KR100853615B1 - Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same - Google Patents

Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same Download PDF

Info

Publication number
KR100853615B1
KR100853615B1 KR1020070041012A KR20070041012A KR100853615B1 KR 100853615 B1 KR100853615 B1 KR 100853615B1 KR 1020070041012 A KR1020070041012 A KR 1020070041012A KR 20070041012 A KR20070041012 A KR 20070041012A KR 100853615 B1 KR100853615 B1 KR 100853615B1
Authority
KR
South Korea
Prior art keywords
carbonate
lithium ion
electrolyte
solvent
ion secondary
Prior art date
Application number
KR1020070041012A
Other languages
Korean (ko)
Inventor
김정구
심은기
남태흠
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020070041012A priority Critical patent/KR100853615B1/en
Application granted granted Critical
Publication of KR100853615B1 publication Critical patent/KR100853615B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

An electrolyte for a lithium ion secondary battery is provided to improve flame resistance and thermal stability, to reduce the internal resistance of a battery, and to improve the lifespan characteristics of a battery. An electrolyte for a lithium ion secondary battery comprises a non-aqueous organic solvent, a lithium salt, triphenyl phosphate, vinyl ethylene carbonate and biphenyl additive. Particularly, the electrolyte comprises 0.1-20 wt% of triphenyl phosphate, 0.05-10 wt% of vinyl ethylene carbonate, and 0.05-10 wt% of biphenyl additive based on the weight of the electrolyte. The lithium salt is at least one selected from the group consisting of LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 and LiCH(CF3SO2)2.

Description

리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온 이차전지{ELECTROLYTE FOR RECHARGEABLE LITHIUM ION BATTERY AND RECHARGEABLE LITHIUM ION BATTERY COMPRISING THE SAME}ELECTROLYTE FOR RECHARGEABLE LITHIUM ION BATTERY AND RECHARGEABLE LITHIUM ION BATTERY COMPRISING THE SAME

도 1은 본 발명의 2032 코인형 전지의 단면도이다.1 is a cross-sectional view of a 2032 coin-type battery of the present invention.

도 2는 본 발명의 제조예 1 내지 제조예 4에 따른 유기전해액을 시차주사 열량계(Differential Scanning Calorimetry, 이하 "DSC"라 함) 분석 결과를 도시한 그래프이다.2 is a graph showing the results of differential scanning calorimetry (hereinafter, referred to as "DSC") analysis of organic electrolytes according to Preparation Examples 1 to 4 of the present invention.

도 3은 본 발명의 제조예 1 내지 제조예 4에 따른 유기전해액을 이용한 리튬이온 이차전지의 충전-방전 수명특성의 시험결과를 도시한 그래프이다.3 is a graph showing the test results of the charge-discharge life characteristics of the lithium ion secondary battery using the organic electrolyte according to Preparation Examples 1 to 4 of the present invention.

도 4는 본 발명의 제조예 1 내지 제조예 4에 따른 유기전해액을 이용한 리튬이온 이차전지의 충전-방전 수명시험 동안 전기화학적 임피던스 (Electrochemical Impedance Spectroscopy, 이하 EIS"라 함) 시험 결과를 도시한 그래프이다.Figure 4 is a graph showing the results of the electrochemical impedance (Electrochemical Impedance Spectroscopy, hereinafter referred to as EIS "test during the charge-discharge life test of the lithium ion secondary battery using the organic electrolyte solution according to Preparation Examples 1 to 4 of the present invention to be.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 양극 12: 음극10: anode 12: cathode

16: 세퍼레이터 18: 바닥 플레이트16: Separator 18: Bottom Plate

20: 케이스 22: 뚜껑20: case 22: lid

24: 절연 개스킷24: Insulation Gasket

본 발명은 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온 이차전지에 관한 것으로서, 더욱 상세하게는 리튬이온 이차전지의 사이클 특성 및 전해질의 열적 특성을 향상시킬 수 있는 전해액 및 이를 포함하는 리튬이온 이차전지에 관한 것이다.The present invention relates to a lithium ion secondary battery electrolyte and a lithium ion secondary battery comprising the same, and more particularly, an electrolyte solution capable of improving cycle characteristics and thermal characteristics of an electrolyte and a lithium ion secondary battery including the same. It is about.

일반적으로, 리튬이온 이차전지는 화학에너지와 전기에너지를 가역적으로 변환시키는 전자부품으로서, 휴대 전자기기, 노트북 및 전기 자동차 등의 폭넓은 산업분야에서 이용된다. In general, lithium ion secondary batteries are electronic components that reversibly convert chemical and electrical energy, and are used in a wide range of industries such as portable electronic devices, notebook computers, and electric vehicles.

리튬이온 이차전지는 작동 전압이 3.6 V 이상으로서, 니켈-카드뮴 전지 또는 니켈-수소 전지보다 3배 정도 높고, 에너지 밀도 및 수명 특성이 높다는 점에서 그 시장이 급속하게 증가하고 있다. 또한 전기 자동차와 같이 보다 더 높은 에너지 밀도를 가진 전지에 대한 수요가 증대됨에 따라 리튬이온전지에 대한 활발한 연구가 많은 연구 그룹에서 수행 중에 있다. The lithium ion secondary battery has an operating voltage of 3.6 V or more, about three times higher than a nickel-cadmium battery or a nickel-hydrogen battery, and its market is rapidly increasing in terms of high energy density and long life characteristics. In addition, as the demand for higher energy density batteries such as electric vehicles increases, active researches on lithium ion batteries are being conducted by many research groups.

한편, 리튬이온 이차전지는 높은 작동전압, 낮은 자기 방전율, 높은 에너지 밀도 및 긴 사용 수명 등을 달성하기 위해 전기화학적으로 향상된 조성의 전해액을 요구한다. 주로 카보네이트계 용매의 조합으로 이루어진 비수계 혼합용매 예를 들어, PC(Propylene Carbonate), EC(Ethylene Carbonate), DEC(Diethyl Carbonate), DMC(Dimethyl Carbonate) 및 EMC(Ethylmethyl Carbonate) 등이 전해액으로 사용되 고 있다. 유기 전해액의 특성은 전도도, 전위창, 사용온도 범위, 밀도 및 안정성 등을 주요 지표로 하고 있으며, 전도도와 관련한 항목으로는 용해도, 해리도, 유전율 및 점도 등이 있다. 리튬이온전지에서 전해액으로서 사용되는 이들 용매는 각각 고유한 장점과 단점이 있으며, 사용 시 이들 특성을 어떻게 조합하느냐에 따라 전지 성능에 커다란 차이를 보인다. 이에 보다 더 우수한 성능의 전지를 제조하기 위한 전해질 조성을 찾기 위한 노력이 꾸준히 진행되고 있으며, EC/DMC/EMC, EC/DEC/EMC/, EC/DEC/DMC/EMC, PC/EC/DMC/EMC, EC/EMC 및 EC/DMC 등이 주로 사용되고 있다. 이와 같이, 리튬이온 이차전지는 주로 비수계 유기전해액을 사용하고 있는데, 비수계 전해액은 전도도가 낮지만 전기 화학적 전위창 (electrochemical stability window)이 물보다 넓어 전지의 고전압화가 가능하다는 점에서 널리 이용되고 있다. Meanwhile, a lithium ion secondary battery requires an electrochemically improved electrolyte solution to achieve high operating voltage, low self discharge rate, high energy density, and long service life. Non-aqueous mixed solvent mainly composed of carbonate-based solvents, for example, PC (Propylene Carbonate), EC (Ethylene Carbonate), DEC (Diethyl Carbonate), DMC (Dimethyl Carbonate) and EMC (Ethylmethyl Carbonate) are used as electrolyte Being. The characteristics of the organic electrolyte are the main indicators such as conductivity, potential window, temperature range of use, density and stability. Items related to conductivity include solubility, dissociation, dielectric constant and viscosity. These solvents, which are used as electrolytes in lithium ion batteries, have their own advantages and disadvantages, and show great differences in battery performance depending on how these characteristics are combined when used. Efforts have been made to find an electrolyte composition for manufacturing batteries of higher performance. EC / DMC / EMC, EC / DEC / EMC /, EC / DEC / DMC / EMC, PC / EC / DMC / EMC , EC / EMC and EC / DMC are mainly used. As described above, the lithium ion secondary battery mainly uses a non-aqueous organic electrolyte. The non-aqueous electrolyte has a low conductivity but is widely used in that a high voltage of the battery is possible due to its wider electrochemical stability window than water. have.

이러한 리튬이온 이차전지에 있어서, 가장 큰 문제점 중의 하나는 낮은 안전성이다. 리튬 이차전지에 사용되는 카보네이트계 유기용매는, 과충전, 외부로부터의 가열 및 물리적인 변형 등 다양한 환경에 놓였을 때, 유기용매가 분해되는 등 급격한 발열반응이 일어나고, 전지의 발화와 폭발과 같은 위험한 상황에 처하게 된다. 이러한 발화 위험성의 원인인 과충전을 예방하고, 물리적인 변형에 따른 내부 쇼트 등을 예방하기 위한 다양한 연구들이 진행되고 있다. 전지의 발화나 폭발에 따른 위험성은 특히 대용량 전지에서 더욱 심각하다. 이에 난연제를 첨가하여 전지의 발화 및 폭발을 방지하고자 하는 다양한 연구가 수행되었다. 그러나 이러한 방법은 우수한 발화 억제력을 제공하지만, 사이클 수명의 감축 등 전지의 성능 저 하를 가져오는 문제점이 있다. 예를 들어, 1.0M LiPF6 + EC:EMC (1:1 중량%) 용매에 TMP(Trimethyl Phosphate), TEP(Triethyl Phosphate) 및 HMPN(Hexamethoxycyclotriphosphazene) 난연성 첨가제를 각각 사용하는 것이 제시 된 바 있으나, 이들 난연성 첨가제가 전지의 성능 저하를 가져오는 것으로 밝혀졌다[참고문헌: K. Xu, M.S. Ding, S. Zang, J.L. Allen, T. R. Jow, An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes, J. Electrochem. Soc., 149(5) A622 (2002)]. In such a lithium ion secondary battery, one of the biggest problems is low safety. Carbonate-based organic solvents used in lithium secondary batteries, when exposed to various environments such as overcharging, external heating, and physical deformation, cause rapid thermal exothermic reactions such as decomposition of organic solvents, and risks such as battery ignition and explosion. You are in a situation. Various studies are being conducted to prevent overcharge, which is a cause of the risk of ignition, and to prevent an internal short due to physical deformation. The risk of ignition or explosion of the battery is particularly severe in high capacity batteries. To this end, various studies have been conducted to prevent the fire and explosion of the battery by adding a flame retardant. However, this method provides excellent ignition inhibiting power, but has a problem of lowering battery performance such as reduction of cycle life. For example, it has been suggested to use Trimethyl Phosphate (TMP), Triethyl Phosphate (TEP) and Hexamethoxycyclotriphosphazene (HMPN) flame retardant additives in 1.0M LiPF 6 + EC: EMC (1: 1 wt%) solvents, but these Flame retardant additives have been found to lead to degradation of the cell [Ref. K. Xu, MS Ding, S. Zang, JL Allen, TR Jow, An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes, J. Electrochem. Soc, 149 (5) A622 (2002)].

한편, 우수한 사이클 성능을 유지하고 난연성 효과를 제공하기 위해, 70% TMP를 포함하고, 2% 비닐렌 카보네이트(vinylene carbonate), 8% 비닐 에틸렌 카보네이트(vinyl ethylene carbonate), 2% 시클로 헥산(cyclo hexane)을 혼합한 용액을 사용하는 방법이 제안된 바 있다[참고문헌: X. Wang, C. Yamada, H. Naito, G. Segami, K. Kibe, High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge-Discharge Performance of a Graphite Anode for Lithium-Ion Cells, J. Electrochem. Soc., 153(1) A135 (2006)]. 그러나 TMP는 음극에 대하여 열악한 환원 안정성을 제공하고, 사이클 성능을 저하시키는 문제를 가져왔다[참고문헌: S.S. Zhang, A Review on Electrolyte Additives for Lithium-Ion Batteries, J. Power Sources 162 1379 (2006)]. On the other hand, in order to maintain excellent cycle performance and provide a flame retardant effect, it contains 70% TMP, 2% vinylene carbonate, 8% vinyl ethylene carbonate, 2% cyclo hexane (Ref .: X. Wang, C. Yamada, H. Naito, G. Segami, K. Kibe, High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge) -Discharge Performance of a Graphite Anode for Lithium-Ion Cells, J. Electrochem. Soc., 153 (1) A135 (2006)]. However, TMP provides poor reduction stability for the negative electrode and has a problem of lowering cycle performance [Ref. S.S. Zhang, A Review on Electrolyte Additives for Lithium-Ion Batteries, J. Power Sources 162 1379 (2006).

따라서 전지 성능에 영향을 미치지 않으면서 난연효과를 발휘할 수 있는 전해액의 개발에 대한 요구는 지속되고 있는 실정이다.Therefore, there is a continuing need for the development of an electrolyte that can exert a flame retardant effect without affecting battery performance.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 난연성 첨가제와 함께 기능성 첨가제를 함유하여 우수한 난연성 및 전지성능을 갖는 리튬이온 이차전지용 전해액을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide a lithium ion secondary battery electrolyte having excellent flame retardancy and battery performance by containing a functional additive with a flame retardant additive.

본 발명의 다른 목적은 상기 전해액을 포함하는 리튬이온 이차전지를 제공하는 것이다. Another object of the present invention is to provide a lithium ion secondary battery including the electrolyte solution.

상기 목적을 달성하기 위해, 본 발명은 비수성 유기용매와 리튬염에 기초한 용액에 난연성 첨가제인 트리페닐 포스페이트(TPP, Triphenyl Phosphate), 기능성 첨가제인 비닐 에틸렌 카보네이트(VEC, Vinyl Ethylene Carbonate) 및 바이페닐(BP, Biphenyl)을 혼합한 유기전해액 및 이를 포함하는 리튬이온 이차전지를 제공한다.In order to achieve the above object, the present invention is a flame retardant additive triphenyl phosphate (TPP, Triphenyl Phosphate), a functional additive vinyl ethylene carbonate (VEC, Vinyl Ethylene Carbonate) and biphenyl in a solution based on a non-aqueous organic solvent and lithium salt It provides an organic electrolyte solution (BP, Biphenyl) mixed and a lithium ion secondary battery comprising the same.

난연성 성분으로서 할로겐계 난연제, 인계 난연제, 무기화합물 난연제, 및 이들 난연계의 하나 이상의 혼합물이 사용될 수 있다. 할로겐계 난연제는 일반적으로 기체상에서 발생하는 라디칼을 안정화시킴으로써, 난연 효과를 제공한다. 할로겐계 난연제의 예로는 폴리 브로모 바이페닐(PBB), 폴리 브로모 디페닐 에테르(PBDE), 테트라 브로모 비스페놀-A (TBBA), 헥사 브로모 사이클로도 데칸(HBCD), 트리 브로모 페녹시에탄, 옥타 브로모 디페닐에테르 (OBDPE), 브롬화 에폭시, 브롬화 폴리 카보네이트 롤리고모, 염소화 파라핀, 염소화 폴리에틸렌 및 지환족 염소계 난연제 등이 있다. 인계 난연제는 일반적으로 열분해에 의해 폴리메타인산을 생성하고 이것이 보호층을 형성하거나, 폴리메타인산이 생성되는 과정에서 탈수작용에 의해서 생성되는 탄소 피막이 산소를 차단함에 의해 난연 효과를 제공한다. 인계 난연제의 예로는, 적인, 인산암모늄 등의 인산염(phosphates), 아인산염(phosphites), 인화수소 산화물(phosphine oxide), 인화수소 산화물 다이올(phosphine oxide diols), 포스포네이트(phosphonates), 트리아릴 인산염(triaryl phosphate), 알킬다이아릴 인산염(alkyldiaryl phosphate), 트리알킬 인산염(trialkyl phosphate), 및 레조시네올 비스디페닐 인산염(resorcinaol bisdiphenyl phosphate)(RDP) 등이 있다. 무기화합물 난연제는 일반적으로 열에 의해 분해되어, 물, 이산화탄소, 이산화황 및 염화수소 등의 불연성 기체를 방출하고, 흡열 반응을 유발시켜 가연성 가스를 희석하여 산소의 접근을 방지하고, 흡열반응에 의해 냉각 및 열분해 생성물의 생성을 감소시킴에 의해 난연 효과를 제공한다. 무기화합물 난연제의 예로는, 수산화알루미늄, 수산화마그네슘, 산화안티몬, 수산화주석, 지르코늄화합물, 산화주석, 산화몰리브덴, 칼슘염 및 붕산염 등이 있다. As flame retardant components, halogen-based flame retardants, phosphorus-based flame retardants, inorganic compound flame retardants, and mixtures of one or more of these flame retardants may be used. Halogen-based flame retardants generally provide a flame retardant effect by stabilizing radicals occurring in the gas phase. Examples of halogen flame retardants include poly bromo biphenyl (PBB), poly bromo diphenyl ether (PBDE), tetra bromo bisphenol-A (TBBA), hexa bromo cyclododecane (HBCD), tribromo phenoxy Ethane, octa bromo diphenylether (OBDPE), brominated epoxy, brominated polycarbonate rolimo, chlorinated paraffin, chlorinated polyethylene and cycloaliphatic chlorine flame retardants. Phosphorus-based flame retardants generally produce polymethic acid by pyrolysis, which forms a protective layer, or provides a flame retardant effect by the blocking of oxygen by a carbon film produced by dehydration in the course of polymethic acid production. Examples of phosphorus-based flame retardants include phosphorus, phosphorus, phosphites, phosphine oxides, phosphine oxide diols, phosphonates and tris, such as ammonium phosphate. Triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate, and resorcinolol bisdiphenyl phosphate (RDP). Inorganic compound flame retardants are generally decomposed by heat, releasing incombustible gases such as water, carbon dioxide, sulfur dioxide and hydrogen chloride, causing endothermic reactions to dilute combustible gases to prevent oxygen access, and cooling and pyrolysis by endothermic reactions. Reducing the production of the product provides a flame retardant effect. Examples of the inorganic compound flame retardant include aluminum hydroxide, magnesium hydroxide, antimony oxide, tin hydroxide, zirconium compound, tin oxide, molybdenum oxide, calcium salt and borate.

본 발명에서 사용된 트리페닐 포스페이트는 인산 에스테르의 일종으로서 인화점이 223℃ 이며, 주로 플라스틱 난연성 물질로 사용되어온 화합물이다. 이러한 인산 에스테르는 먼저 열분해에 의해 폴리인산이 생성되고 이것이 에스테르화 및 탈수소화 하여 숯을 생성하며, 생성된 숯이 산소와 열을 차단한다. 비휘발성 고분자인 폴리인산은 탄소층을 형성시켜 산소 및 잠열을 차단함으로써 열분해반응을 감소시킨다.Triphenyl phosphate used in the present invention is a kind of phosphate ester and has a flash point of 223 ° C., and is a compound mainly used as a plastic flame retardant material. These phosphate esters first produce polyphosphoric acid by pyrolysis, which is esterified and dehydrogenated to produce charcoal, and the produced charcoal blocks oxygen and heat. Polyphosphoric acid, a nonvolatile polymer, forms a carbon layer to block oxygen and latent heat, thereby reducing pyrolysis.

기능성 전해질 첨가제로서, 비닐 아세테이트(vinyl acetate), 비닐렌 카보네 이트(vinylene carbonate), 비닐 에틸렌 카보네이트(vinyl ethylene carbonate), 또는 하나 이상 이들 화합물의 혼합물이 사용될 수 있다. 이들 전해질 첨가제들은 안정한 SEI(solid electrolyte interface) 필름을 형성하여 전지성능을 향상시키는 효과적인 기능성 첨가제로 알려져 왔다.As the functional electrolyte additive, vinyl acetate, vinylene carbonate, vinyl ethylene carbonate, or a mixture of one or more of these compounds may be used. These electrolyte additives have been known as effective functional additives that form stable solid electrolyte interface (SEI) films to improve cell performance.

본 발명에서는, 난연성 첨가제로서 트리페닐 포스페이트를 사용하고 기능성 첨가제로서 비닐 에틸렌 카보네이트와 바이페닐을 혼합하여 사용함으로써, 열안정성 및 사용 수명 특성에서 우수한 전해액을 제공한다. 본 발명에서, 트리페닐 포스페이트는 전해액에 대하여 0.1 내지 20 중량% 첨가되는 것이 바람직하다. 트리페닐 포스페이트의 첨가량이 0.1 중량% 미만이면 과충전에 따른 열폭주 현상을 방지할 수 없고, 20중량%를 초과하는 경우에는 전지성능이 저하될 수 있으므로 바람직하지 않다. 트리페닐 포스페이트는 리튬염을 포함하는 비수성 유기용매에 첨가된다. 리튬염은 전지 내에서 리튬이온의 공급원으로 작용하여 기본적인 리튬이온 이차전지의 작동을 가능하게 하며, 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.In the present invention, triphenyl phosphate is used as a flame retardant additive, and vinyl ethylene carbonate and biphenyl are mixed and used as a functional additive, thereby providing an electrolyte solution excellent in thermal stability and service life characteristics. In the present invention, triphenyl phosphate is preferably added in an amount of 0.1 to 20% by weight based on the electrolyte. If the addition amount of triphenyl phosphate is less than 0.1% by weight, thermal runaway due to overcharging cannot be prevented, and if it exceeds 20% by weight, battery performance may decrease, which is not preferable. Triphenyl phosphate is added to the non-aqueous organic solvent containing the lithium salt. Lithium salt acts as a source of lithium ions in the battery to enable the operation of the basic lithium ion secondary battery, the non-aqueous organic solvent serves as a medium to move the ions involved in the electrochemical reaction of the battery.

리튬염으로는 LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2 등으로 이루어진 군에서 선택되는 1종 또는 2종 이상화합물의 혼합물이 사용될 수 있다. 리튬염은 격자에너지가 적고 해리도가 커서 이온전도도가 우수하고, 열안정성 및 내산화성이 우수한 것을 사용하는 것이 바람직하다. 전해액에서 리튬염은 0.6 내지 2.0M의 농도로 사용되는 것이 바람직하 다. 리튬염의 농도가 0.6M 미만이면 전해질의 전도도가 낮아져 전해질 성능이 떨어지고, 2.0M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소하고 저온성능도 저하되는 문제점이 있다.Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN (CF 3 SO 2 ) 2 , LiCH (CF 3 SO 2 ) 2, etc. One or a mixture of two or more compounds selected from the group may be used. It is preferable to use a lithium salt having a low lattice energy, a large dissociation degree, excellent ion conductivity, and excellent thermal stability and oxidation resistance. Lithium salt in the electrolyte is preferably used at a concentration of 0.6 to 2.0M. When the concentration of the lithium salt is less than 0.6 M, the conductivity of the electrolyte is lowered, and the electrolyte performance is lowered. When the lithium salt is higher than 2.0 M, the viscosity of the electrolyte is increased, thereby reducing the mobility of lithium ions and lowering the low temperature performance.

본 발명에서, 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계 또는 케톤계 등이 사용된다. 카보네이트계 용매로서, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸 메틸 카보네이트(EMC), 디프로필 카보네이트(DPC), 메틸 프로필 카보네이트(MPC), 에틸 프로필 카보네이트(EPC) 또는 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 에스테르계 용매로서, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트 등이 사용될 수 있다. 에테르계 용매로서, 테트라히드로퓨란 또는 2-메틸테트라히드로퓨란 등이 사용될 수 있으며, 케톤계로는 폴리메틸비닐 케톤이 사용된다. In the present invention, as the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based or ketone-based or the like is used. As the carbonate solvent, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC) , Ethyl propyl carbonate (EPC) or butylene carbonate (BC) and the like can be used. As the ester solvent, methyl acetate, ethyl acetate, propyl acetate and the like can be used. As the ether solvent, tetrahydrofuran or 2-methyltetrahydrofuran may be used, and as the ketone, polymethylvinyl ketone is used.

본 발명에서 사용되는 비수성 유기용매 중 카보네이트계 용매는, 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다. 유기용매는 이온의 해리도를 높여 이온전도도를 크게 하기 위해 유전율(극성)이 크고 점도가 낮은 것을 사용해야 한다.In the non-aqueous organic solvent used in the present invention, the carbonate-based solvent is preferably used by mixing a cyclic carbonate and a chain carbonate. In order to increase dissociation of ions and increase ion conductivity, an organic solvent should be used having a high dielectric constant (polarity) and a low viscosity.

본 발명의 전해액을 포함하는 리튬이온 이차전지는 양극 및 음극을 포함한다. 양극은 리튬이온을 가역적으로 삽입 및 탈리할 수 있는 양극 활물질 예를 들어, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, V2O5, LiFePO4 또는 LiCo1 -XNiXOZ(0.01<X<1)를 포함한다. 음극은 리튬이온을 삽입 탈리할 수 있는 음극 활물질을 포함하며, 이러 한 음극 활물질로는 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질(열적으로 분해된 탄소, 코크, 흑연), 탄소 섬유, 산화 주석 화합물, 리튬 금속 또는 리튬 합금을 사용할 수 있다.The lithium ion secondary battery including the electrolyte of the present invention includes a positive electrode and a negative electrode. The positive electrode is a positive electrode active material capable of reversibly inserting and detaching lithium ions such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , V 2 O 5 , LiFePO 4 or LiCo 1 -X Ni X O Z ( 0.01 <X <1). The negative electrode includes a negative electrode active material capable of inserting and removing lithium ions, and the negative electrode active material includes crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) of carbon composite, carbon fiber , Tin oxide compounds, lithium metals or lithium alloys can be used.

리튬이온 이차전지는 양극 및 음극 사이에 단락을 방지하는 세퍼레이터를 포함할 수 있으며, 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리올레핀 등의 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 및 부직포 등을 사용할 수 있다.The lithium ion secondary battery may include a separator that prevents a short circuit between the positive electrode and the negative electrode, and the separator may be a polymer film such as polyethylene, polypropylene, or polyolefin, or a multilayer film thereof, a microporous film, a woven fabric, a nonwoven fabric, or the like. Can be.

이하에서는, 제조예 및 실시예를 통해 본 발명의 내용을 상술한다. 하기 제조예는 예시에 불과한 것으로서 본 발명의 권리범위를 제한하는 것이 아님은 물론이다. Hereinafter, the contents of the present invention through the production examples and examples will be described in detail. The following preparation examples are merely illustrative and are not intended to limit the scope of the present invention.

제조예Production Example

제조예Production Example 1: 전해액 및 전지의 제조 (1) 1: Preparation of Electrolyte and Battery (1)

(전해액의 제조)(Production of electrolyte)

먼저 에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)를 40:60 (부피비)로 함유하는 비수용매를 제조하였다. 다음 비수용매에 전해질염으로서 1.1M LiPF6을 가한 후, 트리페닐 포스페이트 3중량%, 비닐 에틸렌 카보네이트 1중량% 및 바이페닐 0.1중량%를 첨가하여 전해액을 제조하였다. First, a nonaqueous solvent containing ethylene carbonate (EC): ethyl methyl carbonate (EMC) at 40:60 (volume ratio) was prepared. Next, 1.1 M LiPF 6 was added to the nonaqueous solvent as an electrolyte salt, and then 3 wt% triphenyl phosphate, 1 wt% vinyl ethylene carbonate, and 0.1 wt% biphenyl were added to prepare an electrolyte solution.

(전지의 제조)(Production of battery)

캔 직경이 20 mm, 높이 3.2 mm인 2032 코인형 전지를 제조하였다. 양극 활 물질로서 LiCoO2를 사용하였다. 95:2:3의 중량비의 활물질 : 바인더(PVDF, polyvinylidene difluoride) : 도전재(Super P black)를 N-메틸 2-피롤리디논 (N-methyl 2-pyrrolidinone)(NMP) 용매에 첨가하여 슬러리를 제조하였다. 슬러리를 알루미늄 호일 위에 도포하고 건조한 후 롤프레스로 압연하여 양극(10)을 제조하였다. 음극 활물질로서, MCMB(Mesocarbon microbeads)를 사용하였다. 95:3:2의 중량비의 활물질 : 바인더(PVDF) : 도전재(Super P black)를 NMP 용매에 녹여 슬러리를 제조하였다. 슬러리를 구리 집전체에 도포하고 건조한 후, 롤 프레스로 압연하여 음극(12)을 제조하였다. 다공성 폴리프로필렌(Polypropylene) 세퍼레이터(16)를 양극(10)과 음극(12) 사이에 넣고 유기 전해액을 함침하였다. 클램핑 머신(Clamping machine)을 이용하여, 바닥 플레이트(18), 케이스(20), 뚜껑(22) 및 절연 개스킷(24)으로 완전히 밀폐된 2032 타입 코인형 전지를 제조하였다(도 1).A 2032 coin-type battery having a can diameter of 20 mm and a height of 3.2 mm was prepared. LiCoO 2 was used as the positive electrode active material. 95: 2: 3 weight ratio of active material: binder (PVDF, polyvinylidene difluoride): conductive material (Super P black) was added to the N-methyl 2-pyrrolidinone (NMP) solvent slurry Was prepared. The slurry was applied on an aluminum foil, dried, and rolled with a roll press to prepare a positive electrode 10. As the negative electrode active material, MCMB (Mesocarbon microbeads) was used. A slurry was prepared by dissolving an active material: binder (PVDF): conductive material (Super P black) in a weight ratio of 95: 3: 2 in an NMP solvent. The slurry was applied to a copper current collector, dried, and rolled by a roll press to prepare a negative electrode 12. A porous polypropylene separator 16 was placed between the positive electrode 10 and the negative electrode 12 to impregnate the organic electrolyte. Using a clamping machine, a 2032 type coin cell was completely sealed with the bottom plate 18, the case 20, the lid 22, and the insulating gasket 24 (FIG. 1).

제조예Production Example 2: 전해액 및 전지의 제조 (2) 2: Preparation of Electrolyte and Battery (2)

첨가제로서 유기 전해액에 비닐 에틸렌 카보네이트 1중량% 및 바이페닐 0.1중량% 대신에, 비닐 아세테이트 1중량% 및 비닐렌 카보네이트 1중량%를 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.An electrolyte solution and the same method as in Preparation Example 1 were used, except that 1% by weight of vinyl acetate and 1% by weight of vinylene carbonate were used instead of 1% by weight of vinyl ethylene carbonate and 0.1% by weight of biphenyl as an additive. A battery was prepared.

제조예Production Example 3 3

에틸렌 카보네이트(EC) : 에틸 메틸 카보네이트(EMC)를 40 : 60 (부피비)로 함유하는 비수용매를 조제하였다. 이 비수용매에 전해질염으로서 1.1M LiPF6을 용 해하고, 트리페닐 포스페이트 3중량%를 첨가하였다. 비닐 아세테이트, 비닐렌 카보네이트, 비닐 에틸렌 카보네이트 및 바이페닐 첨가제는 전혀 첨가하지 않았다.Ethylene carbonate (EC): A nonaqueous solvent containing ethyl methyl carbonate (EMC) at 40:60 (volume ratio) was prepared. 1.1 M LiPF 6 was dissolved as an electrolyte salt in this non-aqueous solvent, and 3% by weight of triphenyl phosphate was added. Vinyl acetate, vinylene carbonate, vinyl ethylene carbonate and biphenyl additives were not added at all.

제조예Production Example 4 4

에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC)를 40 : 60 (부피비)로 함유하는 비수용매를 조제하였다. 비수용매에 전해질염으로서 1.1M LiPF6을 가하고, 트리페닐 포스페이트, 비닐 아세테이트, 비닐렌 카보네이트, 비닐 에틸렌 카보네이트 및 바이페닐 첨가제를 전혀 첨가하지 않았다. Ethylene carbonate (EC): A nonaqueous solvent containing ethyl methyl carbonate (EMC) at 40:60 (volume ratio) was prepared. 1.1 M LiPF 6 was added to the nonaqueous solvent as an electrolyte salt, and no triphenyl phosphate, vinyl acetate, vinylene carbonate, vinyl ethylene carbonate, and biphenyl additives were added.

실시예Example

상기 제조예 1 내지 제조예 4에서 제조한 전해액에 대해 시차주사열량계(DSC)를 사용한 분석을 수행하고 그 결과를 표 1 및 도 2에 나타냈다.Analysis using a differential scanning calorimeter (DSC) was performed on the electrolyte solutions prepared in Preparation Examples 1 to 4, and the results are shown in Table 1 and FIG. 2.

[표 1]TABLE 1

전해액Electrolyte 전해액Electrolyte 첨가제additive 반응온도(℃)Reaction temperature (℃) 제조예 1Preparation Example 1 1.1M LiPF6/EC:EMC1.1M LiPF 6 / EC: EMC TPP 3중량% + VEC 1중량% + BP 0.1중량% 3% TPP + 1% VEC + 0.1% BP 220 220 제조예 2Preparation Example 2 1.1M LiPF6/EC:EMC1.1M LiPF 6 / EC: EMC TPP 3중량% + VA 1중량% + VC 1중량% 3% TPP + 1% VA + 1% VC 212 212 제조예 3Preparation Example 3 1.1M LiPF6/EC:EMC 1.1M LiPF 6 / EC: EMC TPP 3중량%  TPP 3% by weight 216 216 제조예 4Preparation Example 4 1.1M LiPF6/EC:EMC 1.1M LiPF 6 / EC: EMC -                     - 204 204

표 1과 도 2에 나타낸 바와 같이, 제조예 4의 전해액의 반응 온도가 204℃로 가장 낮게 나타났으며, 난연성 첨가제인 트리페닐 포스페이트를 첨가한 제조예 3의 전해액은 반응온도가 216℃로 나타났다. 그러나 난연성 첨가제에 기능성 첨가제인 비닐에틸렌 카보네이트 및 바이페닐을 혼합하여 첨가한 제조예 1의 전해액은, 반응온도가 220℃로서 가장 높게 나타났다. 수명 평가를 위한 시험으로, 상온에서 1.0C(3.0 mA)로 충전-방전을 40회 수행하였다. 4.2 V 까지 정전류-정전압 충전을, 2.75 V 까지 정전류 방전을 하였다. 또한 40회 수명시험 동안 EIS (electrochemical impedance spectroscopy) 측정을 통해 전지 내부저항을 비교하였다. 40회 충전-방전 후 용량유지율과 40회 충방전 동안 전지 저항값(Rcell)을 표 2와 도 3, 도 4에 나타내었다.As shown in Table 1 and Figure 2, the reaction temperature of the electrolyte solution of Preparation Example 4 was the lowest as 204 ℃, the electrolyte solution of Preparation Example 3 to which the flame retardant additive triphenyl phosphate was added was 216 ℃ . However, the electrolyte solution of Preparation Example 1, in which a mixture of flame retardant additives, vinyl ethylene carbonate and biphenyl, which were functional additives, was added. As a test for life evaluation, 40 charge-discharges were performed at 1.0 C (3.0 mA) at room temperature. Constant current-constant voltage charging to 4.2 V and constant current discharge to 2.75 V were performed. In addition, the battery internal resistance was compared by measuring the electrochemical impedance spectroscopy (EIS) during 40 life tests. Capacity retention after 40 charge-discharge cycles and battery resistance (R cell ) during 40 charge / discharge cycles are shown in Table 2, FIGS. 3 and 4.

[표 2]TABLE 2

전해액Electrolyte 상온 40 cycle 후 용량유지율(%)Capacity retention after 40 cycles of room temperature (%) 1회 Cycle 후 전지 저항값(Ωcm2)Battery resistance after 1 cycle (Ωcm 2 ) 40회 Cycle 후 전지 저항값(Ωcm2)Battery resistance after 40 cycles (Ωcm 2 ) 제조예 1Preparation Example 1 7575 17.4 17.4 26.226.2 제조예 2Preparation Example 2 6969 18.5 18.5 39.339.3 제조예 3Preparation Example 3 6464 21.2 21.2 48.948.9 제조예 4Preparation Example 4 6767 19.8 19.8 47.047.0

표 2와 도 3에서 나타낸 바와 같이, 첨가제를 넣지 않는 제조예 4의 전해액은 40 사이클 후 용량유지율이 67%로 나타났으며, 난연성 첨가제인 트리페닐 포스페이트 첨가제를 함유한 제조예 3의 전해액은 64%의 용량유지율로서 가장 낮았다. 그러나 난연성 첨가제 및 기능성 첨가제인 비닐 에틸렌 카보네이트 및 바이페닐을 혼합하여 첨가한 제조예 1의 전해액은 75%의 용량유지율을 나타내 가장 우수한 전지 수명을 보여 주었다. 이는 표 2와 도 4에 나타낸 바와 같이, 40 사이클 후 전 지 내부저항(Rcell)이 26.2Ωcm2로 가장 낮기 때문이었다. As shown in Table 2 and Figure 3, the electrolyte solution of Preparation Example 4 without the additive was found to have a capacity retention rate of 67% after 40 cycles, the electrolyte solution of Preparation Example 3 containing the triphenyl phosphate additive as a flame retardant additive is 64 It was the lowest as the capacity retention rate of%. However, the electrolyte solution of Preparation Example 1, in which a flame retardant additive and a functional additive, vinyl ethylene carbonate, and biphenyl were mixed and mixed, showed a capacity retention of 75%, showing the best battery life. This is because, as shown in Table 2 and Figure 4, after 40 cycles the battery internal resistance (R cell ) is the lowest as 26.2Ωcm 2 .

상기한 바와 같이, 본 발명에 따른 리튬이온 이차전지는 전해액의 열적 안정성이 향상됨은 물론, 전지의 내부저항이 감소되어 전지 수명 특성이 현저히 우수하다.As described above, the lithium ion secondary battery according to the present invention not only improves the thermal stability of the electrolyte solution, but also decreases the internal resistance of the battery, thereby remarkably excellent battery life characteristics.

Claims (17)

비수성 유기용매, 리튬염, 트리페닐 포스페이트, 비닐 에틸렌 카보네이트 및 바이페닐 첨가제를 포함하는 리튬이온 이차전지용 전해액.Electrolytic solution for lithium ion secondary batteries containing a non-aqueous organic solvent, lithium salt, triphenyl phosphate, vinyl ethylene carbonate, and a biphenyl additive. 제 1항에 있어서, 전해액 중량을 기준으로, 트리페닐 포스페이트 0.1 ~ 20중량%, 비닐 에틸렌 카보네이트 0.05 ~ 10중량% 및 바이페닐 첨가제 0.05 ~ 10중량%를 포함함을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte solution for a lithium ion secondary battery according to claim 1, comprising 0.1 to 20% by weight of triphenyl phosphate, 0.05 to 10% by weight of vinyl ethylene carbonate, and 0.05 to 10% by weight of biphenyl additive. . 제 1항 또는 제 2항에 있어서, 리튬염은 LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2 으로 구성된 군에서 선택된 어느 1종의 염 또는 2종 이상의 염이 함께 사용됨을 특징으로 하는 리튬이온 이차전지용 전해액.The lithium salt of claim 1 or 2, wherein the lithium salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN (CF 3 SO 2 ) 2 and LiCH ( CF 3 SO 2 ) 2 Lithium ion secondary battery electrolyte, characterized in that any one or two or more salts selected from the group consisting of. 제 1항 또는 제 2항에 있어서, 비수성 유기용매는 카보네이트계, 에스테르계, 에테르계 및 케톤계 용매로 구성된 군에서 선택된 하나의 용매 또는 2 이상의 용매의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte for a lithium ion secondary battery according to claim 1 or 2, wherein the non-aqueous organic solvent is one solvent or a mixture of two or more solvents selected from the group consisting of carbonate-based, ester-based, ether-based, and ketone-based solvents. . 제 3항에 있어서, 비수성 유기용매는 카보네이트계, 에스테르계, 에테르계 및 케톤계 용매로 구성된 군에서 선택된 하나의 용매 또는 2 이상의 용매의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte of claim 3, wherein the non-aqueous organic solvent is one solvent selected from the group consisting of carbonate-based, ester-based, ether-based and ketone-based solvents or a mixture of two or more solvents. 제 4항에 있어서, 카보네이트계 용매는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸 메틸 카보네이트(EMC), 디프로필 카보네이트(DPC), 메틸 프로필 카보네이트(MPC), 에틸 프로필 카보네이트(EPC) 및 부틸렌 카보네이트(BC)로 구성된 군에서 선택된 하나의 용매 또는 2 이상의 용매의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The method of claim 4, wherein the carbonate solvent is ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), methyl An electrolyte solution for a lithium ion secondary battery, characterized in that one solvent selected from the group consisting of propyl carbonate (MPC), ethyl propyl carbonate (EPC) and butylene carbonate (BC) or a mixture of two or more solvents. 제 5항에 있어서, 카보네이트계 용매는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸 메틸 카보네이트(EMC), 디프로필 카보네이트(DPC), 메틸 프로필 카보네이트(MPC), 에틸 프로필 카보네이트(EPC) 및 부틸렌 카보네이트(BC)로 구성된 군에서 선택된 하나의 용매 또는 2 이상의 용매의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The method of claim 5, wherein the carbonate solvent is ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), methyl An electrolyte solution for a lithium ion secondary battery, characterized in that one solvent selected from the group consisting of propyl carbonate (MPC), ethyl propyl carbonate (EPC) and butylene carbonate (BC) or a mixture of two or more solvents. 제 4항에 있어서, 카보네이트계 용매는 환형(cyclic) 카보네이트 및 사슬형(chain) 카보네이트의 혼합 용매인 것을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte for a lithium ion secondary battery according to claim 4, wherein the carbonate-based solvent is a mixed solvent of cyclic carbonate and chain carbonate. 제 5항에 있어서, 카보네이트계 용매는 환형(cyclic) 카보네이트 및 사슬형 (chain) 카보네이트의 혼합 용매인 것을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte for a lithium ion secondary battery according to claim 5, wherein the carbonate solvent is a mixed solvent of a cyclic carbonate and a chain carbonate. 제 6항에 있어서, 카보네이트계 용매는 환형(cyclic) 카보네이트 및 사슬형(chain) 카보네이트의 혼합 용매인 것을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte for a lithium ion secondary battery according to claim 6, wherein the carbonate-based solvent is a mixed solvent of cyclic carbonate and chain carbonate. 제 5항에 있어서, 에스테르계 용매는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트로 이루어진 군에서 선택되는 하나의 용매 또는 2 이상의 용매의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte solution for a lithium ion secondary battery according to claim 5, wherein the ester solvent is one solvent selected from the group consisting of methyl acetate, ethyl acetate, and propyl acetate, or a mixture of two or more solvents. 제 6항에 있어서, 에테르계 용매는 테트라히드로퓨란 또는 2-메틸테트라히드로퓨란, 또는 이들의 혼합물임을 특징으로 하는 리튬이온 이차전지용 전해액.The electrolyte solution for a lithium ion secondary battery according to claim 6, wherein the ether solvent is tetrahydrofuran or 2-methyltetrahydrofuran, or a mixture thereof. 제 5항에 있어서, 케톤계 용매는 폴리메틸비닐 케톤임을 특징으로 하는 리튬이온 이차전지용 전해액. The electrolyte for a lithium ion secondary battery according to claim 5, wherein the ketone solvent is polymethylvinyl ketone. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070041012A 2007-04-26 2007-04-26 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same KR100853615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070041012A KR100853615B1 (en) 2007-04-26 2007-04-26 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070041012A KR100853615B1 (en) 2007-04-26 2007-04-26 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same

Publications (1)

Publication Number Publication Date
KR100853615B1 true KR100853615B1 (en) 2008-08-22

Family

ID=39878411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070041012A KR100853615B1 (en) 2007-04-26 2007-04-26 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same

Country Status (1)

Country Link
KR (1) KR100853615B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207257A (en) * 2016-08-30 2016-12-07 浙江和也健康科技有限公司 A kind of lithium battery electrolytes
JP2020527823A (en) * 2017-07-17 2020-09-10 ノームズ テクノロジーズ インコーポレイテッド Phosphorus-containing electrolyte
CN111710908A (en) * 2020-06-22 2020-09-25 中国电力科学研究院有限公司 Direct-current power supply lithium ion battery and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233140A (en) 1998-02-13 1999-08-27 Sony Corp Nonaqueous electrolyte secondary battery
KR20040092425A (en) * 2003-04-25 2004-11-03 미쓰이 가가쿠 가부시키가이샤 Non-aqueous electrolytic solutions for lithium battery and lithium ion secondary battery
KR20050041073A (en) * 2003-10-29 2005-05-04 삼성에스디아이 주식회사 Rechargeable lithium battery
KR20050113990A (en) * 2004-05-31 2005-12-05 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233140A (en) 1998-02-13 1999-08-27 Sony Corp Nonaqueous electrolyte secondary battery
KR20040092425A (en) * 2003-04-25 2004-11-03 미쓰이 가가쿠 가부시키가이샤 Non-aqueous electrolytic solutions for lithium battery and lithium ion secondary battery
KR20050041073A (en) * 2003-10-29 2005-05-04 삼성에스디아이 주식회사 Rechargeable lithium battery
KR20050113990A (en) * 2004-05-31 2005-12-05 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207257A (en) * 2016-08-30 2016-12-07 浙江和也健康科技有限公司 A kind of lithium battery electrolytes
CN106207257B (en) * 2016-08-30 2018-12-11 浙江和也健康科技有限公司 A kind of lithium battery electrolytes
JP2020527823A (en) * 2017-07-17 2020-09-10 ノームズ テクノロジーズ インコーポレイテッド Phosphorus-containing electrolyte
JP7296893B2 (en) 2017-07-17 2023-06-23 ノームズ テクノロジーズ インコーポレイテッド Phosphorus-containing electrolyte
CN111710908A (en) * 2020-06-22 2020-09-25 中国电力科学研究院有限公司 Direct-current power supply lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US10141608B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR100863887B1 (en) Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
EP2224532A1 (en) Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR100995413B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
CN111527636A (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP7168851B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
CN102104172A (en) Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same
US9548515B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20070023451A (en) Organic electrolytic solution and lithium battery employing the same
CN105206873A (en) Phosphazene perfluoroalkanesulfonylimide lithium electrolyte and battery using electrolyte
KR20150072188A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
CN105009346B (en) Electrolyte for lithium secondary battery and the lithium secondary battery comprising it
KR100853615B1 (en) Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising the same
KR20150072361A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR102308599B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR101130726B1 (en) Electrolyte for lithium-ion battery and lithium-ion battery comprising the same
KR102353962B1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR20140067223A (en) Electrolyte for secondary battery and lithium secondary battery containing the same
KR20140073654A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
KR20080112490A (en) Organic electrolyte for lithium-ion battery and lithium-ion battery comprising the same
KR20140067242A (en) Electrolyte for secondary battery and lithium secondary battery containing the same
WO2022209058A1 (en) Secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140617

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee