KR100902831B1 - Stability operation system of air separation unit - Google Patents

Stability operation system of air separation unit Download PDF

Info

Publication number
KR100902831B1
KR100902831B1 KR1020020083807A KR20020083807A KR100902831B1 KR 100902831 B1 KR100902831 B1 KR 100902831B1 KR 1020020083807 A KR1020020083807 A KR 1020020083807A KR 20020083807 A KR20020083807 A KR 20020083807A KR 100902831 B1 KR100902831 B1 KR 100902831B1
Authority
KR
South Korea
Prior art keywords
tower
oxygen
liquid oxygen
air
liquid
Prior art date
Application number
KR1020020083807A
Other languages
Korean (ko)
Other versions
KR20040057203A (en
Inventor
김형규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020083807A priority Critical patent/KR100902831B1/en
Publication of KR20040057203A publication Critical patent/KR20040057203A/en
Application granted granted Critical
Publication of KR100902831B1 publication Critical patent/KR100902831B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation

Abstract

본 발명은 비점차에 의하여 공기를 분리시키는 정류탑이 구비된 공기액화분리설비의 운전시스템에 관한 것으로서, 정류탑의 상탑에 축적된 액체산소의 레벨이 정상 운전 조건보다 낮고 그 상탑의 압력이 헌팅(hunting)되는 불안정한 상태일 때, 산소탱크의 액체산소를 상기 정류탑의 상탑에 공급하여 상탑의 액체산소 레벨을 상승시킴을 특징으로 하며, 이에 의하면 정류탑에 액체산소를 역으로 공급하여 상탑의 액체산소 레벨과 압력을 보다 빠른 시간 안에 정상화시켜 고순도의 질소와 산소의 생산이 가능한 효과를 갖는다.The present invention relates to an operating system of an air liquefaction separation unit equipped with a rectifying tower for separating air by a difference in boiling point, wherein the level of liquid oxygen accumulated in the upper tower of the rectifying tower is lower than the normal operating conditions and the pressure of the upper tower is hunted. When in an unstable state (hunting), the liquid oxygen of the oxygen tank is supplied to the upper tower of the rectification tower to increase the liquid oxygen level of the tower, according to this, by supplying liquid oxygen to the rectification tower in reverse Liquid oxygen levels and pressures can be normalized in a faster time to produce high purity nitrogen and oxygen.

공기, 액화, 분리, 액체산소, 역송Air, Liquefaction, Separation, Liquid Oxygen, Return

Description

공기액화분리설비의 안정화 운전시스템{Stability operation system of air separation unit}Stability operation system of air separation unit

도1은 종래 기술에 따른 공기액화분리설비가 전체적으로 도시된 개략 구성도;1 is a schematic configuration diagram showing an air liquefaction separation apparatus according to the prior art as a whole;

도2는 본 발명에 따른 안정화 운전시스템을 위한 공기액화분리설비가 전체적으로 도시된 개략 구성도;Figure 2 is a schematic configuration diagram showing an overall air liquefaction separation equipment for a stabilization operation system according to the present invention;

도3의 (a) 내지 (c)는 본 발명과 종래의 방법에 의해 공기액화분리설비를 운전하였을 때 시간의 변화에 대한 액체산소의 축적, 압력 및 질소와 산소의 순도 변화를 나타낸 그래프도이다.Figure 3 (a) to (c) is a graph showing the accumulation of liquid oxygen, pressure and purity of nitrogen and oxygen with respect to the change of time when the air liquefaction separation apparatus is operated by the present invention and the conventional method .

※도면의 주요부분에 대한 부호의 설명※※ Explanation of symbols about main part of drawing ※

10 : 산소공급배관 12 : 분지배관10: oxygen supply pipe 12: branch pipe

20 : 펌프 30 : 유량조절밸브20: pump 30: flow control valve

130 : 정류탑 132 : 하탑130: rectification tower 132: bottom tower

134 : 상탑 161 : 액체공기134: tower 161: liquid air

162 : 액체산소 180 : 산소탱크162: liquid oxygen 180: oxygen tank

P1, P2, P3 : 압력계P1, P2, P3: pressure gauge

본 발명은 공기액화분리설비의 안정화 운전시스템에 관한 것으로서, 보다 상세하게는 정류탑에 액체산소를 역으로 공급하여 상탑의 액체산소 레벨과 압력을 보다 빠른 시간 안에 정상화시켜 고순도의 질소와 산소의 생산이 가능하도록 된 공기액화분리설비의 안정화 운전시스템에 관한 것이다.The present invention relates to a stabilization operation system of an air liquefaction separation plant, and more particularly, to supply liquid oxygen back to the rectification tower to normalize the liquid oxygen level and pressure of the tower in a faster time to produce high purity nitrogen and oxygen It relates to a stabilization operation system of the air liquefaction separation equipment is made possible.

종래의 공기액화 분리설비를 도1을 참조하여 설명한다. 원료공기는 원료공기 압축기(110)에 의해 압축된 후 흡착탑(미도시됨)을 통과하면서 수분 및 탄산가스 등이 흡착 제거된다. 그리고, 이렇게 전처리된 원료공기는 주 열교환기(120)를 통과하면서 비점 부근까지 냉각된 후 정류탑(130)으로 공급된다.A conventional air liquefaction separation facility will be described with reference to FIG. The raw air is compressed by the raw air compressor 110 and then passed through an adsorption tower (not shown) to adsorb and remove moisture and carbon dioxide gas. The pre-treated raw air is cooled to near the boiling point while passing through the main heat exchanger 120 and then supplied to the rectification tower 130.

상기 정류탑(130)은 하탑(132), 상탑(134) 및 상기 하탑(132)과 상탑(134) 사이의 열교환을 수행하는 응축기(136)로 구성되며, 상기 주 열교환기(120)를 통과한 원료공기는 상기 정류탑(130)의 하탑(132) 하부로 공급된다. 그리고, 상기 하탑(132)으로 공급된 원료공기는 하탑(132) 내부에서 트레이(141)를 거쳐 상승하는 동안 환류 액체질소와 접촉하면서 질소 농도가 높아짐으로써 하탑(132)의 상부 근처에서는 고순도의 액체질소가 된다. 이러한 액체질소의 일부는 환류액으로서 상탑(134)의 상부로 배관(191)을 통하여 공급되고, 나머지는 환류액으로서 하탑(132)의 상부로 되돌려짐으로써 하탑(132)을 통해 하강하는 동안에 원료공기와 접촉하면서 산소 농도가 높아져 산소가 40% 정도 포함된 액체공기(161)가 되어 하탑(132)의 하부로 내려간다. The rectification tower 130 includes a lower tower 132, an upper tower 134, and a condenser 136 that performs heat exchange between the lower tower 132 and the upper tower 134, and passes through the main heat exchanger 120. One raw air is supplied to the bottom of the bottom 132 of the rectification tower 130. In addition, the raw material air supplied to the lower tower 132 is in contact with the reflux liquid nitrogen while being raised through the tray 141 in the lower tower 132 and the nitrogen concentration is increased, so that the liquid of high purity is near the upper part of the lower tower 132. Nitrogen. Some of this liquid nitrogen is supplied through the pipe 191 to the upper portion of the upper tower 134 as reflux, and the rest is returned to the upper portion of the lower column 132 as reflux, thereby lowering the raw material during the lower column 132. As the oxygen concentration is increased while contacting the air, the liquid air 161 containing about 40% of oxygen is lowered to the lower portion of the lower tower 132.                         

상기 하탑(132)의 액체공기(161)는 배관(192)을 통하여 상탑(134)의 중앙 부분에 공급되며, 상기 상탑(134)에 공급된 액체공기는 하부로 흐르는 동안 트레이(142)(143)를 통과하면서 산소가 농축되어 상탑(134)의 하부에서 고순도의 액체산소(162)가 고이며, 이 액체산소(162)는 응축기(136)를 통과하는 질소와의 열교환에 의해 가스로 변화되어 배관(193)을 통해 주 열교환기(120)에서 원료공기와 열교환된 후 제철소의 사용처(170)로 공급된다. 또한, 상기 액체산소(162)는 배관(197)을 통해 산소탱크(180)로 공급된다.The liquid air 161 of the lower tower 132 is supplied to a central portion of the upper tower 134 through a pipe 192, and the liquid air supplied to the upper tower 134 flows downward to the trays 142 and 143. Oxygen is concentrated while passing through), and the high purity liquid oxygen 162 is accumulated in the lower part of the tower 134, and the liquid oxygen 162 is converted into gas by heat exchange with nitrogen passing through the condenser 136. After the heat exchange with the raw air in the main heat exchanger 120 through the pipe (193) is supplied to the use of the steel mill 170. In addition, the liquid oxygen 162 is supplied to the oxygen tank 180 through the pipe (197).

그리고, 상탑(134)의 상부에서는 고순도의 질소가스가 취출되어 배관(194)을 통해 주 열교환기(120)에서 원료공기와 열교환된 후 제철소의 사용처(170)로 공급되며, 액체질소와 액체산소의 분리정제를 위한 한랭은 팽창터빈으로 이루어진 한냉발생기(150)에 의해 원료공기의 일부를 단열 팽창시킴으로써 발생시키며, 이것을 상탑(134)의 중앙 부분에 배관(195)을 통하여 공급시킨다. 또한, 상탑(134)에서는 순도가 낮은 질소가스가 배관(196)을 통하여 취출됨으로써 전처리용 흡착탑의 재생이 행해진다.In addition, high purity nitrogen gas is extracted from the upper part of the upper tower 134 and heat-exchanged with the raw material air in the main heat exchanger 120 through the pipe 194, and then supplied to the place of use of the steel mill 170, liquid nitrogen and liquid oxygen. Cooling for the separation and purification of is generated by adiabatic expansion of a part of the raw air by the cold generator 150 made of an expansion turbine, it is supplied to the central portion of the tower 134 through the pipe 195. In addition, in the upper tower 134, nitrogen gas having low purity is taken out through the pipe 196 to regenerate the adsorption tower for pretreatment.

이와 같은 공기액화 분리설비에서 고순도의 질소 및 산소를 생산하기 위하여 주 열교환기(120)에서의 열교환 온도, 액체산소(162)의 레벨 및 상탑(134)의 압력 등이 일정한 범위에서 유지되도록 설비의 운전을 연속적이고 안정적으로 운용하는 것이 매우 중요한데, 제철소와 같이 소비특성이 연속적이 아니고 간헐적인 생산설비에서는 질소와 산소의 공급도 간헐적으로 이루어지며, 이에 의하여 설비가 불연속적으로 운전되어 불안정한 상태가 되면서 그로부터 생산되는 질소와 산소의 농도 가 불균일한 문제점을 갖는다.In order to produce high purity nitrogen and oxygen in the air liquefaction separation facility, the heat exchange temperature of the main heat exchanger 120, the level of the liquid oxygen 162, and the pressure of the tower 134 are maintained within a certain range. It is very important to operate the operation continuously and stably. In the production facilities such as steel mills, where the consumption characteristics are not continuous, the supply of nitrogen and oxygen is intermittently, and the equipment is operated discontinuously and becomes unstable. The nitrogen and oxygen concentrations produced therefrom have a nonuniform problem.

특히, 설비를 일시적으로 정지시킨 후 다시 가동하는 경우에, 요구하는 고순도의 질소와 산소를 생산할 수 있도록 설비를 안정화시키는 데에는 많은 시간이 소요되는 문제점을 갖는 것이었다. 게다가, 위 설비에서 생산되는 질소와 산소의 농도가 요구하는 품질에 미치지 못한 경우에는, 질소와 산소를 요구하는 제철 설비도 중단되어 생산성을 저하시키는 문제점을 발생시키는 것이었다.In particular, when the equipment is temporarily stopped and then restarted, it has a problem that it takes a long time to stabilize the equipment to produce the required high purity nitrogen and oxygen. In addition, when the concentrations of nitrogen and oxygen produced in the above facilities did not meet the required quality, the steelmaking facilities requiring nitrogen and oxygen were also stopped, causing a problem of lowering productivity.

본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로서, 그 목적은 정류탑에 액체산소를 역으로 공급함에 의하여 상탑의 액체산소 레벨과 압력을 보다 빠른 시간 안에 정상화시킴이 가능하도록 된 공기액화분리설비의 안정화 운전시스템을 제공함에 있다.The present invention is to solve the above-mentioned problems, the object is to supply liquid oxygen to the rectification tower by the reverse liquid liquefaction separation equipment to be able to normalize the liquid oxygen level and pressure of the tower in a faster time To provide a stabilization operation system of.

상기한 목적을 달성하기 위한 기술적인 구성으로서, 본 발명은 비점차에 의하여 공기를 분리시키는 정류탑이 구비된 공기액화분리설비의 운전시스템에 있어서, 정류탑의 상탑에 축적된 액체산소의 레벨이 정상 운전 조건보다 낮고 그 상탑의 압력이 헌팅(hunting)되는 불안정한 상태일 때, 산소탱크의 액체산소를 상기 정류탑의 상탑에 공급하여 상탑의 액체산소 레벨을 상승시킴을 특징으로 하는 공기액화분리설비의 안정화 운전시스템을 마련함에 의한다.As a technical configuration for achieving the above object, the present invention is the operating system of the air liquefaction separation equipment equipped with a rectifying tower for separating the air by the difference in boiling point, the level of the liquid oxygen accumulated in the top column of the rectifying tower When lower than the normal operating conditions and the unstable state that the pressure of the tower is hunting (hunting), the liquid liquefaction separation equipment characterized in that to supply the liquid oxygen of the oxygen tank to the tower of the rectification tower to increase the liquid oxygen level of the tower By establishing a stabilization operation system.

그리고, 상기 산소탱크는 펌프와 유량조절밸브를 통해 정류탑의 상탑에 액체산소를 공급시키도록 연결되며, 상기 펌프의 구동에 의해 상탑에 액체산소가 공급 되면 상기 유량조절밸브의 개도가 시간이 경과되면서 비례적으로 증가되도록 운전됨을 특징으로 한다. 또한, 상기 펌프는 그 구동에 의해 액체산소를 정류탑의 상탑으로 공급하기 전에 상기 산소탱크에서 제공된 저온의 산소로 예냉됨을 특징으로 한다.The oxygen tank is connected to supply liquid oxygen to the top of the rectification tower through a pump and a flow control valve. When the liquid oxygen is supplied to the tower by driving the pump, the opening degree of the flow control valve elapses. While being operated to increase proportionally. In addition, the pump is precooled by the low temperature oxygen provided from the oxygen tank before the liquid oxygen is supplied to the top of the rectification column by the drive.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

도2는 본 발명에 따른 안정화 운전시스템을 위한 공기액화분리설비가 전체적으로 도시된 개략 구성도로서, 대체적인 설비의 구성은 도1에 도시된 종래의 설비와 유사하며, 그 유사한 부분에 대하여는 도1에 부여된 도면부호와 동일하게 부여하고 그에 대한 상세한 설명은 생략하고자 한다.Figure 2 is a schematic configuration diagram of the air liquefaction separation equipment for the stabilization operation system according to the present invention as a whole, the configuration of the alternative equipment is similar to the conventional equipment shown in Figure 1, the similar parts of Figure 1 The same reference numerals as given in the drawings and detailed description thereof will be omitted.

본 발명의 공기액화분리설비는 정류탑(130)의 상탑(134) 하부의 액체산소(162)를 산소 탱크(180)에 배출시키도록 설치된 액체산소 배출배관(197)에서 분지된 산소공급배관(10)을 가지며, 상기 산소공급배관(10)은 산소배관(182)과 분지배관(12)으로 분지되어 산소배관(182)은 산소 탱크(180)의 하부에 연결되고 분지배관(12)은 산소 탱크(180)의 상부에 연결된다. 그리고, 상기 산소배관(182)에서 분지된 액체산소배관(14)은 산소탱크(180)에 연결된다.In the air liquefaction separation apparatus of the present invention, the oxygen supply pipe branched from the liquid oxygen discharge pipe 197 installed to discharge the liquid oxygen 162 at the bottom of the top tower 134 of the rectification tower 130 to the oxygen tank 180 ( 10), the oxygen supply pipe 10 is branched into the oxygen pipe 182 and the branch pipe 12, the oxygen pipe 182 is connected to the lower portion of the oxygen tank 180 and the branch pipe 12 is oxygen It is connected to the top of the tank 180. In addition, the liquid oxygen pipe 14 branched from the oxygen pipe 182 is connected to the oxygen tank 180.

상기 산소공급배관(10)과 분지배관(12)에는 유량조절밸브(30)(32)가 각각 장착되며, 상기 액체산소배관(14)에는 펌프(20)가 장착되고, 상기 펌프(20)와 산소 탱크(180) 사이의 액체산소배관(14)에 유량조절밸브(34)가 설치되며, 상기 펌프(20)와 산소배관(182) 사이의 액체산소배관(14)에도 유량조절밸브(38)가 설치된다. The oxygen supply pipe 10 and the branch pipe 12 are each equipped with a flow control valve 30, 32, the liquid oxygen pipe 14 is equipped with a pump 20, the pump 20 and The flow rate control valve 34 is installed in the liquid oxygen pipe 14 between the oxygen tank 180, and the flow rate control valve 38 is also provided in the liquid oxygen pipe 14 between the pump 20 and the oxygen pipe 182. Is installed.                     

또한, 상기 펌프(20)의 전, 후방에는 그 펌프(20)의 예냉을 위한 예냉배관(36)이 밸브(36a)와 함께 장착되며, 각각의 배관에는 압력계(P1)(P2)(P3)가 장착된다.In addition, before and after the pump 20, a precooling pipe 36 for precooling the pump 20 is mounted together with the valve 36a, and each pipe is provided with a pressure gauge P1, P2, P3. Is fitted.

본 발명에 따른 공기액화분리설비의 냉각운전을 설명하면, 원료공기 압축기(110)의 기동에 의하여 원료공기가 5㎏/㎠ 정도까지 압축된 후, 그 압축된 원료공기는 냉각수와의 열교환에 의하여 10℃∼20℃ 정도까지 냉각된다.Referring to the cooling operation of the air liquefaction separation apparatus according to the present invention, after the raw material air is compressed to about 5kg / ㎠ by the start of the raw material air compressor 110, the compressed raw material air by heat exchange with the cooling water It cools to about 10 degreeC-about 20 degreeC.

상기 원료공기는 계속하여 주 열교환기(120)를 통과하여 더욱 냉각되고, 이렇게 냉각된 원료공기의 일부는 한냉발생기(150)에 공급되며, 나머지는 하탑(132)의 하부로 공급된다.The raw material air continues to pass through the main heat exchanger 120 and is further cooled, and a part of the cooled raw material air is supplied to the chill generator 150, and the rest is supplied to the lower portion of the lower tower 132.

상기 하탑(132)의 압력이 4.5㎏/㎠∼4.7㎏/㎠를 유지하면 하탑(132)의 하부 액체공기(161)를 배관(192)을 통해 상탑(134)의 중앙 부분으로 공급하고 상탑(134)의 하부 액체 산소(162)를 배관(191)을 통해 상탑(134)의 상부로 보내짐으로써 상탑(134)의 압력이 0.40㎏/㎠∼0.43㎏/㎠ 이하로 유지되면서 기체산소, 기체질소 및 불순질소가 생산된다.When the pressure of the lower tower 132 maintains 4.5㎏ / ㎠ ~ 4.7㎏ / ㎠ and the lower liquid air 161 of the lower tower 132 is supplied to the central portion of the upper tower 134 through the pipe 192 and the upper tower ( The lower liquid oxygen 162 of the 134 is sent to the upper portion of the upper tower 134 through the pipe 191, so that the pressure of the upper tower 134 is maintained at 0.40 kg / cm < 2 > Nitrogen and impure nitrogen are produced.

이러한 상태에서는 생산되는 기체가스의 양을 조절하면서 순도 조정 작업이 수행되는데, 유량조절밸브(34)를 개방시키고 예냉배관(36)의 밸브(36a)를 완전히 개방시켜 펌프(20)를 충분히 예냉시킨다.In this state, the purity control operation is performed while adjusting the amount of gas gas produced. The flow control valve 34 is opened and the valve 36a of the precooling pipe 36 is fully opened to sufficiently precool the pump 20. .

상기 펌프(20)의 예냉이 충분히 이루어지면, 상기 밸브(36a)를 닫고 펌프(20)를 기동시킴으로써 액체산소를 액체산소배관(14)과 산소공급배관(10) 및 액체산소 배출배관(197)을 통해 정류탑(130)에 공급한다. 이때, 상기 펌프(20)의 출구 압력은 압력계(P2)에 의해 측정되는 압력값에 의해 유량조절밸브(38)로 조절되며, 펌프(20)가 기동될 때 상기 유량조절밸브(38)의 개도는 약간 열리거나 폐쇄되게 조절되고 상기 분지배관(12)의 개도는 완전히 개방된 상태로 조절된다.When the precooling of the pump 20 is sufficiently performed, the liquid oxygen is transferred to the liquid oxygen pipe 14, the oxygen supply pipe 10, and the liquid oxygen discharge pipe 197 by closing the valve 36a and starting the pump 20. Supply to the rectification tower 130 through. At this time, the outlet pressure of the pump 20 is adjusted by the flow rate control valve 38 by the pressure value measured by the pressure gauge P2, the opening degree of the flow rate control valve 38 when the pump 20 is started Is adjusted to open or close slightly and the opening degree of the branch pipe 12 is adjusted to be fully open.

상기 펌프(20)가 기동되면 분지배관(12)의 유량조절밸브(30)를 서서히 닫으면서 그에 연동하여 산소공급배관(10)의 유량조절밸브(30)를 서서히 개방시킨다. 동시에, 액체산소배관(14)의 유량조절밸브(38)를 서서히 개방시킨다. 또한, 이때 액체산소배출배관(197)의 유량조절밸브(197a)를 약간 개방시켜 놓으면, 상기 산소탱크(180)의 액체산소가 액체산소배출배관(197)을 통해 정류탑(130)으로 공급됨으로써 정류탑(130)의 상탑(134) 하부의 액체 산소 레벨이 서서히 상승된다.When the pump 20 is started, the flow control valve 30 of the branch pipe 12 is gradually closed while being interlocked with the flow control valve 30 of the oxygen supply pipe 10. At the same time, the flow regulating valve 38 of the liquid oxygen piping 14 is gradually opened. In addition, when the flow rate control valve 197a of the liquid oxygen discharge pipe 197 is slightly opened, the liquid oxygen of the oxygen tank 180 is supplied to the rectification tower 130 through the liquid oxygen discharge pipe 197. The liquid oxygen level in the lower portion of the top tower 134 of the rectification tower 130 is gradually raised.

동시에, 상탑(134)의 압력이 서서히 상승하면서, 액체산소를 정류탑(130)에 공급하지 않는 종래의 방법에 비하여 매우 빠른 속도로 설비의 정상화가 이루어진다.At the same time, the pressure of the tower 134 gradually rises, and the equipment is normalized at a very high speed as compared with the conventional method in which liquid oxygen is not supplied to the rectification tower 130.

공기액화분리설비를 종래의 방법에 의하여 냉각운전하고, 본 발명의 방법에 의하여 냉각운전하여 서로 비교하였다.The air liquefaction facility was cooled by the conventional method, and cooled by the method of the present invention and compared with each other.

도3을 참조하여 설명하면, 도3의 (a)에 도시된 것처럼 액체산소를 정류탑(130)에 공급하지 않는 종래의 경우에는 정류탑(130)의 상탑(136)의 액체산소 레벨이 시간이 경과하면서 서서히 증가하고 있으나, 액체산소를 정류탑(130)에 공급하는 본 발명의 경우에는 정류탑(130)의 상탑(136)의 액체산소 레벨이 급격하게 증가한 후 대략 동일한 수준에서 유지하고 있음을 알 수 있었다.Referring to FIG. 3, in the conventional case in which liquid oxygen is not supplied to the rectification tower 130 as shown in FIG. 3A, the liquid oxygen level of the upper tower 136 of the rectification tower 130 is determined by time. While gradually increasing while passing, the liquid oxygen level of the upper column 136 of the rectification tower 130 is maintained at approximately the same level in the case of the present invention for supplying the liquid oxygen to the rectification tower 130. And it was found.

그리고, 도3의 (b)에 도시된 것처럼 종래의 경우에는 액체산소 레벨이 정상 운전을 위한 정상 레벨에 도달하기 까지의 시간 동안 상탑(136)의 압력이 매우 불규칙적으로 증감하고 있으나, 본 발명의 경우에는 상탑(136)의 압력이 균일하게 유지되는 것을 알 수 있었다.In addition, in the conventional case, as shown in FIG. 3B, the pressure of the tower 136 increases or decreases very irregularly for a time until the liquid oxygen level reaches a normal level for normal operation. In this case, it was found that the pressure of the tower 136 is kept uniform.

또한, 도3의 (c)에 도시된 것처럼 종래의 경우에는 산소순도와 질소순도가 시간이 경과되면서 서서히 적정순도를 갖는 것을 보이고 있으나, 본 발명의 경우에는 종래에 비하여 매우 빠른 시간에 적정순도를 가짐을 알 수 있었다.In addition, in the conventional case, as shown in FIG. 3 (c), the oxygen purity and the nitrogen purity gradually show the proper purity as time passes, but in the case of the present invention, the proper purity is very fast compared to the conventional one. It was found.

물론, 상기한 본 발명의 방법은 냉각 운전이 수행될 때 설비를 보다 신속하게 안정화시키는데 사용되는 것은 물론, 정상 운전이 수행될 때 여러 가지 요인에 의하여 질소 및 산소의 순도가 저하되는 경우 액체산소를 정류탑에 역으로 공급시켜 설비를 안정화시킬 때에도 사용 가능하다.Of course, the method of the present invention described above is used to stabilize the plant more quickly when the cooling operation is performed, as well as liquid oxygen when the purity of nitrogen and oxygen is reduced by various factors when the normal operation is performed. It can also be used to stabilize the equipment by feeding it back to the tower.

상술한 바와 같이 본 발명에 따른 공기액화분리설비의 안정화 운전시스템에 의하면, 액체산소를 정류탑에 역으로 공급하여 상탑의 액체산소 레벨과 압력이 안정화되는 시간을 단축시킴으로써 설비의 가동효율을 향상시킬 수 있는 우수한 효과를 갖는다.As described above, according to the stabilization operation system of the air liquefaction separation equipment according to the present invention, by supplying the liquid oxygen back to the rectification tower to shorten the time to stabilize the liquid oxygen level and pressure of the tower to improve the operation efficiency of the equipment Has an excellent effect.

특히, 제철소와 같이 불연속적으로 산소와 질소가 필요하여 공기액화분리설비의 가동이 자주 중단되는 경우, 고순도의 산소와 질소 생산에 필요한 시간이 매우 단축되어 전체적인 설비의 신축적인 운용이 가능한 효과를 갖는다.In particular, when the air liquefaction facility is frequently stopped due to discontinuity of oxygen and nitrogen such as steel mills, the time required for high purity oxygen and nitrogen production is very shortened, and thus the overall operation of the facility is possible. .

Claims (3)

비점차에 의하여 공기를 분리시키는 정류탑이 구비된 공기액화분리설비의 운전시스템에 있어서,In the operation system of the air liquefaction separation equipment having a rectifying tower for separating the air by the difference in boiling point, 정류탑의 상탑에 축적된 액체산소의 레벨이 정상 운전 조건보다 낮고 그 상탑의 압력이 헌팅(hunting)되는 불안정한 상태일 때, 산소탱크의 액체산소를 상기 정류탑의 상탑에 공급하여 상탑의 액체산소 레벨을 상승시킴을 특징으로 하는 공기액화분리설비의 안정화 운전시스템.When the level of liquid oxygen accumulated in the top of the rectification tower is lower than the normal operating condition and the pressure of the top is unstable, the liquid oxygen of the oxygen tank is supplied to the top of the rectification tower to supply the liquid oxygen of the top. Stabilization operation system of the air liquefaction separation unit, characterized in that to raise the level. 제1항에 있어서, 상기 산소탱크(180)는 펌프(20)와 유량조절밸브(30)를 통해 정류탑의 상탑에 액체산소를 공급시키도록 연결되며, 상기 펌프(20)의 구동에 의해 상탑에 액체산소가 공급되면 상기 유량조절밸브(30)의 개도가 시간이 경과되면서 비례적으로 증가되도록 운전됨을 특징으로 하는 공기액화분리설비의 안정화 운전시스템.According to claim 1, wherein the oxygen tank 180 is connected to supply the liquid oxygen to the top of the rectification tower through the pump 20 and the flow control valve 30, the top by the drive of the pump 20 When the liquid oxygen is supplied to the stabilization operation system of the air liquefaction separation equipment, characterized in that the operation of the flow control valve 30 is operated to increase proportionally as time passes. 제2항에 있어서, 상기 펌프(20)는 그 구동에 의해 액체산소를 정류탑의 상탑으로 공급하기 전에 상기 산소탱크(180)에서 제공된 저온의 산소로 예냉됨을 특징으로 하는 공기액화분리설비의 안정화 운전시스템.The stabilization of the air liquefaction separation equipment according to claim 2, wherein the pump (20) is precooled by low temperature oxygen provided from the oxygen tank (180) before the liquid oxygen is supplied to the upper tower of the rectification tower by driving thereof. Driving system.
KR1020020083807A 2002-12-26 2002-12-26 Stability operation system of air separation unit KR100902831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020083807A KR100902831B1 (en) 2002-12-26 2002-12-26 Stability operation system of air separation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020083807A KR100902831B1 (en) 2002-12-26 2002-12-26 Stability operation system of air separation unit

Publications (2)

Publication Number Publication Date
KR20040057203A KR20040057203A (en) 2004-07-02
KR100902831B1 true KR100902831B1 (en) 2009-06-12

Family

ID=37349802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020083807A KR100902831B1 (en) 2002-12-26 2002-12-26 Stability operation system of air separation unit

Country Status (1)

Country Link
KR (1) KR100902831B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046251A (en) * 2001-12-05 2003-06-12 주식회사 포스코 Method for decreasing the cooling operation time of an air separation unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046251A (en) * 2001-12-05 2003-06-12 주식회사 포스코 Method for decreasing the cooling operation time of an air separation unit

Also Published As

Publication number Publication date
KR20040057203A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP2020521098A5 (en)
US20160003527A1 (en) System and method for liquefying natural gas employing turbo expander
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
CN108387068A (en) Stream backed expansion nitrogen making machine is pressurized after oxygen-enriched
EP1275920B1 (en) Nitrogen rejection method and apparatus
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
KR102003230B1 (en) A method for addition producing higher purity oxygen and an apparatus thereof
JP6354517B2 (en) Cryogenic air separation device and cryogenic air separation method
US11326116B2 (en) Natural gas liquids recovery process
US5765397A (en) Air liquefaction separation process and apparatus therefor
KR100902831B1 (en) Stability operation system of air separation unit
JP2004232967A (en) Low temperature air separating device
JP2018096645A (en) Air liquefaction separation method and air liquefaction separation unit
US11150016B2 (en) Nitrogen production system for producing nitrogen with different purities and nitrogen production process thereof
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JP2004197981A (en) Air separating device, and product gas manufacturing method using the same
KR100454810B1 (en) Method of nitrogen gas manufacture using an air separator in the type of sub-zero
KR102139990B1 (en) Method for operating air separation plant
KR100905616B1 (en) A method for regenerating the air purification unit using a liquid air of tank
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
US9476640B2 (en) Method and apparatus for producing nitrogen by cryogenic distillation of air
KR20030046251A (en) Method for decreasing the cooling operation time of an air separation unit
CN114835087A (en) Reduced-pressure starting method of oxygenerator
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JP5244491B2 (en) Air separation device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130605

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150609

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170609

Year of fee payment: 9