KR100877379B1 - Selective metallization process of non-conductive dielectric substrates - Google Patents

Selective metallization process of non-conductive dielectric substrates Download PDF

Info

Publication number
KR100877379B1
KR100877379B1 KR1020070003316A KR20070003316A KR100877379B1 KR 100877379 B1 KR100877379 B1 KR 100877379B1 KR 1020070003316 A KR1020070003316 A KR 1020070003316A KR 20070003316 A KR20070003316 A KR 20070003316A KR 100877379 B1 KR100877379 B1 KR 100877379B1
Authority
KR
South Korea
Prior art keywords
salt
metal
light source
metal pattern
photosensitive
Prior art date
Application number
KR1020070003316A
Other languages
Korean (ko)
Other versions
KR20080066178A (en
Inventor
이홍기
구석본
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020070003316A priority Critical patent/KR100877379B1/en
Publication of KR20080066178A publication Critical patent/KR20080066178A/en
Application granted granted Critical
Publication of KR100877379B1 publication Critical patent/KR100877379B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1813Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Abstract

본 발명은 광화학 반응 및 습식표면처리기술을 이용하여 비전도성 유전체 표면에 직접적으로 금속패턴을 형성하는 방법에 관한 것으로서, 보다 상세하게는 비전도성 유전체 표면의 개질처리 및 감광성 금속 화합물의 흡착 후 특정 파장을 가진 광원을 선택적으로 표면에 조사하여 선택적 광화학 반응을 하고, 비조사된 부분에 귀금속 촉매를 흡착한 후 무전해 도금을 함으로써 비전도성 유전체 표면에 금속패턴을 직접 형성하는 방법에 관한 것이다. The present invention relates to a method of forming a metal pattern directly on the surface of a nonconductive dielectric by using a photochemical reaction and a wet surface treatment technology, and more particularly, a specific wavelength after the modification of the surface of the nonconductive dielectric and adsorption of the photosensitive metal compound. The present invention relates to a method of directly forming a metal pattern on a non-conductive dielectric surface by selectively irradiating a surface with a light source having a selective photochemical reaction, adsorbing a noble metal catalyst on an unirradiated portion, and then performing electroless plating.

광화학 반응, 습식표면처리기술, 비전도성 유전체, 금속패턴 Photochemical reaction, wet surface treatment technology, non-conductive dielectric, metal pattern

Description

비전도성 유전체상의 선택적 금속화 공정{Selective metallization process of non-conductive dielectric substrates}Selective metallization process of non-conductive dielectric substrates

도 1은 본 발명에 따른 표면개질처리와 선택적 광화학적 반응을 통해 비전도성 소재표면상에 금속회로패턴 형성을 위한 공정흐름도이다.1 is a process flow chart for forming a metal circuit pattern on the surface of a non-conductive material through surface modification treatment and selective photochemical reaction according to the present invention.

도 2는 본 발명에 사용된 자외선이 비전도성 소재 표면에 조사될 때의 주어진 빛의 세기 및 파장에 대한 측정도이다. FIG. 2 is a measurement diagram for a given light intensity and wavelength when ultraviolet light used in the present invention is irradiated onto a nonconductive material surface.

도 3은 본 발명의 방법에 의하여 제조된 폴리이미드 필름 표면에 형성된 20㎛ 선폭의 금속회로패턴을 전자현미경으로 관찰한 그림이다.FIG. 3 is an electron microscope view of a metal circuit pattern having a 20 μm line width formed on a surface of a polyimide film prepared by the method of the present invention. FIG.

도 4는 본 발명의 방법에 의하여 제조된 폴리이미드(polyimide) 필름 표면에 형성된 실제 사용되고 있는 RFID의 금속회로패턴을 전자현미경으로 관찰한 그림이다.FIG. 4 is an electron microscope view of a metal circuit pattern of an actual used RFID formed on a surface of a polyimide film produced by the method of the present invention.

도 5는 본 발명의 방법에 의하여 제조된 폴리에틸렌테레프탈레이트(PET) 필름 표면에 형성된 실제 사용되고 있는 RFID의 금속회로패턴을 전자현미경으로 관찰한 그림이다.FIG. 5 is an electron microscope view of a metal circuit pattern of an actual used RFID formed on a surface of a polyethylene terephthalate (PET) film manufactured by the method of the present invention.

도 6은 본 발명의 방법에 의하여 제조된 폴리이미드 필름 표면에 금속회로 선폭이 10㎛에 개구영역 길이가 290㎛인 망사(mesh) 형태의 금속회로패턴이 구현된 전자파 차폐용 동 메쉬를 전자현미경으로 관찰한 그림이다.FIG. 6 is an electron microscope of a copper mesh for electromagnetic shielding in which a metal circuit pattern having a mesh shape having a wire width of 10 μm and an opening region length of 290 μm is formed on a surface of a polyimide film prepared by the method of the present invention. This is the picture observed.

본 발명은 광화학 반응 및 습식표면처리기술을 이용하여 비전도성 유전체 표면에 직접적으로 금속패턴을 형성하는 방법에 관한 것으로서, 보다 상세하게는 비전도성 유전체 표면의 개질처리 및 감광성 금속 화합물의 흡착 후 특정 파장을 가진 광원을 선택적으로 표면에 조사하여 선택적 광화학 반응을 하고, 비조사된 부분에 귀금속 촉매를 흡착한 후 무전해도금을 함으로써 비전도성 유전체 표면에 금속패턴을 직접 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a metal pattern directly on the surface of a nonconductive dielectric by using a photochemical reaction and a wet surface treatment technology, and more particularly, a specific wavelength after the modification of the surface of the nonconductive dielectric and adsorption of the photosensitive metal compound. The present invention relates to a method of directly forming a metal pattern on the surface of a non-conductive dielectric by selectively irradiating a surface with a light source having a selective photochemical reaction, adsorbing a noble metal catalyst on an unirradiated portion, and then electroless plating.

현재 금속회로 패턴을 구현하는 기술로서는, 얇은 구리필름(Copper Foil)이 적층 혹은 증착된 비전도성 유전체 기판의 표면에 포토레지스터 공정을 이용하여 일정한 형태의 회로패턴을 형성하고 구리를 식각(etching)처리하여 금속회로패턴을 제조하는 방법이 일반적으로 널리 사용되고 있다. 이러한 전통적 금속회로패턴 형성기술은 복잡하고 긴 단위공정로 구성되어 있을 뿐만 아니라 고가의 설비투자와 부식성 에칭용액 등의 발생으로 환경오염 문제도 내재하고 있다. 동시에 미세회로 패턴을 구현하는데 있어 값 비싼 재료와 함께 고가의 정밀한 설비의 추가적 투자 등이 필요하거나 혹은 매우 어려운 것으로 알려져 있다.Currently, a technology for implementing a metal circuit pattern is to form a circuit pattern of a certain shape by using a photoresist process on the surface of a non-conductive dielectric substrate on which a thin copper foil is deposited or deposited, and etching copper. Therefore, a method of manufacturing a metal circuit pattern is generally widely used. This traditional metal circuit pattern forming technology is not only composed of complicated and long unit processes, but also has an environmental pollution problem due to expensive equipment investment and corrosive etching solution. At the same time, it is known that the additional investment of expensive and precise equipment along with expensive materials is required or very difficult to realize the microcircuit pattern.

이에, 본 발명자들은 상기 문제를 해결하기 위해 예의 연구한 결과, 금속염의 광화학적 반응을 이용하여 선택적으로 비전도성 유전체 소재표면에 일정한 형태를 가진 금속 회로패턴 층을 수용액 중에서 직접 형성할 경우, 종래 방법보다 훨씬 간단하고 용이하게 미세한 금속패턴을 형성할 수 있으며, 상기 금속패턴을 가지고 제조한 RFID 기판 또는 전자파 차폐용 필터 등의 성능이 우수할 뿐만 아니라 매우 저렴한 비용으로 용이하게 제조할 수 있어 연성(flexible) 혹은 경성(rigid) 형태의 인쇄회로기판(Printed Circuit Board)용 폴리머 소재 표면에 다양한 형태와 기능을 가진 금속회로 패턴를 형성시키거나, 디스플레이용 유리 기판 및 폴리머 기판에 전극 및 회로 등 다양한 금속회로 패턴을 구현하거나, 전자통신 부품의 표면실장용 패키징 기판으로 사용되는 폴리머, 유리 및 세라믹, 실리콘 웨이퍼 등의 비전도성 유전체 소재표면에 다양한 기능을 가진 금속회로패턴을 직접 형성할 수 있음을 확인하고, 본 발명에 이르게 되었다.Accordingly, the present inventors have diligently studied to solve the above problems, and when using a photochemical reaction of a metal salt to selectively form a metal circuit pattern layer having a uniform shape on the surface of a nonconductive dielectric material directly in an aqueous solution, It is much simpler and easier to form a fine metal pattern, and it is not only excellent in the performance of the RFID substrate or the electromagnetic wave shielding filter manufactured with the metal pattern, but also can be easily manufactured at a very low cost. Or to form metal circuit patterns with various shapes and functions on the surface of polymer materials for rigid printed circuit boards, or various metal circuit patterns such as electrodes and circuits on glass substrates and polymer substrates for displays. Or used as a packaging substrate for surface-mounting of telecommunication components Confirmed that this reamer, glass and ceramics, can form a non-conductive metal circuit patterns with a variety of features to the dielectric material surface such as a silicon wafer directly, it has been brought to the present invention.

본 발명의 목적은 종래의 금속 패턴 형성 공정과 달리 간단하고 용이한 공정에 의하여 효율적으로 미세 금속 패턴을 형성하는 방법 및 이를 이용하여 제조한 우수한 성능의 인쇄회로기판, 디스플레이용 기판, 폴리머 기판, 표면실장용 패키징 기판을 제공하기 위함이다.An object of the present invention is a method of forming a fine metal pattern efficiently by a simple and easy process, unlike the conventional metal pattern forming process, and a printed circuit board, display substrate, polymer substrate, surface of excellent performance manufactured using the same This is to provide a packaging substrate for mounting.

하나의 양태로서, 본 발명은 비전도성 유전체 표면에 직접 금속패턴 형성을 위한 광화학 반응 및 습식 표면처리기술에 관한 것으로서, 보다 상세하게는 (a) 알칼리금속 화합물로 비전도성 유전체 표면을 표면개질하는 단계; (b) 상기 표면 개질된 표면상에 감광성 금속화합물을 흡착시키는 감광성 부여 단계; (c) 상기 감광성 부여된 표면에 200 내지 450nm 파장을 가진 광원을 선택적으로 조사하는 단계; (d) 상기 비조사된 표면에 흡착되어 있는 감광성 금속화합물에 귀금속 촉매를 치환 흡착하여 활성화시키는 활성화 단계; (e) 상기 활성화된 표면에 무전해 도금공정을 이용하여 금속패턴을 수득하는 단계를 포함하는 금속패턴 형성 방법에 관한 것이다.In one aspect, the present invention relates to a photochemical reaction and wet surface treatment technology for the formation of a metal pattern directly on the non-conductive dielectric surface, and more particularly, (a) surface modification of the non-conductive dielectric surface with an alkali metal compound ; (b) a photosensitive imparting step of adsorbing a photosensitive metal compound on the surface modified surface; (c) selectively irradiating a light source having a wavelength of 200 to 450 nm to the photosensitive imparted surface; (d) an activation step of substituting and activating a noble metal catalyst to a photosensitive metal compound adsorbed on the unirradiated surface; (e) a method of forming a metal pattern comprising the step of obtaining a metal pattern by using an electroless plating process on the activated surface.

본 발명의 비전도성 유전체는 특별한 제한은 없으나, 바람직하게는 폴리이미드(polyimide), 폴리에스테르계 PET(Polyethylene Terephthalate Polyester) 및 아라마이드(aramid) 필름 등의 폴리머, 유리 및 세라믹, 실리콘 웨이퍼 등의 비전도성 소재를 말한다. 이들은 주로 연성인쇄회로기판(Flexible Printed Circuit Board; FPCB)에 사용되는 중간소재인 연성동적층기판(Flexible copper clad Laminate; FCCL) 및 전자회로패턴(electronic circuit pattern) 제작을 위하거나 전자파간섭(Electromagnetic Interference; EMI) 차폐용으로 사용한다. 본 명세서에서는 편의상 비전도성 유전체와 피도금체는 동일한 의미로 사용할 수 있다.The nonconductive dielectric of the present invention is not particularly limited, but is preferably a polymer such as polyimide, polyester-based polyethylene terephthalate polyester (PET) and aramid film, vision of glass, ceramic, silicon wafer, etc. Refers to the material of the castle. They are mainly used for the manufacture of flexible copper clad laminate (FCCL) and electronic circuit patterns, which are intermediate materials used in flexible printed circuit boards (FPCBs), or for electromagnetic interference. ; EMI) Used for shielding. In the present specification, for convenience, the non-conductive dielectric and the plated body may be used in the same sense.

본 발명의 습식 표면처리기술에 의한 비전도성 유전체 표면에 직접 금속패턴 형성 공정의 일례로 도 1에 공정 개략도를 나타내었다. 이하, 도 1을 참고로 하여 본 발명을 단계별로 나누어 보다 상세히 설명한다.A process schematic is shown in FIG. 1 as an example of a process for directly forming a metal pattern on a non-conductive dielectric surface by the wet surface treatment technique of the present invention. Hereinafter, the present invention will be described in detail by dividing the present invention step by step with reference to FIG. 1.

본 발명의 금속회로패턴 형성 공정은 먼저, 피도금체인 비전도성 유전체 소재의 제조과정 또는 취급과정에서 발생되어 표면에 잔류하는 부산물 및 먼지 등의 오염물질을 제거하기 위한 공정으로서, 비전도성 유전체 표면에 탈지용액을 침지 또는 분산 등의 방법에 의한 탈지(Degreasing) 공정을 한다. 상기 공정은 탈지용액을 비전도성 유전체 표면에 침지 또는 분사 등의 방법으로 오염물질을 제거하는 공정이다. 상기 탈지용액은 탄산염, 인산염 및 표면활성제로 구성된 알칼리 수용액을 사용할 수 있다. 그 후 표면에 잔존하는 탈지용액과 잔류물을 세척하는 수세공정을 수행하게 되는데, 세정효과를 높이기 위해 40 내지 50℃의 비이온수 또는 초순수를 분사하는 방식을 사용하는 것이 바람직하다. The metal circuit pattern forming process of the present invention is a process for removing contaminants such as by-products and dust generated on the surface of the non-conductive dielectric material, which is a plated body, during the manufacturing or handling process, and on the surface of the non-conductive dielectric. Degreasing process is performed by dipping or dispersing the degreasing solution. The process is a process of removing contaminants by immersing or spraying the degreasing solution on the surface of the non-conductive dielectric. The degreasing solution may be an aqueous alkali solution composed of carbonate, phosphate and surfactant. Thereafter, a washing process for washing the degreasing solution and the residue remaining on the surface is performed, and it is preferable to use a method of spraying non-ionized water or ultrapure water at 40 to 50 ° C. in order to increase the cleaning effect.

상기 탈지 공정 및 수세 공정 다음으로 알칼리금속 화합물로 비전도성 유전체 표면을 표면개질한다. 표면개질은 비전도성 유전체 표면에 알칼리금속 화합물을 분사시키거나 또는 비전도성 유전체를 알칼리금속 화합물에 침지시키는 등의 방법으로 수행한다. 또한 표면개질 시의 처리온도는 20 내지 60℃, 보다 바람직하게는 20 내지 30℃이며, 비전도성 유전체 표면과 알칼리금속 화합물이 30초 내지 10분, 보다 바람직하게는 1 내지 5분 동안 충분히 반응시켜 표면개질하도록 한다. Next to the degreasing step and the washing step, the surface of the non-conductive dielectric surface is modified with an alkali metal compound. Surface modification is performed by spraying an alkali metal compound on the surface of the non-conductive dielectric or immersing the non-conductive dielectric in the alkali metal compound. In addition, the treatment temperature at the time of surface modification is 20 to 60 ° C, more preferably 20 to 30 ° C, and the non-conductive dielectric surface and the alkali metal compound are sufficiently reacted for 30 seconds to 10 minutes, more preferably 1 to 5 minutes. Surface modification

본 발명에서 사용되는 상기 알칼리금속 화합물은 소수성인 비전도성 유전체 표면을 친수화시키고, 카르복실기, 아민기 및 하이드록실기 등의 관능기(Functional groups)를 비전도성 유전체 표면에 도입하여 금속이온의 흡착을 용이하게 하며, 또한 비전도성 유전체 표면에 미세한 공동을 형성함으로써 표면 거칠기(roughness)를 높여 석출된 금속피막이 피도금체 표면과의 밀착성을 향상시키는 역할을 한다. 따라서, 본 발명의 표면개질단계는 본 발명의 미세한 금속패턴층의 형성을 위한 전처리 공정으로서 매우 중요하다. The alkali metal compound used in the present invention hydrophilizes the hydrophobic nonconductive dielectric surface, and introduces functional groups such as carboxyl groups, amine groups, and hydroxyl groups onto the nonconductive dielectric surface to facilitate adsorption of metal ions. In addition, by forming a fine cavity on the surface of the non-conductive dielectric to increase the surface roughness (roughness), the deposited metal film serves to improve the adhesion to the surface to be plated. Therefore, the surface modification step of the present invention is very important as a pretreatment process for the formation of the fine metal pattern layer of the present invention.

본 발명의 상기 알칼리금속 화합물은 예를 들어, 알칼리금속 수산화물, 알칼리토금속 수산화물 등이 있으며, 바람직하게는 알칼리금속 수산화물이다. 상기 금속 수산화물은 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘 등을 포함한다. 또한 본 발명의 알칼리금속 화합물은 암모늄염 및/또는 지방족 아민화합물을 추가로 포함할 수 있다. 상기 암모늄염은 이에 한정되는 것은 아니나, 예를 들어 수산화암모늄, 염화암모늄, 황산암모늄 및 탄산암모늄, 알킬기나 아릴기가 치환된 트리에틸암모늄염, 테트라에틸암모늄염, 트리메틸암모늄염, 테트라메틸암모늄염, 트리플루오르암모늄염 또는 테트라플루오르암모늄염 등을 포함한다. 상기 지방족 아민화합물은 이에 한정되는 것은 아니나, 예를 들어, 메틸아민, 에틸아민, 디메틸아민, 디에틸아민, 트리메틸아민, 에틸렌디아민, 디에틸렌트리아민, 또는 우레아 및 히드라진 유도체 등을 포함한다. The alkali metal compound of the present invention includes, for example, alkali metal hydroxides, alkaline earth metal hydroxides, and the like, and preferably alkali metal hydroxides. The metal hydroxide includes sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and the like. In addition, the alkali metal compound of the present invention may further include an ammonium salt and / or an aliphatic amine compound. The ammonium salt is not limited thereto, for example, ammonium hydroxide, ammonium chloride, ammonium sulfate and ammonium carbonate, triethylammonium salt substituted with an alkyl or aryl group, tetraethylammonium salt, trimethylammonium salt, tetramethylammonium salt, trifluoroammonium salt or tetra Fluoroammonium salts and the like. The aliphatic amine compounds include, but are not limited to, methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, ethylenediamine, diethylenetriamine, or urea and hydrazine derivatives.

표면개질 처리 후 반응생성물 및 처리용액의 제거를 위한 표면을 세정하는 수세공정을 거친 후, 표면개질 처리된 비전도성 유전체 표면에 광원에 의한 광화학반응을 일으키는 감광성 금속화합물을 흡착시키는 감광성 부여(Sensitizing) 공정을 수행한다. 상기 감광성 금속화합물은 광원에 의한 광화학반응을 일으키는 화합물로서, 바람직하게는 타이타늄(Ti)염, 몰리브덴(Mo)염, 텅스텐(W)염 또는 주석(Sn)염을 사용한다. 상기 공정에 의하여 감광성 금속화합물은 표면개질 처리된 비전도성 유전체 표면에 흡착되는데, 최종 금속패턴 형성시 요구되는 금속에 따라 비전도성 유도체의 감광성 금속화합물 용액내 침적시간 및 감광성 금속화합물의 농도 조절을 통해 감광성 금속화합물을 적절히 흡착시킬 수 있다. 구체적인 예로서, 20 내지 50℃, 바람직하게는 25 내지 35℃의 온도에서 약 30초 내지 5분, 바람직하게는 1 내지 3분 동안 감광성 금속화합물이 비전도성 유전체 표면과 반응하도록 한다. Sensitizing that absorbs photosensitive metal compounds that cause photochemical reactions by light sources on the surface-modified nonconductive dielectric surface after washing the surface to remove reaction products and treatment solution after surface modification treatment. Perform the process. The photosensitive metal compound is a compound that causes a photochemical reaction by a light source, and preferably a titanium (Ti) salt, molybdenum (Mo) salt, tungsten (W) salt or tin (Sn) salt. By the above process, the photosensitive metal compound is adsorbed onto the surface-modified non-conductive dielectric surface. The deposition time and the concentration of the photosensitive metal compound in the photosensitive metal compound solution of the non-conductive derivative are controlled according to the metal required to form the final metal pattern. The photosensitive metal compound can be adsorbed suitably. As a specific example, the photosensitive metal compound is allowed to react with the non-conductive dielectric surface at a temperature of 20 to 50 ° C., preferably 25 to 35 ° C. for about 30 seconds to 5 minutes, preferably 1 to 3 minutes.

감광성 부여 공정을 거친 후 비전도성 유전체 표면에 잔존하는 처리 용액 및 기타 오염물질을 표면에서 제거하기 위한 수세공정 및 표면을 건조하는 공정을 수행한다. After the photosensitive provision process, a washing process for removing the treatment solution and other contaminants remaining on the non-conductive dielectric surface from the surface and a process of drying the surface are performed.

다음으로, 감광성 금속화합물이 흡착된 비전도성 유전체 표면을 포토마스크(photomask)를 이용하여 특정 부위, 즉 표면에 금속패턴 층을 형성하고자 하는 곳은 포토마스크를 이용하여 광원을 차단하고 그 외 부분은 광원을 조사하여 선택 적으로 감광성 금속화합물의 산화반응을 유도하는 광조사(Light irradiation) 공정을 수행한다. 상기 공정에서 광원은 200 내지 450nm의 파장 범위를 나타내는 광원을 사용하며, 바람직하게는 도 2에 나타난 바와 같은 주 파장이 365nm와 405nm를 가진 수은등 광원을 사용한다. 200nm의 파장 이하의 광원을 사용한 경우는 값비싼 광원장치 등으로 인한 제조원가 상승이라는 문제점 등이 있을 수 있으며, 450nm의 파장 이상의 광원을 사용하는 경우 광화학적 반응시간이 매우 길거나 전혀 반응이 일어나지 않는 문제점이 있다. 이때 광원의 조사강도는 0.5 내지 5J/cm2, 보다 바람직하게는 1.0 내지 1.5J/cm2 이다. 또한, 상기 광원은 자외선, 레이저, 엑스레이 등이 있으나, 바람직하게는 자외선을 사용한다.Next, the photoconductive dielectric surface to which the photosensitive metal compound is adsorbed is blocked using a photomask to block a light source using a photomask in a specific area, that is, a place where a metal pattern layer is to be formed on the surface. A light irradiation process is performed to irradiate a light source and selectively induce an oxidation reaction of the photosensitive metal compound. In the process, the light source uses a light source exhibiting a wavelength range of 200 to 450 nm, and preferably a mercury lamp light source having a main wavelength of 365 nm and 405 nm as shown in FIG. 2. In the case of using a light source having a wavelength of 200 nm or less, there may be a problem such as an increase in manufacturing cost due to an expensive light source device. have. In this case, the irradiation intensity of the light source is 0.5 to 5 J / cm 2 , more preferably 1.0 to 1.5 J / cm 2 . In addition, the light source may be ultraviolet rays, lasers, X-rays, etc., but preferably ultraviolet rays.

다음으로, 조사되지 않은 표면, 즉 금속패턴을 형성하고자 하는 표면에 흡착되어 있는 감광성 금속화합물에 귀금속 등의 촉매 입자를 치환 흡착하여 활성화시키는 활성화(Activation) 공정을 수행한다. 상기 귀금속 촉매 입자는 Ag, Pd, Pt, Au 등의 귀금속염을 말한다. 상기 공정에 의하여 자외선 조사를 통해 반응이 일어나지 않은 감광성 금속화합물에 귀금속 착이온이 촉매입자로 치환 흡착됨으로 금속패턴층 형성을 위한 준비 작업이 완료되게 된다. 상기 활성화 공정은 20 내지 50℃, 바람직하게는 20 내지 30℃에서 30초 내지 5분, 바람직하게는 1 내지 2분 동안 수행할 수 있다.Next, an activation process is performed to displace and adsorb catalyst particles such as noble metals on the photosensitive metal compound adsorbed on the unirradiated surface, that is, the surface on which the metal pattern is to be formed. The noble metal catalyst particles refer to noble metal salts such as Ag, Pd, Pt and Au. By the above process, the noble metal complex ions are substituted and adsorbed by the catalyst particles to the photosensitive metal compound which does not react through ultraviolet irradiation, thereby completing the preparation for forming the metal pattern layer. The activation process can be carried out at 20 to 50 ℃, preferably 20 to 30 ℃ 30 seconds to 5 minutes, preferably 1 to 2 minutes.

상기 활성화 공정 이후에 활성화 처리된 표면을 세척하는 수세공정을 거친 후, 금속패턴 층을 석출시키기 위한 무전해 도금공정을 수행한다. 상기 무전해 도금공정은 종래의 공지된 방법에 의하여 수행할 수 있다. 상기 무전해 도금공정에 의하여 활성화 공정으로 흡착된 귀금속 촉매에 동 또는 니켈 등을 석출시켜 밀착력이 우수한 금속 패턴층이 형성된다. After the activation process, the surface of the activated treatment is washed with a washing process, and then an electroless plating process for depositing a metal pattern layer is performed. The electroless plating process may be performed by a conventionally known method. By depositing copper or nickel on the noble metal catalyst adsorbed by the activation process by the electroless plating process, a metal pattern layer having excellent adhesion is formed.

금속 패턴층의 형성 후, 상기 언급한 수세공정에 의한 표면 세정 후 열풍 혹은 적외선에 의한 건조를 수행 할 수 있다. 무전해 도금을 통해 형성된 금속회로 패턴 층은 전기동도금 공정, 또는 추가적으로 무전해 도금공정 후 전기동도금 공정을 통해 적용 제품 및 요구사양에 따라 일정한 두께와 성분을 가진 최종 금속 회로패턴 층을 형성할 수 있다. 상기 전기동도금 공정에 있어서 접착력 향상을 위하여 저응력 동 전해질을 사용하는 것이 바람직하다.After the formation of the metal pattern layer, it is possible to perform drying by hot air or infrared rays after surface cleaning by the above-described washing process. The metal circuit pattern layer formed by electroless plating may form a final metal circuit pattern layer having a constant thickness and composition according to the applied product and the requirements through an electrocopper plating process, or additionally, an electrocopper plating process after an electroless plating process. . In the electroplating process, it is preferable to use a low stress copper electrolyte to improve adhesion.

이후 상기 수세공정 및 건조공정과 동일한 공정을 수행하고, 이로부터 최종 목적하는 제품을 생산할 수 있다.Thereafter, the same processes as the washing and drying processes may be performed, and the final desired product may be produced therefrom.

상기 본 발명의 방법에 의하여 자동차, 전자, 통신 및 반도체 부품의 금속회로패턴 형성을 하나의 연속된 공정으로서 간단하고 용이하게 할 수 있다. 예를 들어, 경성(Rigid) 및 연성(Flexible) 타입의 인쇄회로기판(PCB)의 전기회로 및 기타 기능성 금속패턴과 전자테크(RFID)의 안테나를 제조하기 위해 폴리머, 유리 및 세 라믹 표면에 금속패턴을 형성할 수 있으며, 자동차용 유리상의 열선 및 전극을 형성할 수 있으며, 디스플레이(LCD, PDP, LED) 등에 사용하는 유리 및 폴리머 소재에 전극 및 회로 등의 금속패턴을 형성할 수 있고, 전자파 차폐용 재료로 사용되는 섬유 및 폴리머 소재에 금속패턴을 형성할 수 있다.According to the method of the present invention, metal circuit pattern formation of automobiles, electronics, communication, and semiconductor parts can be easily and easily performed as one continuous process. For example, metals on polymer, glass and ceramic surfaces can be used to manufacture electrical and other functional metal patterns of rigid and flexible printed circuit boards (PCBs) and antennas of electronic technology (RFID). Patterns can be formed, hot wires and electrodes on glass for automobiles can be formed, metal patterns such as electrodes and circuits can be formed on glass and polymer materials used for displays (LCD, PDP, LED), etc. Metal patterns may be formed on fibers and polymer materials used as shielding materials.

다른 하나의 양태로서, 본 발명은 상기 공정에 의하여 제조된 금속패턴 및 상기 금속패턴을 포함하는 최종 제품에 관한 것이다.As another aspect, the present invention relates to a metal pattern manufactured by the above process and a final product comprising the metal pattern.

본 발명의 공정에 의하여 제조된 금속패턴을 포함하는 최종 제품은 예를 들어, 연성 및 경성 인쇄회로기판(Flexible and Rigid PCB), 전자테크(RFID) 안테나, 전자파차폐용 필터재료, 디스플레이 전극 및 관련 금속회로 등의 금속 회로제작(Metal Circuit Fabrication) 등이 있으나, 이에 한정되는 것은 아니다. 상기 제품과 관련하여 일부 예를 실시예에 나타내었다.The final product comprising the metal pattern manufactured by the process of the present invention is, for example, flexible and rigid PCB, electronic technics (RFID) antenna, electromagnetic shielding filter material, display electrode and related Metal circuit fabrication such as metal circuits, but is not limited thereto. Some examples in connection with the product are shown in the Examples.

이하, 실시예를 들어 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 것으로서 본 발명을 이에 제한고자 함이 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to explain the present invention in more detail and are not intended to limit the present invention thereto.

실시예Example 1 : One :

본 발명에 따른 공정순서에 따라 폴리이미드(Polyimide) 필름 표면에 피 치(pitch) 20㎛인 무전해 동도금 패턴을 형성하였다. 폴리이미드 필름을 Sn(II) 이온이 20g/ℓ함유된 금속화합물 용액에 침적하여 25℃에서 2분 동안 감광성 처리를 하였으며, 포토마스크를 이용하여 주파장이 365nm와 450nm를 나타내는 자외선 수은램프가 장착된 조사장치를 사용하여 폴리이미드필름 표면에 조사하여 주석 화합물을 광화학 반응시켜 원하는 패턴을 형성하였고, Pd(II) 이온이 함유된 귀금속 촉매로 25℃에서 1분 동안 침적하여 활성화 처리 한 후 , 무전해 동도금을 실시하였다. 이때 사용한 무전해 동도금 용액은 황산구리 10 내지 12 g/ℓ, 염화니켈 2 내지 3 g/ℓ, 탄산나트륨 2 내지 3g/ℓ, 착화제로 롯셀염 50 내지 60g/ℓ, 환원제로 포르말린 20㎖/ℓ, pH 조정제로 수산화나트륨 10 내지 15g/ℓ, 기타 첨가제로 티오황산나트륨을 적정 ppm 사용하였다. 이에 따라 형성된 20㎛ 선폭의 무전해 동도금 패턴을 전자현미경(FEI Company, Sirion 400)으로 관찰한 후, 이를 도 3에 나타내었다.According to the process sequence according to the present invention, an electroless copper plating pattern having a pitch of 20 μm was formed on the surface of the polyimide film. The polyimide film was immersed in a solution of a metal compound containing 20 g / l of Sn (II) ions and subjected to photosensitive treatment at 25 ° C. for 2 minutes. After irradiating the surface of the polyimide film using the irradiator, the tin compound was photochemically reacted to form a desired pattern. The copper plating was carried out. The electroless copper plating solution used at this time was copper sulfate 10-12 g / l, nickel chloride 2-3 g / l, sodium carbonate 2-3 g / l, lotel salt 50-60 g / l as complexing agent, formalin 20ml / l as reducing agent 10 ppm to 15 g / L sodium hydroxide as a pH adjuster, and an appropriate ppm of sodium thiosulfate as other additives were used. The electroless copper plating pattern having a 20 μm line width thus formed was observed with an electron microscope (FEI Company, Sirion 400), and this is shown in FIG. 3.

실시예 2 :Example 2:

실시예 1에 따라 폴리이미드(Polyimide)와 폴리에틸렌테레프탈레이트(PET) 표면에 RFID의 금속패턴으로 사용되고 있는 실제 제품을 구현하였으며, 이에 따라 형성된 금속회로패턴의 사진을 도 4 및 도 5에 나타내었다.According to Example 1, a real product that is used as a metal pattern of RFID on a polyimide and a polyethylene terephthalate (PET) surface was implemented, and photographs of the metal circuit patterns thus formed are shown in FIGS. 4 and 5.

실시예Example 3 : 3:

실시예 1과 동일한 조건으로 디스플레이 제품의 전자파차폐 재료로 사용되 는 전자파(EMI) 차폐용 동 메쉬로 사용되는 부품을 제조하여 보았다. 이에 따라 폴리이미드(Polyimide) 필름 표면에 금속회로 선폭이 10㎛에 개구영역 길이가 290㎛인 망사(mesh)형태의 동 패턴을 구현하였으며, 이에 따라 형성된 금속회로패턴을 전자현미경으로 관찰하고, 이를 도 6에 나타내었다. Under the same conditions as in Example 1, a part used as an electromagnetic wave (EMI) shielding copper mesh used as an electromagnetic shielding material of a display product was manufactured. Accordingly, a copper pattern in the form of a mesh having a metal circuit line width of 10 μm and an opening region length of 290 μm was formed on the surface of the polyimide film, and the metal circuit pattern thus formed was observed with an electron microscope. 6 is shown.

본 발명의 광화학적 반응 및 습식표면처리기술에 의하여 선택적으로 특정 부위의 금속패턴을 형성시키는 방법은 종래의 드라이필름 또는 포토레지스트에 리소그라피 공정에 의한 패턴형성 후 식각 처리하는 방법, 은 등의 전도성 페이스트(Paste)를 이용하여 잉크젯 혹은 실크스크린에 의한 회로 인쇄방법 등에 비해 패턴형성 신뢰도가 높고 공정이 간단하고 높은 생산성과 저렴한 원료 및 설비비 등의 장점을 가지고 있으며, 특히 전자·통신 및 반도체 부품 등에서 요구하는 미세한 회로패턴에 대응할 수 있다.The method of selectively forming a metal pattern of a specific site by the photochemical reaction and wet surface treatment technology of the present invention is a method of etching after pattern formation by a lithography process on a conventional dry film or photoresist, conductive paste such as silver Compared to the method of printing a circuit by inkjet or silk screen using (Paste), the reliability of pattern formation is higher, the process is simpler, it has the advantages of high productivity, low raw material and equipment cost, etc. It may correspond to a fine circuit pattern.

Claims (20)

(a) 알칼리금속 화합물을 비전도성 유전체 표면에 침지 또는 분사하여 비전도성 유전체 표면을 표면개질하는 단계;(a) immersing or spraying an alkali metal compound onto the nonconductive dielectric surface to surface modify the nonconductive dielectric surface; (b) 상기 개질된 표면상에 감광성 금속화합물의 금속성분을 흡착시켜 비전도성 유전체 표면에 감광성을 부여하는 단계;(b) adsorbing a metal component of the photosensitive metal compound on the modified surface to impart photosensitivity to the nonconductive dielectric surface; (c) 포토마스크를 이용하여 상기 감광성 부여된 표면에 200 내지 450nm 파장을 가진 광원을 선택적으로 조사하는 단계;(c) selectively irradiating a light source having a wavelength of 200 to 450 nm to the photosensitive imparted surface using a photomask; (d) 상기 포토마스크에 의하여 광원이 비조사된 표면에 흡착되어 있는 감광성 금속화합물에 귀금속 촉매 입자를 치환 흡착하여 활성화시키는 활성화 단계; 및(d) an activation step of substituting and activating the noble metal catalyst particles on the photosensitive metal compound adsorbed on the unirradiated surface of the light source by the photomask; And (e) 상기 활성화된 표면에 무전해 도금공정을 이용하여 금속패턴을 수득하는 단계(e) obtaining a metal pattern on the activated surface by using an electroless plating process 를 포함하는 금속패턴 형성 방법.Metal pattern forming method comprising a. 제1항에 있어서, 상기 (a)단계의 비전도성 유전체는 폴리머, 유리, 세라믹 및 실리콘 웨이퍼로 이루어지는 군으로부터 선택되는 것인 방법.The method of claim 1, wherein the nonconductive dielectric of step (a) is selected from the group consisting of polymer, glass, ceramic, and silicon wafers. 삭제delete 제1항에 있어서, 알칼리금속 화합물이 수산화나트륨 또는 수산화칼륨인 방법.The method of claim 1, wherein the alkali metal compound is sodium or potassium hydroxide. 제1항에 있어서, 알칼리금속 화합물에 암모늄염 또는 지방족 아민화합물, 또는 이들 모두가 첨가된 것을 특징으로 하는 방법.The method according to claim 1, wherein an ammonium salt or an aliphatic amine compound, or both thereof is added to the alkali metal compound. 제5항에 있어서, 암모늄염이 수산화암모늄, 염화암모늄, 황산암모늄, 탄산암모늄, 트리에틸암모늄염, 테트라에틸암모늄염, 트리메틸암모늄염, 테트라메틸암모늄염, 트리플루오르암모늄염 및 테트라플루오르암모늄염으로 이루어진 군으로부터 선택되는 것인 방법.6. The ammonium salt of claim 5, wherein the ammonium salt is selected from the group consisting of ammonium hydroxide, ammonium chloride, ammonium sulfate, ammonium carbonate, triethylammonium salt, tetraethylammonium salt, trimethylammonium salt, tetramethylammonium salt, trifluoroammonium salt and tetrafluoroammonium salt. Way. 제5항에 있어서, 지방족 아민화합물이 메틸아민, 에틸아민, 디메틸아민, 디에틸아민, 트리메틸아민, 에틸렌디아민, 디에틸렌트리아민, 우레아 및 히드라진 유도체로 이루어진 군으로부터 선택되는 것인 방법.The method of claim 5 wherein the aliphatic amine compound is selected from the group consisting of methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, ethylenediamine, diethylenetriamine, urea and hydrazine derivatives. 제1항에 있어서, 상기 (a)단계가 20 내지 60℃에서 30초 내지 10분 동안 표면개질하는 것을 특징으로 하는 방법.According to claim 1, wherein the step (a) is characterized in that the surface modification for 30 seconds to 10 minutes at 20 to 60 ℃. 제1항에 있어서, 상기 (b)단계의 감광성 금속화합물은 타이타늄(Ti)염, 몰리브덴(Mo)염, 텅스텐(W)염 및 주석(Sn)염으로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the photosensitive metal compound of step (b) is one or more selected from the group consisting of titanium (Ti) salt, molybdenum (Mo) salt, tungsten (W) salt and tin (Sn) salt. How to. 제1항에 있어서, 상기 (b)단계가 20 내지 50℃에서 30초 내지 5분 동안 행해지는 것을 특징으로 하는 방법.The method of claim 1, wherein step (b) is performed at 20 to 50 ° C. for 30 seconds to 5 minutes. 제1항에 있어서, 상기 (c)단계의 광원 조사 단계가 주파장이 365nm 또는 405nm인 자외선 광원을 이용하는 것인 방법.The method of claim 1, wherein the step of irradiating the light source of step (c) uses an ultraviolet light source whose main wavelength is 365 nm or 405 nm. 제1항에 있어서, 상기 (c)단계의 광원 조사 단계가 0.5 내지 5J/cm2의 광원 조사 강도인 것을 특징으로 하는 방법.The method of claim 1, wherein the step of irradiating the light source of step (c) is a light source irradiating intensity of 0.5 to 5 J / cm 2 . 삭제delete 제1항에 있어서, 상기 (d)단계의 귀금속 촉매가 Pd, Ag, Pt 및 Au로 이루어진 군으로부터 선택되는 것인 방법.The method of claim 1, wherein the noble metal catalyst of step (d) is selected from the group consisting of Pd, Ag, Pt and Au. 제1항에 있어서, 상기 (d)단계의 활성화 단계가 20 내지 50℃에서 30초 내지 5분 동안 행해지는 것을 특징으로 하는 방법.The method of claim 1, wherein the activating step (d) is carried out at 20 to 50 ℃ for 30 seconds to 5 minutes. 제1항의 방법에 따라 수득된 금속패턴.Metal pattern obtained according to the method of claim 1. 제1항의 방법에 따라 수득된 금속패턴을 포함하는 경성(Rigid) 및 연성(Flexible)타입의 인쇄회로기판(PCB) .Rigid and flexible printed circuit board (PCB) comprising a metal pattern obtained according to the method of claim 1. 제1항의 방법에 따라 수득된 금속패턴을 포함하는 전자테크(RFID).Electronic technology (RFID) comprising a metal pattern obtained according to the method of claim 1. 제1항의 방법에 따라 수득된 금속패턴을 포함하는 전자파 차폐용 필터.Electromagnetic shielding filter comprising a metal pattern obtained according to the method of claim 1. 제1항의 방법에 따라 수득된 금속패턴을 포함하는 디스플레이 패널의 전극회로.An electrode circuit of a display panel comprising a metal pattern obtained according to the method of claim 1.
KR1020070003316A 2007-01-11 2007-01-11 Selective metallization process of non-conductive dielectric substrates KR100877379B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070003316A KR100877379B1 (en) 2007-01-11 2007-01-11 Selective metallization process of non-conductive dielectric substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070003316A KR100877379B1 (en) 2007-01-11 2007-01-11 Selective metallization process of non-conductive dielectric substrates

Publications (2)

Publication Number Publication Date
KR20080066178A KR20080066178A (en) 2008-07-16
KR100877379B1 true KR100877379B1 (en) 2009-01-09

Family

ID=39821088

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070003316A KR100877379B1 (en) 2007-01-11 2007-01-11 Selective metallization process of non-conductive dielectric substrates

Country Status (1)

Country Link
KR (1) KR100877379B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910009126A (en) * 1989-10-26 1991-05-31 베르너 발데크 Method of manufacturing a metal pattern
JPH08306605A (en) * 1995-04-27 1996-11-22 Nec Corp Forming method of resist pattern
KR20060007503A (en) * 2004-07-20 2006-01-26 삼성코닝 주식회사 Method for forming highly conductive metal pattern on a flexible substrate and emi filter using the same
KR20060057232A (en) * 2004-11-23 2006-05-26 삼성전자주식회사 Method of preparing metal pattern by using metal nano crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910009126A (en) * 1989-10-26 1991-05-31 베르너 발데크 Method of manufacturing a metal pattern
JPH08306605A (en) * 1995-04-27 1996-11-22 Nec Corp Forming method of resist pattern
KR20060007503A (en) * 2004-07-20 2006-01-26 삼성코닝 주식회사 Method for forming highly conductive metal pattern on a flexible substrate and emi filter using the same
KR20060057232A (en) * 2004-11-23 2006-05-26 삼성전자주식회사 Method of preparing metal pattern by using metal nano crystal

Also Published As

Publication number Publication date
KR20080066178A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5573429B2 (en) Electroless nickel-palladium-gold plating method, plated product, printed wiring board, interposer, and semiconductor device
US7305761B2 (en) Method for manufacturing wiring substrate
JP6317090B2 (en) Method for electroless plating and solution used therefor
ES2703240T3 (en) Polyimide substrate and method of manufacturing the printed circuit board using the same
KR101371088B1 (en) a fabricating method of metal thin film using electroless deposition and a thin film device fabricated thereby
KR100906317B1 (en) Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin having reformed surface for forming inorganic thin film
JP2006210891A (en) Forming method of inorganic thin film pattern for polyimide resin
CN109252148B (en) Method for forming metal layer on surface of photosensitive resin
JP2004343109A (en) Method of forming metal wiring and electromagnetic wave shielding filter using this
JP4628914B2 (en) Circuit pattern forming method
KR100292652B1 (en) Activation Catalysts for Electroless Plating and Electroless Plating Methods
JP2006188757A (en) Method for depositing inorganic thin film of polyimide resin and method for producing polyimide resin for depositing surface-reformed inorganic thin film
JP2005029735A (en) Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin for forming surface-modified inorganic thin film
CN109561597B (en) Preparation method of self-cleaning flexible conductive circuit and flexible equipment with same
KR100877379B1 (en) Selective metallization process of non-conductive dielectric substrates
US20050245004A1 (en) Method for manufacturing wiring substrate and method for manufacturing electronic device
KR20140019174A (en) Method for manufacturing printed circuit board
US20050170079A1 (en) Method for manufacturing wiring substrate and method for manufacturing electronic device
KR101907074B1 (en) Method for forming metallic pattern on non-conductive dielectric substrates in micro scale
US20050170622A1 (en) Method for manufacturing wiring substrate and method for manufacturing electronic device
US6773760B1 (en) Method for metallizing surfaces of substrates
KR20070086354A (en) Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
JP3161407B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JP2000144437A (en) Electroless plating method, electroless plating device, production of wiring board and device for producing wiring board
JP4746897B2 (en) Printed circuit board wiring method and printed circuit board product

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20151113

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190925

Year of fee payment: 12