KR100879582B1 - Optical fiber with metal nano-particles and fabrication methods for the optical fiber - Google Patents

Optical fiber with metal nano-particles and fabrication methods for the optical fiber Download PDF

Info

Publication number
KR100879582B1
KR100879582B1 KR1020060135781A KR20060135781A KR100879582B1 KR 100879582 B1 KR100879582 B1 KR 100879582B1 KR 1020060135781 A KR1020060135781 A KR 1020060135781A KR 20060135781 A KR20060135781 A KR 20060135781A KR 100879582 B1 KR100879582 B1 KR 100879582B1
Authority
KR
South Korea
Prior art keywords
optical fiber
glass tube
core layer
metal element
sintering
Prior art date
Application number
KR1020060135781A
Other languages
Korean (ko)
Other versions
KR20080061036A (en
Inventor
부성재
정채환
한원택
김복현
주성민
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020060135781A priority Critical patent/KR100879582B1/en
Publication of KR20080061036A publication Critical patent/KR20080061036A/en
Application granted granted Critical
Publication of KR100879582B1 publication Critical patent/KR100879582B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

본 발명은 금속나노입자(metal nano-particles)가 함유된 기능성 광섬유 (optical fiber) 및 그 제조방법에 관한 것이다. 본 발명은 광섬유 제조방법에 있어서 유리튜브 내부에 클래딩층을 증착하고 소결시키는 단계; 상기 유리튜브 내부에 코어층을 증착하고 부분소결시키는 단계; 상기 코어층에 금속원소를 첨가하는 단계; 상기 금속원소가 첨가된 코어층을 건조시킨 후 환원분위기를 조성하는 단계; 상기 조성된 환원분위기를 유지하면서 소결, 유리화, 압축, 봉합 공정을 수행하는 단계; 제조된 광섬유 모재를 인출하여 광섬유를 형성하는 단계;를 포함하는 것을 특징으로 하는 금속나노입자가 함유된 광섬유 제조방법을 제공한다. The present invention relates to a functional optical fiber containing metal nano-particles and a method of manufacturing the same. The present invention comprises the steps of depositing and sintering the cladding layer in the glass tube in the optical fiber manufacturing method; Depositing and partially sintering a core layer in the glass tube; Adding a metal element to the core layer; Drying the core layer to which the metal element is added and then forming a reducing atmosphere; Performing a sintering, vitrification, compression, and sealing process while maintaining the formed reducing atmosphere; It provides a method for producing an optical fiber containing metal nanoparticles, comprising; forming a optical fiber by withdrawing the prepared optical fiber base material.

금속원소, 나노입자, 광섬유, 환원법, 용액첨가법, MCVD 법 Metal element, nano particle, optical fiber, reduction method, solution addition method, MCVD method

Description

금속나노입자가 함유된 광섬유 및 그의 제조방법{Optical fiber with metal nano-particles and fabrication methods for the optical fiber}Optical fiber with metal nano-particles and fabrication methods for the optical fiber}

도 1은 본 발명에 따른 금속나노입자 함유 광섬유 제조공정을 설명하기 위한 도면.1 is a view for explaining a metal nanoparticle-containing optical fiber manufacturing process according to the present invention.

도 2는 용액첨가법을 이용하여 금속원소 첨가 공정을 수행하기 위한 장치의 측면도.2 is a side view of an apparatus for performing a metal element addition process using a solution addition method.

도 3은 도 2에 도시된 장치를 이용하여 도 1에 도시된 금속원소 첨가공정(단계 ST3)을 설명하기 위한 도면.3 is a view for explaining the metal element addition process (step ST3) shown in FIG. 1 using the apparatus shown in FIG.

도 4a 내지 도 4c는 일반 광섬유 및 Ag-금속나노입자가 코어에 함유된 기능성 광섬유의 광흡수계수를 나타낸 도면.Figures 4a to 4c is a view showing the light absorption coefficient of a functional optical fiber containing a common optical fiber and Ag-metal nanoparticles in the core.

도 5a 및 도 5b는 일반 광섬유모재 및 Ag-금속나노입자가 코어에 함유된 기능성 광섬유모재의 TEM 사진을 나타낸 도면.5A and 5B are TEM photographs of a functional optical fiber base material containing a general optical fiber base material and Ag-metal nanoparticles in a core;

도 6은 일반 광섬유 및 Ag-금속나노입자, Au-금속나노입자가 코어에 함유된 기능성 광섬유의 비선형 광학계수를 나타낸 도면.FIG. 6 is a view showing nonlinear optical coefficients of a functional optical fiber including a general optical fiber, Ag-metal nanoparticles, and Au-metal nanoparticles in a core; FIG.

본 발명은 금속나노입자(metal nano-particles)가 함유된 기능성 광섬유 (optical fiber) 및 그 제조방법에 관한 것이다. The present invention relates to a functional optical fiber containing metal nano-particles and a method of manufacturing the same.

일반적으로 광섬유 제조공정은 광섬유모재(optical fiber preform) 제조공정과 광섬유 인출(fiber drawing)공정으로 나뉜다. 코어에 특수 성분이 첨가된 광섬유모재 제조를 위해서는 용액첨가법(solution doping method; J. E. Townsend et al., Electron. Lett. vol. 23, pp. 329-331 (1987)) 및 MCVD법(modified chemical vapor deposition method; J. B. MacChesney and P. B. O’Connor, U.S. Patent 4 217 027)이 사용된다. In general, an optical fiber manufacturing process is divided into an optical fiber preform manufacturing process and an optical fiber drawing process. Solution doping method (JE Townsend et al., Electron. Lett. Vol. 23, pp. 329-331 (1987)) and MCVD method (modified chemical vapor) deposition method; JB MacChesney and PB O'Connor, US Patent 4 217 027).

광섬유모재 제조를 위한 MCVD법에서는 실리카(silica) 유리튜브 내부에 원료가스를 주입하고 산소-수소토치(oxyhydrogen torch)를 사용하여 유리튜브를 가열하여 튜브 내부에서 원료가스와 산소 사이의 기상반응을 유도한다. 반응의 결과로 생성된 유리미립자(soot)를 유리튜브 안쪽 벽에 증착시켜 광도파로 역할을 하는 클래딩(cladding) 및 코어(core)층을 만들게 된다. 그리고 산소-수소토치를 사용하여 1800 oC 이상의 온도로 가열하여 증착된 유리미립자를 소결시키고 이어서 압축(collapsing) 및 봉합(sealing) 과정을 거쳐 광섬유모재가 제조된다. 만들어진 광섬유모재는 다시 광섬유인출기(draw tower)를 사용하여 1900~2200 oC 온도에서 광섬유로 인출시켜 제조된다.In the MCVD method for manufacturing the optical fiber base material, raw material gas is injected into a silica glass tube, and a glass tube is heated using an oxygen-hydrogen torch to induce a gas phase reaction between the raw material gas and oxygen in the tube. do. The soot produced as a result of the reaction is deposited on the inner wall of the glass tube to form a cladding and core layer that acts as an optical waveguide. Then, the glass substrate is sintered by heating to a temperature of 1800 ° C. or more using an oxygen-hydrogen torch and then subjected to a collapsing and sealing process to prepare an optical fiber base material. The prepared fiber base material is manufactured by drawing an optical fiber at a temperature of 1900 ~ 2200 o C using a fiber drawer.

광섬유를 기능별로 분류하면, 단순히 빛을 전송하는 수동적인 광도파로로 사 용되는 일반 광섬유와 스위칭, 증폭, 감쇄, 및 편광유지 특성과 같은 특별한 성능이 부여된 기능성 광섬유로 나뉠 수 있다. 기능성 광섬유 중에서 광학적 비선형성 (optical nonlinearity)을 증대시킨 비선형 광섬유(nonlinear fiber)는 광 펌핑(optical pumping)에 의하여 굴절률이 바뀌는 현상인 전광(all-optic)효과 및 전기장 인가에 의하여 굴절률이 바뀌는 현상이 전기광학(electro-optic)효과 등을 가지고 있다. 이러한 비선형 광특성이 우수한 기능성 광섬유의 경우 광스위칭소자, 광변조기, 파장가변필터, 주파수변조기, 광학센서 등의 광학소자 제조에 널리 사용 할 수 있다.By classifying the optical fibers into functional groups, they can be divided into ordinary optical fibers, which are simply used as passive optical waveguides for transmitting light, and functional optical fibers with special performance such as switching, amplification, attenuation, and polarization retention characteristics. Among the functional optical fibers, nonlinear fiber which has increased optical nonlinearity has an all-optic effect, which is a phenomenon in which the refractive index is changed by optical pumping, and a phenomenon in which the refractive index is changed by application of an electric field. It has an electro-optic effect. Functional optical fibers having excellent nonlinear optical properties can be widely used in the manufacture of optical devices such as optical switching devices, optical modulators, wavelength variable filters, frequency modulators, and optical sensors.

특별한 성능이 부여된 기능성 광섬유를 제조하기 위하여 MCVD법에 의한 광섬유모재 제조공정 중에 희토류원소와 같은 원소를 광섬유 코어에 첨가하게 된다. 이를 위하여 광섬유코어용 soot를 유리튜브에 증착한 후 완전 소결시키지 않고 코어에 첨가할 원소가 함유된 용액에 담가(soaking) 이온이 soot 사이로 침투하게 만들고 soot를 건조시켜 첨가원소가 코어에 함유되게 한다. 이러한 방법을 용액첨가법이라고 부른다.In order to manufacture a functional optical fiber with special performance, elements such as rare earth elements are added to the optical fiber core during the optical fiber base material manufacturing process by the MCVD method. For this purpose, the soot for the fiber core is deposited on the glass tube, soaking in the solution containing the element to be added to the core without completely sintering, so that the ions penetrate between the soot and dry the soot so that the additional element is contained in the core . This method is called solution addition.

비선형 광특성이 우수한 기능성 광섬유를 제조하기 위하여 현재까지 여러 가지 방법이 시도가 되어왔다. Various methods have been tried to date to manufacture functional optical fibers having excellent nonlinear optical properties.

광섬유 코어와 클래딩이 칼코겐계 유리 (chalcoginide glass) 조성으로 이루어진 비선형 광섬유를 제조할 수 있는데, 이러한 칼코겐게 유리 광섬유의 경우 비선형이 실리카계 유리 (silica glass) 조성으로 이루어진 광섬유에 비하여 비선형 광학계수(nonlinear optical coefficient)가 100 배 이상 크다는 장점을 가지고 있 다. 이러한 장점에도 불구하고 실리카계 유리에 비하여 광손실(optical loss)이 매우 크고 기계적 강도가 현저히 떨어지는 단점을 가지고 있다. A nonlinear optical fiber made of a chalcogenide glass composition with a fiber core and cladding may be manufactured. In the case of the chalcogenide glass optical fiber, the nonlinear optical coefficient is nonlinear compared to an optical fiber having a silica glass composition. The optical coefficient is more than 100 times larger. Despite these advantages, optical loss is very high and mechanical strength is remarkably decreased compared to silica glass.

실리카계 광섬유의 경우 광섬유코어에 PbO, TiO2, Bi2O3 등의 전이금속산화물 첨가하여 비선형 광섬유를 제조할 수 있다. 하지만 전이금속산화물 첨가하여 비선형 광섬유를 제조할 경우 10 mol % 이상 고함량의 전이금속산화물 첨가가 필요하므로 광섬유 제조가 어렵고 광손실 또한 크다는 단점을 가지고 있다.In the case of silica-based optical fibers, nonlinear optical fibers may be manufactured by adding transition metal oxides such as PbO, TiO 2 , and Bi 2 O 3 to the optical fiber core. However, when the non-linear optical fiber is prepared by adding transition metal oxide, it is difficult to manufacture the optical fiber and the optical loss is also large because it requires the addition of a transition metal oxide of 10 mol% or more.

최근까지 나노테크놀로지에 대한 관심과 더불어 나노입자가 함유된 유리에 대한 연구가 많이 진행되어 왔다. 특히, 금속나노입자가 함유된 유리는 높은 광학적 비선형 광특성을 가지고 있으며 그 응답속도 또한 매우 빨라 초고속 기능성 광학소자 개발에 광범위하게 응용이 가능하다. 특히, 금속나노입자가 함유된 유리를 이용한 광섬유형 광도파로의 경우 광섬유구조가 가지는 여러 장점을 함께 보유할 수 있어 광학소자로서의 효용성이 매우 크다. 하지만, 그 효용성에도 불구하고 아직까지 공정개발을 통한 금속나노입자가 함유된 기능성 광섬유의 개발이 보고된 사례가 없다.Until recently, many researches on glass containing nanoparticles have been conducted along with interest in nanotechnology. In particular, glass containing metal nanoparticles has high optical nonlinear optical properties and its response speed is also very fast, and thus it is widely applicable to the development of ultra-high-speed functional optical devices. In particular, in the case of an optical fiber type optical waveguide using glass containing metal nanoparticles, the optical fiber structure can have various advantages, and thus the utility as an optical device is very large. However, despite its effectiveness, there have been no reported cases of the development of functional optical fibers containing metal nanoparticles through process development.

본 발명은 금속나노입자가 함유된 기능성 광섬유 제조에 관한 것으로, MCVD법, 용액첨가법, 환원분위기 조성 및 광섬유 인출공정을 사용하여 Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 등의 성분으로 이루어진 금속나노입자가 광섬유 코어에 함유되어 비선형 광학계수가 크며 동시에 광손실이 낮은 기능성 광섬유를 제조하는 기술적 방법을 제공함에 목적이 있다.The present invention relates to the production of functional optical fibers containing metal nanoparticles, and using Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti using MCVD method, solution addition method, reducing atmosphere composition and fiber drawing process , V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi It is an object of the present invention to provide a technical method for producing a functional optical fiber having a high nonlinear optical coefficient and low light loss by containing metal nanoparticles composed of such components in the optical fiber core.

상기 목적을 달성하기 위하여 본 발명은, 광섬유 제조방법에 있어서 유리튜브 내부에 클래딩층을 증착하고 소결시키는 단계; 상기 유리튜브 내부에 코어층을 증착하고 부분소결시키는 단계; 상기 코어층에 금속원소를 첨가하는 단계; 상기 금속원소가 첨가된 코어층을 건조시킨 후 환원분위기를 조성하는 단계; 상기 조성된 환원분위기를 유지하면서 소결, 유리화, 압축, 봉합 공정을 수행하는 단계; 제조된 광섬유 모재를 인출하여 광섬유를 형성하는 단계;를 포함하는 것을 특징으로 하는 금속나노입자가 함유된 광섬유 제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of depositing and sintering the cladding layer inside the glass tube in the optical fiber manufacturing method; Depositing and partially sintering a core layer in the glass tube; Adding a metal element to the core layer; Drying the core layer to which the metal element is added and then forming a reducing atmosphere; Performing a sintering, vitrification, compression, and sealing process while maintaining the formed reducing atmosphere; It provides a method for producing an optical fiber containing metal nanoparticles, comprising; forming a optical fiber by withdrawing the prepared optical fiber base material.

바람직하게는 상기 금속원소는 금속나노입자의 구성성분이 되는 Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 로부터 선택되는 1종 또는 그 이상이며, 더욱 바람직하게는 상기 금속원소를 코어층에 첨가하기 위하여 상기 금속원소가 함유된 용액을 상기 유리튜브 내부로 주입한 후 배출하여 코어층 사이의 공극에 금속원소 함유 용액이 흡착되도록 하는 것을 특징으로 한다. Preferably, the metal element is Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr as constituents of the metal nanoparticles. , Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi is one or more selected from, more preferably the metal element In order to add to the core layer, the solution containing the metal element is injected into the glass tube and then discharged so that the metal element-containing solution is adsorbed to the pores between the core layer.

또한 바람직하게는 상기 환원분위기를 조성하기 위하여 산소(O2) 가스의 유 입을 막고 그 대신에 헬륨(He), 질소(N2), 알곤(Ar), 일산화탄소(CO) 및 수소(H2) 가스를 상기 유리튜브 내부로 유입시킬 수 있다. Also preferably, in order to form the reducing atmosphere, the inflow of oxygen (O 2 ) gas is prevented and instead helium (He), nitrogen (N 2 ), argon (Ar), carbon monoxide (CO) and hydrogen (H 2 ) Gas may be introduced into the glass tube.

또한 본 발명은 Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 의 금속원소 중에서 한 가지 또는 그 이상을 구성성분으로 하는 수 nm~수백 nm 크기의 금속나노입자가 코어에 형성된 것을 특징으로 하는 광섬유를 제공한다. In addition, the present invention is Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Metal nanoparticles of several nm to several hundred nm in size, consisting of one or more of metal elements of Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi It provides an optical fiber characterized by.

첨부한 도면을 참조하여 본 발명에 따른 금속나노입자가 함유된 기능성 광섬유를 제조하기 위한 제조방법을 각 단계에 따라 설명한다. Referring to the accompanying drawings, a manufacturing method for manufacturing a functional optical fiber containing metal nanoparticles according to the present invention will be described according to each step.

금속나노입자라 함은 별개의 금속원자가 서로 뭉쳐 크기가 수 nm에서 수백 nm 인 덩어리로 형성된 입자를 의미한다. 이러한 금속나노입자가 기능성 광섬유의 재료가 되는 유리에 함유되면 표면플라즈몬효과(surface plasmon effect)에 의하여 금속원자 및 금속이온이 함유된 유리와는 매우 다른 물성을 가지게 된다. 특히 금속나노입자가 함유된 유리의 경우 매우 우수한 비선형 광특성을 가지게 된다. Metal nanoparticles refer to particles formed of agglomerates having different metal atoms agglomerating with each other and having a size of several nm to several hundred nm. When the metal nanoparticles are contained in the glass which is a material of the functional optical fiber, the metal nanoparticles have very different physical properties from the glass containing metal atoms and metal ions due to the surface plasmon effect. In particular, glass containing metal nanoparticles has very excellent nonlinear optical properties.

도 1은 금속나노입자가 함유된 광섬유모재 및 광섬유의 제조공정을 나타낸 것으로 MCVD법, 용액첨가법, 환원분위기 조성공정 및 광섬유 인출공정을 보여준다.1 shows a manufacturing process of an optical fiber base material and an optical fiber containing metal nanoparticles, and shows an MCVD method, a solution addition method, a reducing atmosphere composition process, and an optical fiber drawing process.

1) 먼저, 유리튜브 내부에 적정비율로 혼합된 SiCl4, POCl3, CF4 및 산소를 혼합 사용하여 클래딩 층을 증착 후 완전히 소결(sintering)시키고(단계 ST1), 산소와 적정비율로 혼합된 SiCl4 및 GeCl4 를 사용하여 코어층을 증착한 후 이를 부분소결(partial sintering)한다(단계 ST2).1) First, the cladding layer is completely sintered after deposition by using a mixture of SiCl 4 , POCl 3, CF 4 and oxygen mixed in an appropriate ratio inside the glass tube (step ST1), and mixed with an appropriate ratio with oxygen. The core layer is deposited using SiCl 4 and GeCl 4 , followed by partial sintering (step ST2).

2) 그리고 코어층에 용액첨가법을 사용하여 금속원소를 첨가한다(단계 ST3).2) Then, a metal element is added to the core layer using a solution addition method (step ST3).

3) 이어서 금속원소가 첨가된 코어층을 건조시킨 후(단계 ST4), 환원분위기를 조성한다(단계 ST5).3) Then, the core layer to which the metal element is added is dried (step ST4), and then a reducing atmosphere is formed (step ST5).

4) 조성된 환원분위기를 유지하며 유리화 및 소결 공정을 수행한다(단계 ST6).4) The vitrification and sintering process is performed while maintaining the formed reducing atmosphere (step ST6).

5) 역시 환원분위기를 유지하며 압축(coallapsing) 및 봉합(sealing) 공정을 거쳐 광섬유모재를 제조한다(단계 ST7).5) Also maintaining a reducing atmosphere, and through the compression (coallapsing) and sealing (sealing) process to produce an optical fiber base material (step ST7).

6) 최종적으로 광섬유인출기를 사용하여 광섬유모재를 광섬유로 제조한다(단계 ST8).6) Finally, the optical fiber base material is manufactured into the optical fiber by using the optical fiber extractor (step ST8).

코어층 증착 후 이를 완전소결 시키지 않고 부분소결(단계 ST2)하는 것은 유리미립자 사이에 다량의 공극을 만들어 용액첨가법(단계 ST3) 사용 시 금속원소가 함유된 용액이 코어층에 쉽게 침투 및 흡착되도록 하기 위함이다. 또한 소결을 전혀 실행하지 않을 경우에 용액첨가법 사용 시 코어층 붕괴가 발생할 수 있는데 이를 방지하기 위함이다. Partial sintering (step ST2) without core sintering after depositing the core layer creates a large amount of pores between the glass particles so that the solution containing the metal element can easily penetrate and adsorb into the core layer when using the solution addition method (step ST3). To do this. In addition, if the sintering is not performed at all, the core layer collapse may occur when the solution addition method is used.

여기서 코어층에 금속원소를 첨가하는 방법은 도 2에 도시된 바와 같으며 도 3을 참조하여 다음과 같이 설명된다. Here, the method of adding the metal element to the core layer is as shown in FIG. 2 and described with reference to FIG. 3.

코어층을 부분소결한 후(단계 ST2)에는 도 3a에 도시된 바와 같이 유리튜브(1)에 완전소결된 클래딩층(2)과 코어층이 될 유리미립자(soot,3)가 증착된 실리카 유리튜브가 만들어진다. 그리고 도 2에 도시된 바와 같이, 유리미립자(soot)가 증착된 유리튜브(1)를 커넥터(4)를 사용하여 호스(5)에 연결하고 지면(6)에 수직이 되도록 설치한다.After partially sintering the core layer (step ST2), as shown in FIG. 3A, the glass tube 1 is completely clad with the cladding layer 2 and the silica particles on which the glass particles (soot) 3 to be the core layer are deposited. The tube is made. As shown in FIG. 2, the glass tube 1 having the glass particles deposited thereon is connected to the hose 5 using the connector 4 and installed to be perpendicular to the ground 6.

이어서 호스(5)를 사용하여 코어층에 함유시킬 금속원소가 함유된 용액(7)을 주입시키면 커넥터(4)를 통과하여 용액이 유리튜브 내부(8)로 채워지고 도 3b와 같은 상태가 된다. Subsequently, when the solution 7 containing the metal element to be contained in the core layer is injected using the hose 5, the solution is passed through the connector 4 to fill the inside of the glass tube 8 and as shown in FIG. 3B. .

이 상태에서 용액(7)이 soot 사이에 침투되도록 일정시간이 경과한 후 호스(5)를 통하여 용액을 유리튜브(1) 밖으로 배출시킨다. 대부분의 용액은 호스(5)를 통하여 튜브 밖으로 배출되나, 용액이 배출된 후에도 도 3c에 도시된 바와 같이 soot(3) 사이의 공극에 용액의 일부(9)가 soot(3)에 흡착되어 남게 되며 이를 통하여 원하는 금속원소가 코어층에 함유된다. In this state, the solution 7 is discharged out of the glass tube 1 through the hose 5 after a predetermined time so that the solution 7 penetrates between the soot. Most of the solution is discharged out of the tube via the hose 5, but even after the solution has been discharged, a portion of the solution 9 remains adsorbed to the soot 3 in the voids between the soot 3 as shown in FIG. 3C. Through this, the desired metal element is contained in the core layer.

건조공정(단계 ST4) 이후에 환원분위기를 조성(단계 ST5)하는데 이를 위하여 일반적으로 MCVD 공정 중에 사용되는 산소(O2) 가스의 유입을 차단한 상태에서 He, N2, Ar, CO 및 H2 가스 등을 튜브내부로 일정시간동안 유입시켜 유리튜브 내부에 남아 있는 산소를 제거한다. 이후 소결 및 유리화 공정(단계 ST6) 및 압축 및 봉합(단계 ST7) 공정 중에도 산소가스를 사용하지 않고 역시 He, N2, Ar, CO 및 H2 등 산화가 방지되고 환원성이 있는 가스만을 사용한다. 이를 통하여 약 1800 oC 이상의 고온공정인 소결, 유리화, 압축, 봉합 공정 중에 산화방지 및 환원분위기가 조성되어 금속원소가 이온화되어 금속나노입자 형성이 저해되는 것을 막을 수 있다.After the drying process (step ST4), a reducing atmosphere is formed (step ST5). He, N 2 , Ar, CO, and H 2 are blocked for the inflow of oxygen (O 2 ) gas, which is generally used during the MCVD process. Gas is introduced into the tube for a certain time to remove oxygen remaining inside the glass tube. Thereafter, even during the sintering and vitrification process (step ST6) and compression and sealing (step ST7), oxygen gas is not used, and only gas that is prevented from oxidation, such as He, N 2 , Ar, CO, and H 2 , is used for reducing and reducing. Through this, anti-oxidation and reducing atmospheres are formed during the sintering, vitrification, compression, and sealing processes of about 1800 ° C. or higher, thereby preventing metal nanoparticles from being inhibited by ionizing metal elements.

용액(7)에는 금속나노입자의 구성성분이 되는 Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 등의 금속성분이 한 가지 이상 적정한 농도로 함유되어 있다. The solution 7 contains Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, and Nb as constituents of the metal nanoparticles. One or more metal components such as Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi are contained in appropriate concentrations.

이하에서는 도 4 내지 도 6을 참조하여 본 발명의 방법에 따라 제조된 Ag-금속나노입자가 코어에 함유된 기능성 광섬유의 광흡수계수, TEM 이미지, 및 비선형 광특성을 설명한다. Ag-금속나노입자가 함유된 광섬유를 만들기 위하여 0.48 M(mol)의 Ag를 녹여서 용액을 만들었으며 이를 사용하여 용액첨가법에 따른 금속원소첨가 공정을 실시하였다. 그리고 유리화 및 소결 공정에서는 산화를 방지하기 위하여 유입가스로 O2 사용하지 않고 3000 sccm (standard cubic centimeter per minute)의 He 가스만을 사용하였다. 이어서 압축 및 봉합공정에서도 역시 3000-50 sccm 의 He 가스만을 사용하여 산화분위기를 방지하였다.Hereinafter, the light absorption coefficient, the TEM image, and the nonlinear optical properties of the functional optical fiber containing Ag-metal nanoparticles prepared according to the method of the present invention in the core will be described with reference to FIGS. 4 to 6. In order to make an optical fiber containing Ag-metal nanoparticles, 0.48 M (mol) of Ag was dissolved to prepare a solution, and a metal element addition process was performed using the solution addition method. In the vitrification and sintering process, only 3000 sccm (standard cubic centimeter per minute) He gas was used instead of O 2 as an inlet gas to prevent oxidation. Subsequently, only 3000-50 sccm He gas was used in the compression and sealing process to prevent the oxidation atmosphere.

도 4a, 4b 및 4c 는 각각 일반 게르마노실리케이트계 광섬유, 본 발명의 제조방법에 따라 제조된 Ag-금속나노입자 함유 광섬유 및 Au-금속나노입자 함유 광섬유의 광흡수계수(optical absorption coefficient)를 나타낸 그래프이다.4a, 4b and 4c show optical absorption coefficients of a common germanosilicate optical fiber, an Ag-metal nanoparticle-containing optical fiber and an Au-metal nanoparticle-containing optical fiber prepared according to the manufacturing method of the present invention, respectively. It is a graph.

도 4a는 일반 광섬유의 파장에 따른 광흡수계수를 나타낸 것인데 500 nm 이하에서 UV 전이에 의한 광흡수대를 제외하면 특별한 피크가 없는 광흡수 분포 특성을 보여준다. Figure 4a shows the light absorption coefficient according to the wavelength of a general optical fiber shows a light absorption distribution characteristics without a particular peak except for the light absorption band by UV transition below 500 nm.

이것과 비교하면 도 4b 에 나타낸 Ag-금속나노입자 함유 광섬유의 광흡수계수의 경우에는 425 nm 를 중심으로 매우 큰 광흡수밴드가 존재하는 것을 볼 수 있는데, 이는 광섬유 코어층에 함유된 Ag 금속나노입자에 의한 것이다. 그리고 도 4b 는 OH기에 의한 1380 nm 부근의 광흡수를 제외하고는 800 nm 이상의 전 파장 영역에서 3x10-5 cm-1 정도로 매우 낮은 광흡수 특성을 보여준다. Compared with this, in the case of the light absorption coefficient of the Ag-metal nanoparticle-containing optical fiber shown in FIG. 4B, a very large light absorption band exists around 425 nm, which is included in the Ag metal nano contained in the optical fiber core layer. By particles. 4b shows very low light absorption characteristics of about 3x10 -5 cm -1 in the entire wavelength range of 800 nm or more except for light absorption around 1380 nm by the OH group.

또한 도 4c 에 나타낸 Au-금속나노입자 함유 광섬유의 광흡수계수의 경우에는 500 nm 를 중심으로 매우 큰 광흡수밴드가 존재하는 것을 볼 수 있는데, 이는 광섬유 코어층에 함유된 Au 금속나노입자에 의한 것이다. 역시 OH기에 의한 1380 nm 부근의 광흡수를 제외하고는 800 nm 이상의 전 파장 영역에서 5x10-5 cm-1 정도로 매우 낮은 광흡수 특성을 보여준다.In addition, in the case of the light absorption coefficient of the Au-metal nanoparticle-containing optical fiber shown in FIG. 4c, it can be seen that a very large light absorption band exists around 500 nm, which is caused by the Au metal nanoparticles contained in the optical fiber core layer. will be. Also, except for the absorption of light around 1380 nm by OH group, it shows very low light absorption characteristics of about 5x10 -5 cm -1 in the entire wavelength range of 800 nm or more.

도 5a 및 5b는 각각 일반 광섬유모재와 Ag-금속나노입자 함유 광섬유모재의 TEM 사진을 나타낸 그림이다. 5A and 5B are TEM photographs of a general optical fiber base material and an Ag-metal nanoparticle-containing optical fiber base material, respectively.

도 5a는 일반 광섬유모재의 TEM 사진을 나타낸 것인데 특별한 형태가 없는 것을 보여준다. 이것에 비하면 도 5b 에 나타낸 TEM 사진에는 배경과 구분되는 약 4-8 nm 크기의 반점모양의 형태를 볼 수 있는데 이는 코어층에 형성된 Ag-금속나노입자에 의한 것이다.Figure 5a shows a TEM picture of a general optical fiber base material shows that there is no particular form. On the other hand, in the TEM photograph shown in FIG. 5B, a spot shape having a size of about 4-8 nm is distinguished from the background, which is caused by Ag-metal nanoparticles formed in the core layer.

도 6은 게르마노실리케이트(GeO2-SiO2)계 코어를 가진 일반 광섬유와 본 발명의 방법에 따른 Ag-금속나노입자 함유 광섬유 및 Au-금속나노입자 함유 광섬유 의 비선형 광학계수를 비교하여 보여준다. 비선형 광학계수 측정을 위하여 장주기격자쌍 방법[Y.H.Kim et al., Opt. Lett. Vol. 27, p. 580-582 (2002)]을 사용하였다. 도면에 보여지듯이 Ag 또는 Au-금속나노입자가 코어에 함유된 기능성 광섬유의 경우 일반광섬유에 비하여 약 104 배 정도의 큰 비선형 광학계수(nonlinear refractive index, n2) 값을 가지는 것을 확인할 수 있다. 6 shows a comparison of the nonlinear optical coefficients of a general optical fiber having a germanosilicate (GeO 2 -SiO 2 ) -based optical fiber and an Ag-metal nanoparticle-containing optical fiber and Au-metal nanoparticle-containing optical fiber according to the method of the present invention. Long period grating pair method for nonlinear optical coefficient measurement [YHKim et al., Opt. Lett. Vol. 27, p. 580-582 (2002). As shown in the figure, in the case of the functional optical fiber containing Ag or Au-metal nanoparticles in the core, it can be seen that it has a large nonlinear optical index (nonlinear refractive index, n 2 ) of about 10 4 times that of the general optical fiber.

이상에서 설명한 바와 같이, 본 발명에 의하면 광섬유코어에 Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 등의 성분으로 구성된 금속나노입자가 광섬유 코어에 함유된 기능성 광섬유를 제공할 수 있게 된다.As described above, according to the present invention, in the optical fiber core, Ag, Au, Cu, Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb Metal nanoparticles composed of components such as Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi can provide a functional optical fiber contained in the optical fiber core. Will be.

본 발명에 따라 제조되는 금속나노입자가 코어에 함유된 기능성 광섬유는 광스위칭소자, 광변조기, 파장가변필터 및 주파수변조기 등의 광학소자 제조에 널리 응용할 수 있을 것으로 보인다. 특히, 금속나노입자가 함유된 광섬유가 가지고 있는 높은 비선형 광특성과 빠른 응답속도는 향후 초고속 광통신 및 광논리회로에 필수적인 초고속 전광스위치 제작에 적합할 것으로 기대된다. The functional optical fiber containing the metal nanoparticles prepared in the present invention in the core is expected to be widely applied to optical devices such as optical switching devices, optical modulators, wavelength tunable filters, and frequency modulators. In particular, the high nonlinear optical characteristics and fast response speed of optical fibers containing metal nanoparticles are expected to be suitable for the production of ultra-high speed all-optical switches, which are essential for ultra-high speed optical communication and optical logic circuits.

금속나노입자가 코어에 함유된 기능성 광섬유는 광학소자에 대한 응용뿐만 아니라, 빛의 세기, 위상, 편광 등을 이용하여 다양한 물리량을 측정하는 센서소자로서 응용할 수 있다. The functional optical fiber in which the metal nanoparticles are contained in the core can be applied not only to an optical device but also as a sensor device for measuring various physical quantities using light intensity, phase, polarization, and the like.

빛을 전송수단으로 하는 광섬유를 사용한 광섬유형 센서의 경우 일반 구리도선 및 반도체칩을 이용한 전자소자에서 문제 시 되는 전자기파에 의한 교란 및 누전에 의한 문제가 발생하지 않으며 한 가닥의 광섬유를 사용하여 구리선에 비하여 100~1,000 배 이상의 통신이 한꺼번에 가능하다는 장점을 가지고 있어서 실용화 될 경우 큰 파급효과를 가져올 수 있다.In the case of the optical fiber type sensor using optical fiber as a light transmission means, there is no problem caused by disturbance and leakage caused by electromagnetic wave which is a problem in general copper wire and electronic device using semiconductor chip. Compared with 100 ~ 1,000 times more communication, it can bring big ripple effect.

Claims (7)

광섬유 제조방법에 있어서, In the optical fiber manufacturing method, 유리튜브 내부에 클래딩층을 증착하고 완전소결시키는 단계;Depositing and completely sintering the cladding layer inside the glass tube; 상기 유리튜브 내부에 코어층을 증착하고 부분소결시키는 단계;Depositing and partially sintering a core layer in the glass tube; 상기 유리튜브를 커넥터를 매개로 호스에 연결한 다음 지면에 수직으로 설치하고, 상기 호스를 통해 금속원소가 함유된 용액을 상기 유리튜브의 내부에 채우는 단계;Connecting the glass tube to a hose through a connector and then installing the glass tube vertically on the ground, and filling the inside of the glass tube with a solution containing a metal element through the hose; 상기 유리튜브의 내부에 채워진 용액을 일정시간 경과 후 상기 호스를 통하여 배출함으로서 상기 코어층의 공극에 금속원소가 함유된 용액 일부가 흡착되도록 하여 상기 코어층에 금속원소를 첨가하는 단계;Adding a metal element to the core layer by discharging the solution filled in the glass tube through the hose after a predetermined time so that a portion of the solution containing the metal element is adsorbed into the pores of the core layer; 상기 금속원소가 첨가된 코어층을 건조시킨 후 상기 유리튜브내에 환원성 가스를 유입시켜 유리튜브내에 잔류하는 산소를 제거하는 환원분위기를 조성하는 단계;Forming a reducing atmosphere for removing oxygen remaining in the glass tube by introducing a reducing gas into the glass tube after drying the core layer to which the metal element is added; 상기 조성된 환원분위기를 유지하면서 소결, 유리화, 압축, 봉합 공정을 수행하는 단계; 및Performing a sintering, vitrification, compression, and sealing process while maintaining the formed reducing atmosphere; And 제조된 광섬유 모재를 인출하여 광섬유를 형성하는 단계;를 포함하는 것을 특징으로 하는 금속나노입자가 함유된 광섬유 제조방법. And extracting the prepared optical fiber base material to form an optical fiber. 제 1항에 있어서, 상기 금속원소는 금속나노입자의 구성성분이 되는 Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi 로부터 선택되는 1종 또는 그 이상인 것을 특징으로 하는 금속나노입자가 함유된 광섬유 제조방법. The method of claim 1, wherein the metal element is Pb, Sn, Pt, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Method for manufacturing an optical fiber containing metal nanoparticles, characterized in that one or more selected from Mo, Tc, Ru, Rh, Pd, Cd, In, Hf, Ta, W, Re, Os, Ir, Tl, Bi . 삭제delete 제 1항에 있어서, 상기 환원분위기를 조성하기 위하여 산소(O2) 가스의 유입을 막고 그 대신에 헬륨(He), 질소(N2), 알곤(Ar), 일산화탄소(CO) 및 수소(H2) 가스를 상기 유리튜브 내부로 유입시키는 것을 특징으로 하는 금속나노입자가 함유된 광섬유 제조방법. The method of claim 1, wherein in order to form the reducing atmosphere, inflow of oxygen (O 2 ) gas is prevented and helium (He), nitrogen (N 2 ), argon (Ar), carbon monoxide (CO) and hydrogen (H) 2 ) A method for manufacturing an optical fiber containing metal nanoparticles, wherein gas is introduced into the glass tube. 제 1항, 제 2항, 제 4항 중 어느 한 항의 제조방법으로 제조된 광섬유. The optical fiber manufactured by the manufacturing method of any one of Claims 1, 2, and 4. 삭제delete 삭제delete
KR1020060135781A 2006-12-28 2006-12-28 Optical fiber with metal nano-particles and fabrication methods for the optical fiber KR100879582B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060135781A KR100879582B1 (en) 2006-12-28 2006-12-28 Optical fiber with metal nano-particles and fabrication methods for the optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060135781A KR100879582B1 (en) 2006-12-28 2006-12-28 Optical fiber with metal nano-particles and fabrication methods for the optical fiber

Publications (2)

Publication Number Publication Date
KR20080061036A KR20080061036A (en) 2008-07-02
KR100879582B1 true KR100879582B1 (en) 2009-01-21

Family

ID=39813477

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060135781A KR100879582B1 (en) 2006-12-28 2006-12-28 Optical fiber with metal nano-particles and fabrication methods for the optical fiber

Country Status (1)

Country Link
KR (1) KR100879582B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190139071A (en) * 2018-06-07 2019-12-17 광주과학기술원 a Magnetic field fiber sensor
US11191155B1 (en) 2020-12-10 2021-11-30 International Business Machines Corporation Tamper-respondent assembly with structural material within sealed inner compartment
US11716808B2 (en) 2020-12-10 2023-08-01 International Business Machines Corporation Tamper-respondent assemblies with porous heat transfer element(s)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188344B1 (en) * 2011-01-14 2012-10-05 광주과학기술원 An optical fiber and coreless optical fiber having a cladding layer doped with metal nano particles, and manufacturing method of the same
KR101430628B1 (en) * 2013-02-27 2014-08-14 광주과학기술원 Optical fiber sensor with air-hole structure
FR3011940B1 (en) * 2013-10-16 2017-01-27 Agence Nat Pour La Gestion Des Dechets Radioactifs OPTICAL FIBER, METHOD FOR MANUFACTURING SUCH AN OPTICAL FIBER, AND MEASURING DEVICE FOR DETECTION OF HYDROGEN EQUIPPED WITH SUCH AN OPTICAL FIBER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075817A (en) * 1998-03-25 1999-10-15 권문구 Optical Fiber for Attenuator Doped with Transition Element
US6109065A (en) 1998-04-22 2000-08-29 Lucent Technologies, Inc. Method of making optical waveguide devices using perchloryl fluoride to make soot
KR20030088599A (en) * 2002-05-13 2003-11-20 엘지전선 주식회사 Optical fiber for optical amplifier and production method of the same
KR20060020524A (en) * 2004-08-31 2006-03-06 (주)옵토네스트 An wavelength converter, optical parametric oscillator and optical parametric amplifier using an nonlinear optical fiber respectively

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075817A (en) * 1998-03-25 1999-10-15 권문구 Optical Fiber for Attenuator Doped with Transition Element
US6109065A (en) 1998-04-22 2000-08-29 Lucent Technologies, Inc. Method of making optical waveguide devices using perchloryl fluoride to make soot
KR20030088599A (en) * 2002-05-13 2003-11-20 엘지전선 주식회사 Optical fiber for optical amplifier and production method of the same
KR20060020524A (en) * 2004-08-31 2006-03-06 (주)옵토네스트 An wavelength converter, optical parametric oscillator and optical parametric amplifier using an nonlinear optical fiber respectively

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190139071A (en) * 2018-06-07 2019-12-17 광주과학기술원 a Magnetic field fiber sensor
KR102617481B1 (en) * 2018-06-07 2023-12-26 광주과학기술원 a Magnetic field fiber sensor
US11191155B1 (en) 2020-12-10 2021-11-30 International Business Machines Corporation Tamper-respondent assembly with structural material within sealed inner compartment
US11716808B2 (en) 2020-12-10 2023-08-01 International Business Machines Corporation Tamper-respondent assemblies with porous heat transfer element(s)

Also Published As

Publication number Publication date
KR20080061036A (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR100879582B1 (en) Optical fiber with metal nano-particles and fabrication methods for the optical fiber
CN102515507B (en) Metal core microstructure fiber and preparation method thereof
JP2002518288A (en) Optical fiber preform having OH blocking layer and method of manufacturing the same
CN102515500B (en) Preparation method for rare earth doped optical fiber preform
US6776012B2 (en) Method of making an optical fiber using preform dehydration in an environment of chlorine-containing gas, fluorine-containing gases and carbon monoxide
EP2813477B1 (en) Optical fiber preform manufacturing method, optical fiber preform, and optical fiber
Iskhakova et al. Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms
US8418504B2 (en) Method of fabricating optical fiber or optical device doped with reduced metal ion and/or rare earth ion
CN104876434B (en) A kind of preparation method of Uniform Doped quartz glass bar
CA2508955C (en) Glass-body-producing method and optical glass body and optical fiber
CA2409187C (en) Method of fabricating an optical fiber preform using mcvd and nonlinear optical fiber fabricated using the method
CN202383317U (en) Metal core micro-structural optical fiber
US7752870B1 (en) Hydrogen resistant optical fiber formation technique
KR100582800B1 (en) Fabrication method and apparatus of optical fiber preform and optical fiber containing few hydroxyl
CN114702239B (en) Fluorine-doped cladding-based irradiation-resistant erbium-doped optical fiber preform and preparation method thereof
CN104843987A (en) Preparation method of quartz rod uniformly doped with powder ions
KR102375092B1 (en) Optical Fiber for Removing Cladding Mode and Manufacturing Method Thereof
WO2003035564A2 (en) Optical fibre and preform as well as their manufacture from phase-separated glass
JPH07507035A (en) Optical transmission device and its manufacturing method
Lee et al. Mass production of zero water peak fiber by VAD process
JP2007091579A (en) Method of manufacturing optical fiber preform
JP2005132708A (en) Method for manufacturing optical fiber or optical element in which reduced metal ion and/or rare earth ion are doped, and method for manufacturing optical fiber or optical element in which reduced metal fine particle and/or rare earth element are doped
CN118405842A (en) Bismuth-doped optical fiber and preparation method thereof
KR20020011469A (en) Process for the preparation of metal ion-doped optical device
JPH0736066A (en) Production of waveguide type optical amplifier

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170105

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee