KR100897817B1 - Method for Structuring Gate Of Semiconductor Device - Google Patents

Method for Structuring Gate Of Semiconductor Device Download PDF

Info

Publication number
KR100897817B1
KR100897817B1 KR1020070051295A KR20070051295A KR100897817B1 KR 100897817 B1 KR100897817 B1 KR 100897817B1 KR 1020070051295 A KR1020070051295 A KR 1020070051295A KR 20070051295 A KR20070051295 A KR 20070051295A KR 100897817 B1 KR100897817 B1 KR 100897817B1
Authority
KR
South Korea
Prior art keywords
gate
silicon
forming
film
semiconductor device
Prior art date
Application number
KR1020070051295A
Other languages
Korean (ko)
Other versions
KR20080104470A (en
Inventor
조은상
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070051295A priority Critical patent/KR100897817B1/en
Publication of KR20080104470A publication Critical patent/KR20080104470A/en
Application granted granted Critical
Publication of KR100897817B1 publication Critical patent/KR100897817B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 반도체 소자의 게이트 형성 방법에 있어서, 특히 씨모스(CMOS: complementary metaloxide semi-conductor) 반도체 소자의 듀얼 게이트 형성시, 게이트의 도핑물질 및 도핑농도에 따라 달라지는 식각속도로 인해 특정 게이트의 산화막 및 액티브 지역이 손상되는 것을 방지하는 방법에 관한 것이다. The present invention relates to a method of forming a gate of a semiconductor device, in particular, when forming a dual gate of a complementary metal oxide semi-conductor (CMOS) semiconductor device, an oxide film of a specific gate due to an etching rate that depends on the doping material and the doping concentration of the gate. And a method for preventing the active area from being damaged.

본 발명에 따른 반도체 소자의 게이트 형성방법은, N-Gate 및 P-Gate 액티브 영역이 형성된 반도체 기판상에 게이트산화막과 게이트실리콘막을 차례로 형성하는 단계, 상기 게이트실리콘막 상에 추가증착 방지막을 형성한 후, 상기 N-Gate 및 P-Gate 영역을 구분하는 감광막 패턴을 형성하는 단계, 상기 N-Gate 영역의 산화막을 제거하는 단계, 상기 산화막이 제거된 N-Gate 영역에 게이트실리콘을 추가증착하는 단계, 상기 P-Gate 영역에 잔존하는 감광막 패턴 및 산화막을 제거하는 단계 및 상기 기판 결과물 상에 실리콘 게이트를 형성하는 단계를 포함하여 이루어진다. In the method of forming a gate of a semiconductor device according to the present invention, the step of sequentially forming a gate oxide film and a gate silicon film on a semiconductor substrate on which the N-Gate and P-Gate active regions are formed, and forming an additional deposition prevention film on the gate silicon film Thereafter, forming a photoresist pattern that separates the N-Gate and P-Gate regions, removing an oxide layer of the N-Gate region, and further depositing gate silicon on the N-Gate region from which the oxide layer is removed. And removing the photoresist pattern and the oxide layer remaining in the P-Gate region and forming a silicon gate on the substrate resultant.

씨모스(CMOS), 듀얼 게이트(Dual Gate), SEG, 반도체 소자, CMOS, Dual Gate, SEG, Semiconductor Devices,

Description

반도체 소자의 게이트 형성 방법{Method for Structuring Gate Of Semiconductor Device}Method for forming gate of semiconductor device {Method for Structuring Gate Of Semiconductor Device}

도 1a 내지 도 1b는 종래기술에 따른 N-Gate 및 P-Gate의 도핑원소와 농도에 따른 식각속도 차이를 나타낸 도면.1a to 1b is a view showing the difference in etching rate according to the doping element and the concentration of N-Gate and P-Gate according to the prior art.

도 2a 내지 도 2b는 종래기술에 따른 N-Gate 및 P-Gate의 게이트산화막의 손상 정도를 나타낸 도면.2a to 2b is a view showing the degree of damage of the gate oxide film of N-Gate and P-Gate according to the prior art.

도 3a 내지 도 3d는 본 발명의 일실시 예에 따른 반도체 소자의 듀얼 게이트 형성방법을 나타낸 공정단면도. 3A to 3D are cross-sectional views illustrating a method of forming a dual gate of a semiconductor device in accordance with an embodiment of the present invention.

본 발명은 반도체 소자의 게이트 형성방법에 있어서, 특히 씨모스 반도체 소자의 듀얼 게이트 형성방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a gate of a semiconductor device, and more particularly to a method for forming a dual gate of a CMOS semiconductor device.

최근 반도체 소자가 고집적화됨에 따라, 상기 반도체 소자의 고집적화에 가장 밀접하게 연관되어 있는 게이트 선폭을 축소시키기 위한 방법들이 제시되고 있다. Recently, as semiconductor devices have been highly integrated, methods for reducing gate line width, which are most closely related to the high integration of semiconductor devices, have been proposed.

상기 게이트 선폭 축소 기술은 게이트 식각 전, 이온주입 등을 통해 게이트 를 도핑시킴으로써, 상기 게이트의 저항을 줄이는 방법 등이 사용되고 있다. In the gate line width reduction technology, a method of reducing the resistance of the gate by doping the gate through ion implantation or the like before the gate etching is used.

특히, 상보형 MOS(CMOS; complementary metal-oxide semiconductor)를 이용한 반도체 소자의 경우, N-TYPE과 P-TYPE으로 각각 도핑된 듀얼 게이트 구조로 형성된다. In particular, a semiconductor device using a complementary metal-oxide semiconductor (MOS) is formed of a dual gate structure doped with N-type and P-type, respectively.

이하, 첨부된 도면을 참조하여 종래기술에 따른 N-Gate 및 P-Gate 식각속도 차이 및 게이트산화막 손상정도를 설명한다. Hereinafter, with reference to the accompanying drawings will be described the difference in the etching rate and gate oxide film N-Gate and P-Gate according to the prior art.

도 1a 내지 도 1b는 종래기술에 따른 N-Gate 및 P-Gate의 도핑원소와 농도에 따른 식각속도 차이를 나타낸 도면이다.1a to 1b is a view showing the difference in etching rate according to the doping element and the concentration of the N-Gate and P-Gate according to the prior art.

도 1a는 N-Gate의 도핑원소 및 도핑농도에 따른 식각속도 차이를 보여주고, 도 1b는 P-Gate의 도핑원소 및 도핑농도에 따른 식각속도 차이를 보여준다. Figure 1a shows the difference in etching rate according to the doping element and the doping concentration of N-Gate, Figure 1b shows the difference in etching rate according to the doping element and doping concentration of the P-Gate.

도 1a 및 도 1b를 비교하면, 상기 N-Gate 영역의 식각속도가 상기 P-Gate 영역의 식각속도 보다 훨씬 빠르다는 것을 알 수 있다. Comparing FIGS. 1A and 1B, it can be seen that the etching rate of the N-Gate region is much faster than that of the P-Gate region.

도 2a 내지 도 2b는 종래기술에 따른 N-Gate 및 P-Gate의 게이트산화막의 손상 정도를 나타낸 도면이다.2a to 2b are views showing the damage degree of the gate oxide film of N-Gate and P-Gate according to the prior art.

도 2a는 N-Gate의 게이트산화막 손상정도를 나타낸 것이고, 도 2b는 P-Gate의 게이트산화막의 손상 정도를 나타낸 것이다. Figure 2a shows the degree of damage to the gate oxide film of the N-Gate, Figure 2b shows the degree of damage to the gate oxide film of the N-Gate.

도 2a 및 도 2b를 비교하면, 상기 N-Gate 영역의 게이트산화막 손상정도가 상기 P-Gate 영역의 게이트산화막 손상정도보다 훨씬 심하다는 것을 알 수 있다. Comparing FIG. 2A and FIG. 2B, it can be seen that the damage level of the gate oxide film in the N-Gate region is much greater than that of the gate oxide film in the P-Gate region.

따라서, 상기 두 게이트를 한꺼번에 식각할 경우 도핑원소 및 도핑농도에 따라 식각속도의 차이가 크다. 또한, 식각속도가 빠른 N-Gate 영역의 액티브는 얇은 게이트 산화막으로 인해 쉽게 손상되는 문제점이 있다. Therefore, when the two gates are etched at the same time, the difference in etching speed is large according to the doping element and the doping concentration. In addition, the active of the N-Gate region having a high etching rate is easily damaged by a thin gate oxide film.

본 발명의 목적은 상기한 문제점을 감안하여 안출한 것으로서, 특히 반도체 소자의 듀얼 게이트 형성시, 게이트의 도핑물질 및 도핑농도에 따라 달라지는 식각속도로 인해 특정 게이트의 산화막 및 액티브 지역이 손상되는 것을 방지하기 위한 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above-described problems, and particularly, when forming a dual gate of a semiconductor device, an oxide film and an active region of a specific gate are prevented from being damaged due to an etching rate that depends on the doping material and the doping concentration of the gate. It is to provide a method for doing so.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 게이트 형성 방법의 일 특징은, N-Gate 및 P-Gate 액티브 영역이 형성된 반도체 기판상에 게이트산화막과 게이트실리콘막을 차례로 형성하는 단계, 상기 게이트실리콘막 상에 추가증착 방지막을 형성한 후, 상기 N-Gate 및 P-Gate 영역을 구분하는 감광막 패턴을 형성하는 단계, 상기 감광막 패턴을 이용하여 상기 N-Gate 영역의 추가증착방지막을 제거하는 단계, 상기 추가증착방지막이 제거된 N-Gate 영역에 게이트실리콘을 추가증착하는 단계, 상기 P-Gate 영역에 잔존하는 감광막 패턴 및 추가증착방지막을 제거하는 단계, 및 상기 추가증착된 게이트실리콘을 포함한 상기 게이트실리콘막을 부분식각하는 단계를 포함하여 이루어지는 것이다.According to an aspect of the present invention, there is provided a method of forming a gate of a semiconductor device, the method including sequentially forming a gate oxide film and a gate silicon film on a semiconductor substrate on which N-Gate and P-Gate active regions are formed, After forming a further deposition prevention film on the gate silicon film, forming a photoresist pattern for separating the N-Gate and P-Gate region, by using the photosensitive film pattern to remove the additional deposition prevention film of the N-Gate region The method may further include: depositing gate silicon on the N-gate region from which the additional deposition prevention film has been removed, removing the photoresist pattern and the additional deposition prevention layer remaining on the P-gate region, and including the additional deposition gate silicon. And partially etching the gate silicon film.

보다 바람직하게, 상기 추가증착 방지막은 산화막, 질화막 또는 질산화막을 포함한다. More preferably, the additional deposition prevention film comprises an oxide film, a nitride film or a nitride oxide film.

보다 바람직하게, 상기 추가증착 방지막은 습식식각 공정을 통해 제거되는 것으로서, 상기 습식식각에 사용되는 물질은 불산, 초산 및 인산을 포함한다. More preferably, the additional deposition preventing film is removed through a wet etching process, and the material used for the wet etching includes hydrofluoric acid, acetic acid, and phosphoric acid.

보다 바람직하게, 상기 N-Gate 영역의 게이트실리콘은 SEG(Selective Epitaxial Growth of silicon) 공정을 통해 추가증착한다. More preferably, the gate silicon of the N-Gate region is additionally deposited through a selective epitaxial growth of silicon (SEG) process.

보다 바람직하게, 상기 N-Gate 영역의 게이트실리콘은 50 내지 300Å 두께로 추가증착한다. More preferably, the gate silicon of the N-Gate region is further deposited to a thickness of 50 to 300 kHz.

보다 바람직하게, 상기 N-Gate 영역에 게이트실리콘을 추가증착한 후, 200 내지 1300℃ 정도의 온도로 어닐링하는 단계를 더 포함한다. More preferably, further comprising the step of annealing at a temperature of about 200 to 1300 ℃ after further depositing the gate silicon in the N-Gate region.

이하, 첨부된 도면을 참조하여 본 발명의 실시 예의 구성과 그 작용을 설명하며, 도면에 도시되고 또 이것에 의해서 설명되는 본 발명의 구성과 작용은 적어도 하나의 실시 예로서 설명되는 것이며, 이것에 의해서 상기한 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.Hereinafter, with reference to the accompanying drawings illustrating the configuration and operation of the embodiment of the present invention, the configuration and operation of the present invention shown in the drawings and described by it will be described by at least one embodiment, By the technical spirit of the present invention described above and its core configuration and operation is not limited.

도 3a 내지 도 3d는 본 발명의 일실시 예에 따른 반도체 소자의 듀얼 게이트 형성방법을 나타낸 공정 단면도이다.3A to 3D are cross-sectional views illustrating a method of forming a dual gate of a semiconductor device according to an embodiment of the present invention.

도 3a을 참조하면, N-Gate 및 P-Gate 액티브 영역이 형성된 반도체 기판(미도시)상에 게이트산화막(1)과 게이트실리콘막(2)을 차례로 증착한 상부에 추가증착 방지막(3)을 형성한다. 상기 추가증착 방지막은(3) 산화막, 질화막 또는 질산화막 등으로 이루어진다. Referring to FIG. 3A, an additional deposition prevention layer 3 is formed on a semiconductor substrate (not shown) on which N-Gate and P-Gate active regions are formed, in which a gate oxide layer 1 and a gate silicon layer 2 are sequentially deposited. Form. The additional deposition prevention film (3) is made of an oxide film, a nitride film or a nitride oxide film.

이후, 상기 추가증착 방지막(3) 상부 전면에 감광막을 도포한 후, N-Gate 및 P-Gate 영역을 구분하기 위한 패턴을 마스킹하고, 포토리소그래피(photo-lithography)를 실시하여 감광막 패턴(4)을 형성한다. Subsequently, after the photoresist film is applied to the entire upper surface of the additional deposition prevention film 3, a pattern for distinguishing the N-Gate and P-Gate areas is masked, and photo-lithography is performed to form the photoresist pattern 4. To form.

이후, 도 3b에 도시된 바와 같이, 상기 형성된 감광막 패턴(4) 상부 전면에 식각을 실시하여 N-Gate 영역의 추가증착 방지막(3)을 제거한다. 이때, 상기 추가증착 방지막(3)은 습식식각 공정을 통해 제거되는 것으로서, 상기 습식식각에 사용되는 물질로는 불산, 초산 및 인산 등이 포함된다. Thereafter, as illustrated in FIG. 3B, etching is performed on the entire upper surface of the formed photoresist pattern 4 to remove the additional deposition preventing film 3 of the N-Gate region. In this case, the additional deposition prevention film 3 is removed through a wet etching process, and materials used for the wet etching include hydrofluoric acid, acetic acid, phosphoric acid, and the like.

예를 들어, 상기 추가증착 방지막(3)이 산화막이면, 상기 불산 및 초산을 식각물질로 사용하고, 상기 추가증착 방지막(3)이 질화막이면, 상기 인산을 식각물질로 사용한다. 또한, 상기 추가증착 방지막(3)이 질산화막인 경우, 상기 불산 및 인산을 일정량 혼합하여 사용한다. For example, when the additional deposition prevention film 3 is an oxide film, the hydrofluoric acid and acetic acid are used as an etching material, and when the additional deposition prevention film 3 is a nitride film, the phosphoric acid is used as an etching material. In addition, when the additional deposition prevention film 3 is a nitric oxide film, a predetermined amount of the hydrofluoric acid and phosphoric acid is mixed and used.

상기 추가증착 방지막(3)이 제거된 N-Gate 영역에 게이트실리콘(5)을 추가증착한다. The gate silicon 5 is further deposited on the N-gate region from which the additional deposition prevention film 3 is removed.

이때, 상기 게이트실리콘(5)은 50Å 내지 300Å 두께로 형성되는 것으로서, SEG(Selective Epitaxial Growth of silicon) 공정을 통해 추가증착한다. In this case, the gate silicon 5 is formed to have a thickness of 50 kHz to 300 Å, and is further deposited through a selective epitaxial growth of silicon (SEG) process.

상기 SEG는 선택적 단결정 실리콘 박막 성장 기술로서, 절연막에서는 실리콘이 성장하지 않고, 실리콘 기판이 드러난 부분에서 실리콘만 선택적으로 결정 방향 관계가 유지된 상태로 성장시키는 기술이다. The SEG is a selective single crystal silicon thin film growth technology, in which silicon is not grown in an insulating layer, and only silicon is selectively grown in a portion in which a silicon substrate is exposed in a state in which crystal orientation is maintained.

삭제delete

상기 게이트실리콘(5)을 추가증착한 후, 상기 추가증착된 게이트실리콘(5)과 하부의 게이트실리콘막(2)과의 결정상태를 동일하게 유지하기 위해 어닐링 공정을 추가로 실시한다. 상기 어닐링 공정은 이후 실시되는 식각공정을 안정화시키기 위한 것으로서, 200℃ 내지 1300℃의 온도에서 이루어진다. After further depositing the gate silicon 5, an annealing process is further performed to maintain the same crystal state between the additionally deposited gate silicon 5 and the lower gate silicon film 2. The annealing process is to stabilize the etching process to be carried out later, it is made at a temperature of 200 ℃ to 1300 ℃.

이후, 도 3c에 도시된 바와 같이, 상기 P-Gate 영역에 잔존하는 감광막 패턴(4) 및 추가증착 방지막(3)을 건식식각 공정을 통해 동시에 제거한다. 그리고, 상기 N-Gate 영역에 게이트실리콘(5)을 추가증착한 상태에서 게이트 마스크를 이용하여 패턴을 형성한 후, 상기 패턴에 따라 게이트실리콘막(2)을 부분식각한다.Thereafter, as shown in FIG. 3C, the photoresist pattern 4 and the additional deposition prevention layer 3 remaining in the P-Gate region are simultaneously removed through a dry etching process. After the gate silicon 5 is further deposited on the N-gate region, a pattern is formed using a gate mask, and the gate silicon layer 2 is partially etched according to the pattern.

삭제delete

이때, 도핑원소 및 도핑농도에 따른 식각속도가 빨라 게이트실리콘(5)을 추가증착한 N-Gate 지역과 추가증착하지 않은 P-Gate 지역에 남아있는 게이트실리콘량이 거의 동일함을 알 수 있다. At this time, the etching speed according to the doping element and the doping concentration is fast, it can be seen that the amount of gate silicon remaining in the N-Gate region where the gate silicon 5 is additionally deposited and the P-Gate region without additional deposition.

도 3d는 식각을 완료한 것으로, 상기 식각을 통해 N-Gate 영역의 게이트산화막(1)까지 제거하였음에도 불구하고, 액티브 손상이 없는 프로파일을 확보할 수 있다. 3D shows that the etching is completed, and even though the gate oxide layer 1 of the N-gate region is removed through the etching, a profile without active damage can be secured.

따라서, N-Gate 영역의 게이트산화막을 사전에 추가증착해 둠으로써, 이후 실행되는 식각공정시, 도핑원소 및 도핑농도에 따라 게이트별로 달라지는 식각정도를 보상할 수 있다. Therefore, by further depositing the gate oxide film in the N-Gate region in advance, the etching degree which varies for each gate according to the doping element and the doping concentration can be compensated for in the subsequent etching process.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 실시 예에 기재된 내용으로 한정하는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

이상에서 설명한 바와 같이, 본 발명은 듀얼 게이트 형성시, 특정 게이트에 실리콘을 추가증착함으로써, 식각속도에 의한 산화막 및 액티브 지역의 손상을 사전에 방지할 수 있는 효과가 있다. As described above, the present invention has an effect of preventing damage to the oxide film and the active region due to the etching rate in advance by additionally depositing silicon on a specific gate when forming the dual gate.

Claims (6)

N-Gate 및 P-Gate 액티브 영역이 형성된 반도체 기판상에 게이트산화막과 게이트실리콘막을 차례로 형성하는 단계; Sequentially forming a gate oxide film and a gate silicon film on a semiconductor substrate having N-Gate and P-Gate active regions formed thereon; 상기 게이트실리콘막 상에 추가증착 방지막을 형성한 후, 상기 N-Gate 및 P-Gate 영역을 구분하는 감광막 패턴을 형성하는 단계; Forming an additional photoresist layer on the gate silicon layer, and then forming a photoresist pattern that separates the N-Gate and P-Gate regions; 상기 감광막 패턴을 이용하여 상기 N-Gate 영역의 추가증착방지막을 제거하는 단계; Removing the additional deposition prevention film of the N-Gate region by using the photoresist pattern; 상기 추가증착방지막이 제거된 N-Gate 영역에 게이트실리콘을 추가증착하는 단계; Depositing additional gate silicon on the N-gate region from which the additional deposition prevention film is removed; 상기 P-Gate 영역에 잔존하는 감광막 패턴 및 추가증착방지막을 제거하는 단계; 및Removing the photoresist pattern and the additional deposition preventing film remaining in the P-Gate region; And 상기 추가증착된 게이트실리콘을 포함한 상기 게이트실리콘막을 부분식각하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. And partially etching the gate silicon film including the additionally deposited gate silicon. 제 1 항에 있어서, The method of claim 1, 상기 추가증착 방지막은 산화막, 질화막 또는 질산화막을 포함하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. The additional deposition preventing film comprises a oxide film, a nitride film or a nitride oxide film forming method of the semiconductor device, characterized in that. 제 1 항에 있어서, The method of claim 1, 상기 추가증착 방지막은 습식식각 공정을 통해 제거되는 것으로서, 상기 습식식각에 사용되는 물질은 불산, 초산 및 인산 중 어느 하나를 포함하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법.The additional deposition prevention layer is removed through a wet etching process, the material used for the wet etching method of forming a gate of the semiconductor device, characterized in that it comprises any one of hydrofluoric acid, acetic acid and phosphoric acid. 제 1 항에 있어서, The method of claim 1, 상기 N-Gate 영역의 게이트실리콘은 SEG(Selective Epitaxial Growth of silicon) 공정을 통해 추가증착하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. The gate silicon of the N-Gate region is further deposited through a selective epitaxial growth of silicon (SEG) process. 제 1 항에 있어서,The method of claim 1, 상기 N-Gate 영역의 게이트실리콘은 50 내지 300Å 두께로 추가증착하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법.The gate silicon of the N-Gate region is additionally deposited to a thickness of 50 to 300Å thickness gate method of a semiconductor device. 제 1 항에 있어서, The method of claim 1, 상기 N-Gate 영역에 게이트실리콘을 추가증착한 후, 200 내지 1300℃의 온도로 어닐링하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 게이트 형성방법. And further annealing at 200 to 1300 ° C. after further depositing gate silicon on the N-Gate region.
KR1020070051295A 2007-05-28 2007-05-28 Method for Structuring Gate Of Semiconductor Device KR100897817B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070051295A KR100897817B1 (en) 2007-05-28 2007-05-28 Method for Structuring Gate Of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070051295A KR100897817B1 (en) 2007-05-28 2007-05-28 Method for Structuring Gate Of Semiconductor Device

Publications (2)

Publication Number Publication Date
KR20080104470A KR20080104470A (en) 2008-12-03
KR100897817B1 true KR100897817B1 (en) 2009-05-15

Family

ID=40366085

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070051295A KR100897817B1 (en) 2007-05-28 2007-05-28 Method for Structuring Gate Of Semiconductor Device

Country Status (1)

Country Link
KR (1) KR100897817B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000026195A (en) * 1998-10-19 2000-05-15 김규현 Etching method of gate poly-silicon to form dual gate electrode of semiconductor element
KR20030053217A (en) * 2001-12-22 2003-06-28 주식회사 하이닉스반도체 Method for forming dual gate electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000026195A (en) * 1998-10-19 2000-05-15 김규현 Etching method of gate poly-silicon to form dual gate electrode of semiconductor element
KR20030053217A (en) * 2001-12-22 2003-06-28 주식회사 하이닉스반도체 Method for forming dual gate electrode

Also Published As

Publication number Publication date
KR20080104470A (en) 2008-12-03

Similar Documents

Publication Publication Date Title
KR101248339B1 (en) Method to fabricate adjacent silicon fins of differing heights
JP4982382B2 (en) Semiconductor forming process including recess type source / drain regions in SOI wafer
US7947585B2 (en) Method of manufacturing semiconductor device
US20210234035A1 (en) Transistor manufacturing method and gate-all-around device structure
US7943456B2 (en) Selective wet etch process for CMOS ICs having embedded strain inducing regions and integrated circuits therefrom
JP2004023106A (en) Semiconductor device and its manufacturing method
US8106423B2 (en) Method and structure using a pure silicon dioxide hardmask for gate patterning for strained silicon MOS transistors
US20080173941A1 (en) Etching method and structure in a silicon recess for subsequent epitaxial growth for strained silicon mos transistors
US20210343850A1 (en) Trench gate structure and method of forming a trench gate structure
US7163880B2 (en) Gate stack and gate stack etch sequence for metal gate integration
KR100897817B1 (en) Method for Structuring Gate Of Semiconductor Device
KR100966002B1 (en) Methods of etching nickel silicide and cobalt silicide and methods of forming conductive lines
CN105161414B (en) The minimizing technology of gate hard mask layer
KR100381022B1 (en) Method of forming gate for reduction of leakage current
KR100307541B1 (en) Manufacturing method for mos transistor
KR100469760B1 (en) Method for forming gate oxide of merged semiconductor device
KR100832717B1 (en) Method for forming the gate of a transistor
KR100575361B1 (en) Method for fabricating flash gate and high voltage gate
KR20040002148A (en) Gate forming method of dual gate logic element
KR100329792B1 (en) Method for manufacturing thin film transistor
KR100232901B1 (en) Method of manufacturing transistor of semiconductor device
JPH06296016A (en) Semiconductor device
KR100640970B1 (en) Semiconductor Device and Method for Manufacturing the Same
KR100591124B1 (en) Semiconductor device and method for fabricating thereof
KR100772543B1 (en) Recess gate in semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee