KR100888310B1 - Catalyst for scr - Google Patents

Catalyst for scr Download PDF

Info

Publication number
KR100888310B1
KR100888310B1 KR1020070131220A KR20070131220A KR100888310B1 KR 100888310 B1 KR100888310 B1 KR 100888310B1 KR 1020070131220 A KR1020070131220 A KR 1020070131220A KR 20070131220 A KR20070131220 A KR 20070131220A KR 100888310 B1 KR100888310 B1 KR 100888310B1
Authority
KR
South Korea
Prior art keywords
turbocharger
scr
catalyst
exhaust gas
diesel fuel
Prior art date
Application number
KR1020070131220A
Other languages
Korean (ko)
Inventor
이상민
김종학
박지원
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070131220A priority Critical patent/KR100888310B1/en
Application granted granted Critical
Publication of KR100888310B1 publication Critical patent/KR100888310B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A catalyst for an SCR is provided to reduce injection amount of urea and capacity of a tank while rapidly reducing the amount of HC drawn in into an SCR and improving cleaning efficiency of nitrogen by hydrogen among the transformed reducing agent by installing a diesel fuel decomposing catalyst device instead of a diesel fuel decomposing catalyst to the rear part of a turbocharger. A diesel fuel decomposing catalyst device(400) for an SCR(Selective Catalytic Reduction System) comprises an activating metal part(410) composed of platinum, palladium, rhodium, ruthenium, and stannum; and a base metal oxide(420) composed of alumina, zirconia, ceria, and zeolite installed between an outlet side of a turbocharger and an exhaust gas post processing part(300). Hydrocarbon expelled from the turbocharger is converted into reducing agent through a steam reforming, partial oxidation, and thermal cracking processes.

Description

선택적 촉매 환원장치용 연료분해촉매{catalyst for SCR}Fuel cracking catalyst for selective catalytic reduction device {catalyst for SCR}

본 발명은 선택적 촉매 환원장치용 연료분해촉매에 관한 것이다. 보다 상세하게는 터보차저의 후방에 연료분해촉매가 아닌 연료분해촉매부가 설치되어지도록 함으로써, 선택적 촉매 환원장치로 유입되는 탄화수소의 양을 급격하게 줄어들도록 함과 동시에 변환된 환원제중 수소에 의하여 효과적인 질소의 정화율을 얻을 수 있도록 하고, 아울러 이를 통해 우레아 분사량을 줄어들도록 함에 따라 그에 따른 우레아 탱크의 용량도 줄어들도록 하여 공간활용을 높일 수 있도록 한 것이다.The present invention relates to a fuel cracking catalyst for a selective catalytic reduction device. More specifically, by providing a fuel decomposition catalyst rather than a fuel decomposition catalyst in the rear of the turbocharger, the amount of hydrocarbons flowing into the selective catalytic reduction apparatus is drastically reduced and at the same time effective nitrogen is reduced by the hydrogen in the converted reducing agent. It is possible to obtain a purification rate of, and to reduce the amount of urea injection through this to reduce the capacity of the urea tank accordingly to increase the space utilization.

일반적으로 자동차는 사용되는 연료는 그 종류에 따라 가솔린 차량, 디젤 차량, LPG 차량으로 구분되어지고, 이중 디젤 차량은 고연비를 가지며 고출력 및 고부하 운전이 가능하고 유류비가 저렴하여 그 수요가 계속 증가하고 있는 실정이다.In general, automobiles are divided into gasoline, diesel, and LPG vehicles according to their types. Among them, diesel vehicles have high fuel efficiency, high power and high load operation, and low fuel costs. It is true.

그러나 이러한 디젤 차량의 배기가스에는 일산화탄소, 질소산화물 및 입자상 물질과 같은 오염물질이 가솔린 차량에 비해 많이 포함되어 있으므로 이러한 오염물질을 처리하여 배기가스를 정화하는 매연 여과장치들이 다양하게 개발되고 있다.However, since the exhaust gas of the diesel vehicle contains more pollutants such as carbon monoxide, nitrogen oxides and particulate matters than gasoline vehicles, soot filtration devices for treating such pollutants to purify the exhaust gas have been developed in various ways.

이러한 매연 여과장치에는 배기가스 중 포함된 탄화수소와 일산화탄소의 성분을 각각 촉매에 의한 산화반응으로 물과 이산화탄소로 변환시켜 주는 DOC(Diesel Oxidation Catalyst: 디젤산화촉매)와, 배기가스 중 포함된 입자상 물질을 포집하였다가 배기가스의 열에 의해 연소시켜 주는 CPF(Catalyzed Diesel Particulate Filter: 디젤 입자상물질 제거용 필터)와, 배기가스 중에 포함된 질소산화물을 촉매를 이용하여 질소 및 산소로 환원시켜 주는 SCR 장치(Selective Catalytic Reduction: 선택적 촉매 환원장치) 등이 제안되어지고 있다.The particulate filter includes a DOC (Diesel Oxidation Catalyst) which converts hydrocarbon and carbon monoxide components in exhaust gas into water and carbon dioxide by an oxidation reaction by a catalyst, and particulate matter contained in exhaust gas. CPF (Catalyzed Diesel Particulate Filter) that collects and burns by heat of exhaust gas, and SCR device that reduces nitrogen oxide contained in exhaust gas to nitrogen and oxygen by using catalyst (Selective Catalytic Reduction has been proposed.

이들 매연 여과장치는 각각 차량에 장착될 수 있으나, 최근에는 배기가스의 입자상 물질 및 질소산화물을 모두 처리할 수 있도록 상기한 3가지의 매연 여과장치가 동시에 차량에 장착되고 있는 추세이다.Each of these soot filtration devices may be mounted on a vehicle, but recently, the three soot filtration devices are being mounted on a vehicle at the same time so as to process both particulate matter and nitrogen oxides of exhaust gas.

도1은 종래 기술에 따른 선택적 촉진 환원장치의 촉매에 의한 질소산화물의 정화율을 도시한 그래프이다.1 is a graph showing the purification rate of nitrogen oxides by the catalyst of the selective accelerated reduction apparatus according to the prior art.

배기가스 중에 포함된 질소산화물을 촉매를 이용하여 질소 및 산소로 환원시켜 주는 SCR 장치를 사용하는 과정에서 엔진이 불완전 연소 할 경우 탄화수소(hydrocarbon)의 슬립(slip)이 발생하게 된다. 이때의 연료는 탄화수소로 긴 탄소결합(16개 이상)으로 이루어저 있으며, 이런 물질이 SCR 장치로 직접 유입 될 경우 SCR 장치에 암모니아(NH3)와 탄화수소(Hydrocarbon)가 같이 공존 하게 된다.When the engine is incompletely burned in the process of using an SCR device that reduces nitrogen oxide contained in exhaust gas to nitrogen and oxygen by using a catalyst, a slip of hydrocarbon occurs. At this time, the fuel is composed of long carbon bonds (more than 16) as hydrocarbons, and when these substances are directly introduced into the SCR device, ammonia (NH 3 ) and hydrocarbon (Hydrocarbon) coexist in the SCR device.

이는 도1에 도시된 바와 같이, 암모니아와 탄화수소가 같이 있을때 SCR 장치 내에서의 질소산화물(NOx) 정화율은 순수한 암모니아 보다 떨어지게 됨에 따라 질소산화물이 증가되어지게 되는 문제점이 있었다.As shown in FIG. 1, when the ammonia and the hydrocarbon are present together, the nitrogen oxide (NOx) purification rate in the SCR apparatus is lowered than that of pure ammonia, thereby increasing the nitrogen oxide.

따라서 본 발명은 이러한 문제점을 해결하기 위해 발명한 것으로서, 터보차저의 후방에 연료분해촉매가 아닌 연료분해촉매부가 설치되어지도록 함으로써, 선택적 촉매 환원장치로 유입되는 탄화수소의 양을 급격하게 줄어들도록 함과 동시에 변환된 환원제중 수소에 의하여 효과적인 질소의 정화율을 얻을 수 있도록 하고, 아울러 이를 통해 우레아 분사량을 줄어들도록 함에 따라 그에 따른 우레아 탱크의 용량도 줄어들도록 하여 공간활용을 높일 수 있는 선택적 촉매 환원장치용 연료분해촉매를 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve such a problem, so that the fuel decomposition catalyst portion rather than the fuel decomposition catalyst is installed in the rear of the turbocharger, so as to drastically reduce the amount of hydrocarbons flowing into the selective catalytic reduction device. At the same time, it is possible to obtain an effective nitrogen purification rate by hydrogen in the converted reducing agent, and to reduce the amount of urea injection, thereby reducing the capacity of the urea tank, thereby increasing the space utilization. The purpose is to provide a fuel decomposition catalyst.

본 발명은, 터보차저(200)의 출구측과 배기가스후처리부(300) 사이의 내부에 활성금속부(410)와 베이스메탈옥사이드부(420)로 구성되어지도록 설치된 연료분해 촉매부(400); 상기 터보차저(200)로부터 배출되는 하이드로카본이 스팀리포밍과 파티얼옥사이디션 및 터미널크랙킹을 통해 환원제로 변환되어지도록 구성됨을 특징으로 하는 선택적 촉매 환원장치용 연료분해촉매를 제공한다.The present invention is a fuel decomposition catalyst unit 400 installed to be composed of an active metal portion 410 and a base metal oxide portion 420 between the outlet side of the turbocharger 200 and the exhaust gas aftertreatment unit 300. ; It provides a fuel decomposition catalyst for a selective catalytic reduction device, characterized in that the hydrocarbon discharged from the turbocharger 200 is configured to be converted into a reducing agent through steam reforming, partition oxidation and terminal cracking.

본 발명에 의하면, 터보차저의 후방에 연료분해촉매가 아닌 연료분해촉매부가 설치되어지도록 함으로써, 선택적 촉매 환원장치로 유입되는 탄화수소의 양을 급격하게 줄어들도록 함과 동시에 변환된 환원제중 수소에 의하여 효과적인 질소의 정화율을 얻을 수 있도록 하고, 아울러 이를 통해 우레아 분사량을 줄어들도록 함에 따라 그에 따른 우레아 탱크의 용량도 줄어들도록 하여 공간활용을 높일 수 있는 효과가 있다.According to the present invention, by providing a fuel decomposition catalyst rather than a fuel decomposition catalyst in the rear of the turbocharger, the amount of hydrocarbons flowing into the selective catalytic reduction device is drastically reduced and at the same time effective by hydrogen in the converted reducing agent. It is possible to obtain the purification rate of nitrogen, and through this to reduce the amount of urea injection, thereby reducing the capacity of the urea tank accordingly has the effect of increasing the space utilization.

본 발명은, 터보차저(200)의 출구측과 배기가스후처리부(300) 사이의 내부에 활성금속부(410)와 베이스메탈옥사이드부(420)로 구성되어지도록 설치된 연료분해 촉매부(400); 상기 터보차저(200)로부터 배출되는 하이드로카본이 스팀리포밍과 파티얼옥사이디션 및 터미널크랙킹을 통해 환원제로 변환되어지도록 구성됨을 특징으로 하는 선택적 촉매 환원장치용 연료분해촉매를 제공한다.The present invention is a fuel decomposition catalyst unit 400 installed to be composed of an active metal portion 410 and a base metal oxide portion 420 between the outlet side of the turbocharger 200 and the exhaust gas aftertreatment unit 300. ; It provides a fuel decomposition catalyst for a selective catalytic reduction device, characterized in that the hydrocarbon discharged from the turbocharger 200 is configured to be converted into a reducing agent through steam reforming, partition oxidation and terminal cracking.

이때, 상기 활성금속부(410)는 Pt(백금), Pd(달라듐), Rh(로듐), Ru(로테늄), Sn(주석)으로 구성되어지고, 상기 베이스메탈옥사이드부(420)는 알루미나, 지로코니아, 세리아, 지올라이드로 구성되어지는 것이 바람직하다.In this case, the active metal part 410 is composed of Pt (platinum), Pd (dalladium), Rh (rhodium), Ru (rhothenium), Sn (tin), the base metal oxide portion 420 Preference is given to consisting of alumina, zirconia, ceria, and zeolide.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 도2는 본 발명에 따른 연료분해촉매를 갖는 선택적 촉매 환원장치를 도시한 구성도이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 2 is a block diagram showing a selective catalytic reduction apparatus having a fuel decomposition catalyst according to the present invention.

도2에 도시된 바와 같이, 본 발명이 따른 DFC(Diesel Fule Cracking: 연료분해촉매)부(400)는 엔진(100)에 설치된 터보차저(200)의 출구축과 배기가스 후처리 부(300) 사이에 설치되어 터보차저(200)로 배출되어지는 하이드로카본이 스팀 리포밍(Steam Reforming), 파티얼 옥사이디션(Partial Oxidation) 및 터멀크래킹(Thermal Cracking) 과정을 통해 다수의 고반응성 환원제로 변환되어지도록 구성되어 있다. 또한, 배기가스 후처리부(300)이 후방에는 SCR부(500)가 설치되어지고, 상기 SCR부(500)의 앞쪽에 우레아노즐(510)이 결합되어지도록 구성되어 있다.As shown in FIG. 2, the diesel fuel cracking (DFC) unit 400 according to the present invention includes an outlet shaft and an exhaust gas aftertreatment unit 300 of the turbocharger 200 installed in the engine 100. Hydrocarbons, which are installed between and discharged to the turbocharger 200, are converted into a plurality of highly reactive reducing agents through a process of steam reforming, partial oxidation, and thermal cracking. It is configured to In addition, the exhaust gas aftertreatment unit 300 is configured such that the SCR unit 500 is installed at the rear, and the urea nozzle 510 is coupled to the front of the SCR unit 500.

한편, 고반응성 환원제의 변환과정 중 스림 리포밍 변환은Meanwhile, the slim reforming conversion during the conversion of the highly reactive reducing agent

C16H34 + 16H2O ↔ 16CO + 33H2 △H[298K] = 2349 KJ/molC 16 H 34 + 16H 2 O ↔ 16CO + 33H 2 △ H [298K] = 2349 KJ / mol

피티얼 옥사이디션 변환은 The physical oxidation transformation

C16H34 + 0.5O2 → 8C2H4 + H2O △H[298K] = 426 KJ/molC 16 H 34 + 0.5 O 2 → 8 C 2 H 4 + H 2 O ΔH [298 K] = 426 KJ / mol

C16H34 + 8O2 ↔ 16CO + 17H2 △H[298K] = -1519 KJ/mol 및 C 16 H 34 + 8O2 ↔ 16CO + 17H 2 ΔH [298K] = -1519 KJ / mol and

터멀 크랙킹 변환은 The thermal cracking transformation

C16H34 → 2n-C8H17 → n-C6H13 → n-C4H9 → C2H5 → C2H4C 16 H 34 → 2n-C8H17 → n-C6H13 → n-C4H9 → C2H5 → C2H4

C16H34 → 8C2H4 + H2 △H[298K] = 668.6 KJ/mol 통하여 하이드로카본이 다수의 고반응성 환원제로 변환되어진다.Hydrocarbons are converted to a number of highly reactive reducing agents via C 16 H 34 → 8C 2 H 4 + H 2 ΔH [298K] = 668.6 KJ / mol.

상기 연료분해촉매부(400)는 활성금속부(410)와 베이스메탈옥사이드부(420)로 구성되어지고, 상기 활성금속부(410)는 백금(Pt), 팔라듐(Pd), 로듐(Rh), 로테 늄(Ru) 및 주석(Sn)으로 구성되어지고, 상기 베이스메탈옥사이드부(420)는 알루미나, 지로코니아, 세리아, 지올라이드로 구성되어진다.The fuel decomposition catalyst unit 400 is composed of an active metal portion 410 and a base metal oxide portion 420, the active metal portion 410 is platinum (Pt), palladium (Pd), rhodium (Rh) And, it is composed of ruthenium (Ru) and tin (Sn), and the base metal oxide portion 420 is composed of alumina, zirconia, ceria, zoliide.

도3은 본 발명에 따른 연료분해촉매에 의한 수소의 수율을 도시한 그래프이고, 도4는 본 발명에 따른 연료분해촉매에 의한 수소 및 일산화탄소의 증가율을 도시한 그래프이다.Figure 3 is a graph showing the yield of hydrogen by the fuel decomposition catalyst according to the present invention, Figure 4 is a graph showing the increase rate of hydrogen and carbon monoxide by the fuel decomposition catalyst according to the present invention.

도3 및 도4의 그래프에서 연료분해 촉매부(400)는 SCR부(500)로 유입되는 탄화수소의 양을 줄여 NOx 정화율을 높일 수 있게 된다. 또한, 연료분해촉매부(400)로 인해 변환된 환원제중 H2 는 SCR부(500)의 내에서 효과적인 NOx 정화 효율을 갖는다.(2H2+2NO → N2+2H2O, 4H2+2NO2→N2+4H2O)In the graphs of FIGS. 3 and 4, the fuel cracking catalyst unit 400 may increase the NOx purification rate by reducing the amount of hydrocarbon introduced into the SCR unit 500. In addition, among the reducing agents converted by the fuel decomposition catalyst unit 400, H 2 has an effective NOx purification efficiency in the SCR unit 500. (2H2 + 2NO → N2 + 2H2O, 4H2 + 2NO2 → N2 + 4H2O)

따라서, 결과적으로 생성된 H2는 NH3의 α-ratio를 감소시킴에 따라 우레아노즐(510)으로부터 분사량을 줄일 수 있게 되고, 이를 통해 우레아탱크의 용량도 상대적으로 적게 가저갈 수 있어 L/OUT 측면에서 유리하다.Therefore, the resultant H 2 can reduce the injection amount from the urea nozzle 510 by reducing the α-ratio of NH 3 , through which the capacity of the urea tank can be reduced relatively less L / OUT It is advantageous from the side.

이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어져야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않은면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although this invention was demonstrated in detail using the preferable embodiment, the scope of the present invention is not limited to a specific embodiment and should be interpreted by the attached Claim. In addition, those of ordinary skill in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

도1은 종래 기술에 따른 선택적 촉진 환원장치의 촉매에 의한 질소산화물의 정화율을 도시한 그래프,1 is a graph showing the purification rate of nitrogen oxides by the catalyst of the selective accelerated reduction apparatus according to the prior art,

도2는 본 발명에 따른 연료분해촉매를 갖는 선택적 촉매 환원장치를 도시한 구성도,2 is a block diagram showing a selective catalytic reduction device having a fuel decomposition catalyst according to the present invention;

도3은 본 발명에 따른 연료분해촉매에 의한 수소의 수율을 도시한 그래프,Figure 3 is a graph showing the yield of hydrogen by the fuel decomposition catalyst according to the present invention,

도4는 본 발명에 따른 연료분해촉매에 의한 수소 및 일산화탄소의 증가율을 도시한 그래프이다.4 is a graph showing the increase rate of hydrogen and carbon monoxide by the fuel decomposition catalyst according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

200:터보차저 300:배기가스후처리부200: turbocharger 300: exhaust gas after-treatment unit

410:활성금속부 420:베이스메탈옥사이드부410: active metal part 420: base metal oxide part

400:연료분해 촉매부400: fuel decomposition catalyst portion

Claims (2)

터보차저(200)의 출구측과 배기가스후처리부(300) 사이의 내부에 활성금속부(410)와 베이스메탈옥사이드부(420)로 구성되어지도록 설치된 연료분해 촉매부(400);A fuel cracking catalyst part 400 installed between the outlet side of the turbocharger 200 and the exhaust gas aftertreatment part 300 to include an active metal part 410 and a base metal oxide part 420; 상기 터보차저(200)로부터 배출되는 하이드로카본이 스팀리포밍과 파티얼옥사이디션 및 터멀크랙킹을 통해 환원제로 변환되어지도록 구성됨을 특징으로 하는 선택적 촉매 환원장치용 연료분해촉매.Hydrocarbon discharged from the turbocharger 200 is configured to be converted into a reducing agent through steam reforming, partition oxation and thermal cracking, the catalytic cracking catalyst for a selective catalytic reduction device. 제1항에 있어서,The method of claim 1, 상기 활성금속부(410)는 Pt, Pd, Rh, Ru, Sn으로 구성되어지고, 상기 베이스메탈옥사이드부(420)는 알루미나, 지로코니아, 세리아, 지올라이드로 구성되어짐을 특징으로 하는 선택적 촉매 환원장치용 연료분해촉매.The active metal part 410 is composed of Pt, Pd, Rh, Ru, Sn, and the base metal oxide part 420 is selective catalytic reduction characterized in that consisting of alumina, zirconia, ceria, geolide Fuel cracking catalyst for the device.
KR1020070131220A 2007-12-14 2007-12-14 Catalyst for scr KR100888310B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070131220A KR100888310B1 (en) 2007-12-14 2007-12-14 Catalyst for scr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070131220A KR100888310B1 (en) 2007-12-14 2007-12-14 Catalyst for scr

Publications (1)

Publication Number Publication Date
KR100888310B1 true KR100888310B1 (en) 2009-03-11

Family

ID=40698118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070131220A KR100888310B1 (en) 2007-12-14 2007-12-14 Catalyst for scr

Country Status (1)

Country Link
KR (1) KR100888310B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003253A (en) * 2009-08-28 2011-04-06 现代自动车株式会社 Exhaust system
KR101158816B1 (en) * 2009-08-21 2012-06-26 기아자동차주식회사 Exhaust Device Of Diesel Vehicle
US20190176128A1 (en) * 2017-12-13 2019-06-13 Johnson Matthey Public Limited Company Nh3 abatement with greater selectivity to n2

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060716A (en) * 2002-12-30 2004-07-06 사우스웨스트 리서치 인스티튜트 NOx AFTERTREATMENT SYSTEM AND METHOD FOR INTERNAL COMBUSTION ENGINES
US20060021332A1 (en) 2004-01-10 2006-02-02 Gerd Gaiser Exhaust system for an internal combustion engine and a respective operating method
US20060260297A1 (en) 2005-05-19 2006-11-23 Koch Calvin K Exhaust aftertreatment system and method of use for lean burn internal combustion engines
KR100857338B1 (en) 2007-05-30 2008-09-05 현대자동차주식회사 Device and method for variable injection in post injection of lean nox trap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060716A (en) * 2002-12-30 2004-07-06 사우스웨스트 리서치 인스티튜트 NOx AFTERTREATMENT SYSTEM AND METHOD FOR INTERNAL COMBUSTION ENGINES
US20060021332A1 (en) 2004-01-10 2006-02-02 Gerd Gaiser Exhaust system for an internal combustion engine and a respective operating method
US20060260297A1 (en) 2005-05-19 2006-11-23 Koch Calvin K Exhaust aftertreatment system and method of use for lean burn internal combustion engines
KR100857338B1 (en) 2007-05-30 2008-09-05 현대자동차주식회사 Device and method for variable injection in post injection of lean nox trap

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158816B1 (en) * 2009-08-21 2012-06-26 기아자동차주식회사 Exhaust Device Of Diesel Vehicle
US8601797B2 (en) 2009-08-21 2013-12-10 Hyundai Motor Company Exhaust device for diesel vehicle
CN102003253A (en) * 2009-08-28 2011-04-06 现代自动车株式会社 Exhaust system
US8414836B2 (en) 2009-08-28 2013-04-09 Hyundai Motor Company Exhaust system
US20190176128A1 (en) * 2017-12-13 2019-06-13 Johnson Matthey Public Limited Company Nh3 abatement with greater selectivity to n2

Similar Documents

Publication Publication Date Title
JP5676089B2 (en) Diesel oxidation catalyst and exhaust device equipped with the same
CN101564646B (en) Method for purification of an exhaust gas from a diesel engine
KR101699923B1 (en) Method for purification of exhaust gas from a diesel engine
JP5630024B2 (en) Diesel engine exhaust purification device and exhaust purification method
KR101631149B1 (en) Diesel engine exhaust gas purification device having ammonia decomposition module
JP5808247B2 (en) Method and apparatus for purifying diesel exhaust
EP2993322B1 (en) On-site regeneration method for denitrification catalyst in exhaust gas purification systems
WO2011090190A1 (en) Exhaust purification device and exhaust purification method for diesel engine
KR20090104441A (en) Apparatus for purifying exhaust gas
WO2016001034A1 (en) An exhaust aftertreatment system for a diesel engine
JP2011052679A (en) Exhaust gas aftertreatment device for diesel engine
KR20140062899A (en) Exhaust gas purification system of vehicle
KR20110023158A (en) Exhaust system
KR101027080B1 (en) Bi-functional catalyst for decomposing and oxidizing nitric oxide simultaneously and its preparation method therein
JPH05195756A (en) Exhaust gas purification device of engine
KR100888310B1 (en) Catalyst for scr
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
KR101289262B1 (en) Unification catalytic converter apparatus
KR20200054572A (en) Apparatus for purifying exhaust gas
KR101836260B1 (en) Exhaust gas purification system for vehicle
KR101806180B1 (en) Apparatus of purifying exhaust gas
JP5094199B2 (en) Exhaust gas purification device
KR100368034B1 (en) Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof
KR20080101451A (en) Purifying device for exhaust gas of internal combusition engine
KR102431789B1 (en) Reductant injection system for after-treatment of exhaust gas of old diesel vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180227

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200227

Year of fee payment: 12