KR100857338B1 - Device and method for variable injection in post injection of lean nox trap - Google Patents

Device and method for variable injection in post injection of lean nox trap Download PDF

Info

Publication number
KR100857338B1
KR100857338B1 KR1020070052495A KR20070052495A KR100857338B1 KR 100857338 B1 KR100857338 B1 KR 100857338B1 KR 1020070052495 A KR1020070052495 A KR 1020070052495A KR 20070052495 A KR20070052495 A KR 20070052495A KR 100857338 B1 KR100857338 B1 KR 100857338B1
Authority
KR
South Korea
Prior art keywords
injection
nox
catalyst
engine
concentration
Prior art date
Application number
KR1020070052495A
Other languages
Korean (ko)
Inventor
이진하
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070052495A priority Critical patent/KR100857338B1/en
Application granted granted Critical
Publication of KR100857338B1 publication Critical patent/KR100857338B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

A device and a method of the variable injection for NOx(Nitrogen Oxides) adsorber are provided to prevent fuel efficiency from being deteriorated and to improve exhaust gas purification efficiency by installing developed fuel injection patterns to an injector controller and varying fuel injection patterns based on the condition of engine operation. A device and a method of the variable injection having a CPF(Catalyst Particle Filter,200) and a NOx adsorber catalyst system containing NOx adsorber catalyst(500) have an injector controller(120) which controls the fuel injection timing based on the calculated amount of NOx generation under a specific operational condition of an engine and the NOx concentration of the exhaust gas and changes fuel injection pattern based on the operational condition and engine status such as increment of NOx emission and hydrocarbon slip amount, an oxygen sensor(410) which measures oxygen concentration of the exhaust gas, an injector(300) injecting fuel for post-injection, a NOx sensor(400) located at least a place before or after the NOx adsorber catalyst system to measure NOx concentration or discharged amount, a hydrocarbon slip prevention catalyst(560) at rear end of the NOx adsorber catalyst, and a HC(Hydro-Carbon) sensor(420) at downstream of the NOx adsorber catalyst to measure the amount of slipped hydrocarbon after passing through the hydrocarbon slip prevention catalyst.

Description

흡장형 NOx 촉매의 후분사용 가변 분사장치와 방법{Device and Method for variable injection in post injection of lean NOx trap}Device and Method for variable injection in post injection of lean NOx trap

도 1은 종래 발명의 흡장형 NOx 촉매의 2차분사계 가변 분사장치의 구조를 도시한 구조도이다.1 is a structural diagram showing the structure of a secondary injection system variable injection device of a conventional NOx catalyst.

도 2는 종래 발명의 후분사용 인젝터의 분사패턴을 나타낸 그래프이다.2 is a graph illustrating a spray pattern of a post injection injector of the related art.

도 3은 본 발명의 흡장형 NOx 촉매의 2차분사계 가변 분사장치의 구조를 도시한 구조도이다.Figure 3 is a structural diagram showing the structure of the secondary injection system variable injection device of the storage type NOx catalyst of the present invention.

도 4a는 본 발명의 흡장형 NOx 촉매의 재생시점과 NOx의 농도에 따른 후분사용 인젝터의 연료 분사 패턴을 판단하는 단계를 도시한 플로우차트이다.4A is a flowchart illustrating a step of determining a fuel injection pattern of a post-injection injector according to a regeneration time of an occlusion type NOx catalyst of the present invention and a concentration of NOx.

도 4b는 본 발명의 흡장형 NOx 촉매재생 중 엔진의 운전조건이 변화될 때, 후분사용 인젝터의 연료 분사 패턴을 변경하는 단계를 도시한 플로우차트이다.FIG. 4B is a flowchart illustrating a step of changing a fuel injection pattern of a post-injection injector when an operating condition of an engine is changed during regeneration of an occlusion type NOx catalyst of the present invention.

도 5는 후분사용 인젝터의 분사패턴의 정의를 나타내는 그래프이다.5 is a graph showing the definition of the injection pattern of the post injection injector.

도 6은 본 발명의 후분사용 인젝터의 다양한 건헐 분사패턴 사례를 나타내는 그래프이다.FIG. 6 is a graph showing various cases of gun-hollow injection patterns of the after injection injector of the present invention. FIG.

도 7은 본 발명의 NOx 재생 조건에 따른 분사 패턴의 변형을 나타내는 예를 도시한 그래프이다.7 is a graph showing an example of deformation of the injection pattern according to the NOx regeneration condition of the present invention.

도 8은 엔진조건에 따른 NOx Low emission map을 나타내는 그래프이다.8 is a graph illustrating a NOx low emission map according to engine conditions.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100: ECU 120: 후분사용 인젝터 제어부100: ECU 120: after injection injector control unit

200: 디젤매연 촉매여과필터(CPF) 300: 후분사용 인젝터200: diesel particulate catalyst filtration filter (CPF) 300: after injection injector

400: NOx 센서 410: 산소 센서400: NOx sensor 410: oxygen sensor

420: HC 센서 500: 흡장형 NOx 촉매 시스템420: HC sensor 500: occluded NOx catalyst system

520: 환원제 발생역할 촉매 추가코팅부520: Reducing agent generation role catalyst additional coating unit

540: 흡장형 NOx 촉매 560: HC 슬립방지 촉매540: occluded NOx catalyst 560: HC anti slip catalyst

600: 연료분해촉매(DFC)600: fuel decomposition catalyst (DFC)

본 발명은 디젤자동차의 배기가스 정화에 관한 것이다. 보다 상세하게는 흡장형 NOx 촉매가 재생될 때, 엔진 운전조건에 따라 후분사용 인젝터의 분사패턴을 조절하여 분사기간 동안에 가변적으로 분사를 제어하는 방법과 장치에 관한 것이다.The present invention relates to exhaust gas purification of diesel vehicles. More particularly, the present invention relates to a method and apparatus for controlling injection in a variable injection period by adjusting the injection pattern of a post injection injector according to engine operating conditions when the stored NOx catalyst is regenerated.

디젤자동차의 주된 대기오염 물질은 질소산화물(NOx)과 입자상물질(Particulate matter)이다. 따라서, 이들은 디젤자동차 배기가스 규제의 주요한 대상물질이 되고 있다.The main air pollutants in diesel vehicles are nitrogen oxides (NOx) and particulate matter. Therefore, they have become a major target of diesel vehicle exhaust gas regulation.

이러한 디젤자동차 배기가스 규제에 대응하기 위한 기술들은, 크게 엔진의 개량과 후처리 기술로 구분될 수 있다. 특히 디젤 주 배기가스를 저감하기 위한 후처리 기술로는 입자상물질 중 고비점(High boiling point) 탄화수소(HC)를 정화하기 위한 산화 촉매(Oxidation catalyst), 과잉 산소 분위기(Excess oxygen atmosphere) 하에서 NOx을 분해 또는 환원하는 흡장형 NOx 촉매, 그리고 입자상물질을 필터로 걸러주는 입자상물질 제거용 필터(Diesel particulate filter; DPF) 시스템 등이 있다.Techniques for responding to the regulation of diesel vehicle emissions can be largely divided into engine improvement and aftertreatment technology. In particular, post-treatment techniques to reduce diesel main exhaust gases include oxidation catalysts to purify high boiling point hydrocarbons (HC) in particulate matter and NOx under an excess oxygen atmosphere. An occlusion type NOx catalyst that decomposes or reduces, and a diesel particulate filter (DPF) system that filters particulate matter.

도 1은 종래 발명의 흡장형 NOx 촉매의 2차분사계 가변 분사장치의 구조를 도시한 구조도이다.1 is a structural diagram showing the structure of a secondary injection system variable injection device of a conventional NOx catalyst.

엔진배기관의 터보챠저 후방에 배기관 직결형(CCC형)의 디젤산화촉매(DOC; Diesel oxidation catalyst)와 디젤매연 촉매여과필터(CPF; Catalyst particulate filter)가 더해진 타입의 CCC형 CPF(20)가 설치되고, 그 후방에는 연료분해촉매(DFC; Diesel fuel cracking, 60)와 흡장형 NOx 촉매시스템(50)이 직렬로 설치된다. 흡장형 NOx 촉매시스템(50)은 앞부분에 환원제 발생역할 촉매 추가 코팅부(52)를 코팅한 구조이다.A CCC type CPF (20) of a type in which an exhaust pipe direct type (CCC type) diesel oxidation catalyst (DOC) and a diesel particulate catalyst filter (CPF) are added to the rear of the turbocharger of the engine exhaust pipe. At the rear, a diesel fuel cracking (DFC) 60 and an occlusion type NOx catalyst system 50 are installed in series. The occlusion type NOx catalyst system 50 has a structure in which a catalyst additional coating portion 52 is coated on a reducing agent generating role in the front portion.

또한, CPF(20) 후방에서 DFC(60)사이에 디젤 연료를 분사하는 후분사용 인젝터(30)가 설치되고, 흡장형 NOx 촉매시스템(50)의 전방에 NOx의 농도를 측정할 수 있는 NOx 센서(40)가 설치된다.In addition, a post injection injector 30 for injecting diesel fuel between the DFCs 60 behind the CPF 20 is installed, and a NOx sensor capable of measuring the concentration of NOx in front of the occlusion type NOx catalyst system 50. 40 is installed.

ECU(Electronic control unit, 10)가 NOx 센서(40)에서 측정한 NOx 농도로부터 흡장형 NOx 촉매(54)의 재생시점을 판단하게 되면 후분사용 인젝터(30)를 작동시켜 연료를 분사하게 된다.When the ECU (Electronic control unit) 10 determines the regeneration time of the storage type NOx catalyst 54 from the NOx concentration measured by the NOx sensor 40, the after injection injector 30 is operated to inject fuel.

도 2는 종래 발명의 후분사용 인젝터의 분사패턴을 나타낸 그래프이다.2 is a graph illustrating a spray pattern of a post injection injector of the related art.

흡장형 NOx 촉매(54)와 NOx 저감을 위해 엔진 배출가스를 공연비 조건에 가깝게 조절하고 이와 더불어 후분사용 인젝터(30)를 이용하여 연료를 분사하여, 분사된 연료에서 HC와 CO 등의 발생에 의한 환원제 영향으로 흡장형 NOx 촉매(54)에 흡장된 NOx를 NO로 환원시키는 장치와 방법에 있어서, 흡장형 NOx 촉매(54)의 NOx 정화성능에 많은 영향을 미치는 후분사용 인젝터(30)의 연료 분사패턴이 초기의 분사기간 동안 연속분사 방식에서 단일 분사의 일정한 분사 패턴을 갖는 분사방식으로 발전되었다.In order to reduce the NOx catalyst 54 and the NOx reduction, the engine exhaust gas is controlled to be close to the air-fuel ratio condition, and fuel is injected using the after injection injector 30. In the apparatus and method for reducing NOx occluded in the occlusion type NOx catalyst 54 with the effect of a reducing agent, fuel injection of the post injection injector 30 having a great influence on the NOx purification performance of the occlusion type NOx catalyst 54. The pattern was developed from the continuous injection method during the initial injection period to the injection method with a constant injection pattern of a single injection.

하지만 이러한 방법은 엔진의 순간적이고 다양한 운전 조건의 변화에는 한계가 있다. 다양한 엔진의 운전조건에 따른 배출가스 온도, 배출가스 중의 산소 농도 등 다양한 조건에 대해 일정한 분사패턴의 연료를 분사하게 되면 연료분사량이 적어져야 하는 경우에도 필요 이상의 연료가 분사되어 DFC(60), 흡장형 NOx 촉매(54)의 열화 및 황피독을 촉진시킨다.However, this method is limited in the change of the engine's instantaneous and various operating conditions. When the fuel of a certain injection pattern is injected for various conditions such as the exhaust gas temperature and the oxygen concentration in the exhaust gas according to the operating conditions of the various engines, even more fuel is required to be injected even if the fuel injection amount is to be reduced, so that the DFC 60 is occluded. Promote deterioration and sulfur poisoning of the type NOx catalyst 54.

따라서 본 발명은 이러한 문제점을 해결하기 위해 발명한 것으로서, 흡장형 NOx 촉매의 재생시점에 운전 조건 등을 판단하여 엔진의 다양한 운전조건에 적합하게 분사패턴을 결정하고 개발하여 흡장형 NOx 촉매의 후분사용 가변 분사방법과 장치를 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve such a problem, by determining the operating conditions at the time of regeneration of the occlusion type NOx catalyst, and determining the injection pattern suitable for various operating conditions of the engine and developing the post-injection of the occlusion type NOx catalyst. Its purpose is to provide a variable injection method and apparatus.

이러한 목적을 달성하기 위하여 본 발명은, 디젤매연 촉매여과필터(CPF)와 흡장형 NOx 촉매를 내장한 흡장형 NOx 촉매시스템을 포함한 흡장형 NOx 촉매의 후분사용 가변 분사장치에서, 엔진 운전 조건에 따라 계산된 NOx의 발생량과 배출가스의 NOx의 농도에 따라 연료 분사 시점을 제어하고 엔진 운전 조건, 엔진 상태에 따라 연료 분사 패턴을 변경하는 후분사용 인젝터 제어부를 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치 및 방법을 제공한다.In order to achieve the above object, the present invention provides a variable injection device for a post-injection type NOx catalyst including a diesel particulate catalyst filtration filter (CPF) and a storage type NOx catalyst system incorporating the storage type NOx catalyst. Post injection variable injection of the occlusion type NOx catalyst including a post injection injector control unit controlling the fuel injection timing according to the calculated NOx generation amount and the NOx concentration of the exhaust gas and changing the fuel injection pattern according to the engine operating condition and engine condition. An apparatus and method are provided.

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.

도 3은 본 발명의 흡장형 NOx 촉매의 2차분사계 가변 분사장치의 구조를 도시한 구조도이다.Figure 3 is a structural diagram showing the structure of the secondary injection system variable injection device of the storage type NOx catalyst of the present invention.

종래의 ECU(10)는 종래의 NOx 센서(40)에서의 NOx 농도를 이용하여 흡장형 NOx 촉매(54)의 재생시점을 판단하여 후분사용 인젝터(30)를 작동시켰으나, 본 발명에서의 ECU(100)는 흡입공기량, 연료분사량, 엔진회전수, EGR, 토크 등의 엔진 운전 정보만을 후분사용 인젝터 제어부(120)으로 제공하는 역할을 하고, 후분사용 인젝터 제어부(120)가 상기 엔진운전정보 등을 이용하여 흡장형 NOx 촉매(540)의 재생시점을 판단하고 엔진운전조건에 적합한 후분사 연료의 분사패턴을 결정하여 후분사용 인젝터(300)에서 분사되도록 제어한다.The conventional ECU 10 used the NOx concentration in the conventional NOx sensor 40 to determine the regeneration time of the occlusion type NOx catalyst 54 to operate the post injection injector 30. 100 serves to provide only the engine operation information such as the intake air amount, fuel injection amount, engine speed, EGR, torque to the after injection injector control unit 120, the after injection injector control unit 120 provides the engine operation information and the like. The regeneration time of the occlusion type NOx catalyst 540 is determined, and the injection pattern of the post injection fuel suitable for the engine operating condition is determined to control the injection of the post injection injector 300.

후분사용 인젝터(300)에서 분사된 연료는 DFC(600)를 거치면서 흡장형 NOx 촉매(540)에서 반응하기 쉽도록 분해되어 확산관 구조의 출구를 통해 흡장형 NOx 촉매(540)로 골고루 투입되게 된다. DFC(600)를 통과한 연료에서 HC가 생성되어 상기 흡장형 NOx 촉매(540)에서는 NO가 제거된다.Fuel injected from the after injection injector 300 is decomposed so as to easily react in the occlusion type NOx catalyst 540 while passing through the DFC 600, and is evenly introduced into the occlusion type NOx catalyst 540 through the outlet of the diffusion tube structure. do. HC is generated from the fuel passing through the DFC 600, and NO is removed from the occluded NOx catalyst 540.

터보차저 후방에 배기관 직결형(CCC형)으로 종래의 DOC와 CPF으로 이루어진 CPF(20)에서 촉매를 입구부에 귀금속을 집중해 DOC역할을 하도록 하여 DOC를 제거하고 CPF만으로 이루어진 CCC형 CPF(200)가 설치된다. 그 후방에는 DFC(600)와 흡장형 NOx 촉매시스템(500)이 직렬로 설치된다. 흡장형 NOx 촉매시스템(500)은 DFC(600)의 역할을 보충하기 위한 환원제 발생역할 촉매 추가코팅부(520)가 흡장형 NOx 촉매(540)의 앞부분에 코팅되고, 중간에는 흡장형 NOx 촉매(540), 뒷부분에는 HC 슬립을 방지하는 HC 슬립방지 촉매(560)가 코팅된 구조이다. HC 슬립방지 촉매(560)은 엔진운전이 급감속되는 경우 연료분사량과 분사조건이 맞지 않아 HC가 생성되어 슬립될 수 있으므로 이를 방지하기 위하여 설치된다.The exhaust pipe is directly connected to the rear of the turbocharger (CCC type) in the CPF (20) consisting of the conventional DOC and CPF, the catalyst is concentrated on the inlet metal in the inlet to play the DOC role to remove the DOC and CCC-type CPF (200 only CPF) ) Is installed. At the rear, a DFC 600 and an occlusion type NOx catalyst system 500 are installed in series. The occlusion type NOx catalyst system 500 has a reductant generation catalyst additional coating part 520 coated on the front part of the occlusion type NOx catalyst 540 to supplement the role of the DFC 600, and the occlusion type NOx catalyst ( 540), the rear portion is coated with a HC slip prevention catalyst 560 to prevent HC slip. The HC slip prevention catalyst 560 is installed to prevent the HC from slipping because the fuel injection amount and the injection condition do not match when the engine operation is suddenly reduced.

CPF(200)와 DFC(600)사이에 연료를 분사하는 후분사용 인젝터(300)가 설치되고 흡장형 NOx 촉매시스템(500)의 전방 또는 후방, 또는 전·후방 모두에 NOx 농도를 측정하는 NOx 센서(400)가 설치된다. 또한, CPF(200) 후단부에 배출가스의 산소농도를 측정할 수 있는 산소센서(410)가 설치되고, NOx 센서(400)의 후방에 HC 슬립을 측정할 수 있는 HC 슬립센서(420)가 설치된다.A NOx sensor is installed between the CPF 200 and the DFC 600, and the after injection injector 300 is installed to measure the NOx concentration in the front or rear of the occlusion type NOx catalyst system 500, or both front and rear. 400 is installed. In addition, an oxygen sensor 410 is installed at the rear end of the CPF 200 to measure the oxygen concentration of the exhaust gas, and an HC slip sensor 420 capable of measuring HC slip at the rear of the NOx sensor 400 is provided. Is installed.

도 4는 본 발명의 흡장형 질소산화물(NOx) 촉매가 재생될 때, 엔진 운전조건에 따라 후분사용 인젝터의 분사패턴을 조절하여 분사기간 동안에 가변적으로 분사를 제어하는 단계를 도시한 플로우차트이고, 도 6은 본 발명의 후분사용 인젝터의 다양한 건헐 분사패턴 사례를 나타내는 그래프이다. 도 8은 엔진조건에 따른 NOx Low emission map을 나타내는 그래프이다.4 is a flowchart illustrating a step of variably controlling the injection during the injection period by adjusting the injection pattern of the after injection injector according to the engine operating conditions when the occlusion type nitrogen oxide (NOx) catalyst of the present invention is regenerated, FIG. 6 is a graph showing various cases of gun-hollow injection patterns of the after injection injector of the present invention. FIG. 8 is a graph illustrating a NOx low emission map according to engine conditions.

후분사용 인젝터 제어부는 ECU에서 제공하는 흡입공기량, 연료분사량, 회전수, 배기가스 재순환 장치(EGR; Exhaust gas recirculation), 토크 등의 엔진 운전 조건을 수신(S402)하여 도 8의 그래프를 이용하여 그에 따른 NOx의 발생량을 예측(S406)한다. 상기 예측값이 흡장형 NOx 촉매의 흡장량 기준의 설정비율 이상인지 판단하고 NOx 센서에서 NOx 농도를 측정(S404)한 것을 수신하여 NOx 농도가 설정값 이상인지 판단(S408)하는 단계(S410)를 거친다.After-injector injector control unit receives the engine operating conditions such as the intake air amount, fuel injection amount, rotation speed, exhaust gas recirculation (EGR), torque provided by the ECU (S402) and using the graph of FIG. A generation amount of NOx is predicted (S406). It is determined whether the predicted value is equal to or greater than a set ratio based on the occlusion amount of the occlusion type NOx catalyst, and receiving the measurement of the concentration of the NOx by the NOx sensor (S404) to determine whether the concentration of the NOx is greater than or equal to the set value (S408). .

상기 예측된 NOx 발생량과 측정된 NOx 농도를 기준으로 하여 상기 후분사용 인젝터 제어부는 상기 엔진 운전 조건을 판단하여 후분사용 인젝터의 연료분사패턴을 결정하고 후분사용 인젝터에서 연료가 분사되는 단계(S450)를 거침으로써 흡장형 NOx 촉매가 재생된다.The post-injection injector control unit determines the fuel injection pattern of the post-injection injector based on the predicted NOx generation amount and the measured NOx concentration and determines the fuel injection pattern of the post-injection injector (S450). As a result, the occlusion type NOx catalyst is regenerated.

상기 NOx 발생량을 예측하고 NOx 농도를 측정하는 단계(S410)와 후분사용 인젝터의 연료분사패턴을 결정하는 단계(S450)사이에 온도센서에 배출가스의 온도가 200℃이상이 되는지, 그리고 배출가스의 산소농도가 3%이하인지를 판단(S432)하여 이 조건을 만족하지 않는 경우에는 엔진의 운전조건을 변경하여 배출가스의 온도를 200℃으로 상승하고, 배출가스의 산소농도를 3%이하로 조절(S434)하는 단계(S430) 를 거친다. 배출가스의 온도가 200℃이상이고, 배출가스의 산소농도가 3%이하의 조건을 만족하는 경우에는 다음 단계인 상기 후분사용 인젝터의 연료분사패턴을 결정하는 단계(S450)로 넘어간다.Between the step of predicting the amount of NOx generation and measuring the NOx concentration (S410) and the step of determining the fuel injection pattern of the after-use injector (S450) whether the temperature of the exhaust gas to the temperature sensor is 200 ℃ or more, and the exhaust gas If it is determined that the oxygen concentration is 3% or less (S432) and this condition is not satisfied, the operating conditions of the engine are changed to increase the temperature of the exhaust gas to 200 ° C, and the oxygen concentration of the exhaust gas is adjusted to 3% or less. In step S434, the process goes through step S430. When the temperature of the exhaust gas is 200 ° C. or more and the oxygen concentration of the exhaust gas satisfies a condition of 3% or less, the process proceeds to a step S450 of determining a fuel injection pattern of the post injection injector.

상기 후분사용 인젝터의 연료분사패턴은 NOx의 농도를 기준으로 판단(S454)하는데, NOx 농도가 43ppm이하인 경우에는 도 6의 (a)에 도시된 상기 후분사용 인젝터에서 균일한 분사패턴으로 연료를 분사(S456)하고, NOx의 농도가 43ppm이상 290ppm이하인 경우에는 도 6의 (b)에 도시된 상기 후분사용 인젝터에서 초기에 농후한 분사패턴으로 연료를 분사(S458)한다. 그리고 NOx의 농도가 290ppm이상인 경우에는 도 6의 (e)에 도시된 상기 후분사용 인젝터에서 후반에 농후한 분사패턴으로 연료를 분사(S460)하는 단계(S450)를 거친다.The fuel injection pattern of the after injection injector is determined based on the concentration of NOx (S454). When the NOx concentration is 43 ppm or less, the fuel is injected with a uniform injection pattern in the after injection injector illustrated in FIG. 6A. In the case where the concentration of NOx is 43 ppm or more and 290 ppm or less, the fuel is injected with an initially rich injection pattern in the post injection injector shown in FIG. 6 (b) (S458). When the concentration of NOx is 290 ppm or more, the fuel is injected (S460) in the latter thick injection pattern in the post injection injector shown in FIG. 6E.

도 6의 (c)는 상기 후분사용 인젝터에서 중간에 농후하게 분사하는 패턴을 나타내고 도6의 (d)는 상기 후분사용 인젝터에서 초기와 후반에 농후하게 분사하는 패턴을 나타내는 그래프이다.6 (c) is a graph showing a pattern to be thickly sprayed in the middle of the post-injection injector, Figure 6 (d) is a graph showing a pattern of a thick injection in the early and second half in the post-injection injector.

상기 흡장형 NOx 촉매가 재생(S462)되는 동안 상기 엔진운전조건이 변함에 따라 상기 후분사용 인젝터에서 분사되는 연료의 분사패턴이 변경(S464)되는데, 엔진이 감속하는 경우에는 산소센서에서 산소의 증가량을 판단(S472)하여 측정한 배기가스의 산소량이 5%이상 증가하면 후분사용 인젝터에서 연료의 분사를 중지(S474)하고 배기가스의 산소량이 5%이상 증가하지 않으면 HC 슬립(Slip)센서에서 HC의 슬립양을 측정(S476)한다. 상기 HC의 슬립양이 일정 농도이상 증가하면 상기 후분사용 인젝터의 연료분사 패턴을 변경하는 단계(S450)으로 돌아가 상기 후분사 용 인젝터의 연료분사패턴을 변경(S454)하고, 상기 HC의 슬립양이 일정 농도이상 증가하지 않으면 현재 상기 흡장형 NOx 촉매의 재생상태를 유지하는 단계(S462)로 돌아가는 단계(S470)을 거친다.As the engine operating condition is changed while the occlusion type NOx catalyst is regenerated (S462), the injection pattern of the fuel injected from the post-injection injector is changed (S464). When the engine is decelerated, the oxygen increase in the oxygen sensor is increased. If the oxygen content of the exhaust gas increases by more than 5%, the fuel injection is stopped by the after-injector (S474). When the oxygen content of the exhaust gas does not increase by more than 5%, HC slip sensor is used. The amount of slips is measured (S476). When the slip amount of the HC increases by more than a predetermined concentration, the flow returns to the step of changing the fuel injection pattern of the post injection injector (S450), and the fuel injection pattern of the post injection injector is changed (S454), and the slip amount of HC is increased. If it does not increase above a certain concentration, the process returns to step S462 of maintaining the regenerated state of the stored NOx catalyst at present (S470).

또한, 엔진이 가속하는 경우에는 흡장형 NOx 촉매의 재생중 NOx 센서와 엔진운전정보를 수신하여 NOx의 기준 배출량이 증가하는지를 판단(S492)하여 NOx의 기준 배출량이 증가하면 상기 후분사용 인젝터의 연료분사 패턴을 변경하는 단계(S450)로 돌아가 상기 후분사용 인젝터의 연료분사패턴을 변경하고, 상기 NOx의 기준 배출량이 증가하지 않으면 현재 상기 흡장형 Nox 촉매의 재생상태를 유지하는 단계(S462)로 돌아가는 단계(S490)을 거친다.In addition, when the engine is accelerated, the NOx sensor and the engine operation information are received during regeneration of the occlusion type NOx catalyst, and it is determined whether the standard emission amount of NOx is increased (S492). When the standard emission amount of NOx is increased, the fuel injection of the post injection injector is increased. Returning to the step of changing the pattern (S450) to change the fuel injection pattern of the after injection injector, and if the reference emission of the NOx does not increase, returning to the step (S462) of maintaining the regeneration state of the stored Nox catalyst at present. It passes through (S490).

또한, 엔진의 운전정보가 변경되지 않는 경우에는 NOx 센서에서 NOx 농도를 측정한 것을 수신(S482)하여 일정 농도 이하인지를 판단(S484)하여 일정 농도 이하이면 흡장형 NOx 촉매의 재생을 종료하고 NOx 농도가 일정 농도 이하가 아니면 현재 흡장형 NOx 촉매의 재생상태를 유지하는 단계(S462)로 돌아가는 단계(S480)를 거친다.In addition, when the operation information of the engine does not change, the NOx sensor receives the measurement of the concentration of NOx (S482) and determines whether it is below a certain concentration (S484). If it is below a certain concentration, the regeneration of the occlusion type NOx catalyst is terminated and the NOx If the concentration is not below a predetermined concentration, the process returns to step S462 of maintaining the regenerated state of the current occlusion type NOx catalyst (S480).

도 5는 후분사용 인젝터의 분사패턴의 정의를 나타내는 그래프이다.5 is a graph showing the definition of the injection pattern of the post injection injector.

상기 후분사용 인젝터의 분사 패턴을 정의할 때는 분사주기와 1회 분사기간을 측정하여 1회 분사기간을 분사주기로 나누어 그 비율로서 정의한다.When defining the injection pattern of the post injection injector, the injection period and one injection period are measured, and the one injection period is divided into the injection periods and defined as the ratio.

도 7은 본 발명의 NOx 재생 조건에 따른 분사 패턴의 변형을 나타내는 예를 도시한 그래프이다.7 is a graph showing an example of deformation of the injection pattern according to the NOx regeneration condition of the present invention.

배기가스의 산소농도에 따라 NOx의 환원을 위한 후분사 농도의 일정농 도(Threshold level)이 존재하여 일정농도(Threshold level)이하의 후분사는 NOx를 환원시키지 못하고 탁장만 시킨다. 그러므로 일정농도(Threshold level)이상의 농도로 분사를 해야 탈장된 NOx를 환원시킬 수 있다. 그러나 일정농도(Threshold level)이상 높은 농도로 후분사를 하게 되면 총탄화수소(THC)의 슬립이 과도하게 발행한다.Depending on the oxygen concentration of the exhaust gas, there is a certain threshold level of post-injection concentration for the reduction of NOx, so that the post-injection below a certain level does not reduce the NOx and only makes the table. Therefore, spraying at a concentration above a certain level (Threshold level) can reduce the hernia NOx. However, post-injection to higher concentrations above a certain threshold level causes excessive total hydrocarbon (THC) slip.

또한, NOx의 환원 가능 후분사농도(Threshold level)는 산소농도가 낮을 수록 낮아지는데, 배기유량이 증가할수록 후분사농도 및 분사량을 늘려서 NOx의 정화율을 향상시켜야 한다. 그리고 후분사농도의 증가는 총탄화수소(THC)의 슬립양을 증가시키므로, 엔진조건에 따라 분사량을 증가시키는 것이 바람직하다.In addition, the reducible post injection concentration (NOx) of the NOx decreases as the oxygen concentration is low. As the exhaust flow rate increases, the post injection concentration and the injection amount should be increased to improve the NOx purification rate. In addition, since the increase in after injection concentration increases the slip amount of the total hydrocarbon (THC), it is preferable to increase the injection amount according to the engine conditions.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

이상에서 설명한 바와 같이 본 발명에 의하면, 후분사용 인젝터의 연료분사 패턴을 개발하여 이를 후분사용 인젝터 제어부에 설치하여 엔진 운전 조건에 따라 분사패턴을 유기적으로 변화시켜 연비가 악화되는 것을 방지하고 배출가스의 정화효율을 향상시키는 효과가 있다.As described above, according to the present invention, the fuel injection pattern of the after injection injector is developed and installed in the after injection injector control unit to organically change the injection pattern according to the engine operating conditions, thereby preventing fuel economy from deteriorating and It is effective to improve the purification efficiency.

Claims (12)

디젤매연 촉매여과필터(CPF)와 흡장형 NOx 촉매를 내장한 흡장형 NOx 촉매시스템을 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치에서,In a post injection variable injection device for a stored NOx catalyst comprising a diesel particulate catalyst filtration filter (CPF) and a stored NOx catalyst system incorporating the stored NOx catalyst, 엔진 운전 조건에 따라 계산된 NOx의 발생량과 배출가스의 NOx의 농도에 따라 연료 분사 시점을 제어하고 엔진 운전 조건, 엔진 상태에 따라 연료 분사 패턴을 변경하는 후분사용 인젝터 제어부Post injection injector control to control the fuel injection time according to the NOx concentration calculated by engine operating condition and NOx concentration of exhaust gas and to change the fuel injection pattern according to engine operating condition and engine condition 를 포함하며, 상기 엔진상태는 NOx의 배출량의 증가상태, HC 슬립양을 포함하며 상기 분사장치는The engine state includes an increase state of the amount of NOx emissions, HC slip amount and the injector 배기가스의 산소농도를 측정하는 산소센서;An oxygen sensor for measuring the oxygen concentration of the exhaust gas; 연료를 분사하는 후분사용 인젝터;After injection injectors for injecting fuel; 상기 흡장형 NOx 촉매시스템의 전·후방 중 어느 한 곳 이상에 설치되어 상기 NOx의 농도와 배출량을 측정하는 NOx 센서;A NOx sensor installed in at least one of front and rear of the occlusion type NOx catalyst system to measure the concentration and the emission amount of the NOx; 상기 흡장형 NOx 촉매의 후단에 설치되어 HC의 슬립을 방지하는 HC 슬립방지 촉매;An HC slip prevention catalyst installed at a rear end of the occlusion type NOx catalyst to prevent slippage of HC; 상기 흡장형 NOx 촉매시스템의 후방에 설치되어 상기 HC 슬립방지 촉매를 통과한 배기가스의 상기 HC 슬립양을 측정하는 HC 센서HC sensor installed at the rear of the storage type NOx catalyst system to measure the HC slip amount of the exhaust gas which has passed the HC slip prevention catalyst 를 더 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치.After injection variable injection device of the storage type NOx catalyst further comprising. 삭제delete 제1항에 있어서,The method of claim 1, 상기 흡장형 NOx 촉매의 전단에 설치되어 환원제를 발생하는 환원제 발생역할 촉매 추가코팅부를 더 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치.A post injection variable injection apparatus for the occlusion type NOx catalyst further comprising a catalyst additional coating part installed at a front end of the occlusion type NOx catalyst to generate a reducing agent. 제3항에 있어서,The method of claim 3, 상기 흡장형 NOx 촉매시스템 안에 포함되어 상기 환원제 발생역할 촉매 추가코팅부의 전단에 설치되고 연료를 분해하는 연료분해 촉매(DFC)를 더 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치.And a fuel decomposition catalyst (DFC) installed in the storage type NOx catalyst system and installed at a front end of the catalyst additional coating portion for reducing the generation agent, and further comprising a fuel decomposition catalyst (DFC). 제1항에 있어서,The method of claim 1, 흡입공기량, 연료분사량, 엔진회전수, 엔진 부하 등의 엔진 운전조건을 상기 후분사용 인젝터 제어부에 제공하는 엔진제어 ECU를 더 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치.And a engine control ECU for providing engine operation conditions such as intake air amount, fuel injection amount, engine speed, engine load, and the like to the after injection injector control unit. 제1항에 있어서, 상기 연료 분사 패턴은 상기 후분사용 인젝터 제어부에 저장되어 있으며, 엔진의 운전조건에 따라 균일 분사 패턴, 초기에 농후한 분사 패턴, 중간에 농후한 분사 패턴, 초기와 후반에 농후한 분사 패턴, 후반에 농후한 분사 패턴 등을 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사장치.The fuel injection pattern of claim 1, wherein the fuel injection pattern is stored in the post-injection injector control unit, and the uniform injection pattern, the initially rich injection pattern, the intermediate rich injection pattern, and the early and second rich in accordance with the operating conditions of the engine. A post injection variable injector for an occlusion type NOx catalyst comprising one spray pattern, a thick spray pattern in the latter half, and the like. 엔진으로부터 배출되는 질소산화물(NOx)을 제거하는 흡장형 NOx 촉매의 재생제어를 위한 후분사용 가변 분사방법으로서,A post injection variable injection method for regeneration control of an occlusion type NOx catalyst which removes nitrogen oxide (NOx) discharged from an engine, 엔진 운전 정보로 예측한 NOx 발생량과 NOx 센서에서 측정된 NOx의 농도를 기준으로 재생시점을 판단하는 단계;Determining a regeneration time based on the amount of NOx generated by the engine operation information and the concentration of NOx measured by the NOx sensor; 상기 NOx의 농도에 따른 후분사용 인젝터의 연료 분사 패턴을 결정하는 단계;Determining a fuel injection pattern of a post injection injector according to the concentration of NOx; 상기 흡장형 NOx 촉매재생 중 엔진이 감속하는 경우, 배출가스의 산소농도의 증가량이 설정값 이상이면 상기 후분사용 인젝터의 분사를 중지하고, 설정값 이하이면 HC 슬립양을 판단하여 상기 HC 슬립양이 일정값 이상이면 상기 후분사용 인젝터의 분사 패턴을 변경하고 상기 HC 슬립양이 일정값 이하이면 재생상태를 유지하는 단계;When the engine is decelerated during the regeneration of the occlusion type NOx catalyst, if the increase in oxygen concentration of the exhaust gas is greater than or equal to the set value, the injection of the after-injector is stopped. Changing the spray pattern of the post-injection injector if the predetermined value is higher than the predetermined value, and maintaining the regeneration state if the HC slip amount is lower than the predetermined value; 상기 흡장형 NOx 촉매재생 중 엔진이 가속하는 경우, 상기 NOx의 배출증가 여부에 따라 연료 분사 패턴을 결정하는 단계;Determining the fuel injection pattern according to whether the emission of the NOx increases when the engine accelerates during the regeneration of the occlusion type NOx catalyst; 상기 흡장형 NOx 촉매재생 중 엔진의 조건변화가 없는 경우, 상기 NOx의 배출 농도에 따라 재생 종료 여부를 판단하는 단계;Determining whether to end the regeneration according to the exhaust concentration of the NOx when there is no condition change of the engine during regeneration of the occlusion type NOx catalyst; 를 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사방법.After injection variable injection method of the occlusion type NOx catalyst comprising a. 제7항에 있어서, 상기 재생시점 판단 단계는,The method of claim 7, wherein the determining of the reproduction time point, 배출가스의 온도를 200℃이상, 배출가스 산소농도를 3%이하로 조절하는 단계를 더 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사방법.A post injection variable injection method of an occlusion type NOx catalyst further comprising the step of adjusting the temperature of the exhaust gas to 200 ° C. or more and the exhaust gas oxygen concentration to 3% or less. 제7항에 있어서, 상기 연료 분사패턴 결정 단계는,The method of claim 7, wherein the determining the fuel injection pattern, 상기 NOx의 농도가 약 43ppm이하이면 상기 후분사용 인젝터에서 균일한 연료분사가 이루어지는 단계;Uniform fuel injection in the post injection injector when the concentration of NOx is about 43 ppm or less; 상기 NOx의 농도가 약 43ppm이상 290ppm이하이면 상기 후분사용 인젝터에서 초반에 농후하게 연료분사가 이루어지는 단계;When the concentration of the NOx is about 43ppm or more and 290ppm or less, a step of fuel injection is carried out in the early stage in the post injection injector; 상기 NOx의 농도가 290ppm이상이면 상기 후분사용 인젝터에서 후반에 농후하게 연료분사가 이루어지는 단계;If the concentration of the NOx is more than 290ppm, the fuel injection is made rich in the latter part of the post injection injector; 를 포함하는 흡장형 NOx 촉매의 후분사용 가변 분사방법.After injection variable injection method of the occlusion type NOx catalyst comprising a. 제7항에 있어서, 상기 엔진이 감속하는 단계에서 증가하는 배기 산소량의 설정값은 5%인 흡장형 NOx 촉매의 후분사용 가변 분사방법.8. The variable injection method of post-injection type NOx catalyst according to claim 7, wherein the set value of the amount of exhaust oxygen increased in the step of decelerating the engine is 5%. 제7항에 있어서, 상기 엔진이 가속하는 단계는,The method of claim 7, wherein the step of accelerating the engine, NOx의 기준 배출량이 증가하는 경우에는 상기 후분사용 인젝터의 분사 패턴을 변경하고, 상기 NOx의 기준 배출량이 증가하지 않는 경우에는 재생상태를 유지하는 흡장형 NOx 촉매의 후분사용 가변 분사방법.The injection method of the post-injection variable injection method of the occlusion type NOx catalyst which changes the injection pattern of the after-injection injector when the reference amount of NOx increases, and maintains the regeneration state when the reference amount of the NOx does not increase. 제7항에 있어서, 상기 엔진 조건이 변하지 않는 단계는,The method of claim 7, wherein the step of changing the engine condition, NOx의 농도가 일정 농도 이하이면 상기 후분사용 인젝터의 분사를 종료하여 재생을 종료하고, 일정 농도 이상이면 재생상태를 유지하는 흡장형 NOx 촉매의 후분사용 가변 분사방법.After the injection of the post injection injector is terminated when the concentration of NOx is below a certain concentration, regeneration is terminated, and when the concentration is above a predetermined concentration, the post injection variable injection method of the stored NOx catalyst is maintained.
KR1020070052495A 2007-05-30 2007-05-30 Device and method for variable injection in post injection of lean nox trap KR100857338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070052495A KR100857338B1 (en) 2007-05-30 2007-05-30 Device and method for variable injection in post injection of lean nox trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070052495A KR100857338B1 (en) 2007-05-30 2007-05-30 Device and method for variable injection in post injection of lean nox trap

Publications (1)

Publication Number Publication Date
KR100857338B1 true KR100857338B1 (en) 2008-09-05

Family

ID=40022683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070052495A KR100857338B1 (en) 2007-05-30 2007-05-30 Device and method for variable injection in post injection of lean nox trap

Country Status (1)

Country Link
KR (1) KR100857338B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888310B1 (en) 2007-12-14 2009-03-11 현대자동차주식회사 Catalyst for scr
KR100957138B1 (en) 2007-07-09 2010-05-11 현대자동차주식회사 Method for determining malfunction of nitrogen oxide sensor and selective catalytic reduction system operating the same
KR100992816B1 (en) 2008-11-28 2010-11-08 현대자동차주식회사 System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
KR101020819B1 (en) 2008-11-28 2011-03-09 기아자동차주식회사 Device for variable injectioin in post injection with nox strage catalyst and the mothod for the same
KR101040346B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for emission reduce line of diesel vehicle and second injection control method thereof
KR101040347B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
KR101063487B1 (en) 2008-12-04 2011-09-07 현대자동차주식회사 After-treatment system diagnostic device and method of diesel vehicle
US8601797B2 (en) 2009-08-21 2013-12-10 Hyundai Motor Company Exhaust device for diesel vehicle
KR20200049220A (en) * 2018-10-31 2020-05-08 현대자동차주식회사 Apparatus for controlling post injection of diesel engine and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087703A (en) * 2002-05-09 2003-11-15 현대자동차주식회사 Apparatus for controlling post injection of common rail injection system in diesel vehicle and method thereof
JP2005121320A (en) * 2003-10-17 2005-05-12 Daikin Ind Ltd Electric ignition device
JP2005351093A (en) 2004-06-08 2005-12-22 Bosch Corp Exhaust gas post-treatment device
KR20060002178A (en) * 2004-07-01 2006-01-09 현대자동차주식회사 Nox-pm simultaneous reduction system using fuel cracking catalyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087703A (en) * 2002-05-09 2003-11-15 현대자동차주식회사 Apparatus for controlling post injection of common rail injection system in diesel vehicle and method thereof
JP2005121320A (en) * 2003-10-17 2005-05-12 Daikin Ind Ltd Electric ignition device
JP2005351093A (en) 2004-06-08 2005-12-22 Bosch Corp Exhaust gas post-treatment device
KR20060002178A (en) * 2004-07-01 2006-01-09 현대자동차주식회사 Nox-pm simultaneous reduction system using fuel cracking catalyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
공개특허공보 제2005-121320호*

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957138B1 (en) 2007-07-09 2010-05-11 현대자동차주식회사 Method for determining malfunction of nitrogen oxide sensor and selective catalytic reduction system operating the same
KR100888310B1 (en) 2007-12-14 2009-03-11 현대자동차주식회사 Catalyst for scr
KR100992816B1 (en) 2008-11-28 2010-11-08 현대자동차주식회사 System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
KR101020819B1 (en) 2008-11-28 2011-03-09 기아자동차주식회사 Device for variable injectioin in post injection with nox strage catalyst and the mothod for the same
KR101063487B1 (en) 2008-12-04 2011-09-07 현대자동차주식회사 After-treatment system diagnostic device and method of diesel vehicle
KR101040346B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for emission reduce line of diesel vehicle and second injection control method thereof
KR101040347B1 (en) 2008-12-05 2011-06-10 현대자동차주식회사 System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
US8601797B2 (en) 2009-08-21 2013-12-10 Hyundai Motor Company Exhaust device for diesel vehicle
KR20200049220A (en) * 2018-10-31 2020-05-08 현대자동차주식회사 Apparatus for controlling post injection of diesel engine and method thereof
KR102552502B1 (en) 2018-10-31 2023-07-06 현대자동차주식회사 Apparatus for controlling post injection of diesel engine and method thereof

Similar Documents

Publication Publication Date Title
KR100857338B1 (en) Device and method for variable injection in post injection of lean nox trap
KR101020819B1 (en) Device for variable injectioin in post injection with nox strage catalyst and the mothod for the same
US8117833B2 (en) Method and system using a reduction catalyst to reduce nitrate oxide
US7275365B2 (en) Method for controlling temperature in a diesel particulate filter during regeneration
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US8826644B2 (en) Engine and exhaust aftertreatment control
US7412822B2 (en) Regeneration control for diesel particulate filter for treating diesel engine exhaust
KR101091627B1 (en) Exhaust system
US8919103B2 (en) System for purifying exhaust gas and exhaust system having the same
US20150240682A1 (en) SYSTEMS AND METHODS TO MITIGATE NOx AND HC EMISSIONS
US10287944B2 (en) Exhaust purification system and method of desulfurizing lean NOx trap of exhaust purification system provided with lean NOx trap and selective catalytic reduction catalyst
US9616387B2 (en) Exhaust gas treatment apparatus functionality check
JP5223963B2 (en) Exhaust gas purification device for internal combustion engine
US7320214B2 (en) Exhaust gas purifier for internal combustion engine
CN103122783A (en) Exhaust purification apparatus of engine
WO2015056575A1 (en) Exhaust gas purification system of internal combustion engine and exhaust gas purification method of internal combustion engine
JP6278344B2 (en) Engine exhaust purification system
KR102518593B1 (en) CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
KR102072193B1 (en) Exhaust gas treatment system comprising a catalytic particulate filter, and corresponding method
US20120102930A1 (en) System for desulfurizing oxidation catalyst and method thereof
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
KR100802722B1 (en) Method for preventing uncontrolled burning of diesel catalyzed particulate filter
US20170254240A1 (en) Limiting nox emissions using two catalysts
KR100774864B1 (en) Logic device of calculation of catalyst sulfation for diesel automobile
KR20150071156A (en) Apparatus and method for controlling regeneration in exhaust emission control devive

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee