxide film having a second thickness on the logic transistor formation region, the I / O transistor formation region, and removing the second gate oxide film on the logic region; Forming a third gate oxide film of a third thickness on the logic region.

고전압 게이트 산화막, 트리플 게이트 산화막High Voltage Gate Oxide, Triple Gate Oxide

Description

반도체 소자의 트리플 게이트 산화막 형성 방법{Method for fabricating triple gate oxide of semiconductor device} Method for fabricating triple gate oxide of semiconductor device             

도 1a내지 도 1n은 본 발명에 따른 반도체 소자의 트리플 게이트 산화막 형성을 의한 공정 단면도
1A to 1N are cross-sectional views illustrating a process of forming a triple gate oxide film of a semiconductor device according to the present invention.

-도면의 주요 부분에 대한 부호의 설명-Explanation of symbols on main parts of drawing

11. 반도체 기판 12. 고농도 n형 웰 영역11. Semiconductor substrate 12. High concentration n-type well region

13. 고농도 p형 웰 영역 14. 패드 산화막13. High concentration p well region 14. Pad oxide film

15.19. 나이트라이드 16.20.25. 포토레지스트 패턴15.19. Nitride 16.20.25. Photoresist pattern

17. HDP 산화막 18. PGI 패턴17. HDP oxide 18. PGI pattern

21. 제 1 게이트 산화막 22. p형 웰 영역21. First gate oxide 22. P-type well region

23. n형 웰 영역 24. 제 2 게이트 산화막23. n-type well region 24. Second gate oxide film

26. 제 3 게이트 산화막
26. Third Gate Oxide

본 발명은 반도체 소자에 관한 것으로, 구체적으로 로직 영역 및 I/O 블록에 영향을 주지 않도록 하여 로직 프로세스에 고전압 프로세스를 추가할 수 있도록 한 반도체 소자의 트리플 게이트 산화막 형성 방법에 관한 것이다.
The present invention relates to a semiconductor device, and more particularly, to a method of forming a triple gate oxide layer of a semiconductor device in which a high voltage process can be added to a logic process without affecting a logic region and an I / O block.

반도체소자에서 전기적으로 전압이 높은 고전압영역과 전압이 낮은 저전압 영역이 동시에 사용되는 멀티플 게이트 산화막(Multiple Gate Oxide)을 갖는 트랜지스터에서는 고전압영역의 게이트 산화막의 두께는 두껍게 형성하고, 저전압영역에서는 게이트 산화막의 두께를 얇게 형성하여서 전기적으로 절연이 적절하게 이루어지도록 구성되어져 있다.In a transistor having a multiple gate oxide in which a high voltage region having a high voltage and a low voltage region having a low voltage are used at the same time in a semiconductor device, a thick gate oxide film is formed in a high voltage region. It is configured to form a thin thickness and to electrically insulate properly.

반도체 소자의 고집적화 고기능화와 함께 메모리 소자와 로직 소자를 합병(merge)시킨 새로운 원 칩 소자(one-chip device)에 대한 요구가 날로 증가하고 있다. 이러한 합병된 디램과 로직 소자는 그 구조의 복잡함으로 인해 소자 제조에 있어서 공정 진행상 많은 어려움이 있다.Higher integration of semiconductor devices Along with high functionalization, there is an increasing demand for new one-chip devices in which memory devices and logic devices are merged. These merged DRAM and logic devices have many difficulties in the process of device manufacturing due to the complexity of the structure.

특히, 게이트 산화막의 경우, 로직 소자에 있어서는 소자의 속도를 향상시키기 위해 충분히 얇은 두께가 요구되나, DRAM 소자에 있어서는 얇은 게이트 산화막을 적용할 경우 게이트 산화막이 파괴될 염려가 있으므로 두껍게 형성하여야 한다.In particular, in the case of the gate oxide film, a thin enough thickness is required in the logic device to improve the speed of the device. However, in the DRAM device, when the thin gate oxide film is applied, the gate oxide film may be destroyed, so that the gate oxide film should be formed thick.

이러한 이유로 메모리 소자와 로직 소자를 하나의 칩에 합병시킨 소자를 제조하는데 있어서는 이중 게이트 산화막 형성 방법을 적용한다.For this reason, a method of forming a double gate oxide film is used to manufacture a device in which a memory device and a logic device are merged into one chip.

종래 기술의 이중 게이트 산화막 형성 방법에 의하면 게이트 산화막을 패터 닝할 때 일반적인 건식 식각을 이용한다.According to the method of forming a double gate oxide film of the related art, general dry etching is used when patterning a gate oxide film.

이러한 건식 식각 공정에 있어서는, 사불화메탄(CF4;tetra-fluoro methane)+수소(H2)나 삼불화메탄(CHF3;tri-fluoro methane)+산소(O2) 화학물을 사용한 반응성 이온 식각(RIE; Reactive Ion Etch)을 이용하여 산화막을 제거한다.In such a dry etching process, reactive ions using tetrafluorofluoromethane (CF 4 ) + hydrogen (H 2 ) or trifluorofluoromethane (CHF 3 ) + oxygen (O 2 ) chemicals The oxide layer is removed by etching (reactive ion etching).

그러나 이러한 건식 식각 공정의 경우, 식각 후 불소(F)가 산화막의 하부 막질로 존재하는 실리콘웨이퍼 표면에 습식 세정 방법에서보다 더 높은 농도로 잔존하게 되어 이후 공정에 나쁜 영향을 미치게 된다.However, in the dry etching process, fluorine (F) remains on the surface of the silicon wafer, which is present as a lower film of the oxide film, after etching, at a higher concentration than in the wet cleaning method, thereby adversely affecting the subsequent process.

또한, 식각 가스의 주입 에너지에 의해 실리콘웨이퍼 표면이 손상되어 실리콘웨이퍼 표면이 거칠어지거나 실리콘웨이퍼 표면 근방에 형성되어 있는 pn 접합층이 파괴될 수도 있다.In addition, the silicon wafer surface may be damaged by the injection energy of the etching gas, thereby roughening the silicon wafer surface or destroying the pn junction layer formed near the silicon wafer surface.

그러나 이와 같은 종래 기술의 게이트 산화막 형성 공정은 다음과 같은 문제점이 있다.However, the gate oxide film forming process of the prior art has the following problems.

종래 기술에서는 메모리 소자와 로직 소자를 하나의 칩에 합병시킨 소자를 제조하는데 있어서는 이중 게이트 산화막 형성 방법을 적용하는데, 특성이 우수한 다중의 게이트 산화막을 제공할 수 없어 0.18㎛ 프로세스에서 고전압 게이트 산화막을 구현하지 못한다.
In the prior art, a double gate oxide film forming method is applied to fabricate a device in which a memory device and a logic device are merged into one chip, and a high voltage gate oxide film is realized in a 0.18 μm process because a multi-gate oxide film having excellent characteristics cannot be provided. can not do.

본 발명은 이와 같은 종래 기술의 게이트 산화막 형성 공정의 문제를 해결하 기 위하여 안출한 것으로, 로직 영역 및 I/O 블록에 영향을 주지 않도록 하여 로직 프로세스에 고전압 프로세스를 추가할 수 있도록 한 반도체 소자의 트리플 게이트 산화막 형성 방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the problem of the gate oxide film forming process of the prior art, and a semiconductor device capable of adding a high voltage process to a logic process without affecting the logic region and the I / O block. It is an object of the present invention to provide a method for forming a triple gate oxide film.

이와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 트리플 게이트 산화막 형성 방법은 반도체 기판의 소자 격리 영역에 소자 격리층을 형성하는 단계; 전면에 나이트라이드층을 형성하고 고전압 소자 형성 영역이 노출되도록 패터닝하는 단계; 상기 고전압 형성 영역의 표면에 제 1 두께의 제 1 게이트 산화막을 형성하는 단계; 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상의 나이트라이드를 제거하고 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역에 각각 웰 영역들을 형성하는 단계; 제 2 두께의 제 2 게이트 산화막을 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상에 형성하고, 로직 영역상의 제 2 게이트 산화막을 제거하는 단계; 상기 로직 영역상에 제 3 두께의 제 3 게이트 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.
According to an aspect of the present invention, there is provided a method of forming a triple gate oxide layer of a semiconductor device, the method including: forming an isolation layer in an isolation region of a semiconductor substrate; Forming a nitride layer on the front surface and patterning the high voltage device forming region to be exposed; Forming a first gate oxide film having a first thickness on a surface of the high voltage forming region; Removing nitride on the logic transistor forming region, the I / O transistor forming region and forming well regions in the logic transistor forming region and the I / O transistor forming region, respectively; Forming a second gate oxide film having a second thickness on the logic transistor formation region, the I / O transistor formation region, and removing the second gate oxide film on the logic region; And forming a third gate oxide film of a third thickness on the logic region.

본 발명에 따른 반도체 소자의 트리플 게이트 산화막 형성 방법의 바람직한 실시예에 관하여 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.A preferred embodiment of the method of forming a triple gate oxide film of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 1a내지 도 1n은 본 발명에 따른 반도체 소자의 트리플 게이트 산화막 형성을 의한 공정 단면도이다. 1A to 1N are cross-sectional views illustrating a process of forming a triple gate oxide film of a semiconductor device according to the present invention.                     

본 발명은 0.18㎛ 프로세스에서 고전압 게이트 산화막 구현할 수 있도록 한 것으로 먼저, 도 1a에서와 같이, 반도체 기판(11)에 고농도 n형 웰 영역(12),고농도 p형 웰 영역(13)을 형성하고 전면에 패드 산화막(14),나이트라이드층(15)을 형성한다.According to the present invention, a high-voltage gate oxide film can be realized in a 0.18 μm process. First, as shown in FIG. 1A, a high concentration n-type well region 12 and a high concentration p-type well region 13 are formed on a semiconductor substrate 11, and the front surface is formed. The pad oxide film 14 and the nitride layer 15 are formed.

그리고 전면에 포토레지스트를 도포하고 선택적으로 패터닝하여 STI 포토레지스트 패턴(16)을 형성한다.Then, a photoresist is applied to the entire surface and selectively patterned to form the STI photoresist pattern 16.

이어, 포토레지스트 패턴(16)을 이용하여 반도체 기판(11)의 소자 격리 영역을 선택적으로 식각하여 트랜치를 형성한다.Subsequently, the device isolation region of the semiconductor substrate 11 is selectively etched using the photoresist pattern 16 to form a trench.

그리고 도 1b에서와 같이, 상기 트랜치를 포함하는 전면에 HDP 산화막(17)을 증착한다.1B, the HDP oxide layer 17 is deposited on the entire surface including the trench.

이어, 도 1c에서와 같이, HDP 산화막(17)상에 포토레지스트를 도포하고 패터닝하여 PGI 패턴(18)을 형성한다.Subsequently, as shown in FIG. 1C, a photoresist is applied and patterned on the HDP oxide film 17 to form a PGI pattern 18.

그리고 도 1d에서와 같이, PGI CMP(Chemical Mechanical Polishing) 공정을 진행하여 소자 격리층을 형성한다.As shown in FIG. 1D, the device isolation layer is formed by performing a PGI CMP (Chemical Mechanical Polishing) process.

이어, 도 1e에서와 같이, 액티브 영역상에 남아 있는 나이트라이드층을 습식 식각 공정으로 제거하고 도 1f에서와 같이, 전면에 100Å 두께의 나이트라이드층(19)을 형성한다.Next, as shown in FIG. 1E, the nitride layer remaining on the active region is removed by a wet etching process, and as shown in FIG. 1F, a nitride layer 19 having a thickness of 100 μs is formed on the entire surface.

그리고 도 1g에서와 같이, 전면에 포토레지스트(20)를 도포하고 고전압 소자 형성 영역이 노출되도록 패터닝 한다.As shown in FIG. 1G, the photoresist 20 is coated on the entire surface and patterned to expose the high voltage device formation region.

이어, 도 1h에서와 같이, 고전압 형성 영역의 표면에 900Å 두께의 제 1 게 이트 산화막(21)을 형성한다.1H, a first gate oxide film 21 having a thickness of 900 kW is formed on the surface of the high voltage formation region.

그리고 도 1i에서와 같이, 습식 식각 및 HF 용액을 이용한 디핑(dipping) 공정으로 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상의 나이트라이드(19)를 제거한다.As illustrated in FIG. 1I, the nitride 19 on the logic transistor formation region and the I / O transistor formation region is removed by a wet etching and a dipping process using an HF solution.

이어, 도 1j에서와 같이, 포토리소그래피 공정으로 마스킹하여 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역에 각각 p형 웰 영역(22),n형 웰 영역(23)을 형성한다.Subsequently, as shown in FIG. 1J, the p-type well region 22 and the n-type well region 23 are formed in the logic transistor formation region and the I / O transistor formation region by masking by a photolithography process.

그리고 도 1k에서와 같이, 120Å 두께의 제 2 게이트 산화막(24)을 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상에 형성한다.As shown in FIG. 1K, a second gate oxide film 24 having a thickness of 120 Å is formed on the logic transistor formation region and the I / O transistor formation region.

이어, 도 1l에서와 같이, 로직 영역만 노출되도록 포토레지스트 패턴(25)을 형성하고 로직 영역상의 제 2 게이트 산화막(24)을 제거한다.Next, as shown in FIG. 1L, the photoresist pattern 25 is formed to expose only the logic region, and the second gate oxide layer 24 on the logic region is removed.

그리고 도 1m에서와 같이, 세정 공정을 진행하고 로직 영역상에 제 3 게이트 산화막(26)을 형성한다.As shown in FIG. 1M, the cleaning process is performed, and a third gate oxide layer 26 is formed on the logic region.

이어, 도 1n에서와 같이, 전면에 게이트를 형성용 폴리 실리콘층을 형성하여 후속 공정을 진행한다.Subsequently, as shown in FIG. 1N, a polysilicon layer for forming a gate is formed on the entire surface to proceed the subsequent process.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention.

따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.
Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

이상에서 설명한 본 발명에 따른 반도체 소자의 트리플 게이트 산화막 형성 방법은 다음과 같은 효과가 있다.The triple gate oxide film forming method of the semiconductor device according to the present invention described above has the following effects.

이와 같은 본 발명은 서로 두께가 다른 게이트 산화막을 로직 영역,I/O 영역, 고전압 소자 형성 영역에 각각 형성하여 고전압 게이트 산화막(500Å이상)를 구현할 경우에는 로직쪽에 대한 손상을 거의 주지 않기에 로직과 I/O(5V)와 고전압 게이트 산화막를 동시에 구현할 수 있는 효과가 있다.In the present invention, when the gate oxide films having different thicknesses are formed in the logic region, the I / O region, and the high voltage element formation region, respectively, the logic voltage and the logic side are hardly damaged when the high voltage gate oxide layer (500 Å or more) is implemented. I / O (5V) and a high voltage gate oxide film can be implemented simultaneously.

Claims (4)

반도체 기판의 소자 격리 영역에 소자 격리층을 형성하는 단계;Forming a device isolation layer in the device isolation region of the semiconductor substrate; 전면에 나이트라이드층을 형성하고 고전압 소자 형성 영역이 노출되도록 패터닝하는 단계;Forming a nitride layer on the front surface and patterning the high voltage device forming region to be exposed; 상기 고전압 형성 영역의 표면에 제 1 두께의 제 1 게이트 산화막을 형성하는 단계;Forming a first gate oxide film having a first thickness on a surface of the high voltage forming region; 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상의 나이트라이드를 제거하고 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역에 각각 웰 영역들을 형성하는 단계;Removing nitride on the logic transistor forming region, the I / O transistor forming region and forming well regions in the logic transistor forming region and the I / O transistor forming region, respectively; 제 2 두께의 제 2 게이트 산화막을 로직 트랜지스터 형성 영역,I/O 트랜지스터 형성 영역상에 형성하고, 로직 영역상의 제 2 게이트 산화막을 제거하는 단계;Forming a second gate oxide film having a second thickness on the logic transistor formation region, the I / O transistor formation region, and removing the second gate oxide film on the logic region; 상기 로직 영역상에 제 3 두께의 제 3 게이트 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 트리플 게이트 산화막 형성 방법.Forming a third gate oxide film of a third thickness on the logic region. 제 1 항에 있어서, The method of claim 1, 로직 영역 상에 제 3 게이트 산화막을 형성하기 전에 세정 공정을 진행하는 것을 특징으로 하는 반도체 소자의 트리플 게이트 산화막 형성 방법.A cleaning process is performed before the third gate oxide film is formed on the logic region. 제 1 항에 있어서, The method of claim 1, 소자 격리층을 전면에 패드 산화막,나이트라이드층을 형성하는 공정,Forming a pad oxide film and a nitride layer over the device isolation layer; 전면에 포토레지스트를 도포하고 선택적으로 패터닝하여 STI 포토레지스트 패턴을 형성하는 공정,Applying a photoresist to the entire surface and selectively patterning to form an STI photoresist pattern, 포토레지스트 패턴을 이용하여 반도체 기판의 소자 격리 영역을 선택적으로 식각하여 트랜치를 형성하는 공정,Selectively etching the device isolation region of the semiconductor substrate using the photoresist pattern to form a trench, 상기 트랜치를 포함하는 전면에 HDP 산화막을 증착하고 포토레지스트를 도포하고 패터닝하여 PGI 패턴을 형성하는 공정,Depositing an HDP oxide film on the entire surface including the trench, applying and patterning a photoresist to form a PGI pattern, PGI CMP 공정을 진행하여 평탄화하는 공정을 포함하여 형성하는 것을 특징으로 하는 반도체 소자의 트리플 게이트 산화막 형성 방법.A method of forming a triple gate oxide film of a semiconductor device comprising the step of planarizing the PGI CMP process. 제 1 항에 있어서, The method of claim 1, 제 1,2,3 게이트 산화막은 그 형성 두께가 제 1 게이트 산화막이 가장 두껍고 제 3 게이트 산화막이 가장 얇은 것을 특징으로 하는 반도체 소자의 트리플 게이트 산화막 형성 방법.A method of forming a triple gate oxide film of a semiconductor device, characterized in that the first, second, and third gate oxide films have a thickest first gate oxide film and a thinner third gate oxide film.
KR1020020086134A 2002-12-28 2002-12-28 Method for fabricating triple gate oxide of semiconductor device KR100917058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020086134A KR100917058B1 (en) 2002-12-28 2002-12-28 Method for fabricating triple gate oxide of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020086134A KR100917058B1 (en) 2002-12-28 2002-12-28 Method for fabricating triple gate oxide of semiconductor device

Publications (2)

Publication Number Publication Date
KR20040059729A KR20040059729A (en) 2004-07-06
KR100917058B1 true KR100917058B1 (en) 2009-09-10

Family

ID=37351710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020086134A KR100917058B1 (en) 2002-12-28 2002-12-28 Method for fabricating triple gate oxide of semiconductor device

Country Status (1)

Country Link
KR (1) KR100917058B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769134B1 (en) * 2005-08-03 2007-10-22 동부일렉트로닉스 주식회사 Method for Forming a Gate Dielectric of a Semiconductor Device
KR100769135B1 (en) * 2005-08-12 2007-10-22 동부일렉트로닉스 주식회사 Method for Forming a Gate Dielectric of a Semiconductor Device
US20230141716A1 (en) * 2021-11-05 2023-05-11 Micron Technology, Inc. Finfets having various different thicknesses of gate oxides and related apparatus, methods, and computing systems
WO2024019435A1 (en) * 2022-07-18 2024-01-25 주식회사 에이치피에스피 Method for manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020234A (en) * 1998-09-18 2000-04-15 김영환 Method for forming dual gate oxide of semiconductor device
JP2001156260A (en) 1999-09-17 2001-06-08 Nec Corp Integrated circuit device, electronic circuit equipment, and circuit-manufacturing method
US6268266B1 (en) 1999-10-22 2001-07-31 United Microelectronics Corp. Method for forming enhanced FOX region of low voltage device in high voltage process
KR20020010779A (en) * 2000-07-31 2002-02-06 박종섭 Method of forming gate-oxide in semicondcutor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020234A (en) * 1998-09-18 2000-04-15 김영환 Method for forming dual gate oxide of semiconductor device
JP2001156260A (en) 1999-09-17 2001-06-08 Nec Corp Integrated circuit device, electronic circuit equipment, and circuit-manufacturing method
US6268266B1 (en) 1999-10-22 2001-07-31 United Microelectronics Corp. Method for forming enhanced FOX region of low voltage device in high voltage process
KR20020010779A (en) * 2000-07-31 2002-02-06 박종섭 Method of forming gate-oxide in semicondcutor device

Also Published As

Publication number Publication date
KR20040059729A (en) 2004-07-06

Similar Documents

Publication Publication Date Title
KR100649315B1 (en) Isolation layer of flash memory and method for manufacturing the same
US7892960B2 (en) Method for forming gate oxide of semiconductor device
TW200939404A (en) Method for integrating NVM circuitry with logic circuitry
US20090068836A1 (en) Method of forming contact plug of semiconductor device
KR100917058B1 (en) Method for fabricating triple gate oxide of semiconductor device
KR20090128902A (en) Method for manufacturing cmos image sensor using dual hardmask
CN111081547B (en) Semiconductor device and method of forming the same
KR100833435B1 (en) Non-volatile memory device and fabrication method thereof
KR100639467B1 (en) Method for forming STI in flash memory device
KR100521378B1 (en) Gate Insulator Of Semiconductor Device And Method Of Forming The Same
JP2008135765A (en) Semiconductor device
KR100629694B1 (en) Method for manufacturing semiconductor device
KR100532839B1 (en) Method for manufacturing shallow trench of semiconductor device
KR100870293B1 (en) Method of manufacturing flash memory device
KR100557224B1 (en) Method for fabricating semiconductor device
KR100361765B1 (en) A method for fabricating of a semiconductor device
KR100386625B1 (en) method for manufacturing of semiconductor device
KR20060076533A (en) Semiconductor device with step active area and method for manufacturing the same
KR20060113265A (en) Method for manufacturing semiconductor device using recess gate process
KR20040004990A (en) Method for forming isolation layer of semiconductor device
KR100277875B1 (en) Capacitor Manufacturing Method
KR100223825B1 (en) Method of forming an element isolation region in a semiconductor device
KR20060118734A (en) Manufacturing method of flash memory device
KR20060057162A (en) Method for manufacturing semiconductor device
KR19980085822A (en) Double gate formation method of semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130821

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140820

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160817

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180820

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 11