KR100867601B1 - 초임계수를 이용한 반도체 산화물의 제조방법 - Google Patents
초임계수를 이용한 반도체 산화물의 제조방법 Download PDFInfo
- Publication number
- KR100867601B1 KR100867601B1 KR1020070086651A KR20070086651A KR100867601B1 KR 100867601 B1 KR100867601 B1 KR 100867601B1 KR 1020070086651 A KR1020070086651 A KR 1020070086651A KR 20070086651 A KR20070086651 A KR 20070086651A KR 100867601 B1 KR100867601 B1 KR 100867601B1
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductor oxide
- aqueous solution
- precursor
- supercritical water
- solution containing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000003786 synthesis reaction Methods 0.000 title description 3
- 230000015572 biosynthetic process Effects 0.000 title description 2
- 239000002243 precursor Substances 0.000 claims abstract description 64
- 239000007864 aqueous solution Substances 0.000 claims abstract description 41
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 239000012855 volatile organic compound Substances 0.000 claims abstract description 16
- 239000000243 solution Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 150000004703 alkoxides Chemical class 0.000 claims description 10
- 239000012153 distilled water Substances 0.000 claims description 9
- 239000011941 photocatalyst Substances 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract description 14
- 238000002156 mixing Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 abstract description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 18
- 239000010936 titanium Substances 0.000 description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 238000003980 solgel method Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- -1 biological treatment Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002894 organic compounds Chemical group 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8668—Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
본 발명은 초임계수를 이용한 반도체 산화물의 제조방법에 관한 것으로 보다 상세하게는 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 수열합성반응을 통하여 연속적으로 반도체 산화물을 제조하는 초임계수를 이용한 반도체 산화물의 제조방법에 관한 것이다.
본 발명은 상기에서 언급한 방법에 의해 제조한 반도체 산화물을 포함한다.
본 발명은 상기에서 언급한 방법에 의해 제조한 반도체 산화물을 함유하는 광촉매를 포함한다.
초임계수, 반도체 산화물, 광촉매
Description
본 발명은 초임계수를 이용한 반도체 산화물의 제조방법에 관한 것으로 보다 상세하게는 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 수열합성반응을 통하여 연속적으로 반도체 산화물을 제조하는 초임계수를 이용한 반도체 산화물의 제조방법에 관한 것이다.
본 발명에 의해 나노크기를 나타내며 비표면적 및 결정성이 증가된 반도체 산화물을 제조할 수 있으며, 동시에 연속공정에 따른 반도체 산화물의 생산수율을 증대 시킬 수 있고, 또한 본 발명에 의해 제조한 반도체 산화물은 휘발성 유기화합물 분해에 적용하는 광촉매로써 사용할 수 있어 광활성 증대 및 경제성을 충족시킬 수 있다.
최근 산업구조가 고도화되고 인구가 도시로 집중됨에 따라 전 세계적으로 환 경에 대한 관심이 대두 되고, 점차 대기 및 수질오염을 유발하는 휘발성 유기화합물(VOCs)에 대한 규제가 강화되고 있다.
휘발성 유기화합물은 일산화탄소, 이산화탄소, 탄산, 금속성 탐산염 및 탄산암모늄을 제외한 탄소화합물로서 대기 중에서 태양광선에 의해 질소산화물(NOx)와 광화학반응을 일으켜 지표면의 오존 농도를 증가시키고 이로 인해 스모그현상을 일으키는 유기화합물질로 미국 EPA(Environmental Protection Agency)에 의해 정의 되었으며 기관지염, 폐렴, 기침, 호흡곤란 등 인체에 직접적인 해를 끼치는 것으로 알려져 있다
휘발성유기화합물(VOCs)을 제거하기위해 흡착제를 이용한 처리, 생물학적 처리, 촉매를 이용한 처리 등 다양한 방법이 있다. 그러나 흡착제의 이용은 오염물질의 완전한 제거가 아니라 농축을 하는 것으로 2차적 오염이 유발되며, 생물학적 처리는 난분해성 독성물질 처리에 어려움이 있다. 그리고 촉매를 이용한 방법은 비싼 귀금속 촉매와 높은 운전비용으로 인해 문제가 되고 있다. 따라서 이러한 문제점을 극복하고 VOCs와 같은 오염물질을 효과적으로 분해할 수 있는 광촉매에 대하여 큰 관심이 모아지고 있다.
광촉매를 이용한 촉매반응은 다른 공정에 비해 비교적 값이 싸고, 무한한 태양에너지를 이용할 수 있고, 재생 가능한 에너지원과 화학적으로 유용한 물질을 얻을 수 있는 새로운 방법을 인식되고 있으며 유독성 유기화합물을 분해한 후에도 이차적인 오염이 문제되지 않는다.
현재 광촉매로 응용할 수 있는 반도체 산화물은 주로 졸-젤 방법을 사용하여 제조 할 수 있다. 졸-젤 방법은 출발 물질의 가수 분해, 축합반응 그리고 탈수 반응을 통하여 1마이크로미터(㎛) 크기 이하인 콜로이드 입자가 분산되어 있는 졸(sol) 상태의 화합물로 만든 후 이 입자들이 3차원적으로 결합된 망목구조를 갖는 젤(gel)을 형성 시키고 열처리를 통하여 입자를 만든다. 졸-젤법의 출발물질로는 가용성의 알콕사이드가 가장 보편적으로 사용되고 있다. 졸-젤 방법을 이용하면 비교적 화학적 균질성을 가진 분말을 얻을 수 있지만, 알콕사이드 화합물은 가수분해가 빨라 반응속도를 조절해야하는 문제점과 함께 주로 회분식 반응을 통하여 분말을 얻기 때문에 분말 생산 능력이 상당히 저하되며, 가격이 비싸 경제성에 대한 큰 단점이 있다. 따라서, 종래의 졸-젤 방법 대비 합성공정이 간단해지고, 연속식 공정으로 인한 수율 증대를 이룰 수 있을 뿐 아니라 합성반응이 원료 전체에 걸쳐 균일하게 일어날 수 있는 대체 기술이 시급하다.
이에 본 발명의 발명자들은 상기와 같은 기대에 부응하기 위하여 노력한 결과, 초임계유체를 이용하여 연속식 방법으로 기존 상용화 반도체 산화물 대비 결정성 및 비표면적이 우수한 새로운 입자를 제조하였고 반도체 산화물의 생산능력을 개선시켜 본 발명을 완성하였다.
따라서, 본 발명은 상기에 언급된 바와 같이 광을 이용한 촉매 반응에 적용 가능한 재료의 물성개선을 위하여 이루어진 것으로서, 개선된 물성으로 인해 반도체 산화물의 광기능 재료 및 그 외 다양한 응용범위를 가질 수 있는 반도체 산화물의 제조방법 및 상기 방법에 의해 제조한 반도체 산화물의 제공을 목적으로 한다.
본 발명은 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 반응시켜 반도체 산화물을 제조하는 초임계수를 이용한 반도체 산화물의 제조방법을 제공하고자 한다.
본 발명에 의해 제조한 반도체 산화물은 종래 방법에 의해 제조한 반도체 산화물에 비해 결정성이 증가되었으며 비표면적의 크기가 상당히 증가되어 우수한 특 성을 지니는 반도체 산화물을 제조할 수 있다.
본 발명에 의해 제조된 반도체 산화물은 공기중에 배출되는 휘발성유기화합물(VOCs)에 대하여 자외선 존재 하에서 효과적인 산화반응을 촉진 시킬 수 있을 것으로 기대된다. 특히 실내공기 청정이 필요한 장소와 반도체 및 LCD등 전자 산업내의 클린룸에 적용이 가능하다. 또한 연속식 공정의 장점으로 인해 기존의 회분식 공정 대비 생산량이 증대와 함께 경제성을 확보할 수 있다.
본 발명은 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 반응시켜 반도체 산화물을 제조하는 초임계수를 이용한 반도체 산화물의 제조방법을 나타낸다.
본 발명에서 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 반응시 반응조건으로서 물의 초임계 조건 이상에서 반응시킬 수 있다.
즉, 물의 초임계 조건은 375℃의 온도, 221bar의 압력이므로 본 발명에서 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와의 반응은 375℃의 온도 이상, 221bar의 압력 이상의 가열, 가압 반응조건 하에서 실시할 수 있다.
일예로 본 발명은 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산 화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 375∼500℃의 온도와 221∼300bar의 압력에서 1분∼30분 동안 반응시켜 반도체 산화물을 제조할 수 있다.
본 발명에서 질산염계 금속전구체를 반도체 산화물 전구체로 하고, 상기 반도체 산화물 전구체를 포함하는 수용액을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 반응시켜 하기 반응식(1) 및 반응식(3)에 의해 반도체 산화물을 제조할 수 있다.
M(NO3)x(aq) + xH2O ---> M(OH)x(s) + xHNO3...... 반응식(1)
M(OH)x(s) ---> MOx/2(s) + (x/2)H2O...... 반응식(3)
한편 본 발명에서 알콕사이드계 금속전구체를 반도체 산화물 전구체로 하고, 상기 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 반응시켜 하기 반응식(2) 및 반응식(3)에 의해 반도체 산화물을 제조할 수 있다.
M(OR)x(aq) + xH2O ---> M(OH)x(s) + x(R-OH)...... 반응식(2)
M(OH)x(s) ---> MOx/2(s) + (x/2)H2O...... 반응식(3)
본 발명에서 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 사용하는 경우 반도체 산화물 전구체를 포함하는 수용액의 농도와 질산 수용액의 농도가 동일하도록 하는 것이 좋다. 만일 질산 수용액의 질산의 농도가 반도체 산화물 전구체를 포함하는 수용액의 반도체 산화물 전구체의 농도에 비해 더 낮 은 경우 반도체 산화물 전구체를 용해하는데 시간이 오래 걸리며, 반대로 질산 수용액의 질산의 농도가 반도체 산화물 전구체를 포함하는 수용액의 반도체 산화물 전구체의 농도에 비해 높은 경우 과량의 질산으로 인해 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물과 초임계수가 반응하는 반응기 재질의 부식진행이 촉진될 수 있다.
따라서 본 발명에서 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 사용하는 경우 반도체 산화물 전구체를 포함하는 수용액의 농도와 질산 수용액의 농도가 동일하게 혼합하는 하는 것이 좋다.
본 발명에서 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물과 반응하는 초임계수는 1회 이상 증류된 증류수를 사용할 수 있다. 일예로 1차 증류수, 2차 증류수, 3차 증류수, 4차 증류수 중에서 선택된 어느 하나를 물의 초임계 조건 이상에서 처리하여 얻은 초임계수를 사용할 수 있다.
상기에서 초임계수의 일예로 3차 증류수를 375∼500℃의 온도와 221∼300bar의 압력에서 가열 및 가압시킨 초임계수를 사용할 수 있다.
본 발명에서 반도체 산화물 전구체는 질산염계 금속전구체 또는 알콕사이드 계열의 금속전구체를 사용할 수 있다.
본 발명에서 반도체 산화물 전구체는 질산염계 금속전구체를 사용하되 상기 질산염계 금속전구체에서 금속은 Ti, Zr, Zn, Fe, W, Sn으로 이루어진 군 중에서 선택된 어느 하나 인 것을 사용할 수 있다.
본 발명에서 반도체 산화물 전구체는 알콕사이드계 금속전구체를 사용하되 상기 알콕사이드계 금속전구체에서 금속은 Ti, Zr, Zn, Fe, W, Sn으로 이루어진 군 중에서 선택된 어느 하나 인 것을 사용할 수 있다.
본 발명에서 반도체 산화물 전구체는 0.1∼1몰농도인 것을 사용할 수 있다.
본 발명은 상기에서 언급한 방법에 의해 제조한 반도체 산화물을 포함한다.
본 발명은 상기에서 언급한 방법에 의해 제조한 반도체 산화물을 함유하는 광촉매를 포함한다.
상기에서 광촉매는 휘발성유기화합물 분해 장치의 촉매로 사용되어 자외선 존재 하에서 휘발성 유기화합물과 같은 유해한 기체의 산화반응을 효과적으로 촉진 시키거나 또는 휘발성유기화합물 분해에 적용할 수 있다.
이하 본 발명의 내용을 실시예 및 시험예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.
<실시예> 알콕사이드계 전구체를 이용한 아나타제 TiO2 제조
이하 도 1을 참조하여 실시예를 설명하고자 한다.
반도체 산화물을 제조하기위해 알콕사이드계 전구체로서 Ti(OCH(CH3)2)4를 사용하였으며 경제성을 고려하여 97wt%의 순도를 가지는 시약을 선정하였다.
상기 알콕사이드계인 티타늄 전구체는 물에 잘 녹지 않으므로 질산을 첨가하여 혼합 수용액을 만든 후 용해하였다. 이때 티타늄 전구체의 농도는 0.1M로 하였으며, 질산의 농도는 티타늄 전구체 농도와 동일하게 하였다.
상기의 티타늄 전구체와 질산이 혼합된 수용액 400ml를 교반하여 티타늄 전구체를 완전히 용해하였다.
티타늄 전구체를 완전히 용해된 티타늄 전구체와 질산이 혼합된 수용액(11)을 4ml/min의 유량으로 액상 고압이송펌프(13)를 이용하여 혼합점(M)까지 도달시켰다.
3차 증류수(10)를 20ml/min의 유량으로 액상 고압이송펌프(11)를 이용하여 예비 가열 및 가압기(20)로 이송한 후 400℃ 및 250 bar의 조건으로 가열, 가압하여 초임계수를 만들고, 상기 초임계수를 혼합점(M)까지 도달시켰다. 상기 가열 및 가압기(20)는 가열 및 가압기(20) 일측에 구비된 온도조절기(21) 및 압력조절기(22)에 의해 가열 및 가압기(20)의 가열 및 가압 조건을 유지할 수 있다.
티타늄 전구체와 질산이 혼합된 수용액(11)과 상기 초임계수를 혼합점(M)에서 혼합한 후 반응기(30)로 보내어 반응기(30)에서 400℃ 및 250 bar의 가열 및 가압 조건으로 3분 동안 반응시켜 가수분해반응과 탈수반응이 일어나도록 한다. 상기 탈수반응이 진행된 후 냉각기(40)에 의해 냉각시켜 생성된 TiO2는 수집기(50)에 수 집되고, 상기 수집기(50)에 수집된 TiO2는 필터(51)에 의해 여과된 후 회전농축식 증발기를 이용하여 50℃의 온도에서 감압건조한 후 수집기(52)에서 분말형태의 TiO2를 제조하였다. 상기 반응기(30)는 반응기(30) 일측에 구비된 온도조절기(31) 및 압력조절기(32)에 의해 상기 반응기(30)의 가열 및 가압 조건을 유지할 수 있다.
도 2는 상기의 실시예에서 제조한 TiO2와 상용 TiO2 촉매(P-25) 및 상용 TiO2 촉매(ST-01)의 결정구조를 나타내는 그래프이다. 도 2에서 A는 아나타제 구조를 나타내며, R은 루타일 구조를 나타낸다. 또한 (가)는 상용 TiO2 촉매(P-25)의 결정구조를 나타내고, (나)는 상용 TiO2 촉매(ST-01)의 결정구조를 나타내고, (다)는 상기 본 발명의 실시예에서 제조한 TiO2의 결정구조를 나타낸 것이다.
도 2에서 나타낸바와 같이 본 발명의 실시예를 통해 제조한 TiO2가 상용 TiO2 촉매(P-25) 및 상용 TiO2 촉매(ST-01) 대비 결정성이 증가되었으며 모든 결정이 아나타제 구조로 이루어졌음을 확인 할 수 있었다.
또한 비표면적 측정결과 상용 TiO2 촉매(P-25)는 50m2/g 이었으며, 상기 본 발명의 실시예에서 제조한 TiO2의 경우 104m2/g로 비표면적의 크기가 상당히 증가되었음을 확인 할 수 있었다.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명에 의해 제조된 반도체 산화물은 공기중에 배출되는 휘발성유기화합물(VOCs)에 대하여 자외선 존재 하에서 효과적인 산화반응을 촉진 시킬 수 있을 것으로 기대된다. 특히 실내공기 청정이 필요한 장소와 반도체 및 LCD등 전자 산업내의 클린룸에 적용이 가능하다. 또한 연속식 공정의 장점으로 인해 기존의 회분식 공정 대비 생산량이 증대와 함께 경제성을 확보할 수 있다.
도 1은 본 발명의 반도체 산화물을 제조하기위한 공정 개략도이다.
도 2는 본 발명의 실시예에서 제조된 TiO2와 상용 TiO2 촉매(P-25) 및 상용 TiO2 촉매(ST-01)의 결정구조를 나타내는 그래프이다.
<도면의 주요 부분에 대한 부호의 설명>
10 : 3차 증류수
11 : 티타늄 전구체와 질산이 혼합된 수용액
12, 13 : 액상 고압이송펌프 20 : 가열 및 가압기
21, 31 : 온도 조절기 22, 32 : 압력 조절기
30 : 반응기 40 : 냉각기
50, 52 : 수집기 51 : 필터
M : 혼합점
Claims (10)
- 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 초임계수와 혼합시키고 물의 초임계 조건 이상에서 반응시켜 반도체 산화물을 제조하는 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제1항에 있어서, 반도체 산화물 전구체를 포함하는 수용액 또는 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물을 375∼500℃의 온도와 221∼300bar의 압력에서 1분∼30분 동안 반응시키는 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제1항에 있어서, 반도체 산화물 전구체를 포함하는 수용액과 질산 수용액의 혼합물은 반도체 산화물 전구체를 포함하는 수용액의 농도와 질산 수용액의 농도가 동일한 혼합물인 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제1항에 있어서, 초임계수는 3차 증류수를 375∼500℃의 온도와 221∼300bar의 압력에서 가열 및 가압시킨 초임계수인 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제1항에 있어서, 반도체 산화물 전구체는 질산염계 금속전구체 또는 알콕사이드 계열의 금속전구체인 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제5항에 있어서, 질산염계 금속전구체 또는 알콕사이드 계열의 금속전구체에서 금속은 Ti, Zr, Zn, Fe, W, Sn으로 이루어진 군 중에서 선택된 어느 하나 인 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 제1항에 있어서, 반도체 산화물 전구체는 0.1∼1몰농도인 것을 특징으로 하는 초임계수를 이용한 반도체 산화물의 제조방법.
- 특허청구범위 제1항의 방법에 의해 제조한 반도체 산화물.
- 특허청구범위 제1항의 방법에 의해 제조한 반도체 산화물을 포함하는 광촉매.
- 제9항에 있어서, 광촉매는 휘발성유기화합물 분해에 적용할 수 있는 것 임을 특징으로 하는 광촉매.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070086651A KR100867601B1 (ko) | 2007-08-28 | 2007-08-28 | 초임계수를 이용한 반도체 산화물의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070086651A KR100867601B1 (ko) | 2007-08-28 | 2007-08-28 | 초임계수를 이용한 반도체 산화물의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100867601B1 true KR100867601B1 (ko) | 2008-11-10 |
Family
ID=40283835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070086651A KR100867601B1 (ko) | 2007-08-28 | 2007-08-28 | 초임계수를 이용한 반도체 산화물의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100867601B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100980322B1 (ko) | 2009-01-29 | 2010-09-07 | 서울대학교산학협력단 | 가시광 응답형 산화물 광촉매 화합물 및 그 제조방법 |
CN110237833A (zh) * | 2019-05-13 | 2019-09-17 | 杭州电子科技大学 | 一种利用紫外光照射超临界流体制备纳米金属担载型复合光催化剂的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002248333A (ja) | 2001-02-22 | 2002-09-03 | Mitsubishi Materials Corp | 金属または金属化合物微粒子の製造装置およびその方法 |
KR100713298B1 (ko) | 2005-09-08 | 2007-05-04 | 한화석유화학 주식회사 | 내열성이 우수한 금속산화물 및 이의 제조방법 |
-
2007
- 2007-08-28 KR KR1020070086651A patent/KR100867601B1/ko not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002248333A (ja) | 2001-02-22 | 2002-09-03 | Mitsubishi Materials Corp | 金属または金属化合物微粒子の製造装置およびその方法 |
KR100713298B1 (ko) | 2005-09-08 | 2007-05-04 | 한화석유화학 주식회사 | 내열성이 우수한 금속산화물 및 이의 제조방법 |
Non-Patent Citations (1)
Title |
---|
Journal of materials chemistry, 2002, Vol.12(12), pp.3671-3676(6) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100980322B1 (ko) | 2009-01-29 | 2010-09-07 | 서울대학교산학협력단 | 가시광 응답형 산화물 광촉매 화합물 및 그 제조방법 |
CN110237833A (zh) * | 2019-05-13 | 2019-09-17 | 杭州电子科技大学 | 一种利用紫外光照射超临界流体制备纳米金属担载型复合光催化剂的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eddy et al. | Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity | |
Huang et al. | Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x | |
Xiang et al. | Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air | |
Zhang et al. | A micrometer-size TiO 2 single-crystal photocatalyst with remarkable 80% level of reactive facets | |
Hirano et al. | Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300° C from acidic solution by hydrolysis under hydrothermal condition | |
Nilchi et al. | Sol-gel preparation of nanoscale TiO2/SiO2 composite for eliminating of Con Red azo dye | |
JP5582545B2 (ja) | 窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法 | |
CN101773820B (zh) | 一种染料敏化制备可见光活性光触媒的方法 | |
CN110944749B (zh) | 纳米功能化的支架及其生产方法 | |
Andersson et al. | Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance | |
US8357348B2 (en) | Method for preparing uniform anatase-type titanium dioxide nanoparticles | |
Haruna et al. | Visible light induced photodegradation of methylene blue in sodium doped bismuth barium ferrite nanoparticle synthesized by sol-gel method | |
Janani et al. | ZnO-Zn2TiO4 heterostructure for highly efficient photocatalytic degradation of pharmaceuticals | |
KR20020092067A (ko) | 금속이 첨가된 고활성 광촉매 산화티탄-졸 제조 방법 | |
KR100470533B1 (ko) | 산화아연 나노분말의 제조방법 | |
KR100867601B1 (ko) | 초임계수를 이용한 반도체 산화물의 제조방법 | |
CN101723442B (zh) | 一种水热共溶剂法制备氮掺杂钛酸纳米管的方法 | |
US20080003153A1 (en) | Process for Producing Flaky Titanium Oxide Capable of Absorbing Visible Light | |
Abdullah et al. | Synthesis of bismuth vanadate as visible-light photocatalyst | |
CN105417577B (zh) | 一种纳米二氧化钛的高温制备方法 | |
JP3136339B2 (ja) | 酸化チタン光触媒及びその製造方法 | |
JP2002047012A (ja) | 酸化チタンの製造方法 | |
KR100594634B1 (ko) | 고활성 광촉매 이산화티탄계 복합분말의 제조방법 | |
KR20050042763A (ko) | 고결정 및 고활성 타이타니아 나노튜브의 제조 | |
CN103331156A (zh) | 全光谱太阳光驱动隐钾锰矿纳米棒催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111102 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20121031 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |