KR100877871B1 - Structure of electrode for GaN-based semiconductor - Google Patents

Structure of electrode for GaN-based semiconductor Download PDF

Info

Publication number
KR100877871B1
KR100877871B1 KR1020070038089A KR20070038089A KR100877871B1 KR 100877871 B1 KR100877871 B1 KR 100877871B1 KR 1020070038089 A KR1020070038089 A KR 1020070038089A KR 20070038089 A KR20070038089 A KR 20070038089A KR 100877871 B1 KR100877871 B1 KR 100877871B1
Authority
KR
South Korea
Prior art keywords
layer
electrode
gallium nitride
gan
compound semiconductor
Prior art date
Application number
KR1020070038089A
Other languages
Korean (ko)
Other versions
KR20070046063A (en
Inventor
추성호
장자순
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020070038089A priority Critical patent/KR100877871B1/en
Publication of KR20070046063A publication Critical patent/KR20070046063A/en
Application granted granted Critical
Publication of KR100877871B1 publication Critical patent/KR100877871B1/en

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 질화갈륨 화합물 반도체의 전극 구조는 질화갈륨(GaN)화합물 반도체의 상측에 형성되는 접촉층과, 상기 접촉층 상면에 형성되고, Metal-Si(실리콘), Metal-N(질소), Ru(루세늄)의 단일금속층, 또는 이층 이상의 조합으로 형성된 다중금속층을 포함하는 중간확산장벽층과, 상기 중간확산장벽층의 상면에 형성되는 전극층을 포함한다. 또한, 실시예에 따른 질화갈륨 화합물 반도체의 전극 구조는 질화갈륨(GaN)화합물 반도체의 상측에 형성되는 접촉층과, 상기 접촉층 상면에 형성되고, W(텅스텐), Mo(몰리브덴) 또는 상기 W 및 Mo의 복합재료의 단일금속층, 또는 이층 이상의 조합으로 형성된 다중금속층을 포함하는 중간확산장벽층과, 상기 중간확산장벽층의 상면에 형성되는 전극층을 포함한다.The electrode structure of the gallium nitride compound semiconductor according to the embodiment is formed on the contact layer formed on the upper side of the gallium nitride (GaN) compound semiconductor, and formed on the upper surface of the contact layer, Metal-Si (silicon), Metal-N (nitrogen), An intermediate diffusion barrier layer comprising a single metal layer of Ru (ruthenium), or a multiple metal layer formed of a combination of two or more layers, and an electrode layer formed on an upper surface of the intermediate diffusion barrier layer. In addition, the electrode structure of the gallium nitride compound semiconductor according to the embodiment is a contact layer formed on the upper side of the gallium nitride (GaN) compound semiconductor, and formed on the upper surface of the contact layer, W (tungsten), Mo (molybdenum) or the W And an intermediate diffusion barrier layer comprising a single metal layer of a composite material of Mo, or a multimetal layer formed of a combination of two or more layers, and an electrode layer formed on an upper surface of the intermediate diffusion barrier layer.

본 발명의 전극에 의해서, 질화갈륨(GaN)화합물 반도체의 접촉층과 전극층의 사이에 중간확산장벽층을 더 형성함으로써, 금속과 반도체의 계면에서 일어나는 부적합한 계면 반응을 억제함으로써, 전극의 열적, 전기적인 특성을 향상시키고, 전극의 오믹 특성을 향상시킬 수 있는 효과가 있다.The electrode of the present invention further forms an intermediate diffusion barrier layer between the contact layer and the electrode layer of the gallium nitride (GaN) compound semiconductor, thereby suppressing the unsuitable interfacial reaction occurring at the interface between the metal and the semiconductor, thereby preventing thermal and electrical There is an effect that can improve the overall characteristics, and improve the ohmic characteristics of the electrode.

질화갈륨, 반도체, 오믹전극 Gallium Nitride, Semiconductor, Ohmic Electrode

Description

질화갈륨(GaN)화합물 반도체의 전극구조{Structure of electrode for GaN-based semiconductor}Structure of electrode for GaN-based semiconductor

도 1은 종래 질화갈륨화합물 반도체의 적층 구조를 설명하는 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure explaining the laminated structure of the conventional gallium nitride compound semiconductor.

도 2는 본 발명에 따른 질화갈륨(GaN)화합물 반도체의 적층 구조를 설명하는 도면. 2 is a view for explaining a laminated structure of a gallium nitride (GaN) compound semiconductor according to the present invention.

도 3은 본 발명 실시예와 비교예를 C-TLM방법에 의해서 열처리 시간의 경과에 따른 비접촉 저항을 측정하여 표시한 선도.Figure 3 is a diagram showing the measurement of the specific contact resistance according to the progress of the heat treatment time by the C-TLM method of the present invention and the comparative example.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1, 11 : 질화갈륨(GaN)화합물 반도체1, 11: gallium nitride (GaN) compound semiconductor

2, 12 : 접촉층2, 12: contact layer

3, 14 : 전극층3, 14 electrode layer

13 : 중간 확산 장벽층13: intermediate diffusion barrier layer

본 발명은 질화갈륨(GaN)화합물 반도체의 전극의 구성에 관한 것으로서, 특히, 반도체 접촉층과 전극층 사이에 중간 확산 장벽을 더 형성하여 열적, 전기적으 로 안정된 오믹 전극이 구현되는 질화갈륨(GaN)화합물 반도체의 전극 구성에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the construction of electrodes of gallium nitride (GaN) compound semiconductors. In particular, gallium nitride (GaN), in which an intermediate diffusion barrier is further formed between a semiconductor contact layer and an electrode layer, provides a thermally and electrically stable ohmic electrode. The electrode structure of a compound semiconductor is related.

질화갈륨(GaN)화합물 반도체는 청색 광을 구현할 수 있는 발광 다이오드(LED)로서, 최근들어 그 사용이 급증하고 있는 실정이다. 보다 고휘도의 광 및 안정적인 광을 구현하기 위하여 그 전극의 구성에 대한 연구가 많이 수행되고 있다.A gallium nitride (GaN) compound semiconductor is a light emitting diode (LED) capable of realizing blue light, and its use is increasing rapidly in recent years. In order to realize more high-brightness light and stable light, many researches have been conducted on the configuration of the electrode.

도 1은 종래 질화갈륨(GaN)화합물 반도체의 적층 구조를 설명하는 도면이다.1 is a diagram illustrating a laminated structure of a conventional gallium nitride (GaN) compound semiconductor.

도 1을 참조하면, 질화갈륨(GaN)화합물 반도체(GaN)층(1)과, 상기 질화갈륨(GaN)화합물 반도체 층의 상면에 형성되는 접촉층(2)과, 상기 접촉층(2)의 상면에 더 형성되는 전극층(3)이 포함된다. 나아가, 접촉층(2)은 금(Au)을 주된 성분으로 하고, 전극층(3)은 니켈(Ni)을 주된 성분으로 한다.Referring to FIG. 1, a gallium nitride (GaN) compound semiconductor (GaN) layer 1, a contact layer 2 formed on an upper surface of the gallium nitride (GaN) compound semiconductor layer, and the contact layer 2 The electrode layer 3 is further formed on the upper surface. Furthermore, the contact layer 2 is made of gold (Au) as the main component, and the electrode layer 3 is made of nickel (Ni) as the main component.

또한, 종래 질화갈륨(GaN)화합물 반도체는 다층의 구조가 적층된 뒤에, 전극의 적정한 오믹 조건을 찾기 위하여 열처리가 행하여지는 것이 일반적이다. 그러나, 이러한 열처리 공정시에, 전극으로 사용되는 금속과 질화갈륨(GaN)화합물 반도체의 계면에는 원하지 않는 성분 간의 상호 확산에 의해서 전극의 퇴화가 발생된다. 그리고, 이러한 전극의 퇴화는 장시간 소자 동작 시에 누설 전류를 증가시키는 원인으로 작용함으로써 반도체 소자의 신뢰성에 많은 영향을 주게된다. In addition, in the conventional gallium nitride (GaN) compound semiconductor, after the multilayer structure is laminated, heat treatment is generally performed to find an appropriate ohmic condition of the electrode. However, in this heat treatment step, deterioration of the electrode occurs due to mutual diffusion between unwanted components at the interface between the metal used as the electrode and the gallium nitride (GaN) compound semiconductor. In addition, such degeneration of the electrode acts as a cause of increasing the leakage current during the operation of the device for a long time has a large impact on the reliability of the semiconductor device.

이와 같은 금속-반도체 계면의 반응에 대해서 그 반응 기전을 중심으로 다시 설명한다. 열처리 시에는 질화갈륨(GaN)화합물 반도체와 금속에는 고열이 가해지고, 이 열에 의해서 상호 간에 일정한 반응이 일어나게 된다. 특히 이러한 반응은 계면 에너지를 줄이는 방향으로 일어나게 되고, 이 때의 에너지는 음성 활성화 에너지를 갖는다. 또한, 이러한 음성 에너지는 금속과 반도체의 상이한 이온화 에너지의 차이에 기인한다. Such a reaction of the metal-semiconductor interface will be described again with reference to the reaction mechanism. During the heat treatment, high heat is applied to the gallium nitride (GaN) compound semiconductor and the metal, and the heat causes a constant reaction to each other. In particular, this reaction occurs in the direction of reducing the interfacial energy, at which time the energy has a negative activation energy. This negative energy is also due to the difference in the different ionization energies of the metal and the semiconductor.

결국, 이러한 음성 에너지를 흡수하기 위하여 양자 간의 이온화 에너지의 차이를 줄임으로써, 금속과 반도체의 계면에서 안정되는 질화갈륨(GaN)화합물 반도체의 전극 구조를 형성할 수 있게 된다.As a result, by reducing the difference in ionization energy between the two to absorb the negative energy, it is possible to form the electrode structure of the gallium nitride (GaN) compound semiconductor that is stable at the interface between the metal and the semiconductor.

본 발명은 질화갈륨(GaN)화합물 반도체와 상기 반도체에 접하는 금속층과의 계면 반응을 억제하고, 전극으로 사용되는 금속층 간의 상호 반응을 억제할 수 있는 질화갈륨(GaN)화합물 반도체의 전극 구조를 제안하는 것을 목적으로 한다.The present invention proposes an electrode structure of a gallium nitride (GaN) compound semiconductor capable of suppressing an interfacial reaction between a gallium nitride (GaN) compound semiconductor and a metal layer in contact with the semiconductor and suppressing mutual reaction between metal layers used as electrodes. For the purpose of

특히, 질화갈륨(GaN)화합물 반도체가 열적, 전기적으로 안정되게 작동될 수있는 오믹 전극의 구성을 제안하는 것을 목적으로 한다.In particular, an object of the present invention is to propose a configuration of an ohmic electrode in which a gallium nitride (GaN) compound semiconductor can be thermally and electrically operated stably.

본 발명의 실시예에 따른 질화갈륨 화합물 반도체의 전극 구조는 질화갈륨(GaN)화합물 반도체의 상측에 형성되는 접촉층과, 상기 접촉층 상면에 형성되고, Metal-Si(실리콘), Metal-N(질소), Ru(루세늄)의 단일금속층, 또는 이층 이상의 조합으로 형성된 다중금속층을 포함하는 중간확산장벽층과, 상기 중간확산장벽층의 상면에 형성되는 전극층을 포함한다.The electrode structure of the gallium nitride compound semiconductor according to the embodiment of the present invention is formed on the contact layer formed on the upper side of the gallium nitride (GaN) compound semiconductor, and formed on the upper surface of the contact layer, the metal-Si (silicon), Metal-N ( An intermediate diffusion barrier layer comprising a single metal layer of nitrogen), Ru (ruthenium), or a combination of two or more layers, and an electrode layer formed on an upper surface of the intermediate diffusion barrier layer.

본 발명의 실시예에 따른 질화갈륨 화합물 반도체의 전극 구조는 질화갈륨(GaN)화합물 반도체의 상측에 형성되는 접촉층과, 상기 접촉층 상면에 형성되고, W(텅스텐), Mo(몰리브덴) 또는 상기 W 및 Mo의 복합재료의 단일금속층, 또는 이층 이상의 조합으로 형성된 다중금속층을 포함하는 중간확산장벽층과, 상기 중간확산장벽층의 상면에 형성되는 전극층을 포함한다.The electrode structure of the gallium nitride compound semiconductor according to the embodiment of the present invention is formed on the contact layer formed on the upper side of the gallium nitride (GaN) compound semiconductor, and formed on the upper surface of the contact layer, W (tungsten), Mo (molybdenum) or the An intermediate diffusion barrier layer comprising a single metal layer of a composite material of W and Mo, or a multiple metal layer formed of a combination of two or more layers, and an electrode layer formed on an upper surface of the intermediate diffusion barrier layer.

상기된 전극의 구성으로서 금속층 간의 상호 반응, 금속층과 반도체 층 간의 원치않는 상호 반응을 억제할 수 있어, 결국, 질화갈륨(GaN)화합물 반도체의 안정된 오믹 전극을 구현할 수 있다.As described above, the interaction between the metal layers and the unwanted interaction between the metal layer and the semiconductor layer can be suppressed, and thus, a stable ohmic electrode of a gallium nitride (GaN) compound semiconductor can be realized.

본 발명에서는 질화갈륨(GaN)화합물 반도체층과 상기 질화갈륨계 반도체층에 접하는 금속층과의 계면 반응을 선택적으로 조정할 수 있는 중간 확산 장벽을 제안한다. 상세히는, 질화갈륨(GaN)화합물 반도체층과 금속층의 계면에서는 Metal-Ga와, Metal-N의 반응이 일어나게 되는데, 이러한 반응을 선택적으로 조정하는데 기여할 수 있는 중간 확산 장벽을 제공하는 것이다. The present invention proposes an intermediate diffusion barrier capable of selectively adjusting the interfacial reaction between a gallium nitride (GaN) compound semiconductor layer and a metal layer in contact with the gallium nitride based semiconductor layer. Specifically, the reaction between the metal-Ga and the metal-N occurs at the interface between the gallium nitride (GaN) compound semiconductor layer and the metal layer, which provides an intermediate diffusion barrier that may contribute to the selective adjustment of the reaction.

예를 들면, p형 전극의 경우에는, Metal-Ga의 반응은 안정적으로 일어나고 Metal-N의 반응은 억제시킬 수 있어야 하기 때문에, 이를 위하여 접촉층 위에, Metal-N의 활성화 에너지와, Metal-Ga의 활성화 에너지의 중간 단계의 양성 활성화 에너지를 갖는 중간 확산 장벽을 더 형성하는 것이다.For example, in the case of the p-type electrode, the reaction of Metal-Ga should occur stably and the reaction of Metal-N should be suppressed. It is to form an intermediate diffusion barrier having a positive activation energy of the intermediate stage of the activation energy of.

한편, 상기 중간 확산 장벽과 상부 전극 금속층과의 반응이 거의 없도록 하여, 금속층과 질화갈륨(GaN)화합물 반도체층과의 계면에서 형성되는 음성 활성화 에너지를 전극층으로 충분히 발산할 수 있도록 설계되어야 한다. On the other hand, there should be little reaction between the intermediate diffusion barrier and the upper electrode metal layer, so that the negative activation energy formed at the interface between the metal layer and the gallium nitride (GaN) compound semiconductor layer to be sufficiently emitted to the electrode layer.

이하에서는 p형 전극의 경우를 예로 들어 본 발명의 오믹 전극 구조를 상세히 설명하도록 한다.Hereinafter, the ohmic electrode structure of the present invention will be described in detail with an example of a p-type electrode.

도 2는 본 발명에 따른 질화갈륨(GaN)화합물 반도체의 적층 구조를 설명하는 도면이다.2 is a view for explaining a laminated structure of a gallium nitride (GaN) compound semiconductor according to the present invention.

도 2를 참조하면, 질화갈륨(GaN)화합물 반도체층(11)과, 접촉층(12)과, 전극층(14)이 포함되고, 특히, 접촉층(12)과, 전극층(14)의 사이면에는 중간 확산 장벽층(13)이 더 형성되는 것을 알 수 있다. 상기 중간 확산 장벽층(13)은 열처리 시에 금속층과 질화갈륨(GaN)화합물 반도체층의 계면 반응을 억제할 수 있고, 또한, 금속층과 질화갈륨(GaN)화합물 반도체층의 계면에 형성되는 음성 활성화 에너지를 상부의 전극층으로 발산할 수 있는 특정의 물질이 단일 적층 또는 다중 적층되어 사용된다. Referring to FIG. 2, a gallium nitride (GaN) compound semiconductor layer 11, a contact layer 12, and an electrode layer 14 are included. In particular, an interfacial surface between the contact layer 12 and the electrode layer 14 is included. It can be seen that the intermediate diffusion barrier layer 13 is further formed on the substrate. The intermediate diffusion barrier layer 13 may suppress the interfacial reaction between the metal layer and the gallium nitride (GaN) compound semiconductor layer during heat treatment, and may also be negatively activated at the interface between the metal layer and the gallium nitride (GaN) compound semiconductor layer. Certain materials capable of dissipating energy to the upper electrode layer are used in single or multiple stacks.

예를 들면, 접촉층(12)이 금(Au), 전극층(14)이 니켈(Ni)인 경우에, 상기 중간 확산 장벽층(13)은 Si(실리콘) 합금("Metal-Si"로 약칭될 수 있음), N(질소) 합금("Metal-N"로 약칭될 수 있음), Ru(루세늄) 중 어느 하나의 단일금속층을 포함하거나, Si합금층, N합금층, Ru층 중 어느 두개 이상의 층이 조합되어 형성된 다중금속층을 포함하여 이루어질 수 있다.For example, when the contact layer 12 is gold (Au) and the electrode layer 14 is nickel (Ni), the intermediate diffusion barrier layer 13 is abbreviated as Si (silicon) alloy ("Metal-Si"). ), N (nitrogen) alloy (which may be abbreviated as "Metal-N"), Ru (ruthenium), or any one of the Si alloy layer, N alloy layer, Ru layer It may comprise a multimetal layer formed by combining two or more layers.

또한, 상기 중간 확산 장벽층(13)은 W(텅스텐), Mo(몰리브덴) 또는 상기 W 및 Mo의 복합재료의 단일금속층을 포함하거나, 이들 재질을 조합하여 형성된 다중금속층을 포함하여 이루어질 수 있다.In addition, the intermediate diffusion barrier layer 13 may include a single metal layer of W (tungsten), Mo (molybdenum) or the composite material of the W and Mo, or may include a multimetal layer formed by combining these materials.

한편, 상기 중간 확산 장벽층(13)이 다중금속층을 이루는 경우, 각층의 두께는 1~5,000nm으로 형성될 수 있다.On the other hand, when the intermediate diffusion barrier layer 13 forms a multi-metal layer, the thickness of each layer may be formed of 1 ~ 5,000nm.

이하에서는 본 발명의 구체적인 실시예 및 비교예를 설명한다. Hereinafter, specific examples and comparative examples of the present invention will be described.

질화갈륨(GaN)화합물을 트리클로로에틸렌(TCE), 아세톤, 메탄올, 증류수로 각각 5분씩 세척한다. C-TLM(Circular-Transmission Line model) pattern을 사진식각술로 형성한다. 그리고, 금속 증착기 챔버에 상기 패턴을 장착한다. The gallium nitride (GaN) compound is washed with trichloroethylene (TCE), acetone, methanol and distilled water for 5 minutes each. C-TLM (Circular-Transmission Line model) pattern is formed by photolithography. The pattern is then mounted in a metal vapor deposition chamber.

상기 금속 증착기는 전자빔 증착기, 스퍼터, 이온빔 클러스터 증착기, CVD(Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy), 자석을 이용한 증착기, 레이저를 이용한 증착기등 다양한 구성 및 양상의 증착기가 사용될 수 있다. The metal evaporator may be an evaporator, a sputter, an ion beam cluster evaporator, a chemical vapor deposition (CVD), a molecular beam epitaxy (MBE), an evaporator using a magnet, or an evaporator using a laser.

증착기에 상기 패턴이 놓인 뒤에는, 비교예로서, 질화갈륨(GaN)화합물의 상측에 금과, 니켈을 10-6Torr에서 각각 10nm증착한다. After the pattern is placed on the evaporator, as a comparative example, 10 nm of gold and nickel are deposited on the upper side of the gallium nitride (GaN) compound at 10 −6 Torr.

그리고, 본 발명의 실시예로서, 질화갈륨(GaN)화합물 반도체층(11)의 상측에 접촉층(12)으로서 금, 전극층(14)으로서 니켈을 각각 증착한다. As an embodiment of the present invention, gold is deposited as the contact layer 12 and nickel as the electrode layer 14 on the gallium nitride (GaN) compound semiconductor layer 11, respectively.

중간 확산 장벽층(13)은 Metal-Si(실리콘), Metal-N(질소), Cr(크롬), Ru(루세늄) 중 어느 하나를 증착하여 단일금속층으로 형성하거나, 상기 재질을 조합하여 이층 이상으로 증착함으로써 다중금속층으로 형성한다.The intermediate diffusion barrier layer 13 is formed of a single metal layer by depositing any one of Metal-Si (silicon), Metal-N (nitrogen), Cr (chromium), and Ru (rucenium), or a combination of the above materials. By vapor deposition above, it forms in a multimetal layer.

또한, 상기 중간 확산 장벽층(13)의 다른 실시예로서, W(텅스텐), Mo(몰리브덴) 또는 상기 W 및 Mo의 복합재료 중 어느 하나를 증착하여 단일금속층으로 형성하거나, 상기 재질을 조합하여 이층 이상으로 증착함으로써 다중금속층으로 형성할 수 있다.In addition, as another embodiment of the intermediate diffusion barrier layer 13, any one of W (tungsten), Mo (molybdenum) or the composite material of the W and Mo is deposited to form a single metal layer, or by combining the materials By depositing more than two layers, it can form as a multimetal layer.

이때, 중간 확산 장벽층(13)을 이루는 각층은 10nm씩 증착될 수 있다.At this time, each layer constituting the intermediate diffusion barrier layer 13 may be deposited by 10nm.

상기 중간 확산 장벽층(13)의 증착된 뒤에는 열처리를 행하여 질화갈륨(GaN) 반도체의 오믹 접촉이 달성되도록 한다. After the intermediate diffusion barrier layer 13 is deposited, heat treatment is performed to achieve ohmic contact of the gallium nitride (GaN) semiconductor.

한편, C-TLM방법에 의해서 열처리 시간의 경과에 따른 비접촉 저항을 측정하 여 도 3에 선도로 표시하였다. 이때 열처리를 수행하는 온도는 오믹 접촉을 달성하기 위한 온도로서 600℃의 환경이다. On the other hand, by the C-TLM method measured the specific contact resistance with the passage of the heat treatment time is shown as a diagram in FIG. At this time, the temperature to perform the heat treatment is an environment of 600 ℃ as a temperature for achieving ohmic contact.

도 3을 참조하면, 중간 확산 장벽층(도 2의 13참조)이 형성되지 않은 경우에는, 열처리 시간이 경과함에 따라 비접촉 저항값이 커지는 경향을 보이는 등 열적으로 불안정한 특성을 보인다(선도 32참조). 그러나, 본 발명에서와 같은 중간 확산 장벽층(13)이 더 형성되는 경우에는 열처리 시간에 따른 비접촉저항값이 일정하게 측정되는 등, 열적 안정성이 매우 우수함을 알 수 있다(선도 31참조). Referring to FIG. 3, when the intermediate diffusion barrier layer (see 13 in FIG. 2) is not formed, thermally unstable characteristics such as the non-contact resistance value tend to increase as the heat treatment time passes (see FIG. 32). . However, when the intermediate diffusion barrier layer 13 as in the present invention is further formed, it can be seen that the thermal stability is very excellent, such as the specific contact resistance value according to the heat treatment time is constantly measured (see FIG. 31).

나아가서, 상기 실시예 및 비교예에 있어서, 600℃의 온도에서 60분 동안 열처리를 계속해서 수행하여 전극의 표면상의 변화를 AFM(Atomic Force Microscope)을 이용하여 관찰하면, 비교예의 경우에는 전극의 표면이 거칠어져 추후의 공정에 영향을 미치게 되지만, 본 발명 실시예의 경우에는 표면이 매우 부드럽게 형성되어 매우 우수한 표면 특성(Smooth Surface)을 가지는 것을 관찰할 수 있다. 상기된 양호한 표면 특성에 의해서 반도체 장치의 생산 수율을 향상시킬 수 있다.Further, in the above Examples and Comparative Examples, the heat treatment was continuously performed at a temperature of 600 ° C. for 60 minutes to observe the change on the surface of the electrode using AFM (Atomic Force Microscope). This roughness affects a later process, but in the case of the present invention, it can be observed that the surface is formed very smoothly and has a very good smooth surface. The above-described good surface characteristics can improve the production yield of the semiconductor device.

이상에서 살펴본 바와 같이 반도체의 접촉층과, 전극층의 사이에 중간 확산 장벽층을 개재함으로써, 반도체의 우수한 열적, 전기적 안정성을 구현할 수 있다.As described above, by providing an intermediate diffusion barrier layer between the contact layer of the semiconductor and the electrode layer, excellent thermal and electrical stability of the semiconductor can be realized.

본 발명의 전극에 의해서, 질화갈륨(GaN)화합물 반도체의 접촉층과 전극층의 사이에 중간 확산 장벽을 더 형성함으로써, 금속과 반도체의 계면에서 일어나는 부적합한 계면 반응을 억제함으로써, 전극의 열적, 전기적인 특성을 향상시키고, 전극의 오믹 특성을 향상시킬 수 있는 효과가 있다.By the electrode of the present invention, an intermediate diffusion barrier is further formed between the contact layer and the electrode layer of the gallium nitride (GaN) compound semiconductor, thereby suppressing the unsuitable interfacial reaction occurring at the interface between the metal and the semiconductor, thereby providing thermal and electrical There is an effect that can improve the characteristics, and improve the ohmic characteristics of the electrode.

Claims (2)

질화갈륨(GaN)화합물 반도체의 상측에 형성되는 접촉층과, A contact layer formed on the upper side of the gallium nitride (GaN) compound semiconductor, 상기 접촉층 상면에 형성되고, Si(실리콘) 합금 또는 N(질소) 합금의 재질로 이루어지는 단일금속층, 또는 Si합금층, N합금층, Ru층 중 어느 두개 이상의 층이 조합되어 형성된 다중금속층을 포함하는 중간확산장벽층과,It is formed on the contact layer and includes a single metal layer made of a material of Si (silicon) alloy or N (nitrogen) alloy, or a multimetal layer formed by combining at least two layers of Si alloy layer, N alloy layer and Ru layer. Intermediate diffusion barrier layer, 상기 중간확산장벽층의 상면에 형성되는 전극층을 포함하는 질화갈륨(GaN) 화합물 반도체의 전극구조.An electrode structure of a gallium nitride (GaN) compound semiconductor comprising an electrode layer formed on the upper surface of the intermediate diffusion barrier layer. 삭제delete
KR1020070038089A 2007-04-18 2007-04-18 Structure of electrode for GaN-based semiconductor KR100877871B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070038089A KR100877871B1 (en) 2007-04-18 2007-04-18 Structure of electrode for GaN-based semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070038089A KR100877871B1 (en) 2007-04-18 2007-04-18 Structure of electrode for GaN-based semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020050111479A Division KR100726562B1 (en) 2005-11-21 2005-11-21 Structure of electrode for GaN-based semiconductor

Publications (2)

Publication Number Publication Date
KR20070046063A KR20070046063A (en) 2007-05-02
KR100877871B1 true KR100877871B1 (en) 2009-01-13

Family

ID=38271575

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070038089A KR100877871B1 (en) 2007-04-18 2007-04-18 Structure of electrode for GaN-based semiconductor

Country Status (1)

Country Link
KR (1) KR100877871B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223742A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitrogen compound semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223742A (en) * 1999-01-29 2000-08-11 Toshiba Corp Nitrogen compound semiconductor element

Also Published As

Publication number Publication date
KR20070046063A (en) 2007-05-02

Similar Documents

Publication Publication Date Title
US7705348B2 (en) Semiconductor light-emitting device with electrode for N-polar InGaAIN surface
EP1523047B1 (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
US8395176B2 (en) Top-emitting nitride-based light-emitting device with ohmic characteristics and luminous efficiency
US8766448B2 (en) Chromium/Titanium/Aluminum-based semiconductor device contact
US20030073274A1 (en) Compound semiconductor device and method for manufacturing the same
US20090057706A1 (en) Set of ohmic contact electrodes on both p-type and n-type layers for gan-based led and method for fabricating the same
JP2009117712A (en) Nitride compound semiconductor device
US9064845B2 (en) Methods of fabricating a chromium/titanium/aluminum-based semiconductor device contact
US9514947B2 (en) Chromium/titanium/aluminum-based semiconductor device contact fabrication
JP2011238866A (en) Semiconductor device and method for producing the same
KR100877871B1 (en) Structure of electrode for GaN-based semiconductor
KR100726562B1 (en) Structure of electrode for GaN-based semiconductor
KR20040043245A (en) Structure of electrode for GaN-based semiconductor
US20030008425A1 (en) Method for producing group III nitride compound semiconductor light-emitting element
JP5431756B2 (en) Semiconductor device made of group III nitride semiconductor
CN113261119B (en) Semiconductor light emitting device and method for manufacturing the same
CN111902945A (en) Semiconductor device and method for manufacturing the same
US20050040755A1 (en) Transparent thin film electrode for light emitting diode and laser diode
JP4629955B2 (en) GaN-based III-V nitride semiconductor switching device
US20080006853A1 (en) Schottky Electrode of Nitride Semiconductor Device and Process for Production Thereof
JP2011249828A (en) Compound semiconductor device
JP5620347B2 (en) Compound semiconductor device
JP2012019183A (en) Nitride-based semiconductor device and method for manufacturing the same
KR20090053407A (en) Nitride semiconductor light emitting device
KR101004868B1 (en) Nitride Semiconductor Light Emitting Device and Menufacturing Method of the Same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131205

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171205

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee