KR100907357B1 - Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film - Google Patents

Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film Download PDF

Info

Publication number
KR100907357B1
KR100907357B1 KR1020070050237A KR20070050237A KR100907357B1 KR 100907357 B1 KR100907357 B1 KR 100907357B1 KR 1020070050237 A KR1020070050237 A KR 1020070050237A KR 20070050237 A KR20070050237 A KR 20070050237A KR 100907357 B1 KR100907357 B1 KR 100907357B1
Authority
KR
South Korea
Prior art keywords
silica
coating
weight
reverse micelle
organic solvent
Prior art date
Application number
KR1020070050237A
Other languages
Korean (ko)
Other versions
KR20080103215A (en
Inventor
이영훈
최종철
Original Assignee
한화엘앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화엘앤씨 주식회사 filed Critical 한화엘앤씨 주식회사
Priority to KR1020070050237A priority Critical patent/KR100907357B1/en
Priority to PCT/KR2008/002728 priority patent/WO2008143429A1/en
Publication of KR20080103215A publication Critical patent/KR20080103215A/en
Application granted granted Critical
Publication of KR100907357B1 publication Critical patent/KR100907357B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

반사방지 코팅용 코팅제 제조방법, 그 코팅제 및 반사방지필름이 소개된다. 특히, 코팅제 제조방법은, (A) 유기용매, 계면활성제, 입경 2~50nm이며 중량 기준으로 5~40% 농도의 콜로이드 실리카를 혼합 및 교반하여, 기공을 갖는 입경 10~100nm의 실리카 역마이셀을 생성하는 단계; (B) 상기 (A)단계에서 얻어진 역마이셀 용액에 실란유도체를 혼합 및 교반하여 역마이셀 입자를 표면처리하는 단계; 및 (C) 상기 (B)단계에서 얻어진 역마이셀 용액으로부터 적어도 유기용매, 계면활성제를 제거하여, 기공을 갖는 입경 10~100nm의 실리카 입자를 제조하는 단계;를 포함한다.A method for producing a coating agent for antireflective coating, a coating agent thereof, and an antireflective film are introduced. In particular, the method for preparing a coating agent includes (A) an organic solvent, a surfactant, and a particle diameter of 2 to 50 nm, and mixed and stirred with a colloidal silica having a concentration of 5 to 40% by weight based on weight to prepare a silica reverse micelle having a pore size of 10 to 100 nm. Generating; (B) surface treating the reverse micelle particles by mixing and stirring a silane derivative to the reverse micelle solution obtained in step (A); And (C) removing at least an organic solvent and a surfactant from the reverse micelle solution obtained in step (B) to prepare silica particles having a pore size of 10 to 100 nm.

반사방지, 코팅제, 나노입자 Antireflective, Coating, Nanoparticle

Description

반사방지 코팅용 코팅제, 제조방법 및 반사방지필름{Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film}Coating for anti-reflective coating, manufacturing method and anti-reflective film {Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film}

본 발명은 반사방지 코팅용 코팅제와 그 제조방법 및 코팅제를 사용한 반사방지필름에 관한 것이다.The present invention relates to a coating agent for antireflective coating, a method for producing the same, and an antireflective film using the coating agent.

최근 들어, 액정디스플레이(LCD), 유기발광다이오드(OLED), PDP 등의 표시장치 분야에 있어, 화면의 시인성(Consipicuity) 저하나 눈부심을 방지하기 위하여 반사방지필름의 사용이 확대되고 있다.In recent years, in the field of display devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs), and PDPs, the use of anti-reflective films has been expanded to prevent deterioration of visibility and glare of screens.

통상적으로 반사방지필름은 투명기판, 하드코트(Hard-coat)성 부여를 위한 수지층, 반사 방지막인 저굴절 코팅층으로 구성되는데, 저굴절 코팅층은 건식코팅 혹은 습식코팅된다.Typically, the antireflection film is composed of a transparent substrate, a resin layer for hard-coat (hard-coat) imparting, a low refractive coating layer which is an antireflection film, the low refractive coating layer is dry coating or wet coating.

먼저, 건식코팅에는 진공증착, 스퍼터링법, CVC법 등이 사용될 수 있고, 이러한 건식코팅은 반사방지 성능은 뛰어나지만, 대량생산에 있어 제한이 있으며 비용이 비싸다는 단점이 있다.First, dry coating may be used, such as vacuum deposition, sputtering method, CVC method, such dry coating is excellent in the anti-reflection performance, but there is a disadvantage in the mass production is limited and expensive.

다음으로 습식코팅은 용액상의 저굴절 코팅제(반사방지 코팅제)를 필름 혹은 시트상에 코팅하는 것으로서, 대량생산이 가능하고 건식코팅에 비하여 제조비용이 저렴하다는 장점이 있어, 최근 많은 연구가 이루어지고 있다. 특히, 습식코팅에 있어 반사방지 성능은 코팅되는 저굴절 코팅층의 굴절율에 매우 크게 의존하는 바, 저굴절 코팅층의 굴절률이 낮추어 반사방지필름의 반사방지 성능을 향상시키기 위한 연구가 활발하게 이루어지고 있다.Next, wet coating is a coating of a solution-type low refractive coating (anti-reflective coating) on a film or sheet, which has the advantage of being able to mass produce and inexpensive manufacturing cost compared to dry coating, and many studies have been made recently. . In particular, the anti-reflection performance in the wet coating is highly dependent on the refractive index of the low refractive coating layer to be coated, the research has been actively conducted to improve the antireflection performance of the anti-reflection film by lowering the refractive index of the low refractive coating layer.

이러한 습식코팅 기술 중 공지된 것으로는, 저굴절 코팅층에 굴절율이 낮은 불소를 함유시키는 방법이 있다. 한국특허공개공보 제2000-0059818호, 제2005-0083890호, 미국특허 제5,74,537호, 제4,846,650호, 제6,773,121호, 제6,908,647호가 그 예이다.Known among these wet coating techniques, there is a method of containing a low refractive index fluorine in the low refractive coating layer. Examples are Korean Patent Publication Nos. 2000-0059818, 2005-0083890, US Patent Nos. 5,74,537, 4,846,650, 6,773,121, and 6,908,647.

그러나, 저굴절 코팅층에 포함된 불소수지의 함량이 증가함에 따라 굴절율이 낮아지는 효과가 있으나, 불소수지 자체의 굴절율이 1.35~1.40 정도이므로 저굴절 코팅층에 불소함량을 증가시켜 굴절율을 낮추는 것에 한계가 있으며, 불소수지의 함량이 높아질수록 코팅층의 접착력과 코팅 경도가 저하되는 단점이 있다.However, although the refractive index decreases as the content of the fluorine resin included in the low refractive coating layer increases, the refractive index of the fluorine resin itself is about 1.35 to 1.40, so that the limit of lowering the refractive index by increasing the fluorine content in the low refractive coating layer is limited. In addition, as the content of the fluororesin increases, there is a disadvantage in that the adhesion and coating hardness of the coating layer are reduced.

저굴절 코팅층의 굴절률을 낮추는 또 다른 방법으로는, 저굴절층에 기공을 함유한 입자를 첨가하는 방법이 있다. 기공의 굴절율은 1에 근접하므로 저굴절 코팅제에 포함된 기공의 함량이 높여 저굴절층의 굴절율을 낮추는 것을 의도한 것이다. 그 예로서는 미국특허 제6,777,069호가 있다. 이 특허에서는, 실리카와 알루미나의 혼합입자를 제조하고 산처리를 통하여 입자 내의 알루미나를 녹이는 방법으로 기공을 함유한 실리카입자를 제조하는 방안을 제시한다.Another method of lowering the refractive index of the low refractive coating layer is a method of adding particles containing pores to the low refractive index layer. Since the refractive index of the pores is close to 1, the content of the pores included in the low refractive index coating agent is increased to lower the refractive index of the low refractive layer. An example is US Pat. No. 6,777,069. This patent proposes a method for preparing silica particles containing pores by preparing mixed particles of silica and alumina and dissolving alumina in the particles through acid treatment.

그러나, 이러한 방법은 기공을 함유한 100nm 이하의 실리카분산 입자의 제조 에는 성공하였으나, 공정이 복잡하다는 단점이 있다. 또한, 수용액에서 실리카와 알루미나의 전구체를 통하여 실리카와 알루미나의 혼합입자를 제조하기 때문에, 산처리를 통한 알루미나 용해시 알루미나가 완전히 용해되지 못하여, 남아있는 고굴절의 알루미나 성분이 투과율 및 굴절율에 악영향을 주는 문제점이 있다.However, this method has been successful in preparing silica dispersed particles having pores containing 100 nm or less, but has a disadvantage in that the process is complicated. In addition, since the mixed particles of silica and alumina are prepared through the precursor of silica and alumina in an aqueous solution, the alumina is not completely dissolved when the alumina is dissolved through acid treatment, and the remaining high refractive alumina component adversely affects the transmittance and the refractive index. There is a problem.

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 굴절율에 영향을 주는 알루미나 등의 금속성분이 개재되지 않으며, 저굴절층에 적합한 기공을 함유한 100nm 이하의 실리카 입자, 제조방법 및 이러한 실리카 입자가 사용된 반사방지필름을 제공함에 그 목적이 있다.The present invention has been proposed to solve the above problems, and does not include a metal component such as alumina that affects the refractive index, silica particles of less than 100nm containing a pore suitable for the low refractive layer, the manufacturing method and such silica particles The purpose is to provide an antireflection film used.

상기의 목적을 달성하기 위한 본 발명은, 실리카로부터 역마이셀을 생성한 후 실란유도체를 이용하여 역마이셀의 기공이 노출되지 않도록 표면처리함으로써, 반사방지 코팅용 코팅제, 즉 저굴절층에 적합한 기공을 함유한 100nm 이하의 순수 실리카 입자를 제조한다. 이를 구체적인 제조공정별로 살펴보면 아래와 같다.The present invention for achieving the above object, by generating a reverse micelle from the silica surface treatment using a silane derivative so that the pores of the reverse micelles are exposed, thereby providing a pore suitable for a coating for antireflective coating, that is, a low refractive layer Pure silica particles containing 100 nm or less are prepared. Looking at this by specific manufacturing process as follows.

[실리카 역마이셀을 생성 공정][Process for generating silica reverse micelles]

이 공정의 핵심내용은, 유기용매, 계면활성제, 입경 2~50nm이며 중량기준으로 5~40% 농도의 콜로이드 실리카를 혼합 및 교반하여, 기공을 갖는 입경 10~100nm의 실리카 역마이셀을 생성하는 것이다.The key point of this process is to mix and stir colloidal silica with organic solvent, surfactant, particle size of 2-50nm and 5-40% by weight, to produce silica reverse micelles with pore size of 10-100nm. .

유기용매로는 펜탄, 헥산, 헵탄, 옥탄, 노난, 벤젠, 돌루엔, 자일렌, 1,2-디클로로에탄, 클로로포름 및 위 용매의 혼합 용매 등이 사용될 수 있으며, 특히 이 중에서는 헥산과 헵탄 용매가 물에 대한 용해도, 독성 및 가격 면에서 적당하다.As the organic solvent, pentane, hexane, heptane, octane, nonane, benzene, toluene, xylene, 1,2-dichloroethane, chloroform and a mixed solvent of the above solvent may be used, and among these, hexane and heptane solvents. It is suitable in terms of solubility, toxicity and price in water.

계면활성제로는 음이온 계면활성제, 양이온 계면활성제, 비이온성 계면활성제 모두 사용이 가능하나, 유기용매에 대한 용해력이 좋은 음이온 계면활성제 및 비이온성 계면활성제를 사용하는 것이 바람직하다. 특히 설폰산 나트륨염 음이온 계면활성제는 사용량이 적을뿐만 아니라 유기용매에 대한 용해도 및 생성되는 역마이셀의 입경면에서 적당하다. 계면활성제의 사용량은 유기용매의 사용량을 100중량부라고 했을 때 0.5~5중량부 정도가 적당하다. 계면활성제의 양이 0.5중량부 미만이면 입경 100nm 이하의 역마이셀 입자를 형성시키기 어렵고, 반대로 5중량부를 초과하면 계면활성제가 용매에 완전히 용해되지 못한다.As the surfactant, anionic surfactants, cationic surfactants, and nonionic surfactants can be used, but it is preferable to use anionic surfactants and nonionic surfactants having good solubility in organic solvents. In particular, sulfonic acid sodium salt anionic surfactants are not only low in use, but also suitable in terms of solubility in organic solvents and particle size of reverse micelles produced. The amount of the surfactant is preferably about 0.5 to 5 parts by weight based on 100 parts by weight of the organic solvent. If the amount of the surfactant is less than 0.5 parts by weight, it is difficult to form reverse micelle particles having a particle size of 100 nm or less. On the contrary, if the amount is more than 5 parts by weight, the surfactant is not completely dissolved in the solvent.

콜로이드 실리카는 입경 2~50nm 크기의 콜로이드 실리카가 적당하며, 고형분의 농도는 5~40 중량%가 적당하다. 고형분이 5중량% 미만이면 생성된 입자 내의 기공 함유율이 너무 높게 되어 결과적으로 안정성이 좋지 못할 뿐만 아니라, 실란유도체를 이용한 표면처리가 잘되지 못한다. 그 반면, 40중량%를 초과하면 실리카 입자의 기공함유율이 현저히 낮게 된다. 또한 콜로이드 실리카의 사용량은 유기용매 100 중량부에 대하여 2~10 중량부가 적당하다. 콜로이드 실리카의 사용량이 2중량부 미만이면, 고형분이 너무 낮아 실용적이지 못하며, 10 중량부를 초과하면 입자가 서로 뭉쳐져 입경 100nm 이상의 거대입자가 생성되는 문제가 있다.Colloidal silica is suitable for colloidal silica having a particle size of 2 to 50nm, the concentration of solids is suitable 5 to 40% by weight. If the solid content is less than 5% by weight, the content of pores in the resulting particles is too high, resulting in poor stability and poor surface treatment with silane derivatives. On the other hand, when it exceeds 40 weight%, the pore content of a silica particle becomes remarkably low. In addition, the amount of colloidal silica is suitably 2 to 10 parts by weight based on 100 parts by weight of the organic solvent. If the amount of the colloidal silica is less than 2 parts by weight, the solid content is too low to be practical, and if it exceeds 10 parts by weight, the particles are agglomerated with each other to produce large particles having a particle size of 100 nm or more.

[역마이셀 입자를 표면처리하는 공정][Process for surface-treating reverse micelle particles]

위 역마이셀 생성 공정에서 얻어진 역마이셀 용액에 실란유도체를 혼합 및 교반하여 역마이셀 입자를 표면처리하는 공정이다. 실란유도체에 의한 표면 코팅을 위하여는 촉진제로 암모니아를 사용할 수 있으며, 이와 같은 코팅에 의해 역마이셀의 기공이 외부로 노출되지 않게 되고, 따라서 기공 내부로 오염물이 침입하여 굴절율에 영향을 미치는 것이 방지된다.It is a step of surface treatment of the reverse micelle particles by mixing and stirring the silane derivative in the reverse micelle solution obtained in the reverse micelle production step. For surface coating by silane derivatives, ammonia can be used as an accelerator, and the coating prevents the pores of reverse mice from being exposed to the outside, thereby preventing contaminants from entering the pores and affecting the refractive index. .

실란유도체로는 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 트리메톡시메틸실란, 트리메톡시에틸실란, 트리메톡시프로필실란, 트리에톡시메틸실란, 트리에톡시에틸실란, 트리에톡시프로필실란, 트리프로폭시메틸실란, 트리프로폭시에틸실란, 트리프로폭시프로필실란, 디메톡시디메틸실란, 디메톡시디에틸실란, 디메톡시디프로필실란, 디에톡시디메틸실란, 디에톡시디에틸실란, 디에톡시디프로필실란, 디프로폭시디메틸실란, 디프로폭시디에틸실란, 디프로폭시디프로필실란 등이 사용될 수 있으며, 그 사용량은 콜로이드 실리카 고형분 사용량 100중량부에 대하여 20~300 중량부가 적당하다. 실란유도체의 사용량이 중량기준으로 콜로이드 실리카 고형분 사용량 대비 20% 미만이면, 제조된 역마이셀 입자가 효과적으로 표면처리되지 못하며, 300%를 초과하면 역마이셀 입자 표면에 너무 많은 실란이 결합되게 되고, 결과적으로 입자에 포함된 기공의 비율이 줄어들어 굴절율 저감효과가 낮아지게 된다.As the silane derivative, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, trimethoxymethylsilane, trimethoxyethylsilane, trimethoxypropylsilane, triethoxymethylsilane, triethoxyethylsilane, tri Ethoxypropylsilane, tripropoxymethylsilane, tripropoxyethylsilane, tripropoxypropylsilane, dimethoxydimethylsilane, dimethoxydiethylsilane, dimethoxydipropylsilane, diethoxydimethylsilane, diethoxydiethylsilane , Diethoxy dipropyl silane, dipropoxy dimethyl silane, dipropoxy diethyl silane, dipropoxy dipropyl silane and the like can be used, the amount is appropriately 20 to 300 parts by weight based on 100 parts by weight of the colloidal silica solid content Do. If the amount of the silane derivative is less than 20% by weight of the colloidal silica solids, the prepared reverse micelle particles may not be effectively surface treated, and if the amount of the silane derivative exceeds 300%, too much silane may bind to the reverse micelle particle surface. As the percentage of pores contained in the particles is reduced, the refractive index reduction effect is lowered.

[유기용매, 계면활성제 등 제거 공정][Removal process of organic solvent, surfactant, etc.]

위 역마이셀 입자 표면처리 공정에서 얻어진 역마이셀 용액으로부터 유기용매, 계면활성제 등(공정과정 중 포함되는 각종 이물질 포함)을 제거하여, 기공을 갖는 입경 10~100nm의 순수 실리카 입자를 제조하는 공정이다.Removing the organic solvent, surfactant, and the like (including various foreign matters included in the process) from the reverse micelle solution obtained in the reverse micelle particle surface treatment step, to prepare pure silica particles having a pore size of 10 ~ 100nm having pores.

이 공정은 다음의 두 가지 방식으로 실시될 수 있다.This process can be carried out in two ways.

첫 번째로는, 상기 역마이셀 입자 표면처리 공정에서 얻어진 역마이셀 용액으로부터 실리카 입자를 분리한 다음, 세척 후 물 또는 알코올에 분산시키고, 용액을 여과 및 농축하여 중량기준으로 농도 1~10%의 실리카 입자 용액을 얻는 것이 그것이다.Firstly, silica particles are separated from the reverse micelle solution obtained in the reverse micelle particle surface treatment step, and then dispersed in water or alcohol after washing, and the solution is filtered and concentrated to give a silica concentration of 1 to 10% by weight. It is to obtain a particle solution.

두 번째로는, 상기 역마이셀 입자 표면처리 공정에서 얻어진 역마이셀 용액을 알코올에 분산시킨 다음, 실리카 분산액을 여과 및 농축하여 중량기준으로 농도 1~10%의 실리카 입자 용액을 얻는 것이 그것이다.Secondly, the reverse micelle solution obtained in the reverse micelle particle surface treatment step is dispersed in alcohol, and then the silica dispersion is filtered and concentrated to obtain a silica particle solution having a concentration of 1 to 10% by weight.

실리카 입자 용액의 농도가 옅은 경우 코팅시 두껍게 코팅하면 되지만, 그 농도가 중량기준으로 1% 미만이면 너무 묽어 생산성 및 코팅 균일성이 떨어지고, 중량기준으로 10%를 초과하는 경우 너무 농도가 짙어서 코팅층의 두께 조절이 용이하지 않다.If the concentration of the silica particle solution is thin, the coating may be thick.However, if the concentration is less than 1% by weight, it is too thin to reduce the productivity and coating uniformity. If it exceeds 10% by weight, the concentration of the coating layer is too high. Thickness control is not easy.

[반사방지코팅제의 적용][Application of anti-reflective coating agent]

위와 같이 제조된 실리카 입자는 알루미나 등의 금속염이 포함되지 않으며, 필름 혹은 시트상에 코팅시 높은 투과도와 낮은 흐림도, 그리고 우수한 반사방지 효과를 나타낸다.Silica particles prepared as described above do not contain metal salts such as alumina, and exhibit high transmittance and low cloudiness, and excellent antireflection effect when coated on a film or sheet.

실리카 입자는 단독으로 사용되거나 혹은, UV경화도료나 열경화도료에 혼합되어 사용될 수 있다. 일례로서, UV 경화도료는 다관능성 아크릴 올리고머와 광개시제의 혼합도료가 사용될 수 있으며, 열경화도료는 테트라에톡시실란을 질산으로 처리한 졸 용액이 사용될 수 있다.Silica particles may be used alone or may be mixed with a UV cured paint or a thermosetting paint. As one example, the UV curable paint may be a mixed paint of a polyfunctional acrylic oligomer and a photoinitiator, and the thermosetting paint may be a sol solution obtained by treating tetraethoxysilane with nitric acid.

이하, 구체적인 실시예를 살펴본다.Hereinafter, a specific embodiment will be described.

실시예Example 1 One

n-헥산 15L(약 9.905kg)을 반응기에 투입하고 계면활성제로서 디도데실석시네이트 설폰산 나트륨염 257g을 투입한 후 녹였다. 고형분 농도 15중량%의 콜로이드 실리카 수용액 495g을 투입 후 4시간 교반하여 역마이셀 입자를 제조하였다. 그리고, 반응기에 실란유도체로서 트리에톡시메틸실란 58.5g을 투입하고 20시간 교반 더 교반하였다.15 L (about 9.905 kg) of n-hexane was added to the reactor, and 257 g of dodecyl succinate sulfonic acid sodium salt was added as a surfactant and dissolved. 495 g of an aqueous colloidal silica solution having a solid concentration of 15 wt% was added thereto, followed by stirring for 4 hours to prepare reverse micelle particles. Then, 58.5 g of triethoxymethylsilane was added to the reactor as a silane derivative, followed by further stirring for 20 hours.

이후, 1중량% 농도의 암모니아수를 반응기에 투입하고, 3시간을 더 교반시킨 다음 아세톤 600g을 가하여 침전을 형성시켰다. 침전물은 원심분리하여 고형분을 분리한 다음, 아세톤을 이용하여 2회 세척하였다. 그리고, 침전물에 6kg의 증류수를 가하고, 초음파를 이용하여 침전입자를 분산시켰다.Thereafter, 1% by weight of ammonia water was added to the reactor, and further stirred for 3 hours, and then 600 g of acetone was added to form a precipitate. The precipitate was centrifuged to separate solids and then washed twice with acetone. Then, 6 kg of distilled water was added to the precipitate, and the precipitated particles were dispersed using ultrasonic waves.

다음으로는, 분산된 입자를 0.2㎛ 입경의 필터를 이용하여 여과시키고, 여과액을 농축하여 중량기준으로 5% 농도의 기공을 함유한 100nm 이하의 실리카 입자 용액 1.2kg을 제조하였다. 제조된 실리카 입자의 평균 입경은 14nm 이었다.Next, the dispersed particles were filtered using a filter having a particle diameter of 0.2 μm, and the filtrate was concentrated to prepare 1.2 kg of a silica particle solution of 100 nm or less containing pores at a concentration of 5% by weight. The average particle diameter of the prepared silica particles was 14 nm.

그리고, 제조된 기공을 함유한 100nm 이하의 실리카 입자 용액을 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성시킨 다음 물성을 측정하여 표 1에 나타내었다. The prepared silica particle solution containing pores of 100 nm or less was spin-coated on a 1 mm thick glass plate, dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm, and then the physical properties thereof were shown in Table 1 below. .

실시예Example 2 2

실시예 1에서와 동일한 방법으로, 중량기준으로 5% 농도의 기공을 함유한 100nm 이하의 실리카 입자 용액 1.2kg을 제조하였다. 다만, 실시예 1에서와는 달리, 계면활성제인 디도데실석시네이트 설폰산 나트륨염을 214.5g 투입하였고, 그에 따라 제조된 실리카 입자의 평균 입경은 14nm이었다.In the same manner as in Example 1, 1.2 kg of a silica particle solution of 100 nm or less containing pores at a concentration of 5% by weight was prepared. However, unlike Example 1, 214.5 g of a dododecyl succinate sulfonic acid sodium salt as a surfactant was added thereto, and the average particle diameter of the silica particles thus prepared was 14 nm.

제조된 실리카 입자 용액은, 실시예 1에서와 마찬가지로, 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성 시킨 다음 물성을 측정하여 표 1에 나타내었다.The prepared silica particle solution, as in Example 1, was spin-coated on a 1 mm thick glass plate, dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm, and then measured by physical properties.

실시예Example 3 3

n-헥산 15L(약 9.905kg)을 반응기에 투입하고 계면활성제로서 디도데실석시네이트 설폰산 나트륨염 257g을 투입한 후 녹였다. 고형분 농도 15중량%의 콜로이드 실리카 수용액 495g을 투입 후 4시간 교반하여 역마이셀 입자를 제조하였다. 그리고, 반응기에 실란유도체로서 트리에톡시메틸실란 58.5g을 투입하고 20시간 교반 더 교반하였다. 이후, 중량기준으로 1% 농도의 암모니아수를 반응기에 투입하고, 3시간을 더 교반하였다. 이 과정까지는 앞서 실시예 1에서와 마찬가지이다.15 L (about 9.905 kg) of n-hexane was added to the reactor, and 257 g of dodecyl succinate sulfonic acid sodium salt was added as a surfactant and dissolved. 495 g of an aqueous colloidal silica solution having a solid concentration of 15 wt% was added thereto, followed by stirring for 4 hours to prepare reverse micelle particles. Then, 58.5 g of triethoxymethylsilane was added to the reactor as a silane derivative, followed by further stirring for 20 hours. Then, 1% by weight of ammonia water was added to the reactor by weight, and further stirred for 3 hours. This process is the same as in Example 1 above.

다음으로, 암모니아수 투입 및 교반 완료된 실리카 용액을, 헥산, 에틸헥실 알코올 10kg에 서서히 가하여 분산시켰다. 분산된 헥산, 에틸헥실 알코올 혼합용매를 한외여과하여 헥산용매와 계면활성제를 제거하였고, 농축하여 중량기준으로 2% 농도의 기공을 함유한 100nm 이하의 실리카 입자 용액 0.3kg을 제조하였다. 제조된 실리카 입자의 평균 입경은 25nm이었다. 투입된 재료의 양은 실시예 2와 동일하나, 제조된 실리카 입자의 평균 입경은 실시예 2의 경우 보다 다소 증가하였다.Next, the ammonia water addition and stirring completed silica solution was added slowly and disperse | distributed to 10 kg of hexane and ethylhexyl alcohol. The dispersed hexane and ethylhexyl alcohol mixed solvents were ultrafiltered to remove the hexane solvent and the surfactant, and concentrated to prepare 0.3 kg of a silica particle solution of 100 nm or less containing pores at a concentration of 2% by weight. The average particle diameter of the prepared silica particles was 25 nm. The amount of material charged was the same as in Example 2, but the average particle diameter of the prepared silica particles was slightly increased than in the case of Example 2.

그리고, 제조된 실리카 입자 용액을 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성시킨 다음 물성을 측정하여 표 1에 나타내었다.The prepared silica particle solution was spin coated on a 1 mm thick glass plate, dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm, and then measured by physical properties.

실시예Example 4 4

위 실시예 1~3에서 제조된 실리카 입자 용액을 열경화 도료와 중량부로 1:1로 섞은 후, 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성 시킨 다음, 물성을 측정하여 표 1에 나타내었다. 실시예 1~3에 대응하는 실시예들은, 각각 4-1, 4-2, 4-3으로 나타냈다.After mixing the silica particle solution prepared in Examples 1 to 3 with the thermosetting paint 1: 1 by weight, spin-coated on a 1 mm thick glass plate and dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm. After the measurement, the physical properties are shown in Table 1. Examples corresponding to Examples 1 to 3 are represented by 4-1, 4-2, and 4-3, respectively.

열경화 도료는 다음과 같은 방법으로 제조하였다.The thermosetting paint was prepared by the following method.

트리에톡시메틸실란 117g을 에탄올 177g에 가하고, 0.1N 질산 수용액 81g을 가한뒤, 24시간 교반하였다. 에탄올 410g을 더 가하여 고형분 5중량% 농도의 열경화 도료를 제조하였다.117 g of triethoxymethylsilane was added to 177 g of ethanol, and 81 g of 0.1 N nitric acid aqueous solution was added, followed by stirring for 24 hours. 410 g of ethanol was further added to prepare a thermosetting paint having a concentration of 5% by weight of solids.

비교예Comparative example 1 One

실시예 1에서 사용한 콜로이드 실리카를 단독으로 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성시킨 다음 물성을 측정하여 표 1에 나타내었다.The colloidal silica used in Example 1 was spin coated alone on a 1 mm thick glass plate, dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm, and then measured by physical properties.

비교예Comparative example 2 2

실시예 4에서 제조한 열경화 도료를 단독으로 1mm 두께의 유리판에서 스핀 코팅하고, 200℃에서 10분간 건조하여, 100nm 두께의 반사방지층을 형성 시킨 다음 물성을 측정하여 표 1에 나타내었다.The thermosetting paint prepared in Example 4 was spin coated alone on a glass plate having a thickness of 1 mm, dried at 200 ° C. for 10 minutes to form an antireflection layer having a thickness of 100 nm, and the physical properties thereof were shown in Table 1 below.

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예 4-1Example 4-1 실시예 4-2Example 4-2 실시예 4-3Example 4-3 비교예1Comparative Example 1 비교예2Comparative Example 2 흐림도Cloudy road 0.20.2 0.20.2 0.20.2 0.10.1 0.10.1 0.10.1 0.20.2 0.10.1 연필경도Pencil hardness -- -- -- 4H4H 4H4H 4H4H -- 4H4H 최저반사율(%)Reflectance (%) 1.351.35 0.250.25 0.250.25 1.91.9 1.01.0 1.01.0 3.53.5 2.52.5 굴절율Refractive index 1.391.39 1.301.30 1.301.30 1.421.42 1.371.37 1.371.37 1.501.50 1.451.45

위 [표 1]에서 알 수 있듯이, 실시예에서 제조한 기공을 함유한 100nm 이하의 실리카 입자를 이용하여 제조한 코팅층은, 비교예 1, 2와 비교하여 흐림도 및 최저반사율에서 매우 우수한 결과를 나타냄을 알 수 있다.As can be seen from Table 1 above, the coating layer prepared using silica particles of 100 nm or less containing pores prepared in Example, showed very excellent results in cloudyness and minimum reflectance compared to Comparative Examples 1 and 2. It can be seen that.

상술한 바와 같은 제조방법에 따르면, 알루미나 등의 금속성분이 개재되지 않으며, 기공을 함유하며 100nm 이하 크기를 갖는 반사방지 코팅용 코팅제를 제조할 수 있게 된다.According to the manufacturing method as described above, a metal component such as alumina is not interposed, and it is possible to prepare a coating for antireflective coating containing pores and having a size of 100 nm or less.

또한, 제조된 코팅제를 적용한 반사방지필름은 높은 투과도와 낮은 흐림도, 그리고 우수한 반사방지 효과를 나타낸다.In addition, the antireflection film to which the prepared coating agent is applied exhibits high transmittance, low cloudiness, and excellent antireflection effect.

Claims (8)

(A) 유기용매, 계면활성제, 입경 2~50nm이며 중량기준으로 5~40% 농도의 콜로이드 실리카를 혼합 및 교반하여, 기공을 갖는 입경 10~100nm의 실리카 역마이셀을 생성하는 단계;(A) mixing and stirring an organic solvent, a surfactant, and a colloidal silica having a particle size of 2 to 50 nm and a concentration of 5 to 40% by weight, to produce silica reverse micelles having a pore size of 10 to 100 nm; (B) 상기 (A)단계에서 얻어진 역마이셀 용액에 실란유도체를 혼합 및 교반하여 역마이셀 입자를 표면처리하는 단계; 및(B) surface treating the reverse micelle particles by mixing and stirring a silane derivative to the reverse micelle solution obtained in step (A); And (C) 상기 (B)단계에서 얻어진 역마이셀 용액으로부터 적어도 유기용매, 계면활성제를 제거하여, 기공을 갖는 입경 10~100nm의 실리카 입자를 제조하는 단계;를 포함하며,(C) removing at least an organic solvent and a surfactant from the reverse micelle solution obtained in step (B) to prepare silica particles having a pore size of 10 to 100 nm with pores; 상기 (C)단계는, Step (C) is, (a) 상기 (B)단계에서 얻어진 역마이셀 용액으로부터 실리카 입자를 분리한 다음,(a) separating the silica particles from the reverse micelle solution obtained in step (B), and (b) 상기 (a)과정에서 얻어진 실리카 입자를 세척 후 물 또는 알코올에 분산시키고,(b) dispersing the silica particles obtained in step (a) in water or alcohol after washing, (c) 상기 (b)과정에서 얻어진 용액을 여과 및 농축하여 중량기준으로 농도 1~10%의 실리카 입자 용액을 얻는 과정;을 포함하는 것을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.(c) filtering and concentrating the solution obtained in the step (b) to obtain a silica particle solution having a concentration of 1 to 10% by weight. 2. (A) 유기용매, 계면활성제, 입경 2~50nm이며 중량기준으로 5~40% 농도의 콜로이드 실리카를 혼합 및 교반하여, 기공을 갖는 입경 10~100nm의 실리카 역마이셀을 생성하는 단계;(A) mixing and stirring an organic solvent, a surfactant, and a colloidal silica having a particle size of 2 to 50 nm and a concentration of 5 to 40% by weight, to produce silica reverse micelles having a pore size of 10 to 100 nm; (B) 상기 (A)단계에서 얻어진 역마이셀 용액에 실란유도체를 혼합 및 교반하여 역마이셀 입자를 표면처리하는 단계; 및(B) surface treating the reverse micelle particles by mixing and stirring a silane derivative to the reverse micelle solution obtained in step (A); And (C) 상기 (B)단계에서 얻어진 역마이셀 용액으로부터 적어도 유기용매, 계면활성제를 제거하여, 기공을 갖는 입경 10~100nm의 실리카 입자를 제조하는 단계;를 포함하며,(C) removing at least an organic solvent and a surfactant from the reverse micelle solution obtained in step (B) to prepare silica particles having a pore size of 10 to 100 nm with pores; 상기 (C)단계는, Step (C) is, (a) 상기 (B)단계에서 얻어진 역마이셀 용액을 알코올에 분산시키고,(a) dispersing the reverse micelle solution obtained in step (B) in alcohol, (b) 상기 (a)과정에서 얻어진 실리카 분산액을 여과 및 농축하여 중량기준으로 농도 1~10%의 실리카 입자 용액을 얻는 과정;을 포함하는 것을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.(b) filtering and concentrating the silica dispersion obtained in the step (a) to obtain a silica particle solution having a concentration of 1 to 10% by weight; and a method for manufacturing a coating for antireflective coating, characterized in that it comprises a. 청구항 1 또는 청구항 2에 있어서, 상기 (A)단계에서 사용되는 콜로이드 실리카는, 유기용매 100 중량부에 대하여 2~10 중량부 사용되는 것을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.The method of claim 1 or 2, wherein the colloidal silica used in step (A) is used in an amount of 2 to 10 parts by weight based on 100 parts by weight of an organic solvent. 청구항 3에 있어서, 상기 (A)단계에서 사용되는 계면활성제는, 유기용매 100 중량부에 대하여 0.5~5 중량부 사용되는 것을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.The method according to claim 3, wherein the surfactant used in the step (A), 0.5 to 5 parts by weight based on 100 parts by weight of the organic solvent, characterized in that the anti-reflective coating coating production method. 청구항 4에 있어서, 상기 (B)단계에서 사용되는 실란유도체는, 콜로이드 실리카의 고형분 100 중량부에 대하여 20~300 중량부 사용되는 것을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.The method of claim 4, wherein the silane derivative used in the step (B) is used in an anti-reflective coating, characterized in that 20 to 300 parts by weight based on 100 parts by weight of the solid content of colloidal silica. 청구항 5에 있어서, 상기 (A)단계에서의 유기용매로 헥산 또는 헵탄 용매가 사용됨을 특징으로 하는 반사방지 코팅용 코팅제 제조방법.The method of claim 5, wherein the hexane or heptane solvent is used as the organic solvent in the step (A). 청구항 1 또는 청구항 2에 따른 제조방법에 의한 제조된 실리카 입자 용액임을 특징으로 하는 반사방지 코팅용 코팅제.Coating agent for anti-reflective coating, characterized in that the silica particle solution prepared by the manufacturing method according to claim 1 or 2. 각종 디스플레이의 표면 반사를 저감시키기 위하여 사용되는 반사방지필름으로서, 청구항 7에 의해 제조된 코팅제가 코팅된 것을 특징으로 하는 반사방지필름.An anti-reflection film used to reduce the surface reflection of various displays, characterized in that the coating agent prepared according to claim 7 is coated.
KR1020070050237A 2007-05-23 2007-05-23 Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film KR100907357B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070050237A KR100907357B1 (en) 2007-05-23 2007-05-23 Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film
PCT/KR2008/002728 WO2008143429A1 (en) 2007-05-23 2008-05-16 Method for producing a coating agent for anti-glare coating, and the coating agent and anti-glare film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050237A KR100907357B1 (en) 2007-05-23 2007-05-23 Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film

Publications (2)

Publication Number Publication Date
KR20080103215A KR20080103215A (en) 2008-11-27
KR100907357B1 true KR100907357B1 (en) 2009-07-10

Family

ID=40032086

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050237A KR100907357B1 (en) 2007-05-23 2007-05-23 Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film

Country Status (2)

Country Link
KR (1) KR100907357B1 (en)
WO (1) WO2008143429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089151A (en) 2020-12-21 2022-06-28 주식회사 선우켐텍 Coating liquid composition with excellent heat resistance and light free effect

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964843B1 (en) * 2007-09-19 2010-06-22 조근호 Tranparent film for endowing a substrate with antireflection effect
KR101489860B1 (en) * 2009-02-05 2015-02-06 (주)동아켐텍 Preparatory method of tranparent film for antireflection effect
KR101121207B1 (en) * 2011-05-03 2012-03-22 윤택진 Low-refractive anti-reflection coating composition having excellent corrosion resistance and producing method of the same
EP2852641B1 (en) * 2012-05-22 2018-08-08 DSM IP Assets B.V. Composition and process for making a porous inorganic oxide coating
CN110709479A (en) 2017-04-18 2020-01-17 帝斯曼知识产权资产管理有限公司 Method for preparing antifouling coating composition and coating prepared by said method
CN114773978B (en) * 2022-04-21 2022-11-18 浙江合特光电有限公司 Solar composite front plate prepared from anti-dazzle nano coating and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196802A (en) * 1992-01-23 1993-08-06 Ito Kogaku Kogyo Kk Antireflection treating liquid for optical parts and antireflection treated optical parts
KR20050054389A (en) * 2003-12-04 2005-06-10 학교법인 대전기독학원 한남대학교 Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
KR20060011696A (en) * 2004-07-31 2006-02-03 강영수 Fabrication of heat insulating films with sio2 nanoparticles modified by mercaptopropyl trimethoxysilane
KR20060108236A (en) * 2005-04-12 2006-10-17 쇼쿠바이가세고교 가부시키가이샤 Composition for forming low-refractive index film and base material with curing film thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196802A (en) * 1992-01-23 1993-08-06 Ito Kogaku Kogyo Kk Antireflection treating liquid for optical parts and antireflection treated optical parts
KR20050054389A (en) * 2003-12-04 2005-06-10 학교법인 대전기독학원 한남대학교 Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
KR20060011696A (en) * 2004-07-31 2006-02-03 강영수 Fabrication of heat insulating films with sio2 nanoparticles modified by mercaptopropyl trimethoxysilane
KR20060108236A (en) * 2005-04-12 2006-10-17 쇼쿠바이가세고교 가부시키가이샤 Composition for forming low-refractive index film and base material with curing film thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089151A (en) 2020-12-21 2022-06-28 주식회사 선우켐텍 Coating liquid composition with excellent heat resistance and light free effect

Also Published As

Publication number Publication date
WO2008143429A1 (en) 2008-11-27
KR20080103215A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
KR100907357B1 (en) Method for Producing a Coating Agent for Anti-Glare Coating, and the Coating Agent and Anti-Glare Film
US6713170B1 (en) Hard coating material and film comprising the same
JP5168400B2 (en) Coating composition, coating film thereof, antireflection film, and image display device
KR101304381B1 (en) Manufacturing method for antireflection laminate
JP5345891B2 (en) Anti-glare film and method for producing the same
JP6607510B2 (en) Photocurable coating composition, low refractive layer and antireflection film
US6949284B2 (en) Coating composition, it's coating layer, antireflection coating, antireflection film, image display and intermediate product
WO2023035821A1 (en) Nano-zirconia dispersion, preparation method therefor, obtained single dispersion, and optical film
CN102985499A (en) Antireflection film and method for manufacturing same
WO2008041681A1 (en) Coating composition for formation of antireflective film, and article having antireflective film formed therein
KR20130120223A (en) Anti-reflective film having improved scratch-resistant and manufacturing method thereof
JPH0314879A (en) Coating composition
JP5587573B2 (en) Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film
TW201412904A (en) Transparent film-forming coating solution and base material with transparent film
JP6480657B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
TW202023827A (en) Anti-reflective film, polarizing plate, and display apparatus
JP2013010864A (en) Coating for forming optical thin film, and optical thin film
JP4899263B2 (en) Coating composition and coating film thereof
CN114231136B (en) Antibacterial AG coating liquid composition, antibacterial AG coating liquid, antibacterial AG writing film and preparation method thereof
JP4857496B2 (en) Composite, coating composition, coating film thereof, antireflection film, antireflection film, and image display device
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
EP2188224A1 (en) Method for the transparent coating of a substrate with plasma at atmospheric pressure
JPH11211901A (en) Antireflection article
JP2011242463A (en) Low reflection film and producing method thereof
CN115477715B (en) Titanium oxide resin dispersion and optical film obtained

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180615

Year of fee payment: 10