KR100866110B1 - Method for forming copper line in semiconductor device - Google Patents

Method for forming copper line in semiconductor device Download PDF

Info

Publication number
KR100866110B1
KR100866110B1 KR1020020032352A KR20020032352A KR100866110B1 KR 100866110 B1 KR100866110 B1 KR 100866110B1 KR 1020020032352 A KR1020020032352 A KR 1020020032352A KR 20020032352 A KR20020032352 A KR 20020032352A KR 100866110 B1 KR100866110 B1 KR 100866110B1
Authority
KR
South Korea
Prior art keywords
copper
layer
forming
semiconductor device
electroplating
Prior art date
Application number
KR1020020032352A
Other languages
Korean (ko)
Other versions
KR20030095452A (en
Inventor
이덕원
이세영
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020020032352A priority Critical patent/KR100866110B1/en
Publication of KR20030095452A publication Critical patent/KR20030095452A/en
Application granted granted Critical
Publication of KR100866110B1 publication Critical patent/KR100866110B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 구리의 전기도금 증착시 발생하는 고유의 결함을 감소시킬 수 있는 반도체 소자의 구리배선 형성방법에 관한 것으로, 반도체 기판 위의 소정의 패턴상에 배리어층과 씨드(Sed)층을 형성하는 단계; 상기 씨드층 상에 전기도금법으로 제1구리층을 형성하는 단계; 상기 제1구리층상에 수소 분위기에서 제2구리층을 형성하는 단계; 상기 제1 및 제2구리층내로 수소가 확산되도록 열처리하는 단계; 및 상기 제1 및 제2구리층을 화학 기계적 연마로 평탄화시켜 구리배선을 형성하는 단계를 포함하며, 패턴을 매립하는 단계까지만 전기도금 증착법을 진행함으로써 구리 전기 도금 증착공정이 단순화되고, 구리원자의 확산을 촉진시키는 수소의 성질을 이용함으로써 일부 평탄화를 이룰 수 있어 구리 CMP 공정에서 필요로 하는 구리막의 두께를 감소시킬 수 있으며, 또한 전기도금 증착시 발생하는 결함이 감소됨으로 소자의 전기적 특성과 배선 신뢰성이 향상되고 제조수율이 향상되는 효과가 있는 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a copper wiring of a semiconductor device capable of reducing inherent defects generated during electroplating deposition of copper. The present invention provides a method for forming a barrier layer and a seed layer on a predetermined pattern on a semiconductor substrate. step; Forming a first copper layer on the seed layer by electroplating; Forming a second copper layer on the first copper layer in a hydrogen atmosphere; Heat-treating the diffusion of hydrogen into the first and second copper layers; And planarizing the first and second copper layers by chemical mechanical polishing to form copper wiring, and by performing the electroplating deposition method only until the step of embedding the pattern, the copper electroplating deposition process is simplified, Partial planarization can be achieved by utilizing the properties of hydrogen that promotes diffusion, thereby reducing the thickness of the copper film required in the copper CMP process, and also reducing the defects generated during electroplating deposition, thereby reducing the electrical characteristics and wiring reliability of the device. This has the effect of improving the production yield.

Description

반도체 소자의 구리배선 형성방법{METHOD FOR FORMING COPPER LINE IN SEMICONDUCTOR DEVICE}Copper wiring formation method of semiconductor device {METHOD FOR FORMING COPPER LINE IN SEMICONDUCTOR DEVICE}

도 1 내지 도 5는 본 발명에 따른 반도체 소자의 구리배선 형성방법을 도시한 공정별 단면도.1 to 5 are cross-sectional views for each process illustrating a method of forming copper wirings of a semiconductor device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100; 반도체 기판 110; 패턴100; A semiconductor substrate 110; pattern

120; 씨드층 130; 배리어층120; Seed layer 130; Barrier layer

140; 제1구리층 150; 제2구리층140; First copper layer 150; 2nd copper layer

155; 수소 ` 160a; 구리배선155; Hydrogen `160a; Copper wiring

본 발명은 반도체 소자의 구리배선 형성방법에 관한 것으로, 보다 상세하게는 구리의 전기도금 증착시 발생하는 고유의 결함을 감소시킬 수 있는 반도체 소자의 구리배선 형성방법에 관한 것이다.The present invention relates to a method for forming a copper wiring of a semiconductor device, and more particularly to a method for forming a copper wiring of a semiconductor device that can reduce the inherent defects generated during electroplating of copper.

종래 반도체 소자를 제조하는 데 있어서는 텅스텐과 알루미늄 합금을 금속배선으로 사용하는 것이 일반적이다. 그러나, 최근 반도체 소자의 고집적화 경향에 따라 선폭의 미세화에 의해서 소자의 동작 때문에 금속배선내의 전류밀도가 높아지고, 이에 따라 일렉트로 마이그레이션(electro migration) 현상이 두드러졌다. In manufacturing a conventional semiconductor device, it is common to use tungsten and an aluminum alloy as metal wiring. However, in recent years, with the tendency of high integration of semiconductor devices, the current density in the metal wiring is increased due to the operation of the devices due to the miniaturization of the line width, and thus, the electro migration phenomenon has been remarkable.

또한, 금속배선과 이를 보호하기 위한 절연막의 열팽창계수가 달라서 금속배선에 인장력이 가해져서 생기는 크리프(creep) 파괴인 스트레스 마이그레이션(stress migration) 현상이 배선의 미세화로 인해 더욱 두드려졌다.In addition, stress migration, a creep failure caused by the application of a tensile force to the metal wiring due to different thermal expansion coefficients of the metal wiring and the insulating film for protecting the same, has been further exacerbated by the miniaturization of the wiring.

이에 따라, 기존의 금속배선으로 사용되는 텅스텐과 알루미늄 합금은 큰 비저항과 일렉트로 마이그레이션(electro migration)이나 스트레스 마이그레이션(stress migration)으로 인해 신뢰성이 저하되었다. 따라서, 텅스텐과 알루미늄 합금을 대신하여 비저항이 작고 신뢰성이 우수한 구리가 금속배선 재료로 등장하게 되었다. 특히, 구리합금은 순수한 구리에 비해 비저항이 상대적으로 다소 크지만 배선의 신뢰성과 내식성이 우수하여 반도체 소자의 금속배선으로 이용된다.As a result, the tungsten and aluminum alloys used in the existing metal wirings are degraded due to large resistivity, electro migration, or stress migration. Therefore, copper having a low specific resistance and excellent reliability has emerged as a metal wiring material in place of tungsten and aluminum alloys. In particular, although copper alloy has a relatively large specific resistance compared to pure copper, it is used as a metal wiring of a semiconductor device because of excellent wiring reliability and corrosion resistance.

종래 기술에 따른 반도체 소자의 구리배선 형성방법으로는 전기도금 증착법을 이용하였다. 전기도금 증착법은 우수한 매립 능력과 높은 처리량(Throughput) 등의 장점이 있는 구리배선의 대표적인 형성방법이다.As a method of forming a copper wiring of a semiconductor device according to the prior art, an electroplating deposition method was used. Electroplating deposition is a typical method for forming copper interconnects that has the advantages of excellent embedding capability and high throughput.

그러나, 종래 기술에 따른 반도체 소자의 구리배선 형성방법에 있어서는 다음과 같은 문제점이 있었다.However, the copper wiring forming method of the semiconductor device according to the prior art has the following problems.

종래 기술에 있어서 선행공정인 배리어(Barrier)/씨드(Seed) 증착공정과 전기도금 증착공정시 구리 씨드(Seed)의 웨팅(Wetting)에 따라 공동(Void)이나 피트(Pit) 등의 결함(Defect)을 유발할 수 있었다. 이러한 결함은 전기도금 증착법 고유의 결함으로서 반도체 소자의 전기적 특성과 배선의 신뢰성을 악화시키고 생산 수율(Yield)을 떨어뜨리는 주요 인자로 기능한다.Defects such as voids and pits due to wetting of copper seeds during the barrier / seed deposition process and the electroplating deposition process, which are the prior art processes. ) Could be caused. These defects are inherent in the electroplating deposition method, and serve as a major factor for deteriorating the electrical characteristics and wiring reliability of semiconductor devices and lowering the production yield.

이에, 본 발명은 상기한 종래 기술상의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 구리 원자간의 결합에너지를 감소시키고 구리 원자의 확산을 촉진시키는 수소의 성질을 이용하여 전기도금 증착시 발생하는 결함을 감소시킬 수 있는 반도체 소자의 구리배선 형성방법을 제공함에 있다.Accordingly, the present invention has been made to solve the above-mentioned problems in the prior art, an object of the present invention is generated during electroplating deposition using the property of hydrogen to reduce the binding energy between copper atoms and promote the diffusion of copper atoms. The present invention provides a method for forming a copper wiring of a semiconductor device capable of reducing defects.

상기 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 구리배선 형성방법은, 반도체 기판 위의 소정의 패턴상에 배리어층과 씨드(See)층을 형성하는 단계; 상기 씨드층 상에 전기도금법으로 제1구리층을 형성하는 단계; 상기 제1구리층상에 수소 분위기에서 제2구리층을 형성하는 단계; 상기 제1 및 제2구리층내로 수소가 확산되도록 열처리하는 단계; 및 상기 제1 및 제2구리층을 화학 기계적 연마로 평탄화시켜 구리배선을 형성하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method for forming a copper wiring of a semiconductor device, the method including: forming a barrier layer and a seed layer on a predetermined pattern on a semiconductor substrate; Forming a first copper layer on the seed layer by electroplating; Forming a second copper layer on the first copper layer in a hydrogen atmosphere; Heat-treating the diffusion of hydrogen into the first and second copper layers; And planarizing the first and second copper layers by chemical mechanical polishing to form a copper wiring.

본 발명에 의하면 전기도금 증착시 발생하는 결함이 수소에 의해 확산이 촉진된 구리가 매립되어 결함이 줄어들게 된다.According to the present invention, the defects generated during electroplating deposition are embedded in copper, which is promoted by hydrogen, to reduce defects.

(실시예)
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다.
(Example)
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 5는 본 발명에 따른 반도체 소자의 구리배선 형성방법을 설명하기 위한 공정별 단면도이다.1 to 5 are cross-sectional views for each process for explaining a method of forming copper wirings of a semiconductor device according to the present invention.

본 발명에 따른 반도체 소자의 구리배선 형성방법은, 도 1에 도시된 바와 같이, 먼저 반도체 기판(100)위에 형성된 다마신 패턴(damascene pattern)과 같은 소정의 패턴(110)상에 배리어층(120;barrier layer)과 씨드층(130;seed layer)을 형성한다.In the method for forming a copper wiring of a semiconductor device according to the present invention, as shown in FIG. 1, a barrier layer 120 is formed on a predetermined pattern 110 such as a damascene pattern formed on a semiconductor substrate 100. a barrier layer and a seed layer 130 are formed.

상기 배리어층(120)은 상기 소정의 패턴(110) 물질인 절연막과 후속공정으로 형성될 구리배선과의 접착력을 향상시키는 동시에 구리 원자의 외부 확산을 방지하는 역할을 한다. 상기 배리어층(120)으로는 탄탈륨(Ta), 탄탈륨질화물(TaN), 탄탈륨알루미늄질화물(TaAlN), 탄탈륨실리콘질화물(TaSiN), 탄탈륨실리사이드(TaSix), 티타늄(Ti), 티타늄질화물(TiN), 티타늄실리콘질화물(TiSiN), 텅스텐질화물(WN), 코발트(Co), 코발트실리사이드(CoSix) 및 이들의 조합 중에서 어느 하나를 스퍼터링이나 화학기상증착법(CVD) 등으로 증착하여 약 100Å~1,000Å 두께로 형성한다.The barrier layer 120 improves the adhesion between the insulating film, which is the material of the predetermined pattern 110, and the copper wiring to be formed in a subsequent process, and prevents the diffusion of copper atoms. The barrier layer 120 includes tantalum (Ta), tantalum nitride (TaN), tantalum aluminum nitride (TaAlN), tantalum silicon nitride (TaSiN), tantalum silicide (TaSi x ), titanium (Ti), titanium nitride (TiN) , Any one of titanium silicon nitride (TiSiN), tungsten nitride (WN), cobalt (Co), cobalt silicide (CoSi x ), and combinations thereof by sputtering or chemical vapor deposition (CVD) Form to thickness.

상기 씨드층(130)은 상기 배리어층(120) 전면에 구리 도금(Cu plating)을 위한 것으로, 구리(Cu)를 이용하거나 백금(Pt), 팔라듐(Pd), 루비듐(Rb), 스트론튬(Sr), 로듐(Rh) 및 코발트(Co) 등의 전이금속 중에서 어느 하나를 스퍼터링이나 화학기상증착법(CVD) 등으로 증착하여 약 250Å~2,500Å 정도의 두께로 형성한다.The seed layer 130 is for copper plating (Cu plating) on the barrier layer 120, using copper (Cu) or platinum (Pt), palladium (Pd), rubidium (Rb), strontium (Sr) ), Any one of transition metals such as rhodium (Rh) and cobalt (Co) is deposited by sputtering or chemical vapor deposition (CVD) to form a thickness of about 250 kW to 2,500 kW.

그다음, 도 2에 도시된 바와 같이, 상기 씨드층(130)상에 전기도금법(electroplating)으로 제1구리층(140)을 형성한다. 구체적으로, 상기 소정의 패턴(110)의 미세한 패턴 부분(110b)은 상기 제1구리층(140)에 의해 완전히 매립되게 하고, 상기 소정의 패턴(110)의 조대한 패턴 부분(110a)은 상기 제1구리 층(140)에 의해 부분 매립될 정도로 진행한다.Next, as shown in FIG. 2, the first copper layer 140 is formed on the seed layer 130 by electroplating. Specifically, the fine pattern portion 110b of the predetermined pattern 110 is completely filled by the first copper layer 140, and the coarse pattern portion 110a of the predetermined pattern 110 is formed in the It proceeds to the point where it is partially buried by the first copper layer 140.

상기 제1구리층(140)을 형성하기 위한 전기도금법은 구리 이온이 포함된 전해용액내로 상기 씨드층(130)이 형성된 기판(100)을 넣은 후 이를 음극(cathode)으로 하여 전압을 인가하여 상기 씨드층(130) 상에만 선택적으로 구리층이 형성되는 것을 이용한 것이다.In the electroplating method for forming the first copper layer 140, the substrate 100 having the seed layer 130 is formed into an electrolytic solution containing copper ions, and then a voltage is applied by using the cathode 100 as a cathode. The copper layer is selectively formed only on the seed layer 130.

전기도금법에 있어서, 3-성분(component) 첨가제 즉, 미세한 패턴에서의 매립을 활성화시키는 활성제(accelerator)와 미세한 패턴이 아닌 영역에서의 증착을 억제하는 억제제(suppressor) 및 과도층착을 억제하는 레벨러(leveler)를 첨가제로 하여 직류도금(DC plating)법으로 진행할 수 있고, 또는 2-성분(component) 첨가제 즉, 활성제(accelerator)와 억제제(suppressor)만을 첨가제로 하고 과도증착을 억제하기 위하여 역펄스 도금(reverse pulse plating)법으로 진행할 수 있다.In the electroplating method, a three-component additive, that is, an activator that activates embedding in a fine pattern, an inhibitor that suppresses deposition in a region that is not a fine pattern, and a leveler that suppresses overlamination ( It can be proceeded by DC plating method with the leveler as an additive or reverse pulse plating in order to suppress the over-deposition by using only the two-component additive, that is, the activator and the suppressor as the additive. It can be done by reverse pulse plating.

그러나, 이 단계에서는 2-성분(component) 첨가제와 직류 도금(DC plating)만으로도 진행이 가능하며 또한 이러한 공정이 바람직하다. 그 이유는 다음과 같다.At this stage, however, only two-component additives and DC plating can proceed, and such a process is preferred. The reason for this is as follows.

미세한 패턴을 매립하는 전기도금에 있어서, 상기한 바와 같이 3-성분 첨가제와 직류도금(DC Plating)을 이용할 경우에는 상대적으로 공정관리가 복잡하며, 2-성분 첨가제와 역펄스 도금(reverse pulse plating)을 이용할 경우에는 결함이 발생하기도 한다.In the electroplating in which fine patterns are embedded, process control is relatively complicated when using 3-component additives and DC plating as described above, and 2-component additives and reverse pulse plating In the case of using a defect may occur.

따라서, 미세한 패턴의 매립이 끝난후 후속 스퍼터링으로 구리층을 증착하면 활성제(accelerator) 성분에 의한 과도증착을 방지할 수 있고 전기도금 증착만으로 미세한 패턴 매립 공정까지만 진행하면 되므로, 2-성분 첨가제와 직류 도금(DC plating)법에 의한 전기도금법이 바람직하다.Therefore, if the copper layer is deposited by the subsequent sputtering after the fine pattern is finished, the overdeposition by the activator component can be prevented and only the fine pattern embedding process can be performed only by electroplating deposition. The electroplating method by DC plating method is preferable.

이어서, 도 3에 도시된 바와 같이, 상기 제1구리층(140)상에 수소 분위기에서 스퍼터링 방법으로 제2구리층(150)을 형성한다. 상기 스퍼터링 방법은 아르곤(Ar)이나 수소(H2)를 이용한 Ar/H2 가스 분위기 또는 N2/H2 가스 분위기에서 진행하는데, 상기 수소(H2) 가스의 함량이 최대 50%가 되도록 가스 공급(Gas Flow)을 조절한다.Next, as shown in FIG. 3, the second copper layer 150 is formed on the first copper layer 140 by a sputtering method in a hydrogen atmosphere. The sputtering method proceeds in an Ar / H 2 gas atmosphere or an N 2 / H 2 gas atmosphere using argon (Ar) or hydrogen (H 2 ), so that the content of the hydrogen (H 2 ) gas is at most 50%. Adjust the gas flow.

그다음, 도 4에 도시된 바와 같이, 상기 제1구리층(140) 및 제2구리층(150) 내로 수소(155)가 확산되도록 열처리를 한다. 상기 열처리는 노(Furnace)를 이용하여 100℃~500℃ 온도에서 진행하거나 또는 급속 열처리(Rapid Thermal Anneling)를 이용하여 100℃~500℃ 온도에서 진행한다.Next, as shown in FIG. 4, heat treatment is performed such that hydrogen 155 is diffused into the first copper layer 140 and the second copper layer 150. The heat treatment may be performed at a temperature of 100 ° C. to 500 ° C. using a furnace, or at a temperature of 100 ° C. to 500 ° C. using a rapid thermal annealing.

수소는 구리 원자간의 결합 에너지를 감소시키고 구리 원자의 확산을 촉진시키는 역할을 한다. 따라서, 전기도금 증착시 발생한 피트(Pit)와 보이드(Void)는 수소에 의해서 확산이 촉진된 구리가 매립되어 제거된다. 그결과, 상기 제1구리층(140)과 제2구리층(150)은 수소(155)에 의해서 확산이 촉진된 구리로써 피트와 보이드 등의 결함이 제거된 구리층(160)으로 형성된다.Hydrogen serves to reduce the binding energy between copper atoms and to promote the diffusion of copper atoms. Therefore, the pits and voids generated during the electroplating deposition are removed by embedding copper, which is promoted to be diffused by hydrogen. As a result, the first copper layer 140 and the second copper layer 150 are formed of copper layer 160 in which defects such as pits and voids are removed by copper promoted diffusion by hydrogen 155.

이어서, 도 5에 도시된 바와 같이, 상기 제1구리층(140)과 제2구리층(150)으로 구성된 결함이 없는 구리층(160)을 화학 기계적 연마(CMP)로 평탄화시켜 구리배선(160a)을 형성한다. 이때, 화학기계적 연마에 의해 상기 씨드층(120)도 일부 제 거된 형태(120a)로 된다. Subsequently, as shown in FIG. 5, the defect-free copper layer 160 composed of the first copper layer 140 and the second copper layer 150 is planarized by chemical mechanical polishing (CMP) to form a copper wiring 160a. ). At this time, the seed layer 120 is also partially removed by the chemical mechanical polishing (120a).

전단계의 전기도금 증착시 발생한 결함이 감소함에 따라 화학기계적 연마를 진행한 후의 구리배선(160a)의 경우도 결함이 감소하게 된다.As defects generated during the previous electroplating deposition are reduced, the defects in the copper wiring 160a after the chemical mechanical polishing are reduced.

본 발명의 원리와 정신에 위배되지 않는 범위에서 여러 실시예는 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명할 뿐만 아니라 용이하게 실시할 수 있다. 따라서, 본원에 첨부된 특허청구범위는 이미 상술된 것에 한정되지 않으며, 하기 특허청구범위는 당해 발명에 내재되어 있는 특허성 있는 신규한 모든 사항을 포함하며, 아울러 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해서 균등하게 처리되는 모든 특징을 포함한다.Various embodiments can be easily implemented as well as self-explanatory to those skilled in the art without departing from the principles and spirit of the present invention. Accordingly, the claims appended hereto are not limited to those already described above, and the following claims are intended to cover all of the novel and patented matters inherent in the invention, and are also common in the art to which the invention pertains. Includes all features that are processed evenly by the knowledgeable.

이상에서 설명한 바와 같이, 본 발명에 따른 반도체 소자의 구리배선 형성방법에 있어서는 다음과 같은 효과가 있다.As described above, the copper wiring forming method of the semiconductor device according to the present invention has the following effects.

본 발명에 있어서는, 패턴을 매립하는 단계까지만 전기도금 증착법을 진행함으로써 구리 전기 도금 증착공정이 단순화되고, 구리원자의 확산을 촉진시키는 수소의 성질을 이용함으로써 일부 평탄화를 이룰 수 있어 구리 CMP 공정에서 필요로 하는 구리막의 두께를 감소시킬 수 있는 효과가 있다.In the present invention, the electroplating deposition process is carried out only until the step of embedding the pattern, and the copper electroplating deposition process is simplified, and some planarization can be achieved by utilizing the property of hydrogen to promote the diffusion of copper atoms, which is necessary for the copper CMP process. There is an effect of reducing the thickness of the copper film.

또한, 전기도금 증착시 발생하는 결함이 감소됨으로 소자의 전기적 특성과 배선 신뢰성이 향상되고, 제조수율이 향상되는 효과가 있다.In addition, the defects occurring during the electroplating deposition is reduced, thereby improving the electrical characteristics and wiring reliability of the device, and the manufacturing yield is improved.

Claims (10)

반도체 기판 위의 소정의 패턴상에 배리어층과 씨드(Seed)층을 형성하는 단계; Forming a barrier layer and a seed layer on a predetermined pattern on the semiconductor substrate; 상기 씨드층 상에 전기도금법으로 제1구리층을 형성하는 단계;Forming a first copper layer on the seed layer by electroplating; 상기 제1구리층 상에 수소 분위기에서 제2구리층을 형성하는 단계;Forming a second copper layer on the first copper layer in a hydrogen atmosphere; 상기 제1 및 제2구리층 내로 수소가 확산되도록 열처리하는 단계; 및 Heat-treating the diffusion of hydrogen into the first and second copper layers; And 상기 제1 및 제2구리층을 화학 기계적 연마로 평탄화시켜 구리배선을 형성하는 단계;Planarizing the first and second copper layers by chemical mechanical polishing to form a copper wiring; 를 포함하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.Copper wiring forming method of a semiconductor device comprising a. 삭제delete 제1항에 있어서,The method of claim 1, 상기 제2구리층을 형성하는 단계는, Ar/H2 가스 분위기에서 스퍼터링 방법을 이용하거나 또는 N2/H2 가스 분위기에서 스퍼터링 방법을 이용하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The forming of the second copper layer may include sputtering in an Ar / H 2 gas atmosphere or sputtering in an N 2 / H 2 gas atmosphere. 제3항에 있어서,The method of claim 3, 상기 H2 가스의 함량은 최대 50% 인 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The content of the H 2 gas is a copper wiring forming method of the semiconductor device, characterized in that up to 50%. 제1항에 있어서,The method of claim 1, 상기 열처리하는 단계는, 노(Furnace)를 이용하여 100℃~500℃ 온도에서 진행하거나, 급속 열처리(Rapid Thermal Anneling)를 이용하여 100℃~500℃ 온도에서 진행하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The heat treatment may be performed at 100 ° C. to 500 ° C. using a furnace, or at 100 ° C. to 500 ° C. using rapid thermal annealing. Wiring formation method. 제1항에 있어서,The method of claim 1, 상기 전기도금법은 활성제(accelerator) 및 억제제(suppressor)를 첨가제로 하거나, 또는 활성제(accelerator)와 억제제(suppressor) 및 레벨러(leveler)를 첨가제로 하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The electroplating method is a copper wiring forming method of the semiconductor device, characterized in that the additive (activator) and the inhibitor (suppressor) or the additive (activator) and the inhibitor (suppressor) and leveler (leveler) as an additive. 제1항에 있어서,The method of claim 1, 상기 전기도금법은 직류도금(DC Plating) 및 역펄스 도금(reverse pulse plating)중에서 어느 하나를 이용하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The electroplating method is a copper wiring forming method of a semiconductor device, characterized in that using any one of DC plating and reverse pulse plating (reverse pulse plating). 제1항에 있어서,The method of claim 1, 상기 전기도금법은 활성제(accelerator)와 억제제(suppressor) 및 레벨러(leveler)를 첨가제로 하고 직류도금(DC Plating)을 이용하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The electroplating method is a copper wiring forming method of a semiconductor device, characterized in that the activator (accelerator), suppressor (suppressor) and leveler (adder) as an additive and using DC plating (DC Plating). 제1항에 있어서,The method of claim 1, 상기 전기도금법은 활성제(accelerator)와 억제제(suppressor)를 첨가제로 하고 역펄스 도금(reverse pulse plating)을 이용하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The electroplating method is a copper wiring forming method of a semiconductor device, characterized in that the reverse pulse plating using an activator (accelerator) and suppressor (suppressor) as an additive. 제1항에 있어서,The method of claim 1, 상기 전기도금법은 활성제(accelerator)와 억제제(suppressor)를 첨가제로 하고 직류도금(DC Plating)을 이용하는 것을 특징으로 하는 반도체 소자의 구리배선 형성방법.The electroplating method is a copper wiring forming method of a semiconductor device, characterized in that the use of an activator (accelerator) and a suppressor (suppressor) as an additive and using DC plating (DC Plating).
KR1020020032352A 2002-06-10 2002-06-10 Method for forming copper line in semiconductor device KR100866110B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020032352A KR100866110B1 (en) 2002-06-10 2002-06-10 Method for forming copper line in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020032352A KR100866110B1 (en) 2002-06-10 2002-06-10 Method for forming copper line in semiconductor device

Publications (2)

Publication Number Publication Date
KR20030095452A KR20030095452A (en) 2003-12-24
KR100866110B1 true KR100866110B1 (en) 2008-10-31

Family

ID=32386479

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020032352A KR100866110B1 (en) 2002-06-10 2002-06-10 Method for forming copper line in semiconductor device

Country Status (1)

Country Link
KR (1) KR100866110B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049582A (en) * 2001-12-15 2003-06-25 주식회사 하이닉스반도체 method for forming copper line
KR20030050062A (en) * 2001-12-18 2003-06-25 주식회사 하이닉스반도체 METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
KR20040007863A (en) * 2002-07-11 2004-01-28 주식회사 하이닉스반도체 Method of forming a copper wiring in a semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049582A (en) * 2001-12-15 2003-06-25 주식회사 하이닉스반도체 method for forming copper line
KR20030050062A (en) * 2001-12-18 2003-06-25 주식회사 하이닉스반도체 METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
KR20040007863A (en) * 2002-07-11 2004-01-28 주식회사 하이닉스반도체 Method of forming a copper wiring in a semiconductor device

Also Published As

Publication number Publication date
KR20030095452A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
TWI598996B (en) Methods for producing interconnects in semiconductor devices
US7495338B2 (en) Metal capped copper interconnect
US7425506B1 (en) Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
US6506668B1 (en) Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability
US7405157B1 (en) Methods for the electrochemical deposition of copper onto a barrier layer of a work piece
US6570255B2 (en) Method for forming interconnects on semiconductor substrates and structures formed
TW201827636A (en) Doped selective metal caps to improve copper electromigration with ruthenium liner
US6465376B2 (en) Method and structure for improving electromigration of chip interconnects
TWI374482B (en)
KR20070010979A (en) Interconnections having double story capping layer and method for forming the same
Cheng et al. Copper metal for semiconductor interconnects
JPH11135504A (en) Manufacture of semiconductor device
JP2009099585A (en) Method of forming embedded wiring
EP3447793A1 (en) Seed layers for copper interconnects
Sethuraman et al. Review of planarization and reliability aspects of future interconnect materials
KR100866110B1 (en) Method for forming copper line in semiconductor device
US20060094237A1 (en) Methods to completely eliminate or significantly reduce defects in copper metallization in IC manufacturing
KR101076927B1 (en) Structure of copper wiring in semiconductor device and method of forming the same
KR100701673B1 (en) METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
KR100456259B1 (en) Method of forming a copper wiring in a semiconductor device
US6855648B2 (en) Method of reducing stress migration in integrated circuits
JP2009231355A (en) Semiconductor device and method of forming the same
KR100567539B1 (en) Method of forming metal wiring in semiconductor device
TW201405643A (en) Semiconductor reflow processing for feature fill
Gandikota et al. Influence of plating parameters on reliability of copper metallization

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120924

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130916

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee