KR20030046251A - Method for decreasing the cooling operation time of an air separation unit - Google Patents

Method for decreasing the cooling operation time of an air separation unit Download PDF

Info

Publication number
KR20030046251A
KR20030046251A KR1020010076728A KR20010076728A KR20030046251A KR 20030046251 A KR20030046251 A KR 20030046251A KR 1020010076728 A KR1020010076728 A KR 1020010076728A KR 20010076728 A KR20010076728 A KR 20010076728A KR 20030046251 A KR20030046251 A KR 20030046251A
Authority
KR
South Korea
Prior art keywords
liquid oxygen
air
level
main condenser
air separation
Prior art date
Application number
KR1020010076728A
Other languages
Korean (ko)
Other versions
KR100805716B1 (en
Inventor
오영석
최진봉
정대원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010076728A priority Critical patent/KR100805716B1/en
Publication of KR20030046251A publication Critical patent/KR20030046251A/en
Application granted granted Critical
Publication of KR100805716B1 publication Critical patent/KR100805716B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

PURPOSE: A reducing method for cooling driving time of an air separator is provided to reduce operating time of a main condenser by supplying liquid oxygen to the main condenser when a specific condition is completed. CONSTITUTION: A reducing method for cooling driving time of an air separator includes following stages to separate air normally by cooling each component of the air separator stopped in operation for a long time. Liquid oxygen is supplied to a main condenser(166) from a storage tank(20) of liquid oxygen when hunting is generated with changing a level of liquid oxygen in the main condenser inside a rectifying barrel(160). Supply of liquid oxygen stops when hunting is finished. Liquid oxygen is supplied when the level of liquid oxygen is maintained over a percentage of 23 and internal temperature of a lower column(164) is under 170 degrees below zero. Supply of liquid oxygen is stopped when the level of liquid oxygen maintains over the percentage of 65 and internal temperature of the lower column is under 172 degrees below zero. Thereby, cooling driving time is reduced as a whole.

Description

공기분리장치의 냉각운전시간 단축방법{Method for decreasing the cooling operation time of an air separation unit}Method for decreasing the cooling operation time of an air separation unit

본 발명은 온도 비점차를 이용한 공기분리장치의 냉각운전시간을 단축시키는 방법에 관한 것으로서, 보다 상세하게는 냉각운전이 일정 조건에 도달되었을 때 액체산소를 액체산소 응축기에 공급시켜 설비가 정상상태로 복귀되는데 필요한 시간을 단축시킬 수 있도록 된 공기분리장치의 냉각운전시간 단축방법에 관한 것이다.The present invention relates to a method for shortening the cooling operation time of an air separation apparatus using a temperature difference point. More specifically, when the cooling operation reaches a predetermined condition, the liquid oxygen is supplied to the liquid oxygen condenser to return the equipment to a normal state. The present invention relates to a method for shortening the cooling operation time of an air separation device that can shorten the time required for return.

일반적으로 공기분리장치는 비점차(산소: -183℃, 질소: -196℃, 아르곤: -186℃ )를 이용한 정유 원리에 의해 고순도의 산소, 질소 및 아르곤 가스를 생산하기 위한 장치이며, 고장수리 등의 이유로 7일 이상 설비의 가동을 정지시킬 필요가 있는 경우에는, 저온의 상태에 있는 장치를 상온의 건조 가스를 이용하여 상온으로 회복시킨다.In general, the air separation device is a device for producing high purity oxygen, nitrogen and argon gas by the refinery principle using the difference in boiling point (oxygen: -183 ℃, nitrogen: -196 ℃, argon: -186 ℃), troubleshooting If it is necessary to stop the operation of the equipment for seven days or more, for example, the apparatus in the low temperature state is restored to the normal temperature using a dry gas at room temperature.

이 경우, 설비를 정상가동하기 위하여는 상온 상태인 공기분리장치를 서서히 저온 상태로 냉각시키는 과정이 필요하며, 이러한 과정을 냉각운전이라 한다.In this case, in order to operate the equipment normally, a process of gradually cooling the air separator at room temperature to a low temperature state is necessary, and this process is called a cooling operation.

대기중의 공기를 원료로 하고 비점 차이를 이용하여 산소, 질소 및 아르곤 등을 생산하는 제조설비는 여러 개의 공기분리장치로 이루어지고, 이 공기분리장치의 종래 구성은 도1에 도시된 바와 같다.A manufacturing facility for producing oxygen, nitrogen, argon, etc. using air in the air as a raw material and using a boiling point difference is composed of a plurality of air separation devices, and the conventional configuration of the air separation device is shown in FIG.

질소 78%, 산소 21%, 아르곤 1% 정도가 함유된 대기중의 공기를 흡입하여 공기압축기(110)에서 6㎏/㎠ 정도의 압력으로 압축시키고, 이렇게 압축된 원료공기는 수세 냉각탑(120)에 보내져 공기 속에 수용성 먼지를 제거시킴은 물론 공기의 온도를 약 30℃ 정도로 냉각시키며, 계속하여 주 열교환기(130)를 통과시켜 공기중에 포함된 수분 및 이산화탄소를 제거시킨 후 정류통(160)의 상탑(162)에서 분리되어 나오는 저온의 산소, 질소 및 불순질소 가스와의 열교환에 의해 약 -173℃ 정도로 냉각시킨다.The air in the atmosphere containing 78% nitrogen, 21% oxygen, and 1% argon is sucked and compressed to a pressure of about 6 kg / cm 2 in the air compressor 110, and the compressed raw air is washed with water in the cooling tower 120. It is sent to remove the water-soluble dust in the air as well as to cool the temperature of the air to about 30 ℃, continue to pass through the main heat exchanger 130 to remove the water and carbon dioxide contained in the air after the rectifier 160 Cooling is performed at about −173 ° C. by heat exchange with low temperature oxygen, nitrogen, and impure nitrogen gas separated from the tower 162.

그리고, 상기 주 열교환기(130)에서 냉각된 공기는 정류통(160)의 하탑(164)에 공급되며, 이 하탑(164)의 압력이 4㎏/㎠ 이상이 되면 한냉발생기(140)를 기동시켜 일부는 주 열교환기(130)를 거쳐 정류통(160)에서 생산된 질소가스와 함께 배관(191)을 통해 사용처에 공급되고, 나머지는 정류통(160)의 상탑(162)으로 공급된다.Then, the air cooled in the main heat exchanger 130 is supplied to the lower tower 164 of the rectifier 160, and when the pressure of the lower tower 164 is 4kg / ㎠ or more to start the cold cooling generator 140 Some are supplied to the place of use together with the nitrogen gas produced in the rectifier 160 through the main heat exchanger 130 to the place of use through the pipe 191, the rest is supplied to the top tower 162 of the rectifier 160.

또한, 정류통(160)의 하탑(164)으로 공급된 저온의 공기는 배관(193)(194)(195)들을 통해 상탑(162)으로 공급되는바, 이 과정에서 주 응축기(166)와 트레이(Tray)에 의해 1차적인 공기분리가 이루어져 액화공기는 하탑(162)으로 모여져 배관(193)을 통해 상탑(164)과 아르곤 분리기(170)로 이송되고, 하탑(164)에서 분리된 순수 질소가스 및 산소가 포함된 불순 질소가스가 배관(194)(195)을 상탑(162)으로 이송된다.In addition, the low-temperature air supplied to the lower tower 164 of the rectifier 160 is supplied to the upper tower 162 through the pipes 193, 194, 195, the main condenser 166 and the tray in this process Primary air separation is made by (Tray), the liquefied air is collected in the lower tower 162, and transferred to the upper tower 164 and the argon separator 170 through the pipe 193, pure nitrogen separated from the lower tower 164 Impurity nitrogen gas containing gas and oxygen is transferred to the top tower 162 through the pipes 194 and 195.

그리고, 상탑(162)에서는 트레이에 의해 각 가스의 비점차이를 이용한 2차적인 분리가 이루어져 산소, 질소 및 불순 질소 가스로 분리되며, 산소 가스의 일부는 기화되는 불순 질소 가스에 의해 액체산소로 만들어져 주 응축기(166) 하부에모여져 하탑(164)의 불순 질소 가스를 냉각시키면서 순도 조정 단계를 거친 다음에 고 순도의 산소와 질소 가스로 생산되고, 이렇게 생산된 산소가스와 질소가스는 배관(191)(192)을 통해 각각 사용처로 보내진다.In the upper tower 162, secondary separation is performed by using a difference in boiling point of each gas by a tray, and separated into oxygen, nitrogen, and impure nitrogen gas, and a part of the oxygen gas is made of liquid oxygen by vaporized impure nitrogen gas. It is collected in the lower part of the main condenser 166 and undergoes a purity adjustment step while cooling the impurity nitrogen gas of the lower tower 164, and then is produced as high-purity oxygen and nitrogen gas, and the produced oxygen gas and nitrogen gas are pipe 191. Each is sent to the destination via 192.

또한, 아르곤 분리기(170)에서도 상탑(162)에서 공급된 산소 중의 아르곤 가스를 분리시켜 배관(196)을 통해 사용처로 보내지고, 전체 공기량의 60% 이상을 차지하는 미 응축 가스인 불순 질소 가스는 배관(197)을 통해 주 열교환기(130)를 거쳐 대기로 방출된다.In addition, in the argon separator 170, the argon gas in the oxygen supplied from the upper tower 162 is separated and sent to the place of use through the pipe 196, and the impurity nitrogen gas, which is an uncondensed gas that occupies 60% or more of the total air volume, Via 197, it is discharged to the atmosphere via the main heat exchanger 130.

이와 같은 공기분리장치는 상기한 운전 방법에 의해 연속적으로 운전되고 있으나, 설비의 안전 점검이나 설비 고장 등에 의해 장시간에 걸쳐 가동이 정지될 필요가 있고, 이러한 경우 액체 산소의 하부에 고여있던 탄화수소가 폭발될 가능성이 있는 등 여러 가지 원인에 의해 공기분리장치내에 있는 모든 저온 액체 즉, 액체공기, 액체산소 및 액체아르곤 등을 모두 대기로 배출시킨 후, 초저온의 상태인 공기분리장치의 각 구성요소들을 상온의 질소 가스를 이용하여 상온 상태로 회복시키게 된다.Such an air separation device is continuously operated by the above-described operating method, but it is necessary to stop operation for a long time due to the safety check of the facility or the failure of the facility. In this case, the hydrocarbon accumulated in the lower part of the liquid oxygen is exploded. After discharging all low temperature liquids, ie liquid air, liquid oxygen, and liquid argon, to the atmosphere for a variety of reasons, the various components of the air separation unit in the ultra low temperature Using nitrogen gas to recover to room temperature.

그러나, 이러한 상태에서 설비를 가동시켜 냉각 운전하는 경우, 정류통(160)의 구성요소들에 대한 냉각을 수행하고 정류통(160) 내부의 주 응축기(166)에 액을 충진시켜 산소 및 질소 가스를 정상적으로 생산하는데 56 시간 정도의 매우 긴 시간이 소요되는 것으로, 생산성 측면에서 바람직하지 못한 것이다.However, when the equipment is operated and cooled in this state, the components of the rectifier 160 are cooled and the main condenser 166 inside the rectifier 160 is filled with liquid to provide oxygen and nitrogen gas. It takes a very long time, such as 56 hours to produce normally, which is undesirable in terms of productivity.

특히, 주 응축기(166)가 동작(Boiling)될 때 액체산소의 레벨이 급격하게 변화되면서 하탑(164)에서 공급되는 공기량도 함께 급격하게 변화되는 헌팅(Hunting)현상에 의해 공기압축기(110)가 토출압력의 과도한 변화에 의해 손상되는 문제점 등을 갖는다.In particular, when the main condenser 166 is operating (Boiling), the air compressor 110 is driven by a hunting phenomenon in which the level of liquid oxygen changes rapidly and the amount of air supplied from the bottom tower 164 also changes rapidly. Problems such as damage caused by excessive changes in the discharge pressure.

본 발명은 이러한 종래의 문제점을 해결하기 위한 것으로서, 상온 상태인 구성요소들을 공기분리를 위한 저온 상태로 신속하고 안정적으로 냉각시켜 냉각운전시간을 단축시킬 수 있도록 된 공기분리장치의 냉각운전시간 단축방법을 제공함에 그 목적이 있다.The present invention is to solve such a conventional problem, the method of shortening the cooling operation time of the air separation apparatus that can shorten the cooling operation time by cooling the components at room temperature to a low temperature state for air separation quickly and stably The purpose is to provide.

도1은 일반적인 공기분리장치가 도시된 개략 구성도;1 is a schematic configuration diagram showing a general air separation apparatus;

도2는 본 발명의 방법에 이용되도록 변형된 공기분리장치의 요부에 대한 구성도;2 is a block diagram of a main portion of an air separation apparatus modified to be used in the method of the present invention;

도3은 본 발명의 방법을 설명하기 위한 블록도;3 is a block diagram for explaining the method of the present invention;

도4 내지 도7은 종래 방법에 의한 공기분리장치의 냉각운전과 본 발명에 의한 공기분리장치의 냉각운전을 비교하기 위한 그래프도이다.4 to 7 are graphs for comparing the cooling operation of the air separation apparatus according to the conventional method and the cooling operation of the air separation apparatus according to the present invention.

※도면의 주요부분에 대한 부호의 설명※※ Explanation of symbols about main part of drawing ※

11 : 제1 온도측정센서110 : 공기압축기11: first temperature measuring sensor 110: air compressor

12 : 제2 온도측정센서120 : 냉각탑12: second temperature measuring sensor 120: cooling tower

13 : 제1 레벨측정센서130 : 주 열교환기13: first level measurement sensor 130: main heat exchanger

14 : 압력측정센서140 : 한냉발생기14: pressure measuring sensor 140: cold generator

15 : 제2 레벨측정센서160 : 정류통15: second level measurement sensor 160: rectifier

162 : 상탑164 : 하탑162: top tower 164: bottom tower

166 : 주 응축기20 : 액체산소저장탱크166: main condenser 20: liquid oxygen storage tank

31, 32, 33, 34 : 배관41 : 충진펌프31, 32, 33, 34: piping 41: filling pump

51, 52, 53, 54, 55, 56, 57 : 밸브61, 62, 64, 65, 66 : 밸브51, 52, 53, 54, 55, 56, 57: valve 61, 62, 64, 65, 66: valve

63 : 펌프63: pump

상기한 목적을 달성하기 위한 기술적인 구성으로서, 본 발명은, 장시간 가동이 정지된 공기분리장치의 각 구성요소들을 소정의 온도로 냉각시켜 정상적인 공기분리가 이루어질 수 있도록 하는 공기분리장치의 냉각운전방법에 있어서, 정류통 내부의 주 응축기에서 액체산소의 레벨이 급격하게 변화되는 헌팅이 발생되면 액체산소 저장탱크에서 액체산소를 주 응축기에 공급하는 단계와, 상기 단계에서 헌팅이 종료되면 액체산소의 공급을 차단하는 단계를 포함함을 특징으로 하는 공기분리장치의 냉각운전시간 단축방법을 마련함에 의한다.As a technical configuration for achieving the above object, the present invention, the cooling operation method of the air separation device to allow normal air separation by cooling the respective components of the air separation device is stopped for a long time to a predetermined temperature In the main condenser inside the rectifier, when the hunting of the liquid oxygen level is rapidly changed, the supply of liquid oxygen to the main condenser in the liquid oxygen storage tank, and the supply of liquid oxygen when the hunting is completed in the step By providing a method for shortening the cooling operation time of the air separation apparatus, characterized in that it comprises the step of blocking.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자 등은 오랜 시간의 연구 결과, 냉각운전시간이 정류통의 주 응축기에 액을 충진시키는 시간에 크게 좌우되는 것과, 이 주 응축기에 외부에서 액을 충진시켜 냉각운전시간을 단축시킬 수 있다는 것 및, 이러한 방법에 의해 주 응축기에서의 헌팅 시간을 짧게 하여 공기압축기의 손상을 방지시킬 수 있다는 것을 알았다.The present inventors have long researched that the cooling operation time is largely dependent on the time of filling the liquid into the main condenser of the rectifier, and the main condenser can be filled from the outside to shorten the cooling operation time. And, it was found that by this method, the hunting time in the main condenser can be shortened to prevent damage to the air compressor.

도2는 본 발명의 방법에 의해 냉각운전시간을 단축시킬 수 있도록 공기분리장치를 개량하여 요부만을 도시한 것으로, 정류통(160)의 물리적인 상태를 측정할 수 있도록 된 여러 가지 측정기구들이 구비된다.Figure 2 shows only the main part by improving the air separation device to shorten the cooling operation time by the method of the present invention, it is equipped with a variety of measuring mechanisms to measure the physical state of the rectifier 160 do.

주 열교환기(130)를 통해 하탑(164)으로 공급되는 공기의 온도를 측정하기 위한 제1 온도측정센서(11)와, 상탑(162)의 질소 라인의 온도를 측정하기 위한 제2 온도측정센서(12)와, 정류통(160)의 내부에 구비된 주 응축기(166)의 액 레벨을 측정하기 위한 제1 레벨측정센서(13)와, 하탑(164)의 내부 압력을 측정하기 위한 압력측정센서(14)와, 하탑(164)의 하부에서 액체공기의 레벨을 측정하기 위한 제2 레벨측정센서(15)가 각각 설치된다.First temperature measuring sensor 11 for measuring the temperature of the air supplied to the lower tower 164 through the main heat exchanger 130, and second temperature measuring sensor for measuring the temperature of the nitrogen line of the upper tower 162 12, the first level measuring sensor 13 for measuring the liquid level of the main condenser 166 provided in the rectifier 160, and the pressure measurement for measuring the internal pressure of the lower column 164 A sensor 14 and a second level measuring sensor 15 for measuring the level of liquid air at the bottom of the lower tower 164 are respectively provided.

또한, 액체산소 저장탱크(20)와 정류통(160) 사이의 배관 구성이 본 발명의 방법에 적합하도록 구비된다.In addition, a piping arrangement between the liquid oxygen storage tank 20 and the rectifier 160 is provided to suit the method of the present invention.

상기 액체산소 저장탱크(20)와 정류통(160)의 상탑(162) 하부를 연결시키는 제1 배관(31)과, 상기 액체산소 저장탱크(20)의 산소를 사용처에 공급시키도록 구비된 제2 배관(32)과, 상기 제1 배관(31)에 구비된 충진펌프(41)와, 상기 제2 배관(32)에 구비된 펌프(63)가 설치된다.A first pipe 31 connecting the lower portion of the upper column 162 of the liquid oxygen storage tank 20 and the rectifier 160 and an oxygen of the liquid oxygen storage tank 20 to a place of use; The two pipes 32, the filling pump 41 provided in the said 1st piping 31, and the pump 63 provided in the said 2nd piping 32 are provided.

그리고, 상기 제1 배관(31)의 충진펌프(41)에 대한 입, 출구쪽에 제1 및 제2 밸브(51)(52)가 설치되고, 상기 제2배관(32)의 펌프(63)에 대한 입, 출구쪽에 입구 및 출구밸브(61)(62)가 설치된다.In addition, first and second valves 51 and 52 are installed at the inlet and the outlet of the filling pump 41 of the first pipe 31, and the pump 63 of the second pipe 32 is provided. Inlet and outlet valves (61, 62) are provided at the inlet and outlet sides.

그리고, 상기 제2 배관(32)의 펌프(63)와 출구밸브(62) 사이에서 인출되어액체산소 저장탱크(20)에 연결된 제3 배관(33)과, 상기 제1 배관(31)의 제1 밸브(51) 전방쪽에서 인출되어 주 응축기(166)에 연결된 제4 배관(34)이 설치되며, 상기 제4 배관(34)은 제5 밸브(56)를 통해 상기 펌프(63)로부터 액산을 제공받도록 연결된다.The third pipe 33 drawn out between the pump 63 of the second pipe 32 and the outlet valve 62 and connected to the liquid oxygen storage tank 20, and the first pipe 31 of the first pipe 31. A fourth pipe 34 drawn out from the front of the first valve 51 and connected to the main condenser 166 is installed, and the fourth pipe 34 receives liquid acid from the pump 63 through the fifth valve 56. To be provided.

또한, 상기 제1 배관(31)에는 액체산소 저장탱크(20)와 제4 배관(34)의 연결 부분 사이에 제3 밸트(53)와 제4 밸브(54)가 설치되고, 상기 제2 배관(32)에는 사용처쪽으로의 액산 흐름을 개폐시키기 위한 압송밸브(64)가 설치되며, 상기 제3 배관(33)에는 액체산소 저장탱크(20)쪽 인접부와 제1 배관(31)의 연결부분에 각각 입구밸브(65)와 펌프압력조절밸브(66)가 설치되고, 상기 제2 배관(32)의 출구밸브(62)와 펌프(63) 사이와 제3 배관(33)의 밸브(65)(66) 사이를 연결시키는 연결밸브(55)가 장착된다.In addition, a third belt 53 and a fourth valve 54 are installed in the first pipe 31 between the liquid oxygen storage tank 20 and the connection portion of the fourth pipe 34. (32) is provided with a pressure feed valve 64 for opening and closing the flow of liquid to the destination, the third pipe 33, the connection portion between the adjacent portion of the liquid oxygen storage tank 20 side and the first pipe (31). Inlet valves 65 and pump pressure regulating valves 66 are respectively installed in the valves, between the outlet valve 62 of the second pipe 32 and the pump 63 and the valve 65 of the third pipe 33. A connecting valve 55 for connecting between the 66 is mounted.

물론, 상기한 밸브류 들과 펌프류 및 센서류 들은 공기분리장치의 제어를 담당하는 설비제어컴퓨터에 연결되어 제어되고, 이 설비제어컴퓨터에는 후술하는 본 발명의 작용이 수행될 수 있는 프로그램이 미리 입력된다.Of course, the valves, pumps, and sensors are connected to and controlled by a facility control computer for controlling the air separation apparatus, and the facility control computer is pre-inputted with a program capable of performing the following operation of the present invention. .

이하, 본 발명의 작용을 설명한다.The operation of the present invention will be described below.

대기의 상온 공기, 예컨대 10℃ 이상의 온도를 갖는 공기가 공기압축기(110)에서 압축되어 수세 냉각탑(120)으로 공급됨으로써 공기중에 포함된 수용성 불순물이 제거되고 또한 압축에 의해 뜨거워진 공기를 약 20℃ 정도로 냉각시킨다.Atmospheric room temperature air, for example, air having a temperature of 10 ° C. or more is compressed by the air compressor 110 and supplied to the water washing cooling tower 120 to remove water-soluble impurities contained in the air, and to heat the air heated by compression to about 20 ° C. Cool to enough.

그리고, 상기 냉각탑(120)에서 배출된 공기는 주 열교환기(130)를 거치면서 이산화탄소와 수분이 제거되고, 이러한 공기가 정류통(160)의 하탑(164)으로 서서히 공급된다.In addition, the air discharged from the cooling tower 120 passes through the main heat exchanger 130 to remove carbon dioxide and moisture, and the air is gradually supplied to the lower tower 164 of the rectifier 160.

상기 하탑(164)의 압력은 압력측정센서(14)에서 측정되고, 이 압력측정센서(14)에서 측정된 하탑(164)의 압력이 소정압력, 예컨대 4.0㎏/㎠ 이상이 되면 한냉발생기(140)를 기동시키고, 이 한냉발생기(140)에서 발생된 한냉의 전량을 주 열교환기(130)에 공급시켜 주 열교환기(130)를 통해 하탑(164)으로 공급되는 공기를 저온으로 냉각시킨다.The pressure of the lower tower 164 is measured by the pressure measuring sensor 14, when the pressure of the lower tower 164 measured by the pressure measuring sensor 14 becomes a predetermined pressure, for example, 4.0kg / ㎠ or more cold cooling generator 140 ), And the entire amount of cold cooling generated in the cold generator 140 is supplied to the main heat exchanger 130 to cool the air supplied to the lower tower 164 through the main heat exchanger 130 to a low temperature.

그리고, 이러한 저온 공기에 의해 하탑(164)의 내부 온도가 -170℃ 이하가 된 것이 제1 온도측정센서(11)에서 측정되면, 배관(193)(194)(195)들을 통해 하탑(164)의 공기를 상탑(162)으로 이송시키며, 이 과정에서 주 응축기(166)에 액이 채워지기 시작하고, 동시에 아르곤 분리기(170)도 예냉된다.When the internal temperature of the lower tower 164 is lower than −170 ° C. by the low temperature air, it is measured by the first temperature measuring sensor 11. Air is transferred to the tower 162, and in this process, the main condenser 166 is filled with liquid, and at the same time, the argon separator 170 is also precooled.

상탑(162)으로 이송된 초저온의 가스는 각 가스 배관(191)(192)(197)으로 공급되어 이들 배관 들을 냉각시키고, 이러한 과정이 시작되어 약 7시간 정도가 경과되면 액체산소가 주 응축기(166)의 레벨을 측정하도록 설치된 제1 레벨측정센서(13)에서 측정된다.The ultra-low temperature gas transferred to the tower 162 is supplied to each gas pipe 191, 192, 197 to cool these pipes, and after about 7 hours has elapsed, the liquid oxygen is the main condenser ( Measured by a first level measuring sensor 13 installed to measure the level of 166.

그러나, 이러한 상태는 정류통(160)의 상탑(162)이 완전히 냉각되지는 않은 상태이기 때문에 상기 주 응축기(166)가 채워지는 속도는 매우 느리다.However, in this state, the top condenser 162 of the rectifier 160 is not completely cooled, and thus the rate at which the main condenser 166 is filled is very slow.

상기 주 응축기(166)의 레벨이 2% 이상 상승되었음이 측정되면 주 응축기(166)의 하부에 고인 불순물을 제거하기 위해 이들 액체를 모두 대기로 배출시켜 제거한 후 재차 액 충진작업이 수행되며, 이후에 약 7 시간이 경과되면 주 응축기(166)의 레벨이 23% 정도에 도달하여 주 응축기(166)가 동작하기 시작한다.When it is determined that the level of the main condenser 166 is increased by 2% or more, all of these liquids are discharged to the atmosphere to remove impurities accumulated in the lower part of the main condenser 166, and then the liquid filling operation is performed again. After about 7 hours, the level of the main condenser 166 reaches about 23% and the main condenser 166 starts to operate.

이때 도5a에서 나타낸 것처럼 액체산소의 레벨과 공기유량이 급격하게 변화되는 헌팅 현상이 약 4시간 정도 발생된다(액체산소의 레벨 변화:23~33%, 공기유량의 변화: 48,000~75,000Nm³/H).At this time, as shown in FIG. 5A, a hunting phenomenon occurs in which the level of liquid oxygen and the air flow are changed rapidly (about 4 hours (level of liquid oxygen: 23 to 33%, change of air flow: 48,000 to 75,000 Nm³ / H). ).

그리고, 이러한 헌팅 현상은 정류통(160)의 불안정한 운전과 공기압축기(110)의 토출압력의 급격한 변화를 일으키는 주요한 요인이 된다.In addition, this hunting phenomenon is a major factor causing unstable operation of the rectifier 160 and a sudden change in the discharge pressure of the air compressor 110.

따라서, 위와 같이 헌팅이 지속되는 시간을 최대한 줄임으로써 정류통(160)이 신속하게 안정된 운전 상태에 도달되게 하고 동시에 공기압축기(110)의 손상이 방지되게 하여야 하는바, 이때 본 발명에 따라 하기와 같은 순서에 의해 냉각운전 단축운전이 수행된다.Therefore, by reducing the time for which the hunting is continued as described above, the rectifier 160 is to be quickly reached a stable driving state and at the same time to prevent damage to the air compressor 110, in this case according to the present invention The cooling operation short run is performed in the same order.

먼저, 공기압축기(110)가 기동된 상태로 하탑(164)의 내부 온도가 -170℃ 이하이면서 주응축기(166)의 레벨이 23%이상으로 유지되고 있어야 한다.First, while the internal temperature of the lower tower 164 is -170 ° C or less while the air compressor 110 is activated, the level of the main compressor 166 should be maintained at 23% or more.

또한, 이 상태는 액체산소 저장탱크(20)와 정류통(160)을 연결시키는 제1 배관(31)에 구비된 충진펌프(41)가 정지되어 있고, 이 충진펌프(41)의 입구와 출구쪽 제1 배관(31)에 구비된 제1 및 제2 밸브(51)(52)와, 액체산소 저장탱크(20)에 인접된 부분의 제1 배관(31)에 구비된 제3 밸브(53)가 폐쇄되어 있으며, 상기 제1밸브(51)와 제3 밸브(53) 사이에 구비된 제4 밸브(54)는 개방된 상태이다.In this state, the filling pump 41 provided in the first pipe 31 for connecting the liquid oxygen storage tank 20 and the rectifier 160 is stopped, and the inlet and the outlet of the filling pump 41 are stopped. First and second valves 51 and 52 provided in the first pipe 31 and the third valve 53 provided in the first pipe 31 adjacent to the liquid oxygen storage tank 20. ) Is closed, and the fourth valve 54 provided between the first valve 51 and the third valve 53 is in an open state.

이러한 상태에서, 제2 배관(32)에 구비된 입, 출구밸브(61)(62)를 개방시킨 상태에서 약 10분여간 제2 배관(32)을 예냉시킨 후, 펌프(63)를 기동시키고 압송밸브(64)를 개방시켜 액산을 사용처에 공급시킨다.In this state, after pre-cooling the second pipe 32 for about 10 minutes while the inlet and outlet valves 61 and 62 provided in the second pipe 32 are opened, the pump 63 is started. The pressure valve 64 is opened to supply liquid acid to the user.

소정 시간이 경과된 후에, 제3 배관(33)의 액체산소 저장탱크(20)측 입구밸브(65)가 폐쇄된 상태에서 상기 제1 배관(31)과 제3배관(33)을 연결시키는 연결밸브(55)가 개방되면서 상기 제3 배관(33)의 펌프압력조절밸브(66)가 서서히 개방되기 시작한다. 또한, 이와 동시에 제 4배관(34)의 제5 밸브(56)가 개방되어 펌프(63)에서 공급된 액산이 배관을 예냉시킨다.After a predetermined time has elapsed, the connection connecting the first pipe 31 and the third pipe 33 in a state where the inlet valve 65 of the liquid oxygen storage tank 20 side of the third pipe 33 is closed. As the valve 55 is opened, the pump pressure regulating valve 66 of the third pipe 33 starts to gradually open. At the same time, the fifth valve 56 of the fourth pipe 34 is opened, and the liquid acid supplied from the pump 63 precools the pipe.

그리고, 이러한 배관의 예냉이 완료되면, 4㎏/㎠ 정도로 설정된 제6밸브(57)가 개방되기 시작하여 주 응축기(166)에 액을 공급하며, 동시에 배관의 예냉을 위해 개방되어 있던 제5 밸브(56)는 폐쇄된다.When the pre-cooling of the pipe is completed, the sixth valve 57 set at about 4 kg / cm 2 begins to open to supply the liquid to the main condenser 166, and at the same time, the fifth valve opened for pre-cooling the pipe. 56 is closed.

물론, 위와 같은 냉각운전은 정상운전에 적합한 하기 표1과 같은 조건이 되면 종료되며, 이 냉각운전이 종료되면 위의 모든 밸브들은 정상 운전상태로 절환된다.Of course, the cooling operation as described above is terminated when the conditions shown in Table 1 suitable for the normal operation, and when the cooling operation is terminated, all the above valves are switched to the normal operation state.

하기 표1은 냉각운전이 시작되는 조건과 종료되는 조건을 개략적으로 나타낸 것이다.Table 1 schematically shows the conditions at which the cooling operation starts and ends.

냉각운전 시작조건Cooling operation start condition 냉각운전 종료조건Cooling end condition 하탑의 온도(℃)Bottom temperature (℃) -170-170 -172-172 상탑의 질소라인 온도(℃)Nitrogen line temperature of the tower (℃) -180-180 -193-193 하탑의 액체공기 레벨(%)Liquid air level at the bottom (%) 8∼158 to 15 40∼4540 to 45 상탑의 액체산소 레벨(%)Liquid Oxygen Level of Tower 23∼3323-33 65∼7065-70 공기 유량(N㎥/H)Air flow rate (N㎥ / H) 48000∼7500048000 ~ 75000 7500075000

종래의 방법으로 냉각운전을 실시한 결과와 본 발명으로 냉각운전을 실시한 결과를 비교하면 다음과 같다.Comparing the results of the cooling operation with the conventional method and the results of the cooling operation according to the present invention are as follows.

먼저, 도5a와 도5b는 주 응축기가 동작할 때의 공기유량(A)과 액산레벨(B)에 대한 변화상태를 나타낸 것으로, 종래방법인 도5a의 경우, 약 4시간에 걸쳐 헌팅이발생된 반면, 본 발명인 도5b의 경우, 약 60여분에 걸쳐 헌팅이 발생되어, 헌팅 시간이 현저하게 단축되었음을 알 수 있었다.First, FIGS. 5A and 5B show changes in air flow rate A and liquid acid level B when the main condenser operates. In the case of the conventional method of FIG. 5A, hunting occurs over about 4 hours. On the other hand, in the case of Figure 5b of the present invention, the hunting was generated over about 60 minutes, it can be seen that the hunting time is significantly reduced.

다음에, 도6a와 도6b는 냉각운전이 이루어져 산소와 질소가스를 사용 가능할 때까지의 시간과 순도에 대한 관계를 나타낸 것으로, 종래방법인 도6a의 경우, 약 56시간이 경과된 후에야 산소 가스(A)의 순도가 99.6%에 도달되고 질소 가스(B)의 불순물 포함량이 10ppm 이하로 떨어진 반면, 본 발명인 도6b의 경우, 약 35시간이 경과되면 종래와 동일한 조건의 산소 가스(A)와 질소 가스(B)를 얻을 수 있음을 알 수 있었다.Next, FIGS. 6A and 6B show the relationship between the time and purity until the cooling operation is performed and the use of oxygen and nitrogen gas. In the conventional method of FIG. 6A, after about 56 hours have elapsed, oxygen gas While the purity of (A) reached 99.6% and the impurity content of nitrogen gas (B) dropped to 10 ppm or less, in the case of FIG. 6B of the present invention, after about 35 hours, oxygen gas (A) and It turned out that nitrogen gas (B) can be obtained.

다음에, 도7a와 도7b는 주 응축기가 동작한 다음부터 액체 산소와 액체 공기가 정상 레벨에서 유지되는데 걸리는 소요시간을 나타낸 것으로, 종래방법인 도7a의 경우, 액체 산소(A)의 레벨이 65% 이상에서 유지되는데 약 15 시간이 소요되고 액체 공기(B)의 레벨이 약 65% 이상에서 유지되는데 약 18 시간이 소요된 반면, 본 발명인 도7b의 경우, 액체 산소(A)는 약 8 시간, 액체 공기(B)는 약 11 시간이 경과된 다음에 종래와 동일한 조건의 레벨에서 유지됨을 알 수 있었다.Next, FIGS. 7A and 7B show the time required for the liquid oxygen and liquid air to be maintained at the normal level after the main condenser is operated. In the conventional method of FIG. 7A, the level of the liquid oxygen A is It takes about 15 hours to maintain at 65% or more and about 18 hours to maintain the level of liquid air (B) at about 65% or more, whereas in the case of FIG. 7B of the present invention, liquid oxygen (A) is about 8 Time, liquid air (B) was found to be maintained at the same level of conditions as before after about 11 hours.

마지막으로, 도8a와 도8b는 질소 라인 한냉발생기(140) 승압기 사용부터 열교환 작용이 정상적으로 일어니는 시점까지의 소요시간을 나타낸 것으로, 종래방법인 도8a의 경우, -193℃에 도달하는 시간이 약 13시간 30여분 소요되는 반면, 본 발명인 도8b의 경우, 약 10시간 30여분만 소요됨을 알 수 있었다.Finally, Figures 8a and 8b shows the time required from the use of the nitrogen line cold-cooling generator 140 booster to the time when the heat exchange action normally occurs, in the case of the conventional method Figure 8a, the time to reach -193 ℃ While this takes about 13 hours 30 minutes, in the case of the present invention Figure 8b, it can be seen that only about 10 hours 30 minutes.

상술한 바와 같이 본 발명에 따른 공기분리장치의 냉각운전시간 단축방법에의하면, 소정의 조건에 도달되었을 때 주 응축기에 액체산소를 공급하여 주 응축기의 작동시간을 단축시킴에 의해 전체적으로는 냉각운전시간을 단축시킨 효과를 갖는다.As described above, according to the method for shortening the cooling operation time of the air separation apparatus according to the present invention, when the predetermined condition is reached, the liquid oxygen is supplied to the main condenser to shorten the operating time of the main condenser as a whole. It has an effect of shortening.

Claims (3)

장시간 가동이 정지된 공기분리장치의 각 구성요소들을 소정의 온도로 냉각시켜 정상적인 공기분리가 이루어질 수 있도록 하는 공기분리장치의 냉각운전방법에 있어서,In the cooling operation method of the air separation apparatus for cooling the components of the air separation unit that has been stopped for a long time to a predetermined temperature to allow normal air separation, 정류통 내부의 주 응축기에서 액체산소의 레벨이 급격하게 변화되는 헌팅이 발생되면 액체산소 저장탱크에서 액체산소를 주 응축기에 공급하는 단계와,Supplying the liquid oxygen to the main condenser in the liquid oxygen storage tank when hunting occurs in which the level of liquid oxygen changes rapidly in the main condenser inside the rectifier, 상기 단계에서 헌팅이 종료되면 액체산소의 공급을 차단하는 단계를 포함함을 특징으로 하는 공기분리장치의 냉각운전시간 단축방법.Reducing the cooling operation time of the air separation apparatus comprising the step of shutting off the supply of liquid oxygen when the hunting is finished in the step. 제1항에 있어서, 상기 액체산소의 공급은 헌팅이 발생된 후 액체산소의 레벨이 23% 이상으로 유지되고 하탑의 내부 온도가 -170℃ 이하일 때 수행됨을 특징으로 하는 공기분리장치의 냉각운전시간 단축방법.The cooling operation time of the air separation apparatus according to claim 1, wherein the supply of the liquid oxygen is performed when the level of the liquid oxygen is maintained at 23% or more after the hunting is generated and the internal temperature of the bottom column is -170 ° C or less. Shortening method. 제1항 또는 제2항에 있어서, 상기 액체산소의 차단은 액체산소의 레벨이 65% 이상으로 유지되고 하탑의 내부 온도가 -172℃ 이하일 때 수행됨을 특징으로 하는 공기분리장치의 냉각운전시간 단축방법.The method of claim 1, wherein the blocking of the liquid oxygen is performed when the level of the liquid oxygen is maintained at 65% or more and the internal temperature of the bottom column is -172 ° C. or shorter. Way.
KR1020010076728A 2001-12-05 2001-12-05 Method for decreasing the cooling operation time of an air separation unit KR100805716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010076728A KR100805716B1 (en) 2001-12-05 2001-12-05 Method for decreasing the cooling operation time of an air separation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010076728A KR100805716B1 (en) 2001-12-05 2001-12-05 Method for decreasing the cooling operation time of an air separation unit

Publications (2)

Publication Number Publication Date
KR20030046251A true KR20030046251A (en) 2003-06-12
KR100805716B1 KR100805716B1 (en) 2008-02-21

Family

ID=29573256

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010076728A KR100805716B1 (en) 2001-12-05 2001-12-05 Method for decreasing the cooling operation time of an air separation unit

Country Status (1)

Country Link
KR (1) KR100805716B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902831B1 (en) * 2002-12-26 2009-06-12 주식회사 포스코 Stability operation system of air separation unit
CN103344091A (en) * 2013-07-26 2013-10-09 四川德胜集团钢铁有限公司 Method for shortening time from effusion to oxygen generation for industrial oxygen generator
CN105300031A (en) * 2015-11-11 2016-02-03 巴彦淖尔市飞尚铜业有限公司 Starting method for rapid oxygen outflow
KR20200021776A (en) 2018-08-21 2020-03-02 주식회사 포스코 Method for operating air separation plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073286A (en) * 1983-09-30 1985-04-25 川崎製鉄株式会社 Operation method on starting of air separator
JPS6219675A (en) * 1985-07-17 1987-01-28 株式会社神戸製鋼所 Stationary operation preparation method of air separator
JPH05306884A (en) * 1992-03-18 1993-11-19 Hitachi Ltd Air separating device and its operating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902831B1 (en) * 2002-12-26 2009-06-12 주식회사 포스코 Stability operation system of air separation unit
CN103344091A (en) * 2013-07-26 2013-10-09 四川德胜集团钢铁有限公司 Method for shortening time from effusion to oxygen generation for industrial oxygen generator
CN103344091B (en) * 2013-07-26 2015-08-19 四川德胜集团钒钛有限公司 A kind of industrial oxygenerating machine that shortens is from hydrops to the method for time going out oxygen
CN105300031A (en) * 2015-11-11 2016-02-03 巴彦淖尔市飞尚铜业有限公司 Starting method for rapid oxygen outflow
CN105300031B (en) * 2015-11-11 2017-07-11 巴彦淖尔市飞尚铜业有限公司 A kind of startup method for quickly going out oxygen
KR20200021776A (en) 2018-08-21 2020-03-02 주식회사 포스코 Method for operating air separation plant

Also Published As

Publication number Publication date
KR100805716B1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JPS6146747B2 (en)
KR100805716B1 (en) Method for decreasing the cooling operation time of an air separation unit
JP6354517B2 (en) Cryogenic air separation device and cryogenic air separation method
JPH10132458A (en) Method and equipment for producing oxygen gas
KR890001743B1 (en) Highly pure nitrogen gas producing apparatus
KR100768319B1 (en) Operating method for preventing air separation unit from cooling
KR100905616B1 (en) A method for regenerating the air purification unit using a liquid air of tank
KR102015514B1 (en) Air separation plant and control method thereof
TWI698396B (en) Carbon dioxide separation and recovery method and separation and recovery system
JP2672251B2 (en) Nitrogen gas production equipment
KR100765150B1 (en) A method for reducing a preliminary freezing driving time of argon unit
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JPH0413630B2 (en)
KR102064612B1 (en) Method and Apparatus for Controlling Moisture Contents in CO2 Refining Process
KR101964331B1 (en) Air separation plant
KR840001532Y1 (en) Air separating system
KR102139990B1 (en) Method for operating air separation plant
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JPH0587447A (en) Producing apparatus for nitrogen gas
JP2782355B2 (en) Mixed gas liquefaction / separation apparatus, method for stopping operation thereof, and method for restarting the same
CN117870280A (en) High purity oxygen extraction process
JP2540244B2 (en) Nitrogen gas production equipment
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JPH0318108B2 (en)
JPS6148071B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120214

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130215

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee